1
|
Parry TL, Gilmore LA, Khamoui AV. Pan-cancer secreted proteome and skeletal muscle regulation: insight from a proteogenomic data-driven knowledge base. Funct Integr Genomics 2025; 25:14. [PMID: 39812750 DOI: 10.1007/s10142-024-01524-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/16/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
Large-scale, pan-cancer analysis is enabled by data driven knowledge bases that link tumor molecular profiles with phenotypes. A debilitating cancer-related phenotype is skeletal muscle loss, or cachexia, which occurs partly from tumor products secreted into circulation. Using the LinkedOmicsKB knowledge base assembled from the Clinical Proteomics Tumor Analysis Consortium proteogenomic analysis, along with catalogs of human secretome proteins, ligand-receptor pairs and molecular signatures, we sought to identify candidate pan-cancer proteins secreted to blood that could regulate skeletal muscle phenotypes in multiple solid cancers. Tumor proteins having significant pan-cancer associations with muscle were referenced against secretome proteins secreted to blood from the Human Protein Atlas, then verified as increased in paired tumor vs. normal tissues in pan-cancer manner. This workflow revealed seven secreted proteins from cancers afflicting kidneys, head and neck, lungs and pancreas that classified as protein-binding activity modulator, extracellular matrix protein or intercellular signaling molecule. Concordance of these biomarkers with validated molecular signatures of cachexia and senescence supported relevance to muscle and cachexia disease biology, and high tumor expression of the biomarker set associated with lower overall survival. In this article, we discuss avenues by which skeletal muscle and cachexia may be regulated by these candidate pan-cancer proteins secreted to blood, and conceptualize a strategy that considers them collectively as a biomarker signature with potential for refinement by data analytics and radiogenomics for predictive testing of future risk in a non-invasive, blood-based panel amenable to broad uptake and early management.
Collapse
Affiliation(s)
- Traci L Parry
- Department of Kinesiology, University of North Carolina Greensboro, Greensboro, NC, USA
| | - L Anne Gilmore
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andy V Khamoui
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL, USA.
- Institute for Human Health and Disease Intervention, Florida Atlantic University, Jupiter, FL, USA.
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA.
| |
Collapse
|
2
|
Alnassar N, Hajto J, Rumney RMH, Verma S, Borczyk M, Saha C, Kanczler J, Butt AM, Occhipinti A, Pomeroy J, Angione C, Korostynski M, Górecki DC. Ablation of the dystrophin Dp71f alternative C-terminal variant increases sarcoma tumour cell aggressiveness. Hum Mol Genet 2024:ddae094. [PMID: 38850567 DOI: 10.1093/hmg/ddae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/08/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024] Open
Abstract
Alterations in Dp71 expression, the most ubiquitous dystrophin isoform, have been associated with patient survival across tumours. Intriguingly, in certain malignancies, Dp71 acts as a tumour suppressor, while manifesting oncogenic properties in others. This diversity could be explained by the expression of two Dp71 splice variants encoding proteins with distinct C-termini, each with specific properties. Expression of these variants has impeded the exploration of their unique roles. Using CRISPR/Cas9, we ablated the Dp71f variant with the alternative C-terminus in a sarcoma cell line not expressing the canonical C-terminal variant, and conducted molecular (RNAseq) and functional characterisation of the knockout cells. Dp71f ablation induced major transcriptomic alterations, particularly affecting the expression of genes involved in calcium signalling and ECM-receptor interaction pathways. The genome-scale metabolic analysis identified significant downregulation of glucose transport via membrane vesicle reaction (GLCter) and downregulated glycolysis/gluconeogenesis pathway. Functionally, these molecular changes corresponded with, increased calcium responses, cell adhesion, proliferation, survival under serum starvation and chemotherapeutic resistance. Knockout cells showed reduced GLUT1 protein expression, survival without attachment and their migration and invasion in vitro and in vivo were unaltered, despite increased matrix metalloproteinases release. Our findings emphasise the importance of alternative splicing of dystrophin transcripts and underscore the role of the Dp71f variant, which appears to govern distinct cellular processes frequently dysregulated in tumour cells. The loss of this regulatory mechanism promotes sarcoma cell survival and treatment resistance. Thus, Dp71f is a target for future investigations exploring the intricate functions of specific DMD transcripts in physiology and across malignancies.
Collapse
Affiliation(s)
- Nancy Alnassar
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, United Kingdom
| | - Jacek Hajto
- Laboratory of Pharmacogenomics, Maj Institute of Pharmacology PAS, Smetna 12, Krakow 31155, Poland
| | - Robin M H Rumney
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, United Kingdom
| | - Suraj Verma
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, Tees Valley TS1 3BX, United Kingdom
| | - Malgorzata Borczyk
- Laboratory of Pharmacogenomics, Maj Institute of Pharmacology PAS, Smetna 12, Krakow 31155, Poland
| | - Chandrika Saha
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, United Kingdom
| | - Janos Kanczler
- Bone & Joint Research Group, Department of Human Development and Health, University of Southampton, Tremona Road, Southampton SO16 6YD, United Kingdom
| | - Arthur M Butt
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, United Kingdom
| | - Annalisa Occhipinti
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, Tees Valley TS1 3BX, United Kingdom
| | - Joanna Pomeroy
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, United Kingdom
| | - Claudio Angione
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, Tees Valley TS1 3BX, United Kingdom
| | - Michal Korostynski
- Laboratory of Pharmacogenomics, Maj Institute of Pharmacology PAS, Smetna 12, Krakow 31155, Poland
| | - Dariusz C Górecki
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, United Kingdom
| |
Collapse
|
3
|
Sothers H, Hu X, Crossman DK, Si Y, Alexander MS, McDonald MLN, King PH, Lopez MA. Late-Stage Skeletal Muscle Transcriptome in Duchenne muscular dystrophy shows a BMP4-Induced Molecular Signature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590266. [PMID: 38712206 PMCID: PMC11071434 DOI: 10.1101/2024.04.19.590266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a fatal X-linked recessive disease due to loss-of-function mutations in the DYSTROPHIN gene. DMD-related skeletal muscle wasting is typified by an aberrant immune response involving upregulation of TGFβ family of cytokines. We previously demonstrated that bone morphogenetic protein 4 (BMP4) is increased in DMD and BMP4 stimulation induces a 20-fold upregulation of Smad8 transcription. However, the role of BMP4 in severely affected DMD skeletal muscle is unknown. We hypothesized that transcriptomic signatures in severely affected human DMD skeletal muscle are driven by BMP4 signaling. Transcriptomes from skeletal muscle biopsies of late-stage DMD vs. non-DMD controls and C2C12 muscle cells with or without BMP4 stimulation were generated by RNA-Seq and analyzed for single transcript differential expression as well as by Ingenuity Pathway Analysis and weighted gene co-expression network analyses. A total of 2,328 and 5,291 transcripts in the human muscle and C2C12 muscle cells, respectively, were differentially expressed. We identified an overlapping molecular signature of 1,027 genes dysregulated in DMD muscle that were induced in BMP4-stimulated C2C12 muscle cells. Highly upregulated DMD transcripts that overlapped with BMP4-stimulated C2C12 muscle cells included ADAMTS3, HCAR2, SERPING1, SMAD8 , and UNC13C. The DMD transcriptome was characterized by dysregulation of pathways involving immune function, extracellular matrix remodeling, and metabolic/mitochondrial function. In summary, we define a late-stage DMD skeletal muscle transcriptome that substantially overlaps with the BMP4-induced molecular signature in C2C12 muscle cells. This supports BMP4 as a disease-driving regulator of transcriptomic changes in late-stage DMD skeletal muscle and expands our understanding of the evolution of dystrophic signaling pathways and their associated gene networks that could be explored for therapeutic development.
Collapse
|
4
|
Bobadilla Muñoz M, Orbe J, Abizanda G, Machado FJD, Vilas A, Ullate-Agote A, Extramiana L, Baraibar Churio A, Aranguren XL, Cantero G, Sáinz Amillo N, Rodríguez JA, Ramos García L, Romero Riojas JP, Vallejo-Illarramendi A, Paradas C, López de Munain A, Páramo JA, Prósper F, Pérez-Ruiz A. Loss of the matrix metalloproteinase-10 causes premature features of aging in satellite cells. Front Cell Dev Biol 2023; 11:1128534. [PMID: 37228645 PMCID: PMC10203875 DOI: 10.3389/fcell.2023.1128534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Aged muscles accumulate satellite cells with a striking decline response to damage. Although intrinsic defects in satellite cells themselves are the major contributors to aging-associated stem cell dysfunction, increasing evidence suggests that changes in the muscle-stem cell local microenvironment also contribute to aging. Here, we demonstrate that loss of the matrix metalloproteinase-10 (MMP-10) in young mice alters the composition of the muscle extracellular matrix (ECM), and specifically disrupts the extracellular matrix of the satellite cell niche. This situation causes premature features of aging in the satellite cells, contributing to their functional decline and a predisposition to enter senescence under proliferative pressure. Similarly, reduction of MMP-10 levels in young satellite cells from wild type animals induces a senescence response, while addition of the protease delays this program. Significantly, the effect of MMP-10 on satellite cell aging can be extended to another context of muscle wasting, muscular dystrophy. Systemic treatment of mdx dystrophic mice with MMP-10 prevents the muscle deterioration phenotype and reduces cellular damage in the satellite cells, which are normally under replicative pressure. Most importantly, MMP-10 conserves its protective effect in the satellite cell-derived myoblasts isolated from a Duchenne muscular dystrophy patient by decreasing the accumulation of damaged DNA. Hence, MMP-10 provides a previously unrecognized therapeutic opportunity to delay satellite cell aging and overcome satellite cell dysfunction in dystrophic muscles.
Collapse
Affiliation(s)
- Miriam Bobadilla Muñoz
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Josune Orbe
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Pamplona, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS)-Ictus, Instituto de Salud Carlos III, Madrid, Spain
| | - Gloria Abizanda
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Florencio J. D. Machado
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Pamplona, Spain
| | - Amaia Vilas
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Asier Ullate-Agote
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Leire Extramiana
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Arantxa Baraibar Churio
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Xabier L. Aranguren
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Gloria Cantero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Neuromuscular Disorders Unit, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Neira Sáinz Amillo
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Centre for Nutrition Research, Universidad de Navarra, Pamplona, Spain
| | - José Antonio Rodríguez
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Pamplona, Spain
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Luis Ramos García
- Radiology Department, Clínica Universidad de Navarra, Pamplona, Spain
- Radiology Department, Osakidetza Basque Health Service, Donostialdea Integrated Health Organisation, San Sebastian, Spain
| | - Juan Pablo Romero Riojas
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | | | - Carmen Paradas
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Neuromuscular Disorders Unit, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Adolfo López de Munain
- CIBERNED-Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, San Sebastian, Spain
- Neurology Department, Osakidetza Basque Health Service, Donostialdea Integrated Health Organisation, San Sebastian, Spain
| | - José Antonio Páramo
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Pamplona, Spain
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Hematology Service, Clínica Universidad de Navarra, Pamplona, Spain
| | - Felipe Prósper
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Pamplona, Spain
| | - Ana Pérez-Ruiz
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA) Universidad de Navarra, CIBERONC, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
5
|
Wang X, Chen J, Homma ST, Wang Y, Smith GR, Ruf-Zamojski F, Sealfon SC, Zhou L. Diverse effector and regulatory functions of fibro/adipogenic progenitors during skeletal muscle fibrosis in muscular dystrophy. iScience 2022; 26:105775. [PMID: 36594034 PMCID: PMC9804115 DOI: 10.1016/j.isci.2022.105775] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/08/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Fibrosis is a prominent pathological feature of skeletal muscle in Duchenne muscular dystrophy (DMD). The commonly used disease mouse model, mdx 5cv , displays progressive fibrosis in the diaphragm but not limb muscles. We use single-cell RNA sequencing to determine the cellular expression of the genes involved in extracellular matrix (ECM) production and degradation in the mdx 5cv diaphragm and quadriceps. We find that fibro/adipogenic progenitors (FAPs) are not only the primary source of ECM but also the predominant cells that express important ECM regulatory genes, including Ccn2, Ltbp4, Mmp2, Mmp14, Timp1, Timp2, and Loxs. The effector and regulatory functions are exerted by diverse FAP clusters which are different between diaphragm and quadriceps, indicating their activation by different tissue microenvironments. FAPs are more abundant in diaphragm than in quadriceps. Our findings suggest that the development of anti-fibrotic therapy for DMD should target not only the ECM production but also the pro-fibrogenic regulatory functions of FAPs.
Collapse
Affiliation(s)
- Xingyu Wang
- Department of Neurology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Jianming Chen
- Department of Neurology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Sachiko T. Homma
- Department of Neurology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Yinhang Wang
- Department of Neurology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Gregory R. Smith
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA
| | - Frederique Ruf-Zamojski
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA
| | - Stuart C. Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA
| | - Lan Zhou
- Department of Neurology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA,Corresponding author
| |
Collapse
|
6
|
Rocha CT, Escolar DM. Treatment and Management of Muscular Dystrophies. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Schilling BK, Baker JS, Komatsu C, Marra KG. Intramuscular injection of skeletal muscle derived extracellular matrix mitigates denervation atrophy after sciatic nerve transection. J Tissue Eng 2021; 12:20417314211032491. [PMID: 34567507 PMCID: PMC8458676 DOI: 10.1177/20417314211032491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Peripheral nerve injury and the associated muscle atrophy has an estimated annual healthcare burden of $150 billion dollars in the United States. When considering the total annual health-related spending of $3.5 trillion, these pathologies alone occupy about 4.3%. The prevalence of these ailments is rooted, at least in part, in the lack of specific preventative therapies that can be administered to muscle while it remains in the denervated state. To address this, skeletal muscle-derived ECM (skECM) was injected directly in denervated muscle with postoperative analysis performed at 20 weeks, including gait analysis, force production, cytokine quantification, and histological analysis. skECM was shown to be superior against non-injected muscle controls showing no difference in contraction force to uninjured muscle at 20 weeks. Cytokines IL-1β, IL-18, and IFNγ appeared to mediate regeneration with statistical regression implicating these cytokines as strong predictors of muscle contraction, showing significant linear correlation.
Collapse
Affiliation(s)
- Benjamin K Schilling
- Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jocelyn S Baker
- Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chiaki Komatsu
- Department of Plastic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kacey G Marra
- Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Plastic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Cellular senescence-mediated exacerbation of Duchenne muscular dystrophy. Sci Rep 2020; 10:16385. [PMID: 33046751 PMCID: PMC7550355 DOI: 10.1038/s41598-020-73315-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/14/2020] [Indexed: 01/10/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive disease characterised by chronic muscle degeneration and inflammation. Our previously established DMD model rats (DMD rats) have a more severe disease phenotype than the broadly used mouse model. We aimed to investigate the role of senescence in DMD using DMD rats and patients. Senescence was induced in satellite cells and mesenchymal progenitor cells, owing to the increased expression of CDKN2A, p16- and p19-encoding gene. Genetic ablation of p16 in DMD rats dramatically restored body weight and muscle strength. Histological analysis showed a reduction of fibrotic and adipose tissues invading skeletal muscle, with increased muscle regeneration. Senolytic drug ABT263 prevented loss of body weight and muscle strength, and increased muscle regeneration in rats even at 8 months—the late stage of DMD. Moreover, senescence markers were highly expressed in the skeletal muscle of DMD patients. In situ hybridization of CDKN2A confirmed the expression of it in satellite cells and mesenchymal progenitor cells in patients with DMD. Collectively, these data provide new insights into the integral role of senescence in DMD progression.
Collapse
|
9
|
Implications of Skeletal Muscle Extracellular Matrix Remodeling in Metabolic Disorders: Diabetes Perspective. Int J Mol Sci 2020; 21:ijms21113845. [PMID: 32481704 PMCID: PMC7312063 DOI: 10.3390/ijms21113845] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
The extracellular matrix (ECM) provides a scaffold for cells, controlling biological processes and providing structural as well as mechanical support to surrounding cells. Disruption of ECM homeostasis results in several pathological conditions. Skeletal muscle ECM is a complex network comprising collagens, proteoglycans, glycoproteins, and elastin. Recent therapeutic approaches targeting ECM remodeling have been extensively deliberated. Various ECM components are typically found to be augmented in the skeletal muscle of obese and/or diabetic humans. Skeletal muscle ECM remodeling is thought to be a feature of the pathogenic milieu allied with metabolic dysregulation, obesity, and eventual diabetes. This narrative review explores the current understanding of key components of skeletal muscle ECM and their specific roles in the regulation of metabolic diseases. Additionally, we discuss muscle-specific integrins and their role in the regulation of insulin sensitivity. A better understanding of the importance of skeletal muscle ECM remodeling, integrin signaling, and other factors that regulate insulin activity may help in the development of novel therapeutics for managing diabetes and other metabolic disorders.
Collapse
|
10
|
Alameddine HS, Morgan JE. Matrix Metalloproteinases and Tissue Inhibitor of Metalloproteinases in Inflammation and Fibrosis of Skeletal Muscles. J Neuromuscul Dis 2018; 3:455-473. [PMID: 27911334 PMCID: PMC5240616 DOI: 10.3233/jnd-160183] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In skeletal muscles, levels and activity of Matrix MetalloProteinases (MMPs) and Tissue Inhibitors of MetalloProteinases (TIMPs) have been involved in myoblast migration, fusion and various physiological and pathological remodeling situations including neuromuscular diseases. This has opened perspectives for the use of MMPs' overexpression to improve the efficiency of cell therapy in muscular dystrophies and resolve fibrosis. Alternatively, inhibition of individual MMPs in animal models of muscular dystrophies has provided evidence of beneficial, dual or adverse effects on muscle morphology or function. We review here the role played by MMPs/TIMPs in skeletal muscle inflammation and fibrosis, two major hurdles that limit the success of cell and gene therapy. We report and analyze the consequences of genetic or pharmacological modulation of MMP levels on the inflammation of skeletal muscles and their repair in light of experimental findings. We further discuss how the interplay between MMPs/TIMPs levels, cytokines/chemokines, growth factors and permanent low-grade inflammation favor cellular and molecular modifications resulting in fibrosis.
Collapse
Affiliation(s)
- Hala S Alameddine
- Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Jennifer E Morgan
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, UK
| |
Collapse
|
11
|
Smith LR, Barton ER. Regulation of fibrosis in muscular dystrophy. Matrix Biol 2018; 68-69:602-615. [PMID: 29408413 DOI: 10.1016/j.matbio.2018.01.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 02/08/2023]
Abstract
The production of force and power are inherent properties of skeletal muscle, and regulated by contractile proteins within muscle fibers. However, skeletal muscle integrity and function also require strong connections between muscle fibers and their extracellular matrix (ECM). A well-organized and pliant ECM is integral to muscle function and the ability for many different cell populations to efficiently migrate through ECM is critical during growth and regeneration. For many neuromuscular diseases, genetic mutations cause disruption of these cytoskeletal-ECM connections, resulting in muscle fragility and chronic injury. Ultimately, these changes shift the balance from myogenic pathways toward fibrogenic pathways, culminating in the loss of muscle fibers and their replacement with fatty-fibrotic matrix. Hence a common pathological hallmark of muscular dystrophy is prominent fibrosis. This review will cover the salient features of muscular dystrophy pathogenesis, highlight the signals and cells that are important for myogenic and fibrogenic actions, and discuss how fibrosis alters the ECM of skeletal muscle, and the consequences of fibrosis in developing therapies.
Collapse
Affiliation(s)
- Lucas R Smith
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Elisabeth R Barton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
12
|
Mashinchian O, Pisconti A, Le Moal E, Bentzinger CF. The Muscle Stem Cell Niche in Health and Disease. Curr Top Dev Biol 2017; 126:23-65. [PMID: 29305000 DOI: 10.1016/bs.ctdb.2017.08.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The regulation of stem cells that maintain and regenerate postnatal tissues depends on extrinsic signals originating from their microenvironment, commonly referred to as the stem cell niche. Complex higher-order regulatory interrelationships with the tissue and factors in the systemic circulation are integrated and propagated to the stem cells through the niche. The stem cell niche in skeletal muscle tissue is both a paradigm for a structurally and functionally relatively static niche that maintains stem cell quiescence during tissue homeostasis, and a highly dynamic regenerative niche that is subject to extensive structural remodeling and a flux of different support cell populations. Conditions ranging from aging to chronically degenerative skeletal muscle diseases affect the composition of the niche and thereby impair the regenerative potential of muscle stem cells. A holistic and integrative understanding of the extrinsic mechanisms regulating muscle stem cells in health and disease in a broad systemic context will be imperative for the identification of regulatory hubs in the niche interactome that can be targeted to maintain, restore, or enhance the regenerative capacity of muscle tissue. Here, we review the microenvironmental regulation of muscle stem cells, summarize how niche dysfunction can contribute to disease, and discuss emerging therapeutic implications.
Collapse
Affiliation(s)
- Omid Mashinchian
- Nestlé Institute of Health Sciences, Lausanne, Switzerland; École Polytechnique Fédérale de Lausanne, Doctoral Program in Biotechnology and Bioengineering, Lausanne, Switzerland
| | - Addolorata Pisconti
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Emmeran Le Moal
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - C Florian Bentzinger
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
13
|
Wada E, Tanihata J, Iwamura A, Takeda S, Hayashi YK, Matsuda R. Treatment with the anti-IL-6 receptor antibody attenuates muscular dystrophy via promoting skeletal muscle regeneration in dystrophin-/utrophin-deficient mice. Skelet Muscle 2017; 7:23. [PMID: 29078808 PMCID: PMC5660454 DOI: 10.1186/s13395-017-0140-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/16/2017] [Indexed: 11/12/2022] Open
Abstract
Background Chronic increases in the levels of the inflammatory cytokine interleukin-6 (IL-6) in serum and skeletal muscle are thought to contribute to the progression of muscular dystrophy. Dystrophin/utrophin double-knockout (dKO) mice develop a more severe and progressive muscular dystrophy than the mdx mice, the most common murine model of Duchenne muscular dystrophy (DMD). In particular, dKO mice have smaller body sizes and muscle diameters, and develop progressive kyphosis and fibrosis in skeletal and cardiac muscles. As mdx mice and DMD patients, we found that IL-6 levels in the skeletal muscle were significantly increased in dKO mice. Thus, in this study, we aimed to analyze the effects of IL-6 receptor (IL-6R) blockade on the muscle pathology of dKO mice. Methods Male dKO mice were administered an initial injection (200 mg/kg intraperitoneally (i.p.)) of either the anti-IL-6R antibody MR16-1 or an isotype-matched control rat IgG at the age of 14 days, and were then given weekly injections (25 mg/kg i.p.) until 90 days of age. Results Treatment of dKO mice with the MR16-1 antibody successfully inhibited the IL-6 pathway in the skeletal muscle and resulted in a significant reduction in the expression levels of phosphorylated signal transducer and activator of transcription 3 in the skeletal muscle. Pathologically, a significant increase in the area of embryonic myosin heavy chain-positive myofibers and muscle diameter, and reduced fibrosis in the quadriceps muscle were observed. These results demonstrated the therapeutic effects of IL-6R blockade on promoting muscle regeneration. Consistently, serum creatine kinase levels were decreased. Despite these improvements observed in the limb muscles, degeneration of the diaphragm and cardiac muscles was not ameliorated by the treatment of mice with the MR16-1 antibody. Conclusion As no adverse effects of treatment with the MR16-1 antibody were observed, our results indicate that the anti-IL-6R antibody is a potential therapy for muscular dystrophy particularly for promoting skeletal muscle regeneration. Electronic supplementary material The online version of this article (10.1186/s13395-017-0140-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eiji Wada
- Department of Pathophysiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku, Tokyo, Japan. .,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, Japan.
| | - Jun Tanihata
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, Japan.,Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, Japan
| | - Akira Iwamura
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, Japan
| | - Yukiko K Hayashi
- Department of Pathophysiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku, Tokyo, Japan
| | - Ryoichi Matsuda
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, Japan
| |
Collapse
|
14
|
Hyzewicz J, Tanihata J, Kuraoka M, Nitahara-Kasahara Y, Beylier T, Ruegg UT, Vater A, Takeda S. Low-Intensity Training and the C5a Complement Antagonist NOX-D21 Rescue the mdx Phenotype through Modulation of Inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1147-1161. [PMID: 28315675 DOI: 10.1016/j.ajpath.2016.12.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/19/2016] [Accepted: 12/27/2016] [Indexed: 12/17/2022]
Abstract
Inflammatory events occurring in dystrophic muscles contribute to the progression of Duchenne muscular dystrophy (DMD). Low-intensity training (LIT) attenuates the phenotype of mdx mice, an animal model for DMD. Therefore, we postulated that LIT could have anti-inflammatory properties. We assessed levels of inflammatory cytokines and infiltrated immune cells in gastrocnemius muscle of mdx mice after LIT. We detected high levels of complement component C5a, chemokine ligand (CCL) 2, CD68+ monocytes/macrophages, and proinflammatory M1 macrophages in muscles of mdx mice. LIT decreased CCL2 levels, increased CD68+ cell numbers, and shifted the macrophage population to the regenerative M2 type. We investigated whether inhibition of C5a or CCL2 with L-aptamers could mimic the effects of LIT. Although no effect of CCL2 inhibition was detected, treatment with the C5a inhibitor, NOX-D21, rescued the phenotype of nonexercised mdx mice, but not of exercised ones. In both cases, the level of CD68+ cells increased and macrophage populations leaned toward the inflammatory M1 type. In muscles of nonexercised treated mice, the level of IL-1 receptor antagonist increased, damage decreased, and fibers were switched toward the glycolytic fast type; in muscles of exercised mice, fibers were switched to the oxidative slow type. These results reveal the effects of LIT on the inflammatory status of mdx mice and suggest that NOX-D21 could be an anti-inflammatory drug for DMD.
Collapse
Affiliation(s)
- Janek Hyzewicz
- Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Tokyo, Japan
| | - Jun Tanihata
- Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Tokyo, Japan
| | - Mutsuki Kuraoka
- Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Tokyo, Japan
| | - Yuko Nitahara-Kasahara
- Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Tokyo, Japan
| | - Teiva Beylier
- Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Tokyo, Japan
| | - Urs T Ruegg
- Laboratory of Pharmacology, University of Geneva, Geneva, Switzerland
| | - Axel Vater
- Drug Discovery and Preclinical Development, NOXXON Pharma, Berlin, Germany
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Tokyo, Japan.
| |
Collapse
|
15
|
Cali-Daylan AE, Dincer P. Gene co-expression network analysis of dysferlinopathy: Altered cellular processes and functional prediction of TOR1AIP1, a novel muscular dystrophy gene. Neuromuscul Disord 2016; 27:269-277. [PMID: 28110863 DOI: 10.1016/j.nmd.2016.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/26/2016] [Accepted: 10/31/2016] [Indexed: 12/25/2022]
Abstract
Dysferlinopathy, caused by a dysferlin gene mutation, is a clinically heterogeneous autosomal recessive muscle disease characterized by progressive muscle degeneration. The dysferlin protein's functions and dysferlinopathy disease pathogenesis are not fully explored, and there is no specific treatment available that can alter the disease progression. This study uses publicly available dysferlinopathy patient microarray data to construct a gene co-expression network and investigates significant cellular pathways and their key players in dysferlinopathy pathogenesis. Extracellular matrix deposition, inflammation, mitochondrial abnormalities and protein degradation were found to be important in dysferlinopathy. Out of the hub genes, OXR1 and TIMP1 were selected through literature search as candidate genes for possible biomarker and molecular therapeutic target studies. A recently identified muscular dystrophy gene TOR1AIP1 was detected as a hub gene in dysferlinopathy. Co-expression and protein sequence feature analysis were adopted to predict TOR1AIP1's function. Our results suggest that LAP1 protein encoded by TOR1AIP1 may play a role in protein degradation possibly through transcriptional regulation in muscle tissue. These findings extend dysferlinopathy pathogenesis by presenting key genes and also suggest a novel function for a poorly characterized gene.
Collapse
Affiliation(s)
- Ayse Ece Cali-Daylan
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Sihhiye, 06100, Ankara, Turkey.
| | - Pervin Dincer
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Sihhiye, 06100, Ankara, Turkey
| |
Collapse
|
16
|
Arvanitidis A, Henriksen K, Karsdal M, Nedergaard A. Neo-epitope Peptides as Biomarkers of Disease Progression for Muscular Dystrophies and Other Myopathies. J Neuromuscul Dis 2016; 3:333-346. [PMID: 27854226 PMCID: PMC5123625 DOI: 10.3233/jnd-160150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
For several decades, serological biomarkers of neuromuscular diseases as dystrophies, myopathies and myositis have been limited to routine clinical biochemistry panels. Gauging the pathological progression is a prerequisite for proper treatment and therefore identifying accessible, easy to monitor biomarkers that can predict the disease progression would be an important advancement. Most muscle diseases involve accelerated muscle fiber degradation, inflammation, fatty tissue substitution and/or fibrosis. All these pathological traits have been shown to give rise to serological peptide biomarkers in other tissues, underlining the potential application of existing biomarkers of such traits in muscle disorders. A significant quantity of tissue is involved in these pathological mechanisms alongside with qualitative changes in protein turnover in myofibrillar, extra-cellular matrix and immunological cell protein fractions accompanied by alterations in body fluids. We propose that protein and peptides can leak out of the afflicted muscles and can be of use in diagnosis, prediction of pathology trajectory and treatment efficacy. Proteolytic cleavage systems are especially modulated during a range of muscle pathologies, thereby giving rise to peptides that are differentially released during disease manifestation. Therefore, we believe that pathology-specific post-translational modifications like cleavages can give rise to neoepitope peptides that may represent a promising class of peptides for discovery of biomarkers pertaining to neuromuscular diseases.
Collapse
Affiliation(s)
- A. Arvanitidis
- Nordic Bioscience, Musculoskeletal Diseases, Herlev, Denmark
| | - K. Henriksen
- Nordic Bioscience, Musculoskeletal Diseases, Herlev, Denmark
| | - M.A. Karsdal
- Nordic Bioscience, Musculoskeletal Diseases, Herlev, Denmark
| | - A. Nedergaard
- Nordic Bioscience, Musculoskeletal Diseases, Herlev, Denmark
| |
Collapse
|
17
|
Almeida CF, Martins PC, Vainzof M. Comparative transcriptome analysis of muscular dystrophy models Large(myd), Dmd(mdx)/Large(myd) and Dmd(mdx): what makes them different? Eur J Hum Genet 2016; 24:1301-9. [PMID: 26932192 DOI: 10.1038/ejhg.2016.16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/26/2016] [Accepted: 02/01/2016] [Indexed: 11/09/2022] Open
Abstract
Muscular dystrophies (MD) are a clinically and genetically heterogeneous group of Mendelian diseases. The underlying pathophysiology and phenotypic variability in each form are much more complex, suggesting the involvement of many other genes. Thus, here we studied the whole genome expression profile in muscles from three mice models for MD, at different time points: Dmd(mdx) (mutation in dystrophin gene), Large(myd-/-) (mutation in Large) and Dmd(mdx)/Large(myd-/-) (both mutations). The identification of altered biological functions can contribute to understand diseases and to find prognostic biomarkers and points for therapeutic intervention. We identified a substantial number of differentially expressed genes (DEGs) in each model, reflecting diseases' complexity. The main biological process affected in the three strains was immune system, accounting for the majority of enriched functional categories, followed by degeneration/regeneration and extracellular matrix remodeling processes. The most notable differences were in 21-day-old Dmd(mdx), with a high proportion of DEGs related to its regenerative capacity. A higher number of positive embryonic myosin heavy chain (eMyHC) fibers confirmed this. The new Dmd(mdx)/Large(myd-/-) model did not show a highly different transcriptome from the parental lineages, with a profile closer to Large(myd-/-), but not bearing the same regenerative potential as Dmd(mdx). This is the first report about transcriptome profile of a mouse model for congenital MD and Dmd(mdx)/Large(myd). By comparing the studied profiles, we conclude that alterations in biological functions due to the dystrophic process are very similar, and that the intense regeneration in Dmd(mdx) involves a large number of activated genes, not differentially expressed in the other two strains.
Collapse
Affiliation(s)
- Camila F Almeida
- Laboratory of Muscle Proteins and Comparative Histopathology, Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Poliana Cm Martins
- Laboratory of Muscle Proteins and Comparative Histopathology, Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Mariz Vainzof
- Laboratory of Muscle Proteins and Comparative Histopathology, Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Ogura Y, Tajrishi MM, Sato S, Hindi SM, Kumar A. Therapeutic potential of matrix metalloproteinases in Duchenne muscular dystrophy. Front Cell Dev Biol 2014; 2:11. [PMID: 25364719 PMCID: PMC4207008 DOI: 10.3389/fcell.2014.00011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/13/2014] [Indexed: 12/31/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are secreted proteinases that have physiologic roles in degradation and remodeling of extracellular matrix (ECM) in almost all tissues. However, their excessive production in disease conditions leads to many pathological features including tissue breakdown, inflammation, cell death, and fibrosis. Duchenne Muscular dystrophy (DMD) is a devastating genetic muscle disorder caused by partial or complete loss of cytoskeletal protein dystrophin. Progressive muscle wasting in DMD is accompanied by myofiber necrosis followed by cycles of regeneration and degeneration and inflammation that eventually result in replacement of myofiber by connective and adipose tissues. Emerging evidence suggests that gene expression and the activity of various MMPs are aberrantly regulated in muscle biopsies from DMD patients and in skeletal muscle of animal models of DMD. Moreover, a few studies employing genetic mouse models have revealed that different MMPs play distinct roles in disease progression in DMD. Modulation of the activity of MMPs improves myofiber regeneration and enhances the efficacy of transplantation and engraftment of muscle progenitor cells in dystrophic muscle in mouse models of DMD. Furthermore, recent reports also suggest that some MMPs especially MMP-9 can serve as a biomarker for diagnosis and prognosis of DMD. In this article, we provide a succinct overview of the regulation of various MMPs and their therapeutic importance in DMD.
Collapse
Affiliation(s)
- Yuji Ogura
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine Louisville, KY, USA
| | - Marjan M Tajrishi
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine Louisville, KY, USA
| | - Shuichi Sato
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine Louisville, KY, USA
| | - Sajedah M Hindi
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine Louisville, KY, USA
| | - Ashok Kumar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine Louisville, KY, USA
| |
Collapse
|
19
|
Hollinger K, Selsby JT. The physiological response of protease inhibition in dystrophic muscle. Acta Physiol (Oxf) 2013; 208:234-44. [PMID: 23648220 DOI: 10.1111/apha.12114] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 03/25/2013] [Accepted: 04/29/2013] [Indexed: 01/06/2023]
Abstract
Duchenne muscular dystrophy (DMD) is caused by the production of a non-functional dystrophin gene product and a failure to accumulate functional dystrophin protein in muscle cells. This leads to membrane instability, loss of Ca(2+) homoeostasis and widespread cellular injury. Associated with these changes are increased protease activities in a variety of proteolytic systems. As such, there have been numerous investigations directed towards determining the therapeutic potential of protease inhibition. In this review, evidence from genetic and/or pharmacological inhibition of proteases as a treatment strategy for DMD is systematically evaluated. Specifically, we review the potential roles of calpain, proteasome, caspase, matrix metalloproteinase and serine protease inhibition as therapeutic approaches for DMD. We conclude that despite early results to the contrary, inhibition of calpain proteases is unlikely to be successful. Conversely, evidence suggests that inhibition of proteasome, matrix metalloproteinases and serine proteases does appear to decrease disease severity. An important caveat to these conclusions, however, is that the fundamental cause of DMD, dystrophin deficiency, is not corrected by this strategy. Hence, this should not be viewed as a cure, but rather, protease inhibitors should be considered for inclusion in a therapeutic cocktail. Physiological Relevance. Selective modulation of protease activity has the potential to profoundly change intracellular physiology resulting in a possible treatment for DMD. However, alteration of protease activities could also lead to worsening of disease progression by promoting the accumulation of substrates in the cell. The balance of benefit and potential damage caused by protease inhibition in human DMD patients is largely unexplored.
Collapse
Affiliation(s)
- K. Hollinger
- Department of Animal Science; Iowa State University; Ames; IA; USA
| | - J. T. Selsby
- Department of Animal Science; Iowa State University; Ames; IA; USA
| |
Collapse
|
20
|
Alameddine HS. Matrix metalloproteinases in skeletal muscles: Friends or foes? Neurobiol Dis 2012; 48:508-18. [DOI: 10.1016/j.nbd.2012.07.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/28/2012] [Accepted: 07/25/2012] [Indexed: 12/13/2022] Open
|
21
|
Taniguti APT, Matsumura CÍY, Rodrigues-Simioni LÉ, Neto HS, Marques MJ. Suramin affects metalloproteinase-9 activity and increases beta-dystroglycan levels in the diaphragm of the dystrophin-deficientmdxMOUSE. Muscle Nerve 2012; 46:810-3. [DOI: 10.1002/mus.23468] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
22
|
Sun G, Haginoya K, Chiba Y, Uematsu M, Hino-Fukuyo N, Tanaka S, Onuma A, Iinuma K, Tsuchiya S. Elevated plasma levels of tissue inhibitors of metalloproteinase-1 and their overexpression in muscle in human and mouse muscular dystrophy. J Neurol Sci 2010; 297:19-28. [DOI: 10.1016/j.jns.2010.06.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Revised: 06/21/2010] [Accepted: 06/30/2010] [Indexed: 11/28/2022]
|
23
|
Ichim TE, Alexandrescu DT, Solano F, Lara F, Campion RDN, Paris E, Woods EJ, Murphy MP, Dasanu CA, Patel AN, Marleau AM, Leal A, Riordan NH. Mesenchymal stem cells as anti-inflammatories: implications for treatment of Duchenne muscular dystrophy. Cell Immunol 2010; 260:75-82. [PMID: 19917503 DOI: 10.1016/j.cellimm.2009.10.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 10/13/2009] [Indexed: 01/01/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a lethal X-linked musculodegenerative condition consisting of an underlying genetic defect whose manifestation is augmented by inflammatory mechanisms. Previous treatment approaches using gene replacement, exon-skipping or allogeneic cell therapy have been relatively unsuccessful. The only intervention to mediate improvement in survival, albeit minor, is glucocorticoid treatment. Given this modality appears to function via suppression of underlying inflammation; we focus this review on the inflammatory response as a target for mesenchymal stem cell (MSC) therapy. In contrast to other cell based therapies attempted in DMD, MSC have the advantages of (a) ability to fuse with and genetically complement dystrophic muscle; (b) possess anti-inflammatory activities; and (c) produce trophic factors that may augment activity of endogenous repair cells. We conclude by describing one practical scenario of stem cell therapy for DMD.
Collapse
|
24
|
Chen X, Li Y. Role of matrix metalloproteinases in skeletal muscle: migration, differentiation, regeneration and fibrosis. Cell Adh Migr 2009; 3:337-41. [PMID: 19667757 PMCID: PMC2802742 DOI: 10.4161/cam.3.4.9338] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 06/24/2009] [Indexed: 11/19/2022] Open
Abstract
Matrix metalloproteases (MMPs) are key regulatory molecules in the formation, remodeling and degradation of extracellular matrix (ECM) components in both physiological and pathological processes in many tissues. In skeletal muscle, MMPs play an important role in the homeostasis and maintenance of myofiber functional integrity by breaking down ECM and regulating skeletal muscle cell migration, differentiation and regeneration. Skeletal muscle satellite cells, a group of quiescent stem cells located between the basement membrane and the plasmalemma of myofibers, are responsible for lifelong maintenance and repairing, which can be activated and as a result migrate underneath the basement membrane to promote regeneration at the injured site. MMPs are able to degrade ECM components, thereby facilitating satellite cell migration and differentiation. This current review will focus on the critical roles of MMPs in skeletal muscle injury and repair, which include satellite cell activation with migration and differentiation. The effect of MMPs on muscle regeneration and fibrous scar tissue formation, as well as therapeutic insights for the future will be explored.
Collapse
Affiliation(s)
- Xiaoping Chen
- The Laboratory of Molecular Pathology; Stem Cell Research Center; Children's Hospital of UPMC; Pittsburgh, PA USA
- Department of Orthopaedic Surgery; University of Pittsburgh; School of Medicine; Pittsburgh, PA USA
| | - Yong Li
- The Laboratory of Molecular Pathology; Stem Cell Research Center; Children's Hospital of UPMC; Pittsburgh, PA USA
- Department of Pathology; University of Pittsburgh; School of Medicine; Pittsburgh, PA USA
| |
Collapse
|
25
|
Motohashi N, Uezumi A, Yada E, Fukada SI, Fukushima K, Imaizumi K, Miyagoe-Suzuki Y, Takeda S. Muscle CD31(-) CD45(-) side population cells promote muscle regeneration by stimulating proliferation and migration of myoblasts. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:781-91. [PMID: 18669618 PMCID: PMC2527092 DOI: 10.2353/ajpath.2008.070902] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/04/2008] [Indexed: 11/20/2022]
Abstract
CD31(-) CD45(-) side population (SP) cells are a minor SP subfraction that have mesenchymal stem cell-like properties in uninjured skeletal muscle but that can expand on muscle injury. To clarify the role of these SP cells in muscle regeneration, we injected green fluorescent protein (GFP)-positive myoblasts with or without CD31(-) CD45(-) SP cells into the tibialis anterior muscles of immunodeficient NOD/scid mice or dystrophin-deficient mdx mice. More GFP-positive fibers were formed after co-transplantation than after transplantation of GFP-positive myoblasts alone in both mdx and NOD/scid muscles. Moreover, grafted myoblasts were more widely distributed after co-transplantation than after transplantation of myoblasts alone. Immunohistochemistry with anti-phosphorylated histone H3 antibody revealed that CD31(-) CD45(-) SP cells stimulated cell division of co-grafted myoblasts. Genome-wide gene expression analyses showed that these SP cells specifically express a variety of extracellular matrix proteins, membrane proteins, and cytokines. We also found that they express high levels of matrix metalloproteinase-2 mRNA and gelatinase activity. Furthermore, matrix metalloproteinase-2 derived from CD31(-) CD45(-) SP cells promoted migration of myoblasts in vivo. Our results suggest that CD31(-) CD45(-) SP cells support muscle regeneration by promoting proliferation and migration of myoblasts. Future studies to further define the molecular and cellular mechanisms of muscle regeneration will aid in the development of cell therapies for muscular dystrophy.
Collapse
Affiliation(s)
- Norio Motohashi
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Turgeman T, Hagai Y, Huebner K, Jassal DS, Anderson JE, Genin O, Nagler A, Halevy O, Pines M. Prevention of muscle fibrosis and improvement in muscle performance in the mdx mouse by halofuginone. Neuromuscul Disord 2008; 18:857-68. [PMID: 18672370 DOI: 10.1016/j.nmd.2008.06.386] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 06/11/2008] [Accepted: 06/23/2008] [Indexed: 12/27/2022]
Abstract
Fibrosis is a known feature of dystrophic muscles, particularly the diaphragm, in the mdx mouse. In this study we evaluated the effect of halofuginone, a collagen synthesis inhibitor, on collagen synthesis in various muscles of young wild-type (C57/BL/6J) and mdx mice. Halofuginone prevented the age-dependent increase in collagen synthesis in the diaphragms of mdx with no effect on wild-type mice (n = 5 for each time point). This was associated with a decrease in the degenerated areas and number of central nuclei. Halofuginone also inhibited collagen synthesis in cardiac muscle. Moreover, enhanced motor coordination, balance and improved cardiac muscle function were observed implying reduced muscle injury. Halofuginone inhibited Smad3 phosphorylation downstream of TGFbeta in the diaphragm and cardiac muscles, in C2 cell line and in primary mouse myoblast cultures representing various muscular dystrophies. We suggest that via its effect on Smad3 phosphorylation, halofuginone inhibits muscle fibrosis and improves cardiac and skeletal muscle functions in mdx mice.
Collapse
Affiliation(s)
- Tidhar Turgeman
- Institute of Animal Sciences, The Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
McLoon LK. Focusing on fibrosis: halofuginone-induced functional improvement in the mdx mouse model of Duchenne muscular dystrophy. Am J Physiol Heart Circ Physiol 2008; 294:H1505-7. [DOI: 10.1152/ajpheart.00176.2008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Abstract
Matrix metalloproteinases (MMPs), a family of zinc-dependent endoproteinases, are effector molecules in the breakdown of the blood-brain and blood-nerve barrier, and promote neural tissue invasion by leukocytes in inflammatory diseases of the central and peripheral nervous systems. Moreover, MMPs play an important role in synaptic remodeling, neuronal regeneration, and remyelination. Recent work concerning MMPs in patients with neuropathy, myopathy, spinal cord injury, and amyotrophic lateral sclerosis (ALS), and in corresponding animal models, is discussed in this review.
Collapse
Affiliation(s)
- Susanne Renaud
- Neuromuscular Disease Unit, Department of Neurology, University Hospital Basel, Basel, Switzerland.
| | | |
Collapse
|
29
|
Activation and localization of matrix metalloproteinase-2 and -9 in the skeletal muscle of the muscular dystrophy dog (CXMDJ). BMC Musculoskelet Disord 2007; 8:54. [PMID: 17598883 PMCID: PMC1929071 DOI: 10.1186/1471-2474-8-54] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2007] [Accepted: 06/28/2007] [Indexed: 12/22/2022] Open
Abstract
Background Matrix metalloproteinases (MMPs) are key regulatory molecules in the formation, remodeling and degradation of all extracellular matrix (ECM) components in both physiological and pathological processes in various tissues. The aim of this study was to examine the involvement of gelatinase MMP family members, MMP-2 and MMP-9, in dystrophin-deficient skeletal muscle. Towards this aim, we made use of the canine X-linked muscular dystrophy in Japan (CXMDJ) model, a suitable animal model for Duchenne muscular dystrophy. Methods We used surgically biopsied tibialis cranialis muscles of normal male dogs (n = 3) and CXMDJ dogs (n = 3) at 4, 5 and 6 months of age. Muscle sections were analyzed by conventional morphological methods and in situ zymography to identify the localization of MMP-2 and MMP-9. MMP-2 and MMP-9 activity was examined by gelatin zymography and the levels of the respective mRNAs in addition to those of regulatory molecules, including MT1-MMP, TIMP-1, TIMP-2, and RECK, were analyzed by semi-quantitative RT-PCR. Results In CXMDJ skeletal muscle, multiple foci of both degenerating and regenerating muscle fibers were associated with gelatinolytic MMP activity derived from MMP-2 and/or MMP-9. In CXMDJ muscle, MMP-9 immunoreactivity localized to degenerated fibers with inflammatory cells. Weak and disconnected immunoreactivity of basal lamina components was seen in MMP-9-immunoreactive necrotic fibers of CXMDJ muscle. Gelatinolytic MMP activity observed in the endomysium of groups of regenerating fibers in CXMDJ did not co-localize with MMP-9 immunoreactivity, suggesting that it was due to the presence of MMP-2. We observed increased activities of pro MMP-2, MMP-2 and pro MMP-9, and levels of the mRNAs encoding MMP-2, MMP-9 and the regulatory molecules, MT1-MMP, TIMP-1, TIMP-2, and RECK in the skeletal muscle of CXMDJ dogs compared to the levels observed in normal controls. Conclusion MMP-2 and MMP-9 are likely involved in the pathology of dystrophin-deficient skeletal muscle. MMP-9 may be involved predominantly in the inflammatory process during muscle degeneration. In contrast, MMP-2, which was activated in the endomysium of groups of regenerating fibers, may be associated with ECM remodeling during muscle regeneration and fiber growth.
Collapse
|
30
|
Pescatori M, Broccolini A, Minetti C, Bertini E, Bruno C, D'amico A, Bernardini C, Mirabella M, Silvestri G, Giglio V, Modoni A, Pedemonte M, Tasca G, Galluzzi G, Mercuri E, Tonali PA, Ricci E. Gene expression profiling in the early phases of DMD: a constant molecular signature characterizes DMD muscle from early postnatal life throughout disease progression. FASEB J 2007; 21:1210-26. [PMID: 17264171 DOI: 10.1096/fj.06-7285com] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Genome-wide gene expression profiling of skeletal muscle from Duchenne muscular dystrophy (DMD) patients has been used to describe muscle tissue alterations in DMD children older than 5 years. By studying the expression profile of 19 patients younger than 2 years, we describe with high resolution the gene expression signature that characterizes DMD muscle during the initial or "presymptomatic" phase of the disease. We show that in the first 2 years of the disease, DMD muscle is already set to express a distinctive gene expression pattern considerably different from the one expressed by normal, age-matched muscle. This "dystrophic" molecular signature is characterized by a coordinate induction of genes involved in the inflammatory response, extracellular matrix (ECM) remodeling and muscle regeneration, and the reduced transcription of those involved in energy metabolism. Despite the lower degree of muscle dysfunction experienced, our younger patients showed abnormal expression of most of the genes reported as differentially expressed in more advanced stages of the disease. By analyzing our patients as a time series, we provide evidence that some genes, including members of three pathways involved in morphogenetic signaling-Wnt, Notch, and BMP-are progressively induced or repressed in the natural history of DMD.
Collapse
Affiliation(s)
- Mario Pescatori
- Institute of Neurology, Catholic University, L.go A. Gemelli 8, 0018, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhong D, Saito F, Saito Y, Nakamura A, Shimizu T, Matsumura K. Characterization of the protease activity that cleaves the extracellular domain of β-dystroglycan. Biochem Biophys Res Commun 2006; 345:867-71. [PMID: 16701552 DOI: 10.1016/j.bbrc.2006.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Accepted: 05/01/2006] [Indexed: 11/22/2022]
Abstract
Dystroglycan (DG) complex, composed of alphaDG and betaDG, provides a link between the extracellular matrix (ECM) and cortical cytoskeleton. Although the proteolytic processing of betaDG was reported in various physiological and pathological conditions, its exact mechanism remains unknown. In this study, we addressed this issue using the cell culture system of rat schwannoma cell line RT4. We found that the culture medium of RT4 cells was enriched with the protease activity that degrades the fusion protein construct of the extracellular domain of betaDG specifically. This activity was suppressed by the inhibitor of matrix metalloproteinase-2 (MMP-2) and MMP-9, but not by the inhibitors of MMP-1, MMP-3, MMP-8, and MMP-13. Zymography and RT-PCR analysis showed that RT4 cells secreted MMP-2 and MMP-9 into the culture medium. Finally, active MMP-2 and MMP-9 enzymes degraded the fusion protein construct of the extracellular domain of betaDG. These results indicate (1) that RT4 cells secrete the protease activity that degrades the extracellular domain of betaDG specifically and (2) that MMP-2 and MMP-9 may be involved in this process.
Collapse
Affiliation(s)
- Di Zhong
- Department of Neurology and Neuroscience, Teikyo University School of Medicine 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Lluri G, Jaworski DM. Regulation of TIMP-2, MT1-MMP, and MMP-2 expression during C2C12 differentiation. Muscle Nerve 2005; 32:492-9. [PMID: 16003733 PMCID: PMC1237026 DOI: 10.1002/mus.20383] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent proteases capable of degrading extracellular matrix components. The activity of these proteases is tightly regulated through the actions of the tissue inhibitors of metalloproteinases (TIMPs). Although the regulation of MMPs and TIMPs during physiological and pathological remodeling has been investigated in a number of systems, almost nothing is known about their role in skeletal muscle differentiation. To investigate the role of MMP-mediated proteolysis during myogenesis, the regulation of TIMP-2, MT1-MMP, and MMP-2 expression was investigated during differentiation of the mouse myoblastic C2C12 cell line. We show that this trio is upregulated coincident with myogenesis. The more diffuse spatial distribution of TIMP-2 relative to MT1-MMP and MMP-2 suggests that TIMP-2 may exert MMP-independent functions during myogenesis. Elucidating the regulation of these molecules during muscle differentiation in vitro may lead to a better understanding of their role in pathological processes in muscle tissue in vivo.
Collapse
Affiliation(s)
| | - Diane M. Jaworski
- *Correspondence to: Dr. Diane M. Jaworski, Department of Anatomy & Neurobiology, University of Vermont College of Medicine, 149 Beaumont Avenue, HSRF 418, Burlington, VT 05405, Phone: (802) 656-0538, Fax: (802) 656-4674, E-Mail:
| |
Collapse
|
33
|
|