1
|
Fisk HL, Shaikh SR. Emerging mechanisms of organ crosstalk: The role of oxylipins. NUTR BULL 2025; 50:12-29. [PMID: 39659132 PMCID: PMC11815618 DOI: 10.1111/nbu.12726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/22/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024]
Abstract
There is growing interest in the role of oxylipins in the pathophysiology of several diseases. This is accompanied by a limited but evolving evidence base describing augmented oxylipin concentrations in a range of complications including cardiovascular disease, obesity, liver disease and neurological disorders. Despite this, literature describing oxylipin profiles in blood and multiple organs is inconsistent and the mechanisms by which these profiles are altered, and the relationships between localised tissue and circulating oxylipins are poorly understood. Inflammation and immune response associated with disease requires communication across organs and physiological systems. For example, inflammation and comorbidities associated with obesity extend beyond the adipose tissue and affect the vascular, hepatobiliary and digestive systems amongst others. Communication between organs and physiological systems is implicated in the progression of disease as well as the maintenance of homeostasis. There is emerging evidence for the role of oxylipins as a mechanism of communication in organ crosstalk but the role of these in orchestrating multiple organ and system responses is poorly understood. Herein, we review evidence to support and describe the role of oxylipins in organ crosstalk via the cardiosplenic and gut-link axis. In addition, we review emerging mechanisms of oxylipin regulation, the gut microbiome and modification using nutritional intervention. Finally, we describe future perspectives for addressing challenges in measurement and interpretation of oxylipin research with focus on the host genome as a modifier of oxylipin profiles and response to dietary lipid intervention.
Collapse
Affiliation(s)
- Helena Lucy Fisk
- Faculty of Medicine, School of Human Development and Health, Southampton General HospitalUniversity of SouthamptonSouthamptonUK
- NIHR Southampton Biomedical Research CentreUniversity Hospital Southampton NHS Foundation Trust and University of SouthamptonSouthamptonUK
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
2
|
Kwak H, Lee E, Karki R. DNA sensors in metabolic and cardiovascular diseases: Molecular mechanisms and therapeutic prospects. Immunol Rev 2025; 329:e13382. [PMID: 39158380 PMCID: PMC11744256 DOI: 10.1111/imr.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
DNA sensors generally initiate innate immune responses through the production of type I interferons. While extensively studied for host defense against invading pathogens, emerging evidence highlights the involvement of DNA sensors in metabolic and cardiovascular diseases. Elevated levels of modified, damaged, or ectopically localized self-DNA and non-self-DNA have been observed in patients and animal models with obesity, diabetes, fatty liver disease, and cardiovascular disease. The accumulation of cytosolic DNA aberrantly activates DNA signaling pathways, driving the pathological progression of these disorders. This review highlights the roles of specific DNA sensors, such as cyclic AMP-GMP synthase and stimulator of interferon genes (cGAS-STING), absent in melanoma 2 (AIM2), toll-like receptor 9 (TLR9), interferon gamma-inducible protein 16 (IFI16), DNA-dependent protein kinase (DNA-PK), and DEAD-box helicase 41 (DDX41) in various metabolic disorders. We explore how DNA signaling pathways in both immune and non-immune cells contribute to the development of these diseases. Furthermore, we discuss the intricate interplay between metabolic stress and immune responses, offering insights into potential therapeutic targets for managing metabolic and cardiovascular disorders. Understanding the mechanisms of DNA sensor signaling in these contexts provides a foundation for developing novel interventions aimed at mitigating the impact of these pervasive health issues.
Collapse
Affiliation(s)
- Hyosang Kwak
- Department of Biological Sciences, College of Natural ScienceSeoul National UniversitySeoulSouth Korea
| | - Ein Lee
- Department of Biomedical Sciences, College of MedicineSeoul National UniversitySeoulSouth Korea
| | - Rajendra Karki
- Department of Biological Sciences, College of Natural ScienceSeoul National UniversitySeoulSouth Korea
- Nexus Institute of Research and Innovation (NIRI)KathmanduNepal
| |
Collapse
|
3
|
Lenz M, Kiss A, Haider P, Salzmann M, Brekalo M, Krychtiuk KA, Hamza O, Huber K, Hengstenberg C, Podesser BK, Wojta J, Hohensinner PJ, Speidl WS. Short-term toll-like receptor 9 inhibition leads to left ventricular wall thinning after myocardial infarction. ESC Heart Fail 2023. [PMID: 37190856 PMCID: PMC10375131 DOI: 10.1002/ehf2.14403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/07/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023] Open
Abstract
AIMS Ischaemia-reperfusion injury (IRI) following myocardial infarction remains a challenging topic in acute cardiac care and consecutively arising heart failure represents a severe long-term consequence. The extent of neutrophil infiltration and neutrophil-mediated cellular damage are thought to be aggravating factors enhancing primary tissue injury. Toll-like receptor 9 was found to be involved in neutrophil activation as well as chemotaxis and may represent a target in modulating IRI, aspects we aimed to illuminate by pharmacological inhibition of the receptor. METHODS AND RESULTS Forty-nine male adult Sprague-Dawley rats were used. IRI was induced by occlusion of the left coronary artery and subsequent snare removal after 30 min. Oligonucleotide (ODN) 2088, a toll-like receptor 9 (TLR9) antagonist, control-ODN, or DNase, were administered at the time of reperfusion and over 24 h via a mini-osmotic pump. The hearts were harvested 24 h or 4 weeks after left coronary artery occlusion and immunohistochemical staining was performed. Echocardiography was done after 1 and 4 weeks to determine ventricular function. Inhibition of TLR9 by ODN 2088 led to left ventricular wall thinning (P = 0.003) in association with drastically enhanced neutrophil infiltration (P = 0.005) and increased markers of tissue damage. Additionally, an up-regulation of the chemotactic receptor CXCR2 (P = 0.046) was found after TLR9 inhibition. No such effects were observed in control-ODN or DNase-treated animals. We did not observe changes in monocyte content or subset distribution, hinting towards neutrophils as the primary mediators of the exerted tissue injury. CONCLUSIONS Our data indicate a TLR9-dependent, negative regulation of neutrophil infiltration. Blockage of TLR9 appears to prevent the down-regulation of CXCR2, followed by an uncontrolled migration of neutrophils towards the area of infarction and the exertion of disproportional tissue injury resulting in potential aneurysm formation. In comparison with previous studies conducted in TLR-/- mice, we deliberately chose a transient pharmacological inhibition of TLR9 to highlight effects occurring in the first 24 h following IRI.
Collapse
Affiliation(s)
- Max Lenz
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Patrick Haider
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Manuel Salzmann
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Mira Brekalo
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Konstantin A Krychtiuk
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Ouafa Hamza
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Kurt Huber
- 3rd Medical Department for Cardiology and Emergency Medicine, Faculty of Medicine, Wilhelminenhospital and Sigmund Freud University, Vienna, Austria
| | - Christian Hengstenberg
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Bruno K Podesser
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Johann Wojta
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Core Facility Imaging, Medical University of Vienna, Vienna, Austria
| | - Philipp J Hohensinner
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Walter S Speidl
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| |
Collapse
|
4
|
Saber MM, Monir N, Awad AS, Elsherbiny ME, Zaki HF. TLR9: A friend or a foe. Life Sci 2022; 307:120874. [PMID: 35963302 DOI: 10.1016/j.lfs.2022.120874] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 10/15/2022]
Abstract
The innate immune system is a primary protective line in our body. It confers its protection through different pattern recognition receptors (PRRs), especially toll like receptors (TLRs). Toll like receptor 9 (TLR9) is an intracellular TLR, expressed in different immunological and non-immunological cells. Release of cellular components, such as proteins, nucleotides, and DNA confers a beneficial inflammatory response and maintains homeostasis for removing cellular debris during normal physiological conditions. However, during pathological cellular damage and stress signals, engagement between mtDNA and TLR9 acts as an alarm for starting inflammatory and autoimmune disorders. The controversial role of TLR9 in different diseases baffled scientists if it has a protective or deleterious effect after activation during insults. Targeting the immune system, especially the TLR9 needs further investigation to provide a therapeutic strategy to control inflammation and autoimmune disorders.
Collapse
Affiliation(s)
- Mona M Saber
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt.
| | - Nada Monir
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Azza S Awad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Marwa E Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| |
Collapse
|
5
|
Abstract
Despite the number of available methods to predict prognosis in patients with heart failure, prognosis remains poor, likely because of marked patient heterogeneity and varied heart failure etiologies. Thus, identification of novel prognostic indicators to stratify risk in patients with heart failure is of paramount importance. The spleen is emerging as a potential novel prognostic indicator for heart failure. In this article, we provide an overview of the current prognostic tools used for heart failure. We then introduce the spleen as a potential novel prognostic indicator, before outlining the structure and function of the spleen and introducing the concept of the cardiosplenic axis. This is followed by a focused discussion on the function of the spleen in the immune response and in hemodynamics, as well as a review of what is known about the usefulness of the spleen as an indicator of heart failure. Expert insight into the most effective spleen-related measurement indices for the prognostication of patients with heart failure is provided, and suggestions on how these could be measured in clinical practice are considered. In future, studies in humans will be required to draw definitive links between specific splenic measurements and different heart failure manifestations, as well as to determine whether splenic prognostic measurements differ between heart failure classes and etiologies. These contributions will provide a step forward in our understanding of the usefulness of the spleen as a prognostic predictor in heart failure.
Collapse
|
6
|
Owen AM, Fults JB, Patil NK, Hernandez A, Bohannon JK. TLR Agonists as Mediators of Trained Immunity: Mechanistic Insight and Immunotherapeutic Potential to Combat Infection. Front Immunol 2021; 11:622614. [PMID: 33679711 PMCID: PMC7930332 DOI: 10.3389/fimmu.2020.622614] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/24/2020] [Indexed: 12/18/2022] Open
Abstract
Despite advances in critical care medicine, infection remains a significant problem that continues to be complicated with the challenge of antibiotic resistance. Immunocompromised patients are highly susceptible to development of severe infection which often progresses to the life-threatening condition of sepsis. Thus, immunotherapies aimed at boosting host immune defenses are highly attractive strategies to ward off infection and protect patients. Recently there has been mounting evidence that activation of the innate immune system can confer long-term functional reprogramming whereby innate leukocytes mount more robust responses upon secondary exposure to a pathogen for more efficient clearance and host protection, termed trained immunity. Toll-like receptor (TLR) agonists are a class of agents which have been shown to trigger the phenomenon of trained immunity through metabolic reprogramming and epigenetic modifications which drive profound augmentation of antimicrobial functions. Immunomodulatory TLR agonists are also highly beneficial as vaccine adjuvants. This review provides an overview on TLR signaling and our current understanding of TLR agonists which show promise as immunotherapeutic agents for combating infection. A brief discussion on our current understanding of underlying mechanisms is also provided. Although an evolving field, TLR agonists hold strong therapeutic potential as immunomodulators and merit further investigation for clinical translation.
Collapse
Affiliation(s)
- Allison M Owen
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jessica B Fults
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States.,University of Texas Southwestern Medical School, Dallas, TX, United States
| | - Naeem K Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Julia K Bohannon
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
7
|
Duerr GD, Wu S, Schneider ML, Marggraf V, Weisheit CK, Velten M, Verfuerth L, Frede S, Boehm O, Treede H, Dewald O, Baumgarten G, Kim SC. CpG postconditioning after reperfused myocardial infarction is associated with modulated inflammation, less apoptosis, and better left ventricular function. Am J Physiol Heart Circ Physiol 2020; 319:H995-H1007. [PMID: 32857588 DOI: 10.1152/ajpheart.00269.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Postconditioning attenuates inflammation and fibrosis in myocardial infarction (MI). The aim of this study was to investigate whether postconditioning with the cytosine-phosphate-guanine (CpG)-containing Toll-like receptor-9 (TLR9) ligand 1668-thioate (CpG) can modulate inflammation and remodeling in reperfused murine MI. Thirty minutes of left descending coronary artery (LAD) occlusion was conducted in 12-wk-old C57BL/6 mice. Mice were treated with CpG intraperitoneally 5 min before reperfusion. The control group received PBS; the sham group did not undergo ischemia. M-mode echocardiography (3, 7, and 28 days) and Millar left ventricular (LV) catheterization were performed (7 and 28 days) before the hearts were excised and harvested for immunohistochemical (6 h, 24 h, 3 days, 7 days, and 28 days), gene expression (6 h, 24 h, and 3 days; Taqman RT-qPCR), protein, and FACS analysis (24 h and 3 days). Mice treated with CpG showed significantly better LV function after 7 and 28 days of reperfusion. Protein and mRNA expressions of proinflammatory and anti-inflammatory cytokines were significantly induced after CpG treatment. Histology revealed fewer macrophages in CpG mice after 24 h, confirmed by FACS analysis with a decrease in both classically M1- and alternative M2a-monocytes. CpG treatment reduced apoptosis and cardiomyocyte loss and was associated with induction of adaptive mechanisms, e.g., of heme-oxigenase-1 and β-/α-myosin heavy chain (MHC) ratio. Profibrotic markers collagen type Iα (Col-Ια) and Col-III induction was abrogated in CpG mice, accompanied by fewer myofibroblasts. This led to the formation of a smaller scar. Differential matrix metalloproteinase (MMP)/tissue inhibitor of metalloproteinase (TIMP) expression contributed to attenuated remodeling in CpG, resulting in preserved cardiac function in a Toll-like receptor 1- and TLR9-dependent manner. Our study suggests a cardioprotective mechanism of CpG postconditioning, involving Toll-like receptor-driven modulation of inflammation. This is followed by attenuated remodeling and preserved LV function.NEW & NOTEWORTHY Cytosine-phosphate-guanine (CpG) postconditioning seems to mediate inflammation via Toll-like receptor-1 and Toll-like receptor-9 signaling. Enhanced cytokine and chemokine expressions are partly attenuated by IL-10 and matrix metalloproteinase-8 (MMP8) induction, being associated with lower macrophage infiltration and M1-monocyte differentiation. Furthermore, switch from α- to β-MHC and balanced MMP/TIMP expression led to lesser cardiomyocyte apoptosis, smaller scar size, and preserved cardiac function. Data of pharmacological postconditioning have been widely disappointing to date. Our study suggests a new pathway promoting myocardial postconditioning via Toll-like receptor activation.
Collapse
Affiliation(s)
- Georg Daniel Duerr
- Department of Cardiac Surgery, University Clinical Centre Bonn, Bonn, Germany
| | - Shuijing Wu
- Department of Anaesthesiology, University Clinical Centre Bonn, Bonn, Germany
| | - Max Lukas Schneider
- Department of Anaesthesiology, University Clinical Centre Bonn, Bonn, Germany
| | - Vanessa Marggraf
- Department of Anaesthesiology, University Clinical Centre Bonn, Bonn, Germany
| | | | - Markus Velten
- Department of Anaesthesiology, University Clinical Centre Bonn, Bonn, Germany
| | - Luise Verfuerth
- Department of Cardiac Surgery, University Clinical Centre Bonn, Bonn, Germany
| | - Stilla Frede
- Department of Anaesthesiology, University Clinical Centre Bonn, Bonn, Germany
| | - Olaf Boehm
- Department of Anaesthesiology, University Clinical Centre Bonn, Bonn, Germany
| | - Hendrik Treede
- Department of Cardiac Surgery, University Clinical Centre Bonn, Bonn, Germany
| | - Oliver Dewald
- Department of Cardiac Surgery, University Hospital of Oldenburg, Oldenburg, Germany
| | - Georg Baumgarten
- Department of Anaesthesiology, Johanniter-Krankenhaus Bonn, Bonn, Germany
| | - Se-Chan Kim
- Department of Anaesthesiology, University Clinical Centre Bonn, Bonn, Germany
| |
Collapse
|
8
|
Ahmed N, Laghari AH, AlBkhoor B, Tabassum S, Meo SA, Muhammad N, Linardi D, Al-Masri AA, Fumagalli G, Luciani GB, Faggian G, Rungatscher A. Fingolimod Plays Role in Attenuation of Myocardial Injury Related to Experimental Model of Cardiac Arrest and Extracorporeal Life Support Resuscitation. Int J Mol Sci 2019; 20:ijms20246237. [PMID: 31835656 PMCID: PMC6940876 DOI: 10.3390/ijms20246237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/22/2019] [Accepted: 12/05/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Sudden cardiac arrest is a major global health concern, and survival of patients with ischemia–reperfusion injury is a leading cause of myocardial dysfunction. The mechanism of this phenomenon is not well understood because of the complex pathophysiological nature of the disease. Aim of the study was to investigate the cardioprotective role of fingolimod in an in vivo model of cardiac arrest and resuscitation. Methods: In this study, an in vivo rat model of cardiac arrest using extracorporeal membrane oxygenation resuscitation monitored by invasive hemodynamic measurement was developed. At the beginning of extracorporeal life support (ECLS), animals were randomly treated with fingolimod (Group A, n = 30) or saline (Group B, n = 30). Half of the animals in each group (Group A1 and B1, n = 15 each) were sacrificed after 1 h, and the remaining animals (Group A2 and B2) after 24 h of reperfusion. Blood and myocardial tissues were collected for analysis of cardiac features, inflammatory biomarkers, and cell signaling pathways. Results: Treatment with fingolimod resulted in activation of survival pathways resulting into reduced inflammation, myocardial oxidative stress and apoptosis of cardiomyocytes. This led to significant improvement in systolic and diastolic functions of the left ventricle and improved contractility index. Conclusions: Sphingosine1phosphate receptor activation with fingolimod improved cardiac function after cardiac arrest supported with ECLS. Present study findings strongly support a cardioprotective role of fingolimod through sphingosine-1-phosphate receptor activation during reperfusion after circulatory arrest.
Collapse
Affiliation(s)
- Naseer Ahmed
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi 74800, Pakistan
- Department of Surgery, Cardiac Surgery Division, University of Verona Medical School, 37129 Verona, Italy; (D.L.); (G.B.L.); (G.F.); (A.R.)
- Correspondence:
| | - Abid H. Laghari
- Department of Medicine, section of Cardiology, Aga Khan University, Karachi 74800, Pakistan;
| | | | - Sobia Tabassum
- Department of Biological Sciences, International Islamic University, Islamabad 44000, Pakistan;
| | - Sultan Ayoub Meo
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (S.A.M.); (A.A.A.-M.)
| | - Nazeer Muhammad
- COMSATS University Islamabad, Wah Campus, Rawalpindi 47040, Pakistan;
| | - Daniele Linardi
- Department of Surgery, Cardiac Surgery Division, University of Verona Medical School, 37129 Verona, Italy; (D.L.); (G.B.L.); (G.F.); (A.R.)
| | - Abeer A. Al-Masri
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (S.A.M.); (A.A.A.-M.)
| | - Guido Fumagalli
- Department of Diagnostics and Public Health, Section of Pharmacology, University of Verona Medical School, 37134 Verona, Italy;
| | - Giovanni Battista Luciani
- Department of Surgery, Cardiac Surgery Division, University of Verona Medical School, 37129 Verona, Italy; (D.L.); (G.B.L.); (G.F.); (A.R.)
| | - Giuseppe Faggian
- Department of Surgery, Cardiac Surgery Division, University of Verona Medical School, 37129 Verona, Italy; (D.L.); (G.B.L.); (G.F.); (A.R.)
| | - Alessio Rungatscher
- Department of Surgery, Cardiac Surgery Division, University of Verona Medical School, 37129 Verona, Italy; (D.L.); (G.B.L.); (G.F.); (A.R.)
| |
Collapse
|
9
|
Liu Y, Che G, Di Z, Sun W, Tian J, Ren M. Calycosin-7-O-β-D-glucoside attenuates myocardial ischemia-reperfusion injury by activating JAK2/STAT3 signaling pathway via the regulation of IL-10 secretion in mice. Mol Cell Biochem 2019; 463:175-187. [PMID: 31712941 DOI: 10.1007/s11010-019-03639-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022]
Abstract
Calycosin-7-O-β-D-glucoside (CG) is the component of Astragali Radix, and the aim of the present study is to investigate whether CG protects myocardium from I/R-induced damage by the regulation of IL-10/JAK2/STAT3 signaling pathway. H9C2 cells were subjected to I/R treatment and pretreated with 1 μm CG in vitro. In addition, a mouse model of myocardial I/R injury was induced by left anterior descending (LAD) coronary artery ligation and administrated with 30 mg/kg CG by intravenous injection before I/R surgery. In vitro and in vivo results showed that CG up-regulated IL-10 level, activated the JAK2/STAT3 pathway, and protected myocardial cells from I/R-induced apoptosis. The hemodynamic measurement, TTC staining, TUNEL staining, and western blot results in vivo showed that the protective effects of CG on myocardial function and cell apoptosis were all reversed by the IL-10R α neutralizing antibody. CG-induced phosphorylation activation of JAK2/STAT3 signaling pathway was also suppressed by the blocking of IL-10. In summary, these findings suggest that CG might alleviate myocardial I/R injury by activating the JAK2/STAT3 signaling pathway via up-regulation of IL-10 secretion, which provides us insights into the mechanism underlying the protective effect of CG on myocardial I/R injury.
Collapse
Affiliation(s)
- Yujie Liu
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150001, People's Republic of China
| | - Guoying Che
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150001, People's Republic of China
| | - Zhixin Di
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150001, People's Republic of China
| | - Weinan Sun
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150001, People's Republic of China
| | - Jiawei Tian
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150001, People's Republic of China.
| | - Min Ren
- Department of Ultrasound Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 536 Changle Road, Shanghai, 200126, People's Republic of China.
| |
Collapse
|
10
|
Affiliation(s)
- Gerd Heusch
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Germany
| |
Collapse
|
11
|
Lieder HR, Kleinbongard P, Skyschally A, Hagelschuer H, Chilian WM, Heusch G. Vago-Splenic Axis in Signal Transduction of Remote Ischemic Preconditioning in Pigs and Rats. Circ Res 2019; 123:1152-1163. [PMID: 30359199 DOI: 10.1161/circresaha.118.313859] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
RATIONALE The signal transduction of remote ischemic conditioning is still largely unknown. OBJECTIVE Characterization of neurohumoral signal transfer and vago-splenic axis in remote ischemic preconditioning (RIPC). METHODS AND RESULTS Anesthetized pigs were subjected to 60 minutes of coronary occlusion and 180 minutes of reperfusion (placebo+ischemia/reperfusion [PLA+I/R]). RIPC was induced by 4×5/5 minutes of hindlimb I/R 90 minutes before coronary occlusion (RIPC+I/R). Arterial blood samples were taken after placebo or RIPC before I/R. In subgroups of pigs, bilateral cervical vagotomy, splenectomy, or splenic denervation were performed before PLA+I/R or RIPC+I/R, respectively. In pigs with RIPC+I/R, infarct size (percentage of area at risk) was less than in those with PLA+I/R (23±12% versus 45±8%); splenectomy or splenic denervation abrogated (splenectomy+RIPC+I/R: 38±15%; splenic denervation+RIPC+I/R: 43±5%), and vagotomy attenuated (vagotomy+RIPC+I/R: 36±11%) RIPC protection. RIPC increased phosphorylation of STAT3 (signal transducer and activator of transcription 3) in left ventricular biopsies taken at early reperfusion. Splenectomy or splenic denervation, but not vagotomy, abolished this increased phosphorylation. In rats with vagotomy, splenectomy, or splenic denervation, RIPC (3×5/5 minutes of hindlimb occlusion/reperfusion) or placebo was performed, respectively. Hearts were isolated, saline perfused, and subjected to 30/120-minute global I/R. With RIPC, infarct size (percentage of ventricular mass) was less (20±7%) than with placebo (37±6%), and vagotomy, splenectomy, or splenic denervation abrogated RIPC protection (38±12%, 36±9%, and 36±7%), respectively. Rat spleens were isolated, saline perfused, and splenic effluate (SEff) was sampled after infusion with carbachol (SEffcarbachol) or saline (SEffsaline). Pig plasma or SEff was infused into isolated perfused rat hearts subjected to global I/R. Infarct size was less with infusion of RIPC+I/Rplasma+ (24±6%) than with PLA+I/Rplasma (40±8%), vagotomy+PLA+I/Rplasma (39±11%), splenectomy+PLA+I/Rplasma (35±8%), vagotomy+RIPC+I/Rplasma (40±9%), splenectomy+RIPC+I/Rplasma (33±9%), or splenic denervation+RIPC+I/Rplasma (39±8%), respectively. With infusion of SEffcarbachol, infarct size was less than with infusion of SEffsaline (24 [19-27]% versus 35 [32-38]%). CONCLUSIONS Activation of a vago-splenic axis is causally involved in RIPC cardioprotection.
Collapse
Affiliation(s)
- Helmut Raphael Lieder
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Germany (H.R.L., P.K., A.S., H.H., G.H.)
| | - Petra Kleinbongard
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Germany (H.R.L., P.K., A.S., H.H., G.H.)
| | - Andreas Skyschally
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Germany (H.R.L., P.K., A.S., H.H., G.H.)
| | - Helene Hagelschuer
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Germany (H.R.L., P.K., A.S., H.H., G.H.)
| | | | - Gerd Heusch
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Germany (H.R.L., P.K., A.S., H.H., G.H.)
| |
Collapse
|
12
|
Kitazume-Taneike R, Taneike M, Omiya S, Misaka T, Nishida K, Yamaguchi O, Akira S, Shattock MJ, Sakata Y, Otsu K. Ablation of Toll-like receptor 9 attenuates myocardial ischemia/reperfusion injury in mice. Biochem Biophys Res Commun 2019; 515:442-447. [PMID: 31160091 PMCID: PMC6590932 DOI: 10.1016/j.bbrc.2019.05.150] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 05/24/2019] [Indexed: 01/04/2023]
Abstract
In myocardial ischemia/reperfusion injury, the innate immune and subsequent inflammatory responses play a crucial role in the extension of myocardial damage. Toll-like receptor 9 (TLR9) is a critical receptor for recognizing unmethylated CpG motifs that mitochondria contain in their DNA, and induces inflammatory responses. The aim of this study was to elucidate the role of TLR9 in myocardial ischemia/reperfusion injury. Isolated hearts from TLR9-deficient and control wild-type mice were subjected to 35 min of global ischemia, followed by 60 min of reperfusion with Langendorff apparatus. Furthermore, wild-type mouse hearts were infused with DNase I and subjected to ischemia/reperfusion. Ablation of TLR9-mediated signaling pathway attenuates myocardial ischemia/reperfusion injury and inflammatory responses, and digestion of extracellular mitochondrial DNA released from the infarct heart partially improved myocardial ischemia/reperfusion injury with no effect on inflammatory responses. TLR9 could be a therapeutic target to reduce myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Rika Kitazume-Taneike
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, United Kingdom; Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Manabu Taneike
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, United Kingdom; Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shigemiki Omiya
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, United Kingdom
| | - Tomofumi Misaka
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, United Kingdom
| | - Kazuhiko Nishida
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, United Kingdom
| | - Osamu Yamaguchi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, Osaka University, 2nd Fl. IFReC Research Building, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Michael J Shattock
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, United Kingdom
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kinya Otsu
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, United Kingdom.
| |
Collapse
|
13
|
Ahmed N, Mehmood A, Linardi D, Sadiq S, Tessari M, Meo SA, Rehman R, Hajjar WM, Muhammad N, Iqbal MP, Gilani AUH, Faggian G, Rungatscher A. Cardioprotective Effects of Sphingosine-1-Phosphate Receptor Immunomodulator FTY720 in a Clinically Relevant Model of Cardioplegic Arrest and Cardiopulmonary Bypass. Front Pharmacol 2019; 10:802. [PMID: 31379576 PMCID: PMC6656862 DOI: 10.3389/fphar.2019.00802] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/21/2019] [Indexed: 12/28/2022] Open
Abstract
Objective: FTY720, an immunomodulator derived from sphingosine-1-phosphate, has recently demonstrated its immunomodulatory, anti-inflammatory, anti-oxidant, anti-apoptotic and anti-inflammatory properties. Furthermore, FTY720 might be a key pharmacological target for preconditioning. In this preclinical model, we have investigated the effects of FTY720 on myocardium during reperfusion in an experimental model of cardioplegic arrest (CPA) and cardiopulmonary bypass. Methods: 30 Sprague–Dawley rats (300–350 g) were randomized into two groups: Group-A, treated with FTY720 1 mg/kg via intravenous cannulation, and Group-B, as control. After 15 min of treatment, rats underwent CPA for 30 min followed by initiation of extracorporeal life support for 2 h. Support weaning was done, and blood and myocardial tissues were collected for analysis. Hemodynamic parameters, inflammatory mediators, nitro-oxidative stress, neutrophil infiltration, immunoblotting analysis, and immunohistochemical staining were analyzed and compared between groups. Results: FTY720 treatment activated the Akt/Erk1/2 signaling pathways, reduced the level of inflammatory mediators, activated antiapoptotic proteins, and inhibited proapoptotic proteins, leading to reduced nitro-oxidative stress and cardiomyocyte apoptosis. Moreover, significant preservation of high-energy phosphates were observed in the FTY720-treated group. This resulted in improved recovery of left ventricular systolic and diastolic functions. Conclusion: The cardioprotective mechanism in CPA is associated with activation of prosurvival cell signaling pathways that prevents myocardial damage. FTY720 preserves high-energy phosphates attenuates myocardial inflammation and oxidative stress, and improves cardiac function.
Collapse
Affiliation(s)
- Naseer Ahmed
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi, Pakistan.,Department of Surgery, Cardiac Surgery Division, University of Verona Medical School, Verona, Italy
| | - Adeela Mehmood
- Department of Pharmacology, Liaqat National Medical College, Karachi, Pakistan
| | - Daniele Linardi
- Department of Surgery, Cardiac Surgery Division, University of Verona Medical School, Verona, Italy
| | - Soban Sadiq
- Pharmacology and Molecular Lab, University of Liverpool, United Kingdom
| | - Maddalena Tessari
- Department of Surgery, Cardiac Surgery Division, University of Verona Medical School, Verona, Italy
| | - Sultan Ayoub Meo
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Rehana Rehman
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi, Pakistan
| | - Waseem M Hajjar
- Department of Thoracic Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Nazeer Muhammad
- Department of Mathematics, COMSATS University Islamabad, Wah Campus, Pakistan
| | - Muhammad Perwaiz Iqbal
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi, Pakistan
| | - Anwar-Ul-Hassan Gilani
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi, Pakistan
| | - Giuseppe Faggian
- Department of Surgery, Cardiac Surgery Division, University of Verona Medical School, Verona, Italy
| | - Alessio Rungatscher
- Department of Surgery, Cardiac Surgery Division, University of Verona Medical School, Verona, Italy
| |
Collapse
|
14
|
Tian SH, Yu DJ, Li ZY, Zhang WL. The inhibition of microRNA-203 on ischemic reperfusion injury after total knee arthroplasty via suppressing MYD88-mdiated toll-like receptor signaling pathway. Gene 2019; 697:175-183. [DOI: 10.1016/j.gene.2019.02.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/16/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023]
|
15
|
Lai SL, Marín-Juez R, Stainier DYR. Immune responses in cardiac repair and regeneration: a comparative point of view. Cell Mol Life Sci 2019; 76:1365-1380. [PMID: 30578442 PMCID: PMC6420886 DOI: 10.1007/s00018-018-2995-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 11/26/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022]
Abstract
Immediately after cardiac injury, the immune system plays major roles in repair and regeneration as it becomes involved in a number of processes including damage-associated signaling, inflammation, revascularization, cardiomyocyte dedifferentiation and replenishment, and fibrotic scar formation/resolution. Recent studies have revealed that different immune responses occur in the various experimental models capable or incapable of cardiac regeneration, and that harnessing these immune responses might improve cardiac repair. In light of this concept, this review analyzes current knowledge about the immune responses to cardiac injury from a comparative perspective. Insights gained from such comparative analyses may provide ways to modulate the immune response as a potential therapeutic strategy for cardiac disease.
Collapse
Affiliation(s)
- Shih-Lei Lai
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Rubén Marín-Juez
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| |
Collapse
|
16
|
Yuan D, Tie J, Xu Z, Liu G, Ge X, Wang Z, Zhang X, Gong S, Liu G, Meng Q, Lin F, Liu Z, Fan H, Zhou X. Dynamic Profile of CD4 + T-Cell-Associated Cytokines/Chemokines following Murine Myocardial Infarction/Reperfusion. Mediators Inflamm 2019; 2019:9483647. [PMID: 31011288 PMCID: PMC6442492 DOI: 10.1155/2019/9483647] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/03/2019] [Indexed: 12/14/2022] Open
Abstract
CD4+ T-cells play crucial roles in the injured heart. However, the way in which different CD4+ T subtypes function in the myocardial infarction/reperfusion (MI/R) heart is still poorly understood. We aimed to detect the dynamic profile of distinct CD4+ subpopulation-associated cytokines/chemokines by relying on a closed-chest acute murine MI/R model. The protein levels of 26 CD4+ T-cell-associated cytokines/chemokines were detected in the heart tissues and serum of mice at day 7 and day 14 post-MI/R or sham surgery. The mRNA levels of IL-4, IL-6, IL-13, IL-27, MIP-1β, MCP-3, and GRO-α were measured in blood mononuclear cells. The protein levels of IL-4, IL-6, IL-13, IL-27, MIP-1β, MCP-3, and GRO-α increased in both injured heart tissues and serum, while IFN-γ, IL-12P70, IL-2, IL-1β, IL-18, TNF-α, IL-5, IL-9, IL-17A, IL-23, IL-10, eotaxin, MIP-1α, RANTES, MCP-1, and MIP-2 increased only in MI/R heart tissues in the day 7 and day 14 groups compared to the sham group. In serum, the IFN-γ, IL-23, and IL-10 levels were downregulated in the MI/R model at both day 7 and day 14 compared to the sham. Compared with the protein expressions in injured heart tissues at day 7, IFN-γ, IL-12P70, IL-2, IL-18, TNF-α, IL-6, IL-4, IL-5, IL-9, IL-17A, IL-23, IL-27, IL-10, eotaxin, IP-10, RANTES, MCP-1, MCP-3, and GRO-α were reduced, while IL-1β and MIP-2 were elevated at day 14. IL-13 and MIP-1β showed higher levels in the MI/R serum at day 14 than at day 7. mRNA levels of IL-4, IL-6, IL-13, and IL-27 were increased in the day 7 group compared to the sham, while MIP-1β, MCP-3, and GRO-α mRNA levels showed no significant difference between the MI/R and sham groups in blood mononuclear cells. Multiple CD4+ T-cell-associated cytokines/chemokines were upregulated in the MI/R hearts at the chronic stage. These results provided important evidence necessary for developing future immunomodulatory therapies after MI/R.
Collapse
Affiliation(s)
- Dongsheng Yuan
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Heart Failure Research Center, Shanghai 200120, China
- Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Jinjun Tie
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Heart Failure Research Center, Shanghai 200120, China
- Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Zhican Xu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Heart Failure Research Center, Shanghai 200120, China
- Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Guanya Liu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Heart Failure Research Center, Shanghai 200120, China
- Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Xinyu Ge
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Heart Failure Research Center, Shanghai 200120, China
- Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Zhulin Wang
- Department of Child Internal Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University, Shanghai 200127, China
| | - Xumin Zhang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Shiyu Gong
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Gang Liu
- Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Qingshu Meng
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Heart Failure Research Center, Shanghai 200120, China
| | - Fang Lin
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Heart Failure Research Center, Shanghai 200120, China
| | - Zhongmin Liu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Heart Failure Research Center, Shanghai 200120, China
- Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
- Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Huimin Fan
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Heart Failure Research Center, Shanghai 200120, China
- Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
- Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Xiaohui Zhou
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Heart Failure Research Center, Shanghai 200120, China
| |
Collapse
|
17
|
Bangalore H, Checchia PA, Ocampo EC, Heinle JS, Minard CG, Shekerdemian LS. Cortisol Response in Children After Second Cardiopulmonary Bypass. Pediatr Cardiol 2019; 40:47-52. [PMID: 30167750 DOI: 10.1007/s00246-018-1959-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/09/2018] [Indexed: 12/29/2022]
Abstract
A surge in cortisol levels is seen after surgery with cardiopulmonary bypass (CPB). Based on evidence of attenuation of the cortisol response to repeated stress in other settings, we hypothesized that the magnitude of cortisol increase in children after a second exposure to CPB would be reduced. Serial cortisol levels were measured at three time points after each CPB: immediately (day 0), on the first morning (day 1), and second morning (day 2). Forty-six children underwent two surgeries with CPB during the study period. The mean age (standard deviation) at first and second surgery was 3.5 (6.3) months and 10.4 (9.9) months, respectively. Cortisol levels at the first surgery were 109 (105) µg/dl, 29 (62) µg/dl, and 17 (12) µg/dl on day 0, 1, and 2, respectively; similarly at second surgery, it was 61 (57) µg/dl on day 0 to 20 (16) µg/dl and 11 (10) µg/dl on day 1 and 2, respectively. After log-transformation and adjusting for time interval between surgeries, cortisol levels at the second surgery were lower by 42% on day 0 (p = 0.02), and 46% lower on day 2 (p = 0.02). A second exposure to CPB in children with congenital heart disease is associated with an attenuated cortisol release.
Collapse
Affiliation(s)
- Harish Bangalore
- Department of Pediatrics, Section of Critical Care, Texas Children's Hospital, Baylor College of Medicine, 6621 Fannin St. Suite W6006, Houston, TX, 77030, USA
| | - Paul A Checchia
- Department of Pediatrics, Section of Critical Care, Texas Children's Hospital, Baylor College of Medicine, 6621 Fannin St. Suite W6006, Houston, TX, 77030, USA
| | - Elena C Ocampo
- Department of Pediatrics, Section of Cardiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey S Heinle
- Division of Congenital Heart Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Charles G Minard
- Dan L. Duncan Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Lara S Shekerdemian
- Department of Pediatrics, Section of Critical Care, Texas Children's Hospital, Baylor College of Medicine, 6621 Fannin St. Suite W6006, Houston, TX, 77030, USA.
| |
Collapse
|
18
|
Lin HP, Zheng YQ, Zhou ZP, Wang GX, Guo PF. Ryanodine receptor antagonism alleviates skeletal muscle ischemia reperfusion injury by modulating TNF-α and IL-10. Clin Hemorheol Microcirc 2018; 70:51-58. [PMID: 29660904 DOI: 10.3233/ch-170276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Intracellular calcium overload has been implicated in various pathological conditions including ischemia reperfusion injury. This study aims to explore the effect and probable mechanism of dantrolene, a ryanodine receptor and intracellular calcium antagonist, on the skeletal muscle ischemia reperfusion injury. MATERIALS AND METHODS SD rats were randomly divided into three groups: sham group which underwent anaesthesia and exposure of femoral vein, reperfusion group that received 2 h ischemia and the amount of diluent via femoral vein before 4 h reperfusion, dantrolene group that underwent 2 h ischemia and was given 2 mg/kg dantrolene via femoral vein before 4 h reperfusion. The parameters measured at the end of reperfusion included serum maleic dialdehyde (MDA), tissue myeloperoxidase (MPO) and muscle histology, as well as serum TNF-α and IL-10. RESULTS Levels of MDA, MPO and TNF-α increased in the reperfusion group, whereas the relevant expressions in the dantrolene group decreased significantly. Histological examination demonstrated significant improvements between the same both groups. IL-10 reflected the protection observed above with a significant up-regulation of expression after dantrolene administration. CONCLUSION Ryanodine receptor antagonist dantrolene exerted a significant protective effect against the inflammatory injury of skeletal muscle ischemia reperfusion. The underlying molecular mechanism is probably related to the suppression of TNF-α levels and the increment of IL-10 expression.
Collapse
Affiliation(s)
- Hai-Peng Lin
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yan-Qing Zheng
- Department of E.N.T, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Zhi-Ping Zhou
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Gao-Xiong Wang
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Ping-Fan Guo
- Department of Vascular Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
19
|
Inhibition of glycogen synthase kinase-3β is involved in cardioprotection by α7nAChR agonist and limb remote ischemic postconditionings. Biosci Rep 2018; 38:BSR20181315. [PMID: 30249754 PMCID: PMC6435451 DOI: 10.1042/bsr20181315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/13/2018] [Accepted: 09/21/2018] [Indexed: 12/17/2022] Open
Abstract
The present study was designed to determine whether glycogen synthase kinase-3β (GSK-3β) was involved in the cardioprotection by α7 nicotinic acetylcholine receptor (α7nAChR) agonist and limb remote ischemic postconditionings. Forty male Sprague-Dawley rats were randomly divided equally into control (C), α7nAChR agonist postconditioning (P), limb remote ischemic postconditioning (L), combined α7nAChR agonist and limb remote ischemic postconditioning (P+L) groups. At the end of experiment, serum cTnI, creatine kinase-MB (CK-MB), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), high mobility group protein (HMGB1) and interleukin-10 (IL-10) levels were measured; infarct size (IS), myocardial expressions of GSK-3β, p-GSK-3β (Ser9), nuclear factor-κB (NF-κB) and p-NF-κB (Ser536) in the ischemic area were assessed. The results showed that compared with group C, IS, serum cTnI and CK-MB levels obviously decreased in groups P, L and P+L. Compared with groups P and L, IS, serum cTnI and CK-MB levels significantly decreased in group P+L. Compared with group C, serum TNF-α, IL-6 and HMGB1 levels, and myocardial expression of p-NF-κBp65 (Ser536) evidently decreased, and myocardial expression of p-GSK-3β (Ser9) obviously increased in groups P, L and P+L. Compared with group P, serum TNF-α, IL-6 and HMGB1 levels and myocardial expression of p-NF-κBp65 (Ser536) significantly increased, and myocardial expression of p-GSK-3β (Ser9) evidently decreased in group L. Compared with group L, serum TNF-α, IL-6, HMGB1 levels, and myocardial expression of p-NF-κBp65 (Ser536) significantly decreased, and myocardial expression of p-GSK-3β (Ser9) obviously increased in group P+L. In conclusion, our findings indicate that inhibition of GSK-3β to decrease NF-κB transcription is one of cardioprotective mechanisms of α7nAChR agonist and limb remote ischemic postconditionings by anti-inflammation, but improved cardioprotection by combined two interventions is not completely attributable to an enhanced anti-inflammatory mechanism.
Collapse
|
20
|
Mu H, Wang Y, Wei H, Lu H, Feng Z, Yu H, Xing Y, Wang H. Collagen peptide modified carboxymethyl cellulose as both antioxidant drug and carrier for drug delivery against retinal ischaemia/reperfusion injury. J Cell Mol Med 2018; 22:5008-5019. [PMID: 30030883 PMCID: PMC6156360 DOI: 10.1111/jcmm.13768] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 06/03/2018] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress can cause injury in retinal endothelial cells. Carboxymethyl cellulose modified with collagen peptide (CMCC) is of a distinct antioxidant capacity and potentially a good drug carrier. In this study, the protective effects of CMCC against H2 O2 -induced injury of primary retinal endothelial cells were investigated. In vitro, we demonstrated that CMCC significantly promoted viability of H2 O2 -treated cells, efficiently restrained cellular reactive oxygen species (ROS) production and cell apoptosis. Then, the CMCC was employed as both drug and anti-inflammatory drug carrier for treatment of retinal ischaemia/reperfusion (I/R) in rats. Animals were treated with CMCC or interleukin-10-loaded CMCC (IL-10@CMCC), respectively. In comparisons, the IL-10@CMCC treatment exhibited superior therapeutic effects, including better restoration of retinal structural thickness and less retinal apoptosis. Also, chemiluminescence demonstrated that transplantation of IL-10@CMCC markedly reduced the retinal oxidative stress level compared with CMCC alone and potently recovered the activities of typical antioxidant enzymes, SOD and CAT. Therefore, it could be concluded that CMCC provides a promising platform to enhance the drug-based therapy for I/R-related retinal injury.
Collapse
Affiliation(s)
- Hua Mu
- Department of Ophthalmologythe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Yeqing Wang
- Department of Ophthalmologythe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Haiying Wei
- Department of Ophthalmologythe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Hong Lu
- Department of Ophthalmologythe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Zhuolei Feng
- Department of Ophthalmologythe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Hongmin Yu
- Department of Ophthalmologythe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Yue Xing
- Department of Ophthalmologythe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Haijing Wang
- Department of Ophthalmologythe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| |
Collapse
|
21
|
Wu WY, Li YD, Cui YK, Wu C, Hong YX, Li G, Wu Y, Jie LJ, Wang Y, Li GR. The Natural Flavone Acacetin Confers Cardiomyocyte Protection Against Hypoxia/Reoxygenation Injury via AMPK-Mediated Activation of Nrf2 Signaling Pathway. Front Pharmacol 2018; 9:497. [PMID: 29867499 PMCID: PMC5962741 DOI: 10.3389/fphar.2018.00497] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/26/2018] [Indexed: 12/12/2022] Open
Abstract
The present study investigates the potential signal pathway of acacetin in cardioprotection against ischemia/reperfusion injury using an in vitro hypoxia/reoxygenation model in primary cultured neonatal rat cardiomyocytes and H9C2 cardiomyoblasts. It was found that acacetin (0.3–3 μM) significantly decreased the apoptosis and reactive oxygen species production induced by hypoxia/reoxygenation injury in cardiomyocytes and H9C2 cardiomyoblasts via reducing the pro-apoptotic proteins Bax and cleaved-caspase-3 and increasing the anti-apoptotic protein Bcl-2. In addition, acacetin not only suppressed the release of pro-inflammatory cytokines TLR-4 and IL-6 induced by hypoxia/reoxygenation injury, but also increased the secretion of anti-inflammatory cytokine IL-10. Moreover, acacetin increased Nrf2 and HO-1 in a concentration-dependent manner, and rescued SOD1 and SOD2 reduction induced by hypoxia/reoxygenation insult. These beneficial effects of acacetin disappeared in cells with silenced Nrf2, suggesting that Nrf2 activation participates in the cardioprotective effect of acacetin against hypoxia/reoxygenation insult. However, acacetin-induced Nrf2 activation was not observed in cells with silenced AMPK and in ventricular tissues of rat hearts treated with the AMPK inhibitor Compound C and subjected to ischemia/reperfusion injury. Our results demonstrate for the first time that AMPK-mediated Nrf2 activation is involved in the cardiomyocytes protection of acacetin against hypoxia/reoxygenation injury by activating a series of intracellular signals involved in anti-oxidation, anti-inflammation, and anti-apoptosis.
Collapse
Affiliation(s)
- Wei-Yin Wu
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Yun-Da Li
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Yu-Kai Cui
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Chan Wu
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Yi-Xiang Hong
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Gang Li
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Yao Wu
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Ling-Jun Jie
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Gui-Rong Li
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
22
|
Hilbert T, Markowski P, Frede S, Boehm O, Knuefermann P, Baumgarten G, Hoeft A, Klaschik S. Synthetic CpG oligonucleotides induce a genetic profile ameliorating murine myocardial I/R injury. J Cell Mol Med 2018; 22:3397-3407. [PMID: 29671939 PMCID: PMC6010716 DOI: 10.1111/jcmm.13616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/26/2018] [Indexed: 12/13/2022] Open
Abstract
We previously demonstrated that pre‐conditioning with CpG oligonucleotide (ODN) 1668 induces quick up‐regulation of gene expression 3 hours post‐murine myocardial ischaemia/reperfusion (I/R) injury, terminating inflammatory processes that sustain I/R injury. Now, performing comprehensive microarray and biocomputational analyses, we sought to further enlighten the “black box” beyond these first 3 hours. C57BL/6 mice were pretreated with either CpG 1668 or with control ODN 1612, respectively. Sixteen hours later, myocardial ischaemia was induced for 1 hour in a closed‐chest model, followed by reperfusion for 24 hours. RNA was extracted from hearts, and labelled cDNA was hybridized to gene microarrays. Data analysis was performed with BRB ArrayTools and Ingenuity Pathway Analysis. Functional groups mediating restoration of cellular integrity were among the top up‐regulated categories. Genes known to influence cardiomyocyte survival were strongly induced 24 hours post‐I/R. In contrast, proinflammatory pathways were down‐regulated. Interleukin‐10, an upstream regulator, suppressed specifically selected proinflammatory target genes at 24 hours compared to 3 hours post‐I/R. The IL1 complex is supposed to be one regulator of a network increasing cardiovascular angiogenesis. The up‐regulation of numerous protective pathways and the suppression of proinflammatory activity are supposed to be the genetic correlate of the cardioprotective effects of CpG 1668 pre‐conditioning.
Collapse
Affiliation(s)
- Tobias Hilbert
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Paul Markowski
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Stilla Frede
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Olaf Boehm
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Pascal Knuefermann
- Department of Anesthesiology and Intensive Care Medicine, Gemeinschaftskrankenhaus Bonn St. Elisabeth - St. Petrus - St. Johannes gGmbH, Bonn, Germany
| | - Georg Baumgarten
- Department of Anesthesiology and Intensive Care Medicine, Johanniter Hospital Bonn, Bonn, Germany
| | - Andreas Hoeft
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Sven Klaschik
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
23
|
Zhang P, Yang CL, Liu RT, Li H, Zhang M, Zhang N, Yue LT, Wang CC, Dou YC, Duan RS. Toll-like receptor 9 antagonist suppresses humoral immunity in experimental autoimmune myasthenia gravis. Mol Immunol 2018; 94:200-208. [PMID: 29331804 DOI: 10.1016/j.molimm.2018.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/04/2018] [Accepted: 01/08/2018] [Indexed: 01/28/2023]
Abstract
Recent studies have demonstrated the important role of toll-like receptor 9 (TLR9) signalling in autoimmune diseases, but its role in myasthenia gravis (MG) has not been fully established. We show herein that blocking TLR9 signalling via the suppressive oligodeoxynucleotide (ODN) H154 alleviated the symptoms of experimental autoimmune myasthenia gravis (EAMG). With the downregulation of dendritic cells (DCs), TLR9 interruption reduced follicular helper T cells (Tfh) and germinal centre (GC) B cells, leading to decreased antibody production. In addition, TLR9+ B cells as well as total B cells in the spleen were inhibited by H154. These findings highlight the critical role of TLR9 in EAMG and suggest that the inhibition of the TLR9 pathway might be a potential pharmacological strategy for the treatment of myasthenia gravis.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Chun-Lin Yang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Ru-Tao Liu
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Heng Li
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Min Zhang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Na Zhang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Long-Tao Yue
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Cong-Cong Wang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Ying-Chun Dou
- College of Basic Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Rui-Sheng Duan
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China.
| |
Collapse
|
24
|
Zhou DC, Su YH, Jiang FQ, Xia JB, Wu HY, Chang ZS, Peng WT, Song GH, Park KS, Kim SK, Cai DQ, Zheng L, Qi XF. CpG oligodeoxynucleotide preconditioning improves cardiac function after myocardial infarction via modulation of energy metabolism and angiogenesis. J Cell Physiol 2017; 233:4245-4257. [PMID: 29057537 DOI: 10.1002/jcp.26243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/13/2017] [Indexed: 12/18/2022]
Abstract
Unmethylated CpG oligodeoxynucleotide (CpG-ODN), a Toll-like receptor 9 (TLR9) ligand, has been shown to protect against myocardial ischemia/reperfusion injury. However, the potential effects of CpG-ODN on myocardial infarction (MI) induced by persistent ischemia remains unclear. Here, we investigated whether and how CpG-ODN preconditioning protects against MI in mice. C57BL/6 mice were treated with CpG-ODN by i.p. injection 2 hr prior to MI induction, and cardiac function, and histology were analyzed 2 weeks after MI. Both 1826-CpG and KSK-CpG preconditioning significantly improved the left ventricular (LV) ejection fraction (LVEF) and LV fractional shortening (LVFS) when compared with non-CpG controls. Histological analysis further confirmed the cardioprotection of CpG-ODN preconditioning. In vitro studies further demonstrated that CpG-ODN preconditioning increases cardiomyocyte survival under hypoxic/ischemic conditions by enhancing stress tolerance through TLR9-mediated inhibition of the SERCA2/ATP and activation of AMPK pathways. Moreover, CpG-ODN preconditioning significantly increased angiogenesis in the infarcted myocardium compared with non-CpG. However, persistent TLR9 activation mediated by lentiviral infection failed to improve cardiac function after MI. Although CpG-ODN preconditioning increased angiogenesis in vitro, both the persistent stimulation of CpG-ODN and stable overexpression of TLR9 suppressed the tube formation of cardiac microvascular endothelial cells. CpG-ODN preconditioning significantly protects cardiac function against MI by suppressing the energy metabolism of cardiomyocytes and promoting angiogenesis. Our data also indicate that CpG-ODN preconditioning may be useful in MI therapy.
Collapse
Affiliation(s)
- Deng-Cheng Zhou
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Yong-Hui Su
- Department of General Surgery, The 5th Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Fu-Qing Jiang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Jing-Bo Xia
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Hai-Yan Wu
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Zao-Shang Chang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Wen-Tao Peng
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Guo-Hua Song
- Institute of Atherosclerosis, TaiShan Medical University, Tai'an, China
| | - Kyu-Sang Park
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju, Gangwon, Korea
| | - Soo-Ki Kim
- Department of Microbiology, Yonsei University Wonju College of Medicine, Wonju, Gangwon, Korea
| | - Dong-Qing Cai
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, China
| | - Xu-Feng Qi
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| |
Collapse
|
25
|
Ahmed N, Linardi D, Muhammad N, Chiamulera C, Fumagalli G, Biagio LS, Gebrie MA, Aslam M, Luciani GB, Faggian G, Rungatscher A. Sphingosine 1-Phosphate Receptor Modulator Fingolimod (FTY720) Attenuates Myocardial Fibrosis in Post-heterotopic Heart Transplantation. Front Pharmacol 2017; 8:645. [PMID: 28966593 PMCID: PMC5605636 DOI: 10.3389/fphar.2017.00645] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/31/2017] [Indexed: 12/21/2022] Open
Abstract
Background and Objective: Sphingosine 1-phosphate (S1P), and S1P receptor modulator fingolimod have been suggested to play important cardioprotective role in animal models of myocardial ischemia/reperfusion injuries. To understand the cardioprotective function of S1P and its mechanism in vivo, we analyzed apoptotic, inflammatory biomarkers, and myocardial fibrosis in an in vivo heterotopic rat heart transplantation model. Methods: Heterotopic heart transplantation is performed in 60 Sprague–Dawley (SD) rats (350–400 g). The heart transplant recipients (n = 60) are categorized into Group A (control) and Group B (fingolimod treated 1 mg/kg intravenous). At baseline with 24 h after heart transplantation, blood and myocardial tissue are collected for analysis of myocardial biomarkers, apoptosis, inflammatory markers, oxidative stress, and phosphorylation of Akt/Erk/STAT-3 signaling pathways. Myocardial fibrosis was investigated using Masson’s trichrome staining and L-hydroxyline. Results: Fingolimod treatment activates both Reperfusion Injury Salvage Kinase (RISK) and Survivor Activating Factor Enhancement (SAFE) pathways as evident from activation of anti-apoptotic and anti-inflammatory pathways. Fingolimod treatment caused a reduction in myocardial oxidative stress and hence cardiomyocyte apoptosis resulting in a decrease in myocardial reperfusion injury. Moreover, a significant (p < 0.001) reduction in collagen staining and hydroxyproline content was observed in fingolimod treated animals 30 days after transplantation demonstrating a reduction in cardiac fibrosis. Conclusion: S1P receptor activation with fingolimod activates anti-apoptotic and anti-inflammatory pathways, leading to improved myocardial salvage causing a reduction in cardiac fibrosis.
Collapse
Affiliation(s)
- Naseer Ahmed
- Section of Cardiac Surgery, Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of VeronaVerona, Italy.,Faculty of Health Sciences, University of PunjabLahore, Pakistan.,Research Unit, Faculty of Allied Health Sciences, University of LahoreLahore, Pakistan.,Section of Pharmacology, Department of Diagnostics and Public Health, University of VeronaVerona, Italy
| | - Daniele Linardi
- Section of Cardiac Surgery, Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of VeronaVerona, Italy
| | - Nazeer Muhammad
- COMSATS Institute of Information TechnologyWah Cantt, Pakistan
| | - Cristiano Chiamulera
- Section of Pharmacology, Department of Diagnostics and Public Health, University of VeronaVerona, Italy
| | - Guido Fumagalli
- Section of Pharmacology, Department of Diagnostics and Public Health, University of VeronaVerona, Italy
| | - Livio San Biagio
- Section of Cardiac Surgery, Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of VeronaVerona, Italy
| | - Mebratu A Gebrie
- Section of Cardiac Surgery, Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of VeronaVerona, Italy.,Department of Anatomy, Università di Addis AbebaAddis Ababa, Ethiopia
| | - Muhammad Aslam
- Department of Internal Medicine, Cardiology and Angiology, University Hospital, Justus Liebig UniversityGiessen, Germany
| | - Giovanni Battista Luciani
- Section of Cardiac Surgery, Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of VeronaVerona, Italy
| | - Giuseppe Faggian
- Section of Cardiac Surgery, Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of VeronaVerona, Italy
| | - Alessio Rungatscher
- Section of Cardiac Surgery, Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of VeronaVerona, Italy
| |
Collapse
|
26
|
Hilbert T, Dornbusch K, Baumgarten G, Hoeft A, Frede S, Klaschik S. Pulmonary vascular inflammation: effect of TLR signalling on angiopoietin/TIE regulation. Clin Exp Pharmacol Physiol 2017; 44:123-131. [PMID: 27712004 DOI: 10.1111/1440-1681.12680] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 09/13/2016] [Accepted: 09/30/2016] [Indexed: 12/27/2022]
Abstract
Increased pulmonary vascular resistance is a critical complication in sepsis. Toll-like receptor (TLR) as well as angiopoietin (ANG) signalling both contribute to the emergence of pulmonary arterial hypertension. We hypothesized that TLR stimulation by bacterial ligands directly affects expression and secretion of ligands and receptors of the angiopoietin/TIE axis. Microvascular endothelial (HPMEC) and smooth muscle cells (SMC) of pulmonary origin were incubated with thrombin and with ligands for TLR2, -4, -5, and -9. Expression and secretion of ANG1, -2, TIE2 and IL-8 were determined using quantitative real-time PCR and ELISA. TLR stimulation had no impact either on the expression of ANG2 and TIE2 in HPMEC or on that of ANG1 in SMC. However, overall levels of both released ANG1 and -2 were halved upon stimulation with the TLR9 ligand CpG, and ANG2 release was significantly enhanced by TLR4 activation when initially provoked by sequentially performed stimulation. Furthermore, enhanced ANG2 activity increased endothelial permeability, as demonstrated in an in vitro transwell assay. We conclude that sole TLR stimulation by bacterial ligands plays no significant role for altered expression and secretion of ANG1, -2 and TIE2 in human pulmonary vascular cells. The interplay between various stimuli is required to induce imbalances between ANG1 and -2.
Collapse
Affiliation(s)
- Tobias Hilbert
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Kathrin Dornbusch
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Georg Baumgarten
- Department of Anesthesiology and Intensive Care Medicine, Johanniter Hospital Bonn, Bonn, Germany
| | - Andreas Hoeft
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Stilla Frede
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Sven Klaschik
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
27
|
Wang Z, Wu G, Yu Y, Liu H, Yang B, Kuang H, Wang Q. Xanthones isolated from Gentianella acuta and their protective effects against H 2O 2-induced myocardial cell injury. Nat Prod Res 2017; 32:2171-2177. [PMID: 28868928 DOI: 10.1080/14786419.2017.1371157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In the present study, two new xanthones, (5'S,8'S)-1,3,5,8-tetrahydroxyxanthone(7→2')-1,3,5,8-tetrahydroxy-5',6',7',8'-tetrahydroxanthone (1), 5-hydroxy-3,4,6-trimethoxyxanthone-1-O-β-D-glucopyranoside (2), and eight known xanthones (3-10) were isolated from the whole plants of Gentianella acuta. Their structures were identified by the spectroscopic analyses (HR-ESI-MS, and 1D and 2D NMR). Meanwhile, cell-protective effects against H2O2-induced H9c2 cardiomyocyte injury and cytotoxic activities of compounds 1-10 were also determined.
Collapse
Affiliation(s)
- Zhibin Wang
- a Key Laboratory of Chinese Materia Medica (Ministry of Education) , Heilongjiang University of Chinese Medicine , Harbin , China
| | - Gaosong Wu
- a Key Laboratory of Chinese Materia Medica (Ministry of Education) , Heilongjiang University of Chinese Medicine , Harbin , China
| | - Ying Yu
- a Key Laboratory of Chinese Materia Medica (Ministry of Education) , Heilongjiang University of Chinese Medicine , Harbin , China
| | - Hua Liu
- a Key Laboratory of Chinese Materia Medica (Ministry of Education) , Heilongjiang University of Chinese Medicine , Harbin , China
| | - Bingyou Yang
- a Key Laboratory of Chinese Materia Medica (Ministry of Education) , Heilongjiang University of Chinese Medicine , Harbin , China
| | - Haixue Kuang
- a Key Laboratory of Chinese Materia Medica (Ministry of Education) , Heilongjiang University of Chinese Medicine , Harbin , China
| | - Qiuhong Wang
- b School of Traditional Chinese Medicine , Guangdong Pharmaceutical University , Guangzhou , China
| |
Collapse
|
28
|
Wang Z, Wu G, Liu H, Xing N, Sun Y, Zhai Y, Yang B, Kong ANT, Kuang H, Wang Q. Cardioprotective effect of the xanthones from Gentianella acuta against myocardial ischemia/reperfusion injury in isolated rat heart. Biomed Pharmacother 2017; 93:626-635. [PMID: 28686977 DOI: 10.1016/j.biopha.2017.06.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/07/2017] [Accepted: 06/19/2017] [Indexed: 01/02/2023] Open
Abstract
Gentianella acuta (Michx.) Hulten is widely used for the treatment of arrhythmia and coronary heart disease in Ewenki Folk Medicinal Plants and Mongolian Medicine, popularly known as "Wenxincao" in China. To investigate the potential protective role of the xanthones from G. acuta against myocardial I/R injury in isolated rat heart and its possible related mechanism. The protective role of xanthones on myocardial I/R injury was studied on Langendorff apparatus. The hemodynamic parameters including the left ventricular developed pressure (LVDP), the maximum rate of up/down left intraventricular pressure (±dp/dtmax), coronary flow (CF) and heart rate (HR) were recorded during the perfusion. The results demonstrated that the xanthones from G. acuta treatment significantly improved myocardial function (LVDP, ±dp/dtmax and CF), increased the levels of superoxide dismutase (SOD) and catalase (CAT), succinate dehydrogenase (SDH), malate dehydrogenase (MDH), ATP and the ratio of glutathione and glutathione disulfide (GSH/GSSG), whereas suppressed the levels of Lactate dehydrogenase (LDH), creatine kinase (CK) and malondialdehyde (MDA). Furthermore, the xanthones upregulate the level of Bcl-2 protein and downregulate the level of Bax protein. These results indicated that xanthones from G. acuta exhibited cardioprotective effects on myocardial I/R injury through its activities of anti-oxidative effect and anti-apoptosis effect.
Collapse
Affiliation(s)
- Zhibin Wang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine,24 Heping Road, Xiangfang District, Harbin 150040, China; Center for Phytochemical Epigenome Studies, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Gaosong Wu
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine,24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Hua Liu
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine,24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Na Xing
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine,24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Yanping Sun
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine,24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Yadong Zhai
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine,24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Bingyou Yang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine,24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Ah-Ng Tony Kong
- Center for Phytochemical Epigenome Studies, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine,24 Heping Road, Xiangfang District, Harbin 150040, China.
| | - Qiuhong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 280 Outer Ring Road, University Town, Guangzhou 510006, China.
| |
Collapse
|
29
|
Preclinical Development of a Prophylactic Neuroprotective Therapy for the Preventive Treatment of Anticipated Ischemia-Reperfusion Injury. Transl Stroke Res 2017; 8:322-333. [PMID: 28378315 DOI: 10.1007/s12975-017-0532-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/16/2017] [Accepted: 03/24/2017] [Indexed: 12/11/2022]
Abstract
Ischemia-reperfusion brain injury can be iatrogenically induced secondary to life-saving procedures. Prophylactic treatment of these patients offers a promising prevention for lifelong complications. We postulate that a cytosine-guanine (CpG) oligodeoxynucleotide (ODN) can provide robust antecedent protection against cerebral ischemic injury with minimal release of pro-inflammatory cytokines, making it an ideal candidate for further clinical development. Mouse and nonhuman primate (NHP) models of cerebral ischemic injury were used to test whether an A-type CpG ODN, which induces minimal systemic inflammatory cytokine responses, can provide prophylactic protection. Extent of injury in the mouse was measured by histological staining of live tissue. In the NHP, injury was assessed 2 and 7 days post-occlusion from T2-weighted magnetic resonance images and neurological and motor deficits were cataloged daily. Plasma cytokine levels were measured using species-specific Luminex assays. Prophylactic administration of an A-type CpG ODN provided robust protection against cerebral ischemic injury in the mouse with minimal systemic inflammation. Rhesus macaques treated with D192935, a mixture of human optimized A-type CpG ODNs, had smaller infarcts and demonstrated significantly less neurological and motor deficits following ischemic injury. Our findings demonstrate the translational potential of D192935 as a prophylactic treatment for patients at risk of cerebral ischemic injury.
Collapse
|
30
|
Wang Q, Liu GP, Xue FS, Wang SY, Cui XL, Li RP, Yang GZ, Sun C, Liao X. Combined Vagal Stimulation and Limb Remote Ischemic Perconditioning Enhances Cardioprotection via an Anti-inflammatory Pathway. Inflammation 2016; 38:1748-60. [PMID: 25772113 DOI: 10.1007/s10753-015-0152-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Various combined interventions to acquire enhanced cardioprotection are prevalent focuses of current research. This randomized experiment assessed whether combined vagal stimulation perconditioning (VSPerC) and limb remote ischemic perconditioning (LRIPerC) improved cardioprotection compared to the use of either treatment alone in an in vivo rat model of myocardial ischemia/reperfusion injury. A total of 100 male Sprague Dawley rats were randomly allocated into five groups: sham group, ischemia/reperfusion (IR) group, VSPerC group, LRIPerC group, and combined VSPerC and LRIPerC (COMPerC) group. Serum enzymatic markers, inflammatory cytokines, myocardial inflammatory cytokines, and infarct size were assessed. Infarct size decreased significantly in the COMPerC group compared to the VSPerC and LRIPerC groups. Serum intercellular adhesion molecule 1 (ICAM-1) level at 120 min of reperfusion, myocardial interleukin-1 (IL-1), ICAM-1, and tumor necrosis factor α (TNF-α) levels in the ischemic region decreased significantly in the COMPerC group compared to the VSPerC group, but myocardial IL-10 levels in the nonischemic region increased markedly in the COMPerC group. Serum TNF-α levels at 30, 60, and 120 min of reperfusion; serum IL-1, IL-6, ICAM-1, and high mobility group box-1 protein (HMGB-1) levels at 120 min of reperfusion; and myocardial IL-1, IL-6, ICAM-1, and TNF-α levels in the ischemic region decreased significantly in the COMPerC group compared to the LRIPerC group. However, myocardial IL-10 levels in both ischemic and nonischemic regions were evidently higher in the COMPerC group. This study concludes that combined VSPerC and LRIPerC enhances cardioprotection compared to either treatment alone. This result is likely attributable to a more potent regulation of inflammation.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Anesthesiology, Peking University People's Hospital, Beijing, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bualeong T, Kebir S, Hof D, Goelz L, Graewe M, Ehrentraut SF, Knuefermann P, Baumgarten G, Meyer R, Ehrentraut H. Tlr2 deficiency does not limit the development of left ventricular hypertrophy in a model of transverse aortic constriction induced pressure overload. J Negat Results Biomed 2016; 15:9. [PMID: 27109115 PMCID: PMC4843197 DOI: 10.1186/s12952-016-0050-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/30/2016] [Indexed: 01/04/2023] Open
Abstract
Background Toll-like receptors (TLRs) are involved in a variety of cardiovascular disorders, including septic cardiomyopathy, ischemia/reperfusion, heart failure, and cardiac hypertrophy. Previous research revealed that TLR4 promotes cardiac hypertrophy in vivo. Therefore, we investigated whether TLR2 is also involved in the development of cardiac hypertrophy. Methods Tlr2 deficient and wild type mice were subjected to transverse aortic constriction (TAC) or sham operation procedure. Left ventricular, heart and lung weights as well as hemodynamic parameters were determined after 3, 14 or 28 days. Real-time RT PCR was used to evaluate left ventricular gene expression. Protein content was determined via ELISA. Results TAC increased systolic left ventricular pressure, contraction and relaxations velocities as well as the heart weight in both genotypes. Tlr2 deficiency significantly enhanced cardiac hypertrophy after 14 and 28 days of TAC. Left ventricular end-diastolic pressure and heart rate increased in Tlr2−/− TAC mice only. Fourteen days of TAC led to a significant elevation of ANP, BNP, TGFβ and TLR4 mRNA levels in Tlr2−/− left ventricular tissue. Conclusion These data suggest that Tlr2 deficiency may promote the development of cardiac hypertrophy and ventricular remodeling after transverse aortic constriction.
Collapse
Affiliation(s)
- Tippaporn Bualeong
- Physiology Department, Medical Science Faculty, Naresuan University, Phitsanulok, 65000, Thailand.,Institute of Physiology II, University Hospital Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Sied Kebir
- Institute of Physiology II, University Hospital Bonn, Nussallee 11, 53115, Bonn, Germany.,Department of Neurology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Dorothea Hof
- Institute of Physiology II, University Hospital Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Lina Goelz
- Institute of Physiology II, University Hospital Bonn, Nussallee 11, 53115, Bonn, Germany.,Polyclinic of Orthodontics, University of Bonn, Welschnonnenstraße 17, 53111, Bonn, Germany
| | - Mathias Graewe
- Institute of Physiology II, University Hospital Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Stefan Felix Ehrentraut
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Bonn, Sigmund-Freud-Straße 25, 53127, Bonn, Germany
| | - Pascal Knuefermann
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Bonn, Sigmund-Freud-Straße 25, 53127, Bonn, Germany
| | - Georg Baumgarten
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Bonn, Sigmund-Freud-Straße 25, 53127, Bonn, Germany
| | - Rainer Meyer
- Institute of Physiology II, University Hospital Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Heidi Ehrentraut
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Bonn, Sigmund-Freud-Straße 25, 53127, Bonn, Germany.
| |
Collapse
|
32
|
Bayik D, Gursel I, Klinman DM. Structure, mechanism and therapeutic utility of immunosuppressive oligonucleotides. Pharmacol Res 2016; 105:216-25. [PMID: 26779666 DOI: 10.1016/j.phrs.2015.11.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 11/13/2015] [Indexed: 12/27/2022]
Abstract
Synthetic oligodeoxynucleotides that can down-regulate cellular elements of the immune system have been developed and are being widely studied in preclinical models. These agents vary in sequence, mechanism of action, and cellular target(s) but share the ability to suppress a plethora of inflammatory responses. This work reviews the types of immunosuppressive oligodeoxynucleotide (Sup ODN) and compares their therapeutic activity against diseases characterized by pathologic levels of immune stimulation ranging from autoimmunity to septic shock to cancer (see graphical abstract). The mechanism(s) underlying the efficacy of Sup ODN and the influence size, sequence and nucleotide backbone on function are considered.
Collapse
Affiliation(s)
- Defne Bayik
- Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Bilkent University, Molecular Biology and Genetic Department, Therapeutic ODN Research Laboratory, Ankara, Turkey
| | - Ihsan Gursel
- Bilkent University, Molecular Biology and Genetic Department, Therapeutic ODN Research Laboratory, Ankara, Turkey.
| | - Dennis M Klinman
- Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| |
Collapse
|
33
|
Cardioprotective Effects of Astragalin against Myocardial Ischemia/Reperfusion Injury in Isolated Rat Heart. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:8194690. [PMID: 26788251 PMCID: PMC4695676 DOI: 10.1155/2016/8194690] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/15/2015] [Indexed: 11/23/2022]
Abstract
This study aims to evaluate the cardioprotective effects of astragalin against myocardial ischemia/reperfusion (I/R) injury in isolated rat heart. The cardioprotective effects of astragalin on myocardial I/R injury were investigated on Langendorff apparatus. Adult male Sprague-Dawley rats were randomly divided into five groups. The results showed that astragalin pretreatment improved myocardial function. Compared with I/R group, lactate dehydrogenase (LDH) and creatine kinase (CK) activities in coronary flow decreased in astragalin pretreatment groups, whereas superoxide dismutase (SOD) activity and glutathione/glutathione disulfide (GSH/GSSG) ratio significantly increased. The levels of malondialdehyde (MDA), intracellular reactive oxygen species (ROS), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) decreased in astragalin-treated groups. The infarct size (IS) and apoptosis rate in hearts from astragalin-treated groups were lower than those in hearts from the I/R group. Western blot analysis also revealed that astragalin preconditioning significantly reduced Bax level, whereas Bcl-2 was increased in the myocardium. Therefore, astragalin exhibited cardioprotective effects via its antioxidative, antiapoptotic, and anti-inflammatory activities.
Collapse
|
34
|
Goltz D, Huss S, Ramadori E, Büttner R, Diehl L, Meyer R. Immunomodulation by splenectomy or by FTY720 protects the heart against ischemia reperfusion injury. Clin Exp Pharmacol Physiol 2015. [DOI: 10.1111/1440-1681.12465] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- D Goltz
- Institute of Pathology; University of Bonn; Bonn Germany
| | - S Huss
- Institute of Pathology; University of Cologne; Cologne Germany
| | - E Ramadori
- Institute of Pathology; University of Bonn; Bonn Germany
| | - R Büttner
- Institute of Pathology; University of Cologne; Cologne Germany
| | - L Diehl
- Experimental Immunology and Hepatology; Centre for Experimental Medicine; University Medical Centre Hamburg-Eppendorf; Hamburg Germany
| | - R Meyer
- Institute of Physiology II; University of Bonn; Bonn Germany
| |
Collapse
|
35
|
Protective function of tocilizumab in human cardiac myocytes ischemia reperfusion injury. ASIAN PAC J TROP MED 2015; 8:48-52. [PMID: 25901924 DOI: 10.1016/s1995-7645(14)60186-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/15/2014] [Accepted: 12/20/2014] [Indexed: 11/22/2022] Open
|
36
|
Kim SC, Wu S, Fang X, Neumann J, Eichhorn L, Schleifer G, Boehm O, Meyer R, Frede S, Hoeft A, Baumgarten G, Knuefermann P. Postconditioning with a CpG containing oligodeoxynucleotide ameliorates myocardial infarction in a murine closed-chest model. Life Sci 2014; 119:1-8. [PMID: 25445440 DOI: 10.1016/j.lfs.2014.09.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 08/25/2014] [Accepted: 09/29/2014] [Indexed: 01/04/2023]
Abstract
AIMS Toll-like receptor (TLR)9 ligand CpG-oligodeoxynucleotide (CpG-ODN) exerts preconditioning in myocardial ischemia/reperfusion. We hypothesized a postconditioning effect of CpG-ODN in a murine closed-chest model of myocardial infarction. MATERIALS AND METHODS C57BL/6 (12 weeks, male, WT) mice were instrumented at the left anterior descending artery, then allowed 5d of recovery before 30 min ischemia. Treatments comprised: 1) PBS: 250 μl phosphate buffer solution intraperitoneally 5 min before reperfusion and 2) IPC (ischemic postconditioning): 3 twenty-second reperfusion and occlusion episodes at the end of ischemia 3) CpG-ODN: 1668 thioate 0.2 μmol/kg BW intraperitoneally 5 min before reperfusion. Infarct size was assessed via triphenyltetrazolium chloride (TTC) staining after 2 and 24h reperfusion. Myocardial mRNA-expression of cytokines was measured using real-time PCR after 2h reperfusion. Phosphatidylinositol-3 kinase (PI3K)-inhibitor wortmannin was injected intraperitoneally in WT 15 min before postconditioning and PBS in each group. Cardiac function in WT was assessed with a left-ventricular pressure-volume catheter at 24h reperfusion. KEY FINDINGS Following 30 min ischemia and 2h reperfusion, infarct size was diminished by 90% in WT postconditioned with CpG-ODN (2.4 ± 1.55 IS/AAR%) and IPC (1.98 ± 1.03 IS/AAR%) compared to PBS mice (23.2 ± 3.97 IS/AAR%). Infarct size increased following 24h reperfusion but the differences remained robust. Expression of TNF-α and IL-10 was increased in CpG-ODN. Wortmannin abolished the postconditioning effect of CpG-ODN and IPC. Ejection fraction and preload-recruitable stroke work were significantly greater in CpG-ODN mice. SIGNIFICANCE CpG-ODN confers postconditioning via activation of TLR9. Cardiac function is preserved following CpG-ODN postconditioning. The PI3K -inhibitor wortmannin attenuates CpG-ODN postconditioning.
Collapse
Affiliation(s)
- Se-Chan Kim
- Department of Anesthesiology and Intensive Care Medicine, University of Bonn, Sigmund-Freud-Str. 25, D-53115 Bonn, Germany.
| | - Shuijing Wu
- Department of Anesthesiology and Intensive Care Medicine, University of Bonn, Sigmund-Freud-Str. 25, D-53115 Bonn, Germany; Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiangming Fang
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jens Neumann
- Department of Anesthesiology and Intensive Care Medicine, University of Bonn, Sigmund-Freud-Str. 25, D-53115 Bonn, Germany
| | - Lars Eichhorn
- Department of Anesthesiology and Intensive Care Medicine, University of Bonn, Sigmund-Freud-Str. 25, D-53115 Bonn, Germany
| | - Grigorij Schleifer
- Department of Anesthesiology and Intensive Care Medicine, University of Bonn, Sigmund-Freud-Str. 25, D-53115 Bonn, Germany
| | - Olaf Boehm
- Department of Anesthesiology and Intensive Care Medicine, University of Bonn, Sigmund-Freud-Str. 25, D-53115 Bonn, Germany
| | - Rainer Meyer
- Institute of Physiology, University of Bonn, Nussallee 11, D-53115 Bonn, Germany
| | - Stilla Frede
- Department of Anesthesiology and Intensive Care Medicine, University of Bonn, Sigmund-Freud-Str. 25, D-53115 Bonn, Germany
| | - Andreas Hoeft
- Department of Anesthesiology and Intensive Care Medicine, University of Bonn, Sigmund-Freud-Str. 25, D-53115 Bonn, Germany
| | - Georg Baumgarten
- Department of Anesthesiology and Intensive Care Medicine, University of Bonn, Sigmund-Freud-Str. 25, D-53115 Bonn, Germany
| | - Pascal Knuefermann
- Department of Anesthesiology and Intensive Care Medicine, University of Bonn, Sigmund-Freud-Str. 25, D-53115 Bonn, Germany
| |
Collapse
|
37
|
Cardioprotection against ischemia/reperfusion by licochalcone B in isolated rat hearts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:134862. [PMID: 25215172 PMCID: PMC4158311 DOI: 10.1155/2014/134862] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 08/04/2014] [Accepted: 08/04/2014] [Indexed: 11/17/2022]
Abstract
The generation of reactive oxygen species (ROS) is a major cause of heart injury induced by ischemia-reperfusion. The left ventricular developed pressure (LVDP) and the maximum up/down rate of left ventricular pressure (±dp/dt(max)) were documented by a physiological recorder. Myocardial infarct size was estimated macroscopically using 2,3,5-triphenyltetrazolium chloride staining. Coronary effluent was analyzed for lactate dehydrogenase (LDH) and creatine kinase (CK) release to assess the degree of cardiac injury. The levels of C-reactive protein (CRP), interleukin-8 (IL-8), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) were analyzed to determine the inflammation status of the myocardial tissue. Cardiomyocyte apoptosis analysis was performed using the In Situ Cell Death Detection Kit, POD. Accordingly, licochalcone B pretreatment improved the heart rate (HR), increased LVDP, and decreased CK and LDH levels in coronary flow. SOD level and GSH/GSSG ratio increased, whereas the levels of MDA, TNF-α, and CRP and activities of IL-8 and IL-6 decreased in licochalcone B-treated groups. The infarct size and cell apoptosis in hearts from licochalcone B-treated group were lower than those in hearts from the I/R control group. Therefore, the cardioprotective effects of licochalcone B may be attributed to its antioxidant, antiapoptotic, and anti-inflammatory activities.
Collapse
|
38
|
Ohm IK, Gao E, Belland Olsen M, Alfsnes K, Bliksøen M, Øgaard J, Ranheim T, Nymo SH, Holmen YD, Aukrust P, Yndestad A, Vinge LE. Toll-like receptor 9-activation during onset of myocardial ischemia does not influence infarct extension. PLoS One 2014; 9:e104407. [PMID: 25126943 PMCID: PMC4134200 DOI: 10.1371/journal.pone.0104407] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 07/14/2014] [Indexed: 02/01/2023] Open
Abstract
Aim Myocardial infarction (MI) remains a major cause of death and disability worldwide, despite available reperfusion therapies. Inflammatory signaling is considered nodal in defining final infarct size. Activation of the innate immune receptor toll-like receptors (TLR) 9 prior to ischemia and reperfusion (I/R) reduces infarct size, but the consequence of TLR9 activation timed to the onset of ischemia is not known. Methods and Results The TLR9-agonist; CpG B was injected i.p. in C57BL/6 mice immediately after induction of ischemia (30 minutes). Final infarct size, as well as area-at-risk, was measured after 24 hours of reperfusion. CpG B injection resulted in a significant increase in circulating granulocytes and monocytes both in sham and I/R mice. Paradoxically, clear evidence of reduced cardiac infiltration of both monocytes and granulocytes could be demonstrated in I/R mice treated with CpG B (immunocytochemistry, myeloperoxidase activity and mRNA expression patterns). In addition, systemic TLR9 activation elicited significant alterations of cardiac inflammatory genes. Despite these biochemical and cellular changes, there was no difference in infarct size between vehicle and CpG B treated I/R mice. Conclusion Systemic TLR9-stimulation upon onset of ischemia and subsequent reperfusion does not alter final infarct size despite causing clear alterations of both systemic and cardiac inflammatory parameters. Our results question the clinical usefulness of TLR9 activation during cardiac I/R.
Collapse
Affiliation(s)
- Ingrid Kristine Ohm
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
- * E-mail:
| | - Erhe Gao
- Center for Translational Medicine, School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Maria Belland Olsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Katrine Alfsnes
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Marte Bliksøen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Jonas Øgaard
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Trine Ranheim
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Ståle Haugset Nymo
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Yangchen Dhondup Holmen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
- K.G. Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway
| | - Arne Yndestad
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
- K.G. Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway
| | - Leif Erik Vinge
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- K.G. Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| |
Collapse
|