1
|
Moulin S, Blachot-Minassian B, Kneppers A, Thomas A, Paradis S, Bultot L, Arnaud C, Pépin JL, Bertrand L, Mounier R, Belaidi E. Metformin protects the heart against chronic intermittent hypoxia through AMPK-dependent phosphorylation of HIF-1α. FEBS J 2025. [PMID: 40364612 DOI: 10.1111/febs.70110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/11/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025]
Abstract
Chronic intermittent hypoxia (IH), a major feature of obstructive sleep apnea syndrome (OSA), is associated with greater severity of myocardial infarction. In this study, we performed RNA sequencing of cardiac samples from mice exposed to IH, which reveals a specific transcriptomic signature of the disease, relative to mitochondrial remodeling and cell death. Corresponding to its activation under chronic IH, we stabilized the Hypoxia Inducible Factor-1α (HIF-1α) in cardiac cells in vitro and observed its association with an increased autophagic flux. In accordance, IH induced autophagy and mitophagy, which are decreased in HIF-1α+/- mice compared to wild-type animals, suggesting that HIF-1 plays a significant role in IH-induced mitochondrial remodeling. Next, we showed that the AMPK metabolic sensor, typically activated by mitochondrial stress, is inhibited after 3 weeks of IH in hearts. Therefore, we assessed the effect of metformin, an anti-diabetic drug and potent activator of AMPK, on myocardial response to ischemia-reperfusion (I/R) injury. Daily administration of metformin significantly decreases infarct size without any systemic beneficial effect on insulin resistance under IH conditions. The cardioprotective effect of metformin was lost in AMPKα2 knock-out mice, demonstrating that AMPKα2 isoform promotes metformin-induced cardioprotection in mice exposed to IH. Mechanistically, we found that metformin inhibits IH-induced mitophagy in myocardium and decreases HIF-1α nuclear expression in mice subjected to IH. In vitro experiments demonstrated that metformin induced HIF-1α phosphorylation, decreased its nuclear localization, and HIF-1 transcriptional activity. Collectively, these results identify the AMPKα2 metabolic sensor as a novel modulator of HIF-1 activity. Our data suggest that metformin could be considered as a cardioprotective drug in OSA patients independently of their metabolic status.
Collapse
Affiliation(s)
- Sophie Moulin
- HP2, Université Grenoble Alpes, INSERM, Laboratory HP2, France
| | | | - Anita Kneppers
- Institut NeuroMyoGène, CNRS UMR 5261, INSERM U1315, Université Lyon 1, France
| | - Amandine Thomas
- Team Atherosclerosis, Thrombosis and Physical Activity, LIBM UR7424, Université Lyon 1, France
| | | | - Laurent Bultot
- Pole of Cardiovascular Research, UCLouvain, Institute of Experimental and Clinical Research (IREC), Brussels, Belgium
| | - Claire Arnaud
- HP2, Université Grenoble Alpes, INSERM, Laboratory HP2, France
| | - Jean-Louis Pépin
- HP2, Université Grenoble Alpes, INSERM, Laboratory HP2, France
- Cardiovascular and Respiratory Function Laboratory, Grenoble Alpes University Hospital, France
| | - Luc Bertrand
- Pole of Cardiovascular Research, UCLouvain, Institute of Experimental and Clinical Research (IREC), Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Rémi Mounier
- Institut NeuroMyoGène, CNRS UMR 5261, INSERM U1315, Université Lyon 1, France
| | - Elise Belaidi
- HP2, Université Grenoble Alpes, INSERM, Laboratory HP2, France
- Institut NeuroMyoGène, CNRS UMR 5261, INSERM U1315, Université Lyon 1, France
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS, LBTI UMR 5305, Université Lyon 1, France
| |
Collapse
|
2
|
Zhang X, Hu C, Ma ZG, Hu M, Yuan XP, Yuan YP, Wang SS, Kong CY, Teng T, Tang QZ. Tisp40 prevents cardiac ischemia/reperfusion injury through the hexosamine biosynthetic pathway in male mice. Nat Commun 2023; 14:3383. [PMID: 37291168 PMCID: PMC10250363 DOI: 10.1038/s41467-023-39159-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023] Open
Abstract
The hexosamine biosynthetic pathway (HBP) produces uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) to facilitate O-linked GlcNAc (O-GlcNAc) protein modifications, and subsequently enhance cell survival under lethal stresses. Transcript induced in spermiogenesis 40 (Tisp40) is an endoplasmic reticulum membrane-resident transcription factor and plays critical roles in cell homeostasis. Here, we show that Tisp40 expression, cleavage and nuclear accumulation are increased by cardiac ischemia/reperfusion (I/R) injury. Global Tisp40 deficiency exacerbates, whereas cardiomyocyte-restricted Tisp40 overexpression ameliorates I/R-induced oxidative stress, apoptosis and acute cardiac injury, and modulates cardiac remodeling and dysfunction following long-term observations in male mice. In addition, overexpression of nuclear Tisp40 is sufficient to attenuate cardiac I/R injury in vivo and in vitro. Mechanistic studies indicate that Tisp40 directly binds to a conserved unfolded protein response element (UPRE) of the glutamine-fructose-6-phosphate transaminase 1 (GFPT1) promoter, and subsequently potentiates HBP flux and O-GlcNAc protein modifications. Moreover, we find that I/R-induced upregulation, cleavage and nuclear accumulation of Tisp40 in the heart are mediated by endoplasmic reticulum stress. Our findings identify Tisp40 as a cardiomyocyte-enriched UPR-associated transcription factor, and targeting Tisp40 may develop effective approaches to mitigate cardiac I/R injury.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Can Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Min Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Xiao-Pin Yuan
- Department of Geriatrics, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Yu-Pei Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Sha-Sha Wang
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Chun-Yan Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Teng Teng
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China.
| |
Collapse
|
3
|
Jahandiez V, Pillot B, Bidaux G, Bolbos R, Stevic N, Wiart M, Ovize M, Argaud L, Cour M. Reassessment of mitochondrial cyclophilin D as a target for improving cardiac arrest outcomes in the era of therapeutic hypothermia. Transl Res 2022; 249:37-48. [PMID: 35691543 DOI: 10.1016/j.trsl.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 10/31/2022]
Abstract
Uncertainty exists regarding whether cyclophilin D (CypD), a mitochondrial matrix protein that plays a key role in ischemia-reperfusion injury, can be a pharmacological target for improving outcomes after cardiac arrest (CA), especially when therapeutic hypothermia is used. Using CypD knockout mice (CypD-/-), we investigated the effects of loss of CypD on short-term and medium-term outcomes after CA. CypD-/- mice or their wild-type (WT) littermates underwent either 5 minute CA followed by resuscitation with and/or without hypothermia at 33°C-34°C (targeted temperature reached within minutes after resuscitation), or a sham procedure. Brain and cardiac injury were assessed using echocardiography, neurological scores, MRI and biomarkers. Seven day survival was compared using Kaplan-Meier estimates. The rate of restoration of spontaneous circulation was significantly higher in CypD-/- mice (with shorter cardiac massage duration) than in WT mice (P < 0.05). Loss of CypD significantly attenuated CA-induced release of troponin and S100ß protein, and limited myocardial dysfunction at 150 minutes after CA. Loss of CypD combined with hypothermia led to the best neurological and MRI scores at 24 hours and highest survival rates at 7 days compared to other groups (P < 0.05). In animals successfully resuscitated, loss of CypD had no benefits on day 7 survival while hypothermia was highly protective. Pharmacological inhibition of CypD with cyclosporine A combined with hypothermia provided similar day 7 survival than loss of CypD combined with hypothermia. CypD is a viable target to improve success of cardiopulmonary resuscitation but its inhibition is unlikely to improve long-term outcomes, unless therapeutic hypothermia is associated.
Collapse
Affiliation(s)
- Vincent Jahandiez
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Médecine Intensive, Réanimation, Lyon, France; Université de Lyon, Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Est, Lyon, France; INSERM UMR 1060, CarMeN, IRIS, Lyon, France
| | | | | | - Radu Bolbos
- CNRS-UMS3453, CERMEP, Imagerie du Vivant, Département ANIMAGE, Bron, France
| | - Neven Stevic
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Médecine Intensive, Réanimation, Lyon, France; Université de Lyon, Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Est, Lyon, France; INSERM UMR 1060, CarMeN, IRIS, Lyon, France
| | | | | | - Laurent Argaud
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Médecine Intensive, Réanimation, Lyon, France; Université de Lyon, Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Est, Lyon, France; INSERM UMR 1060, CarMeN, IRIS, Lyon, France
| | - Martin Cour
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Médecine Intensive, Réanimation, Lyon, France; Université de Lyon, Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Est, Lyon, France; INSERM UMR 1060, CarMeN, IRIS, Lyon, France.
| |
Collapse
|
4
|
Kuang L, Zhu Y, Wu Y, Peng X, Tian K, Liu L, Li T. Synergetic Effect of 4-Phenylbutyric Acid in Combination with Cyclosporine A on Cardiovascular Function in Sepsis Rats via Inhibition of Endoplasmic Reticulum Stress and Mitochondrial Permeability Transition Pore Opening. Front Pharmacol 2021; 12:770558. [PMID: 34916944 PMCID: PMC8670008 DOI: 10.3389/fphar.2021.770558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/01/2021] [Indexed: 12/03/2022] Open
Abstract
Background: Sepsis/septic shock is a common complication in the intensive care unit, and the opening of the mitochondrial permeability transition pore (mPTP), as well as the endoplasmic reticulum stress (ERS), play important roles in this situation. Whether the combination of anti-ERS and anti-mPTP by 4-phenylbutyric acid (PBA) and Cyclosporine A (CsA) could benefit sepsis is unclear. Methods: The cecal ligation and puncture-induced septic shock models were replicated in rats, and lipopolysaccharide (LPS)-challenged primary vascular smooth muscle cells and H9C2 cardiomyocytes in vitro models were also used. The therapeutic effects of CsA, PBA, and combined administration on oxygen delivery, cardiac and vascular function, vital organ injury, and the underlying mechanisms were observed. Results: Septic shock significantly induced cardiovascular dysfunction, hypoperfusion, and organ injury and resulted in high mortality in rats. Conventional treatment including fluid resuscitation, vasoactive agents, and antibiotics slightly restored tissue perfusion and organ function in septic rats. Supplementation of CsA or PBA improved the tissue perfusion, organ function, and survival of septic shock rats. The combined application of PBA and CsA could significantly enhance the beneficial effects, compared with using PBA or CsA alone. Further study showed that PBA enhanced CsA-induced cardiovascular protection, which contributed to better therapeutic effects. Conclusion: Anti-ERS and anti-mPTP-opening by the combination of PBA and CsA was beneficial to septic shock. PBA enforced the CsA-associated cardiovascular protection and contributed to the synergetic effect.
Collapse
Affiliation(s)
- Lei Kuang
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yu Zhu
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yue Wu
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoyong Peng
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Kunlun Tian
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Liangming Liu
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tao Li
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
5
|
Milduberger N, Bustos PL, González C, Perrone AE, Postan M, Bua J. Trypanosoma cruzi infection in Cyclophilin D deficient mice. Exp Parasitol 2021; 220:108044. [PMID: 33253715 DOI: 10.1016/j.exppara.2020.108044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/10/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease, which is endemic in Latin America and around the world through mother to child transmission. The heart is the organ most frequently affected in the chronic stage of the human infection and depends on mitochondria for the required energy for its activity. Cyclophilins are involved in protein folding and the mitochondrial isoform, Cyclophilin D (CyPD), has a crucial role in the opening of the mitochondrial permeability transition pore. In the present study, we infected CyPD deficient mice, with ablation of the Ppif gene, with T. cruzi parasites and the course of the infection was analyzed. Parasite load, quantified by PCR, was significantly lower in skeletal and cardiac tissues of Ppif-/- mice compared to wild type mice. In vitro cultured cardiomyocytes and macrophages from mice lacking CyPD exhibited lower percentage of infected cells and number of intracellular parasites than those observed for wild type mice. Although histopathological analysis of heart and mRNA of heart cytokines showed differences between T. cruzi-infected mice compared to the uninfected animals, no significant differences were found mice due to the ablation of the Ppif gene. Our results suggest that cells deficient for mitochondrial CyPD, inhibited for the mitochondrial membrane potential collapse, reduces the severity of parasite aggression and spread of cellular infection.
Collapse
MESH Headings
- Animals
- Chagas Disease/parasitology
- Peptidyl-Prolyl Isomerase F/deficiency
- Cytokines/analysis
- Cytokines/genetics
- DNA, Protozoan/isolation & purification
- Heart/parasitology
- Liver/pathology
- Macrophages, Peritoneal/cytology
- Macrophages, Peritoneal/parasitology
- Mice
- Mice, Inbred C57BL
- Muscle, Skeletal/parasitology
- Muscle, Skeletal/pathology
- Myocardium/pathology
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/parasitology
- Parasite Load
- RNA, Messenger/analysis
- RNA, Protozoan/analysis
- RNA, Protozoan/isolation & purification
- Spleen/pathology
- Trypanosoma cruzi/genetics
- Trypanosoma cruzi/physiology
Collapse
Affiliation(s)
- Natalia Milduberger
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben" - ANLIS C. G. Malbrán, Paseo Colón 568, PC 1063, Buenos Aires, Argentina
| | - Patricia L Bustos
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben" - ANLIS C. G. Malbrán, Paseo Colón 568, PC 1063, Buenos Aires, Argentina
| | - Carolina González
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben" - ANLIS C. G. Malbrán, Paseo Colón 568, PC 1063, Buenos Aires, Argentina; Centro de Altos Estudios en Ciencias Humanas y de La Salud (CAECIHS), Universidad Abierta Interamericana, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Alina E Perrone
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben" - ANLIS C. G. Malbrán, Paseo Colón 568, PC 1063, Buenos Aires, Argentina
| | - Miriam Postan
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben" - ANLIS C. G. Malbrán, Paseo Colón 568, PC 1063, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Jacqueline Bua
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben" - ANLIS C. G. Malbrán, Paseo Colón 568, PC 1063, Buenos Aires, Argentina; Centro de Altos Estudios en Ciencias Humanas y de La Salud (CAECIHS), Universidad Abierta Interamericana, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Tan X, Tao Q, Li G, Xiang L, Zheng X, Zhang T, Wu C, Li D. Fibroblast Growth Factor 2 Attenuates Renal Ischemia-Reperfusion Injury via Inhibition of Endoplasmic Reticulum Stress. Front Cell Dev Biol 2020; 8:147. [PMID: 32266254 PMCID: PMC7105877 DOI: 10.3389/fcell.2020.00147] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/21/2020] [Indexed: 12/14/2022] Open
Abstract
Acute kidney injury (AKI) is a serious clinical disease that is mainly caused by renal ischemia-reperfusion (I/R) injury, sepsis, and nephrotoxic drugs. The pathologic mechanism of AKI is very complex and may involve oxidative stress, inflammatory response, autophagy, apoptosis, and endoplasmic reticulum (ER) stress. The basic fibroblast growth factor (FGF2) is a canonic member of the FGF family that plays a crucial role in various cellular processes, including organ development, wound healing, and tissue regeneration. However, few studies have reported the potential therapeutic effect of FGF2 in the repair of renal ischemic injury in the past two decades. In the present study, we investigated the protective effect of FGF2 on renal I/R injury using Sprague-Dawley and NRK-52E cells. Our results showed that FGF2 significantly attenuates the apoptosis of kidney tissues after I/R injury through the inhibition of excessive ER stress. Moreover, FGF2 also alleviated the excessive ER stress and apoptosis in cultured NRK-52E cells injured by tert-Butyl hydroperoxide (TBHP). Significantly, phosphatidylinositol 3-kinase (PI3K)-selective inhibitor LY294002 and mitogen-activated protein kinase kinase (MEK)-selective inhibitor U0126 were utilized in the present study to examine the protective mechanism of FGF2. Our in vitro experimental results confirmed that both LY294002 and U0126 largely abolished the protective effect of FGF2. Taken together, the findings of the present study indicated that FGF2 attenuates I/R-induced renal epithelial apoptosis by suppressing excessive ER stress via the activation of the PI3K/AKT and MEK-ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Xiaohua Tan
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qianyu Tao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Beilun District People's Hospital of Ningbo, Ningbo, China
| | - Guixiu Li
- Outpatient Operating Room, Jiaozhou Central Hospital of Qingdao, Qingdao, China
| | - Lijun Xiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaomeng Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Beilun District People's Hospital of Ningbo, Ningbo, China
| | - Tianzhen Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Cuijiao Wu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Dequan Li
- Department of Traumatology Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Tan X, Yu L, Yang R, Tao Q, Xiang L, Xiao J, Zhang JS. Fibroblast Growth Factor 10 Attenuates Renal Damage by Regulating Endoplasmic Reticulum Stress After Ischemia-Reperfusion Injury. Front Pharmacol 2020; 11:39. [PMID: 32116715 PMCID: PMC7019113 DOI: 10.3389/fphar.2020.00039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/14/2020] [Indexed: 01/08/2023] Open
Abstract
Renal ischemia–reperfusion (I/R) injury is a predominant cause of acute kidney injury (AKI), the pathologic mechanism of which is highly complex involving reactive oxygen species (ROS) accumulation, inflammatory response, autophagy, apoptosis as well as endoplasmic reticulum (ER) stress. Fibroblast growth factor 10 (FGF10), as a multifunctional growth factor, plays crucial roles in embryonic development, adult homeostasis, and regenerative medicine. Herein, we investigated the molecular pathways underlying the protective effect of FGF10 on renal I/R injury using Sprague–Dawley rats. Results showed that administration of FGF10 not only effectively inhibited I/R-induced activation of Caspase-3 and expression of Bax, but also alleviated I/R evoked expression of ER stress-related proteins in the kidney including CHOP, GRP78, XBP-1, and ATF-4 and ATF-6. The protective effect of FGF10 against apoptosis and ER stress was recapitulated by in vitro experiments using oxidative damaged NRK-52E cells induced by tert-Butyl hydroperoxide (TBHP). Significantly, U0126, a selective noncompetitive inhibitor of MAP kinase kinases (MKK), largely abolished the protective role of FGF10. Taken together, both in vivo and in vitro experiments indicated that FGF10 attenuates I/R-induced renal epithelial apoptosis by suppressing excessive ER stress, which is, at least partially, mediated by the activation of the MEK–ERK1/2 signaling pathway. Therefore, our present study revealed the therapeutic potential of FGF10 on renal I/R injury.
Collapse
Affiliation(s)
- Xiaohua Tan
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lixia Yu
- Department of Pharmacy, Xixi Hospital of Hangzhou, Hangzhou, China
| | - Ruo Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qianyu Tao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lijun Xiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jin-San Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Life Sciences, Wenzhou University, Wenzhou, China
| |
Collapse
|
8
|
Zhang L, Wang Y. Tauroursodeoxycholic Acid Alleviates H 2O 2-Induced Oxidative Stress and Apoptosis via Suppressing Endoplasmic Reticulum Stress in Neonatal Rat Cardiomyocytes. Dose Response 2018; 16:1559325818782631. [PMID: 30038553 PMCID: PMC6052504 DOI: 10.1177/1559325818782631] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/28/2018] [Accepted: 05/15/2018] [Indexed: 12/14/2022] Open
Abstract
Introduction: We aimed to test the mechanism of protective effects of tauroursodeoxycholic acid (TUDCA) on cardiovascular disease using cultured cardiomyocytes. Methods: Neonatal rat cardiomyocytes (NRCMs) were isolated and cultured and then the cells were divided into 4 groups based on the treatments: control group (cells treated with culture medium), H2O2/thapsigargin (TG) group (cells treated with oxidative stress and endoplasmic reticulum [ER] stress inducer), TUDCA group, and H2O2/TG + TUDCA group. The treated NRCMs were then subjected to serial analyses including flow cytometry, enzyme-linked immunosorbent assay, and Western blotting. Results: Tauroursodeoxycholic acid significantly attenuated H2O2-induced reactive oxygen species generation and lactate dehydrogenase release and restored H2O2-induced reductions of glutathione and superoxide dismutase levels in NRCMs. Tauroursodeoxycholic acid also alleviated H2O2-induced cardiomyocytes apoptosis, as well as the Bax/Bcl2 ratio compared with that of H2O2 treated alone. In addition, TUDCA suppressed TG-induced ER stress as reflected by inversing cell viability and the expression levels of glucose-regulated protein 78 kDa and C/enhancer-binding protein homologous protein. Conclusion: Our data indicated that TUDCA-mediated inhibition on H2O2-induced oxidative stress and cardiomyocytes apoptosis was through suppressing ER stress, and TUDCA possesses the potential to be developed as therapeutic tool in clinical use for cardiovascular diseases.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Cardiology, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| | - Yanmin Wang
- Department of Circulatory Medicine, Daqing Longnan Hospital, Daqing, Heilongjiang, China
| |
Collapse
|
9
|
Belaidi E, Thomas A, Bourdier G, Moulin S, Lemarié E, Levy P, Pépin JL, Korichneva I, Godin-Ribuot D, Arnaud C. Endoplasmic reticulum stress as a novel inducer of hypoxia inducible factor-1 activity: its role in the susceptibility to myocardial ischemia-reperfusion induced by chronic intermittent hypoxia. Int J Cardiol 2016; 210:45-53. [PMID: 26922713 DOI: 10.1016/j.ijcard.2016.02.096] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/09/2016] [Accepted: 02/14/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is a highly prevalent disease and a risk factor for myocardial infarction expansion in humans. Intermittent hypoxia (IH) is known to be the most important OSA feature in terms of cardiovascular morbi-mortality. Since ER stress and HIF-1 are known to be involved in cardiomyocyte life or death, this study investigates the role of ER stress on HIF-1 activation in myocardial susceptibility to ischemia-reperfusion (I/R) induced by IH. METHODS C57Bl6J, HIF-1α(+/-) and their respective control mice were exposed to 14 days of IH (21-5% FiO2, 60 scycle, 8h/day). Myocardial inter-organelle calcium exchanges, ER stress and HIF-1 activity were investigated and in vivo I/R was performed to measure infarct size. In additional groups, tauroursodeoxycholic acid (TUDCA, 75 mg·kg(-1)), an ER stress inhibitor, was administered daily during exposure. RESULTS In C57Bl6J mice, chronic IH induced an increase in ER-Ca(2+) content, ER stress markers and HIF-1 activity, associated with an enhanced infarct size (33.7 ± 9.4 vs. 61.0 ± 5.6% in N and IH, respectively, p<0.05). IH failed to increase infarct size in HIF-1α deficient mice (42.4 ± 2.7 and 24.7 ± 3.4% N and IH, respectively). Finally, TUDCA totally abolished the IH-induced increase in HIF-1 activity (1.3 ± 0.04 vs. 0.14 ± 0.02 fold increase in IH vs. IH-TUDCA respectively, p<0.0001) and in infarct size (55.5 ± 7.6 vs. 49.9 ± 3.0 in N-TUDCA and IH-TUDCA, respectively). CONCLUSION This novel regulatory mechanism of HIF-1 activity by ER stress should be considered as a potential diagnostic tool for cardiovascular complications in OSA patients as well as a therapeutic target to limit myocardial ischemic damage.
Collapse
Affiliation(s)
- Elise Belaidi
- Université Grenoble Alpes, Laboratoire HP2, Grenoble F-38042, France; INSERM, U1042, Grenoble F-38042, France.
| | - Amandine Thomas
- Université Grenoble Alpes, Laboratoire HP2, Grenoble F-38042, France; INSERM, U1042, Grenoble F-38042, France
| | - Guillaume Bourdier
- Université Grenoble Alpes, Laboratoire HP2, Grenoble F-38042, France; INSERM, U1042, Grenoble F-38042, France
| | - Sophie Moulin
- Université Grenoble Alpes, Laboratoire HP2, Grenoble F-38042, France; INSERM, U1042, Grenoble F-38042, France
| | - Emeline Lemarié
- Université Grenoble Alpes, Laboratoire HP2, Grenoble F-38042, France; INSERM, U1042, Grenoble F-38042, France
| | - Patrick Levy
- Université Grenoble Alpes, Laboratoire HP2, Grenoble F-38042, France; INSERM, U1042, Grenoble F-38042, France
| | - Jean-Louis Pépin
- Université Grenoble Alpes, Laboratoire HP2, Grenoble F-38042, France; INSERM, U1042, Grenoble F-38042, France
| | - Irina Korichneva
- Université Picardie, Laboratoire de biologie cellulaire moléculaire, Amiens 80000, France
| | - Diane Godin-Ribuot
- Université Grenoble Alpes, Laboratoire HP2, Grenoble F-38042, France; INSERM, U1042, Grenoble F-38042, France
| | - Claire Arnaud
- Université Grenoble Alpes, Laboratoire HP2, Grenoble F-38042, France; INSERM, U1042, Grenoble F-38042, France
| |
Collapse
|
10
|
Chen H, Liu C, Yin J, Chen Z, Xu J, Wang D, Zhu J, Zhang Z, Sun Y, Li A. Mitochondrial Cyclophilin D as a Potential Therapeutic Target for Ischemia-Induced Facial Palsy in Rats. Cell Mol Neurobiol 2015; 35:931-41. [PMID: 25820785 PMCID: PMC11486281 DOI: 10.1007/s10571-015-0188-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/25/2015] [Indexed: 10/23/2022]
Abstract
Many studies have demonstrated that ischemia could induce facial nerve (FN) injury. However, there is a lack of a suitable animal model for FN injury study and thus little knowledge is available about the precise mechanism for FN injury. The aims of this study were to establish a reliable FN injury model induced by blocking the petrosal artery and to investigate whether dysfunctional interaction between cyclophilin D (CypD) and mitochondrial permeability transition pore (MPTP) can mediate cell dysfunction in ischemic FN injury. The outcomes of ischemia-induced FN injury rat model were evaluated by behavioral assessment, histological observation, electrophysiology, and electron microscopy. Then the levels of CypD and protein that forms the MPTP were evaluated under the conditions with or without the treatment of Cyclosporin A (CsA), which has been found to disrupt MPTP through the binding of CypD. The blocking of petrosal artery caused significant facial palsy signs in the ischemia group but not in the sham group. Furthermore, ischemia can induce the dysfunction of facial nucleus neurons and destruction of the myelin sheath and increase the protein levels of CypD and MPTP protein compared with sham group. Interestingly, treatment with CsA significantly improved neurological function and reversed the ischemia-induced increase of CypD and MPTP proteins in ischemia group. These results demonstrated that blocking of petrosal artery in rats can induce FN injury and the mechanism may be related to the disruption of MPTP by CypD.
Collapse
Affiliation(s)
- Huizhen Chen
- Department of Neurosurgery, The First People's Hospital of Lianyungang, 182 Tong Guan North Road, Lianyungang, Jiangsu, 222002, People's Republic of China
| | - Chnagtao Liu
- Department of Neurosurgery, The First People's Hospital of Lianyungang, 182 Tong Guan North Road, Lianyungang, Jiangsu, 222002, People's Republic of China
| | - Jie Yin
- Department of Neurosurgery, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, People's Republic of China
| | - Zhen Chen
- Department of Neurosurgery, The First People's Hospital of Lianyungang, 182 Tong Guan North Road, Lianyungang, Jiangsu, 222002, People's Republic of China
| | - Jinwang Xu
- Department of Neurosurgery, The First People's Hospital of Lianyungang, 182 Tong Guan North Road, Lianyungang, Jiangsu, 222002, People's Republic of China
| | - Duanlei Wang
- Department of Neurosurgery, The First People's Hospital of Lianyungang, 182 Tong Guan North Road, Lianyungang, Jiangsu, 222002, People's Republic of China
| | - Jiaqiu Zhu
- Department of Neurosurgery, The First People's Hospital of Lianyungang, 182 Tong Guan North Road, Lianyungang, Jiangsu, 222002, People's Republic of China
| | - Ziyuan Zhang
- Department of Neurosurgery, The First People's Hospital of Lianyungang, 182 Tong Guan North Road, Lianyungang, Jiangsu, 222002, People's Republic of China
| | - Yong Sun
- Department of Neurosurgery, The First People's Hospital of Lianyungang, 182 Tong Guan North Road, Lianyungang, Jiangsu, 222002, People's Republic of China
| | - Aimin Li
- Department of Neurosurgery, The First People's Hospital of Lianyungang, 182 Tong Guan North Road, Lianyungang, Jiangsu, 222002, People's Republic of China.
| |
Collapse
|
11
|
Depletion of cardiac 14-3-3η protein adversely influences pathologic cardiac remodeling during myocardial infarction after coronary artery ligation in mice. Int J Cardiol 2015; 202:146-53. [PMID: 26386943 DOI: 10.1016/j.ijcard.2015.08.142] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 08/15/2015] [Accepted: 08/19/2015] [Indexed: 11/21/2022]
Abstract
BACKGROUND/OBJECTIVES 14-3-3η protein, a dimeric phosphoserine-binding protein, provides protection against adverse cardiac remodeling during pressure-overload induced heart failure in mice. To identify its role in myocardial infarction (MI), we have used mice with cardio-specific expression of dominant-negative 14-3-3η protein mutant (DN14-3-3) and performed the surgical ligation of left anterior descending coronary artery. METHODS We have performed echocardiography to assess cardiac function, protein expression analysis using Western blotting, mRNA expression by real time-reverse transcription polymerase chain reaction and histopathological analyses. RESULTS DN14-3-3 mice with MI displayed reduced survival, left ventricular ejection fraction and fractional shortening. Interestingly, DN14-3-3 mice subjected to MI showed increased cardiac hypertrophy, inflammation, fibrosis and apoptosis as compared to their wild-type counterparts. Mechanistically, DN14-3-3 mice with MI exhibited activation of endoplasmic reticulum (ER) stress and markers of maladaptive cardiac remodeling. Cardiac regeneration marker expression also decreased drastically in the DN14-3-3 mice with MI. CONCLUSION Depletion of the 14-3-3η protein causes cardiac dysfunction and reduces survival in mice with MI, probably via exacerbation of ER stress and death signaling pathways and suppression of cardiac regeneration. Thus, identification of drugs that can modulate cardiac 14-3-3η protein levels may probably provide a novel protective therapy for heart failure.
Collapse
|
12
|
Zha X, Yue Y, Dong N, Xiong S. Endoplasmic Reticulum Stress Aggravates Viral Myocarditis by Raising Inflammation Through the IRE1-Associated NF-κB Pathway. Can J Cardiol 2015; 31:1032-40. [PMID: 26111668 DOI: 10.1016/j.cjca.2015.03.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 02/20/2015] [Accepted: 03/03/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Viral myocarditis, which is mostly caused by coxsackievirus infection, is characterized by myocardial inflammation. Abnormal endoplasmic reticulum (ER) stress participates in many heart diseases, but its role in viral myocarditis remains unsolved. METHODS We investigated the influence of ER stress in coxsackievirus B3 (CVB3)-induced viral myocarditis by dynamically detecting its activation in CVB3-infected hearts, analyzing its association with myocarditis severity, and exploring its impact on disease development by modulating the strength of ER stress with the chemical activator tunicamycin (Tm) or the inhibitor tauroursodeoxycholic acid (TUDCA). The underlying signal pathway of ER stress in CVB3-induced myocarditis was also deciphered. RESULTS We found that myocardial expression of Grp78 and Grp94, 2 ER stress markers, was significantly increased after CVB3 infection and positively correlated with myocarditis severity. Consistently, Tm-augmented ER stress obviously aggravated myocarditis, as shown by more severe myocardial inflammation, reduced cardiac function, and a lower survival rate, whereas TUDCA decreased ER stress and obviously alleviated myocarditis. This pathologic effect of ER stress could be attributed to increased levels of proinflammatory cytokine (interleukin [IL]-6, IL-12, tumor necrosis factor-alpha, and monocyte chemoattractant protein-1) production through the IRE1-associated nuclear factor-κB (NF-kB) pathway. CONCLUSIONS ER stress accentuated CVB3-induced myocardial inflammation through the IRE1-associated NF-κB pathway. This study may help us understand the role of ER stress in viral myocarditis and promote the development of corresponding therapeutic strategies based on manipulating ER stress.
Collapse
Affiliation(s)
- Xi Zha
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Science, Soochow University, Suzhou, People's Republic of China
| | - Yan Yue
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Science, Soochow University, Suzhou, People's Republic of China
| | - Ning Dong
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Science, Soochow University, Suzhou, People's Republic of China
| | - Sidong Xiong
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Science, Soochow University, Suzhou, People's Republic of China.
| |
Collapse
|
13
|
Bernardi P, Di Lisa F. The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection. J Mol Cell Cardiol 2015; 78:100-6. [PMID: 25268651 PMCID: PMC4294587 DOI: 10.1016/j.yjmcc.2014.09.023] [Citation(s) in RCA: 369] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/15/2014] [Accepted: 09/19/2014] [Indexed: 12/18/2022]
Abstract
The mitochondrial permeability transition (PT) - an abrupt increase permeability of the inner membrane to solutes - is a causative event in ischemia-reperfusion injury of the heart, and the focus of intense research in cardioprotection. The PT is due to opening of the PT pore (PTP), a high conductance channel that is critically regulated by a variety of pathophysiological effectors. Very recent work indicates that the PTP forms from the F-ATP synthase, which would switch from an energy-conserving to an energy-dissipating device. This review provides an update on the current debate on how this transition is achieved, and on the PTP as a target for therapeutic intervention. This article is part of a Special Issue entitled "Mitochondria: from basic mitochondrial biology to cardiovascular disease".
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy; Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, 35121 Padova, Italy.
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy; Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, 35121 Padova, Italy.
| |
Collapse
|
14
|
Wang Z, Wang Y, Ye J, Lu X, Cheng Y, Xiang L, Chen L, Feng W, Shi H, Yu X, Lin L, Zhang H, Xiao J, Li X. bFGF attenuates endoplasmic reticulum stress and mitochondrial injury on myocardial ischaemia/reperfusion via activation of PI3K/Akt/ERK1/2 pathway. J Cell Mol Med 2014; 19:595-607. [PMID: 25533999 PMCID: PMC4369816 DOI: 10.1111/jcmm.12346] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 05/14/2014] [Indexed: 12/11/2022] Open
Abstract
Extensive research focused on finding effective strategies to prevent or improve recovery from myocardial ischaemia/reperfusion (I/R) injury. Basic fibroblast growth factor (bFGF) has been shown to have therapeutic potential in some heart disorders, including ischaemic injury. In this study, we demonstrate that bFGF administration can inhibit the endoplasmic reticulum (ER) stress and mitochondrial dysfunction induced in the heart in a mouse model of I/R injury. In vitro, bFGF exerts a protective effect by inhibiting the ER stress response and mitochondrial dysfunction proteins that are induced by tert-Butyl hydroperoxide (TBHP) treatment. Both of these in vivo and in vitro effects are related to the activation of two downstream signalling pathways, PI3K/Akt and ERK1/2. Inhibition of these PI3K/Akt and ERK1/2 pathways by specific inhibitors, LY294002 and PD98059, partially reduces the protective effect of bFGF. Taken together, our results indicate that the cardioprotective role of bFGF involves the suppression of ER stress and mitochondrial dysfunction in ischaemic oxidative damage models and oxidative stress-induced H9C2 cell injury; furthermore, these effects underlie the activation of the PI3K/Akt and ERK1/2 signalling pathways.
Collapse
Affiliation(s)
- Zhouguang Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China; School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rao J, Yue S, Fu Y, Zhu J, Wang X, Busuttil RW, Kupiec-Weglinski JW, Lu L, Zhai Y. ATF6 mediates a pro-inflammatory synergy between ER stress and TLR activation in the pathogenesis of liver ischemia-reperfusion injury. Am J Transplant 2014; 14:1552-61. [PMID: 24903305 PMCID: PMC4074706 DOI: 10.1111/ajt.12711] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/07/2014] [Accepted: 02/15/2014] [Indexed: 01/25/2023]
Abstract
Although the roles of the metabolic stress in organ ischemia-reperfusion injury (IRI) have been well recognized, the question of whether and how these stress responses regulate innate immune activation against IR remains unclear. In a murine liver partial warm ischemia mode, we showed that prolonged ischemia triggered endoplasmic reticulum (ER) stress response, particularly, the activating transcription factor 6 (ATF6) branch, in liver Kupffer cells (KCs) and altered their responsiveness against Toll-like receptor (TLR) stimulation. Ischemia-primed cells increased pro-, but decreased anti-, inflammatory cytokine productions. Alleviation of ER stress in vivo by small chemical chaperon 4-phenylbutyrate or ATF6 small interfering RNA (siRNA) diminished the pro-inflammatory priming effect of ischemia in KCs, leading to the inhibition of liver immune response against IR and protection of livers from IRI. In vitro, ATF6 siRNA abrogated the ER stress-mediated pro-inflammatory enhancement of macrophage TLR4 response, by restricting NF-κB and restoring Akt activations. Thus, ischemia primes liver innate immune cells by ATF6-mediated ER stress response. The IR-induced metabolic stress and TLR activation function in synergy to activate tissue inflammatory immune response.
Collapse
Affiliation(s)
- Jianhua Rao
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA,Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiansu Province, China
| | - Shi Yue
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA
| | - Yuanfang Fu
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA
| | - Jianjun Zhu
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA,Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University Medical School, Shanghai, China
| | - Xuehao Wang
- Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiansu Province, China
| | - Ronald W. Busuttil
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA
| | - Jerzy W. Kupiec-Weglinski
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA
| | - Ling Lu
- Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiansu Province, China,Address correspondence: Yuan Zhai, MD, PhD. Dumont-UCLA Transplant Center 77-120 CHS, 10833 Le Conte Ave, Los Angeles, CA 90095. Phone: (310) 825-9426; Fax: (310) 267-2367, ; Ling Lu, MD, Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guanzhou Road, Nanjing, P.R.China, Phone: 86-25-68136053; Fax:86-25-84630769;
| | - Yuan Zhai
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA,Address correspondence: Yuan Zhai, MD, PhD. Dumont-UCLA Transplant Center 77-120 CHS, 10833 Le Conte Ave, Los Angeles, CA 90095. Phone: (310) 825-9426; Fax: (310) 267-2367, ; Ling Lu, MD, Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guanzhou Road, Nanjing, P.R.China, Phone: 86-25-68136053; Fax:86-25-84630769;
| |
Collapse
|
16
|
Increased skeletal muscle expression of the endoplasmic reticulum chaperone GRP78 in patients with myasthenia gravis. J Neuroimmunol 2014; 273:72-6. [PMID: 24882382 DOI: 10.1016/j.jneuroim.2014.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/11/2014] [Accepted: 05/13/2014] [Indexed: 12/22/2022]
Abstract
In myasthenia gravis (MG), damage to neuromuscular junctions may induce endoplasmic reticulum (ER) stress in skeletal muscles. In the current study, skeletal muscles obtained from patients with MG exhibited upregulation of glucose-regulated protein 78 (GRP78) mRNA that was activated by ER stress. Furthermore, GRP78 mRNA expression was higher in patients with MG and myositis than in patients with non-myopathy. We also observed a significant positive correlation between GRP78 mRNA expression and GRP78 protein levels and between GRP78 mRNA expression and age of MG onset. Our findings suggest that muscle weakness in MG might be caused by both neuromuscular junction disruption and ER stress.
Collapse
|
17
|
Pawlotsky JM, Novruzov N, Baskiran A, Yetisir F, Unal B, Aydın C, Bayramov N, Kayaalp C, Yilmaz S. What are the pros and cons of the use of host-targeted agents against hepatitis C? Antiviral Res 2014; 105:22-5. [PMID: 24583032 PMCID: PMC7173253 DOI: 10.1016/j.antiviral.2014.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 12/12/2022]
Abstract
Host-targeted agents block hepatitis C virus production by interacting with host cell components. Blocking the interaction of a cell component involved in the HCV lifecycle results in blockade of viral production. Cyclophilin A inhibitors and antagonists of microRNA-122 have reached clinical development. Host-targeted agents represent ideal “backbones” for pangenotypic drug combinations. Research on host-targeted approaches to combat viral infections other than HCV should be encouraged.
Hepatitis C virus (HCV) therapy is living a revolution. Host-targeted agents (HTAs) block HCV production by interacting with host cell components. Because they target conserved host proteins, not variable viral proteins, HTAs have the potential for pangenotypic antiviral activity and a high barrier to resistance. Only two HTAs have reached clinical development, including specific inhibitors of cyclophilin A peptidyl-prolyl cis/trans isomerase activity and antagonists of microRNA-122. Cyclophilin inhibitors have proven to be relatively well tolerated and can be confidently used as backbones of all-oral, interferon-free regimens. In addition, HTAs such as cyclophilin inhibitors offer opportunities for “panviral” approaches when they target mechanisms common to viruses of the same or different families. This article forms part of a symposium in Antiviral Research on “Hepatitis C: next steps toward global eradication.”
Collapse
Affiliation(s)
- Jean-Michel Pawlotsky
- National Reference Center for Viral Hepatitis B, C and D, Department of Virology, Hôpital Henri Mondor, Université Paris-Est, Créteil, France; INSERM U955, Créteil, France.
| | - Namig Novruzov
- Inonu University, Liver Transplantation Institute, Malatya, Turkey; Central Customs Hospital, Baku, Azerbaijan
| | - Adil Baskiran
- Inonu University, Liver Transplantation Institute, Malatya, Turkey
| | - Fahri Yetisir
- Department of General Surgery, Atatürk Research and Training Hospital, Ankara, Turkey; Inonu University, Liver Transplantation Institute, Malatya, Turkey.
| | - Bulent Unal
- Inonu University, Liver Transplantation Institute, Malatya, Turkey
| | - Cemalettın Aydın
- Inonu University, Liver Transplantation Institute, Malatya, Turkey
| | | | - Cuneyt Kayaalp
- Inonu University, Liver Transplantation Institute, Malatya, Turkey
| | - Sezai Yilmaz
- Inonu University, Liver Transplantation Institute, Malatya, Turkey
| |
Collapse
|