1
|
Langerscheidt F, Wied T, Al Kabbani MA, van Eimeren T, Wunderlich G, Zempel H. Genetic forms of tauopathies: inherited causes and implications of Alzheimer's disease-like TAU pathology in primary and secondary tauopathies. J Neurol 2024; 271:2992-3018. [PMID: 38554150 PMCID: PMC11136742 DOI: 10.1007/s00415-024-12314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024]
Abstract
Tauopathies are a heterogeneous group of neurologic diseases characterized by pathological axodendritic distribution, ectopic expression, and/or phosphorylation and aggregation of the microtubule-associated protein TAU, encoded by the gene MAPT. Neuronal dysfunction, dementia, and neurodegeneration are common features of these often detrimental diseases. A neurodegenerative disease is considered a primary tauopathy when MAPT mutations/haplotypes are its primary cause and/or TAU is the main pathological feature. In case TAU pathology is observed but superimposed by another pathological hallmark, the condition is classified as a secondary tauopathy. In some tauopathies (e.g. MAPT-associated frontotemporal dementia (FTD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Alzheimer's disease (AD)) TAU is recognized as a significant pathogenic driver of the disease. In many secondary tauopathies, including Parkinson's disease (PD) and Huntington's disease (HD), TAU is suggested to contribute to the development of dementia, but in others (e.g. Niemann-Pick disease (NPC)) TAU may only be a bystander. The genetic and pathological mechanisms underlying TAU pathology are often not fully understood. In this review, the genetic predispositions and variants associated with both primary and secondary tauopathies are examined in detail, assessing evidence for the role of TAU in these conditions. We highlight less common genetic forms of tauopathies to increase awareness for these disorders and the involvement of TAU in their pathology. This approach not only contributes to a deeper understanding of these conditions but may also lay the groundwork for potential TAU-based therapeutic interventions for various tauopathies.
Collapse
Affiliation(s)
- Felix Langerscheidt
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Tamara Wied
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, Von-Liebig-Str. 20, 53359, Rheinbach, Germany
| | - Mohamed Aghyad Al Kabbani
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Thilo van Eimeren
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
| | - Gilbert Wunderlich
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Hans Zempel
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
2
|
Abstract
Tauopathies are a clinically and neuropathologically heterogeneous group of neurodegenerative disorders, characterized by abnormal tau aggregates. Tau, a microtubule-associated protein, is important for cytoskeletal structure and intracellular transport. Aberrant posttranslational modification of tau results in abnormal tau aggregates causing neurodegeneration. Tauopathies may be primary, or secondary, where a second protein, such as Aß, is necessary for pathology, for example, in Alzheimer's disease, the most common tauopathy. Primary tauopathies are classified based on tau isoform and cell types where pathology predominates. Primary tauopathies include Pick disease, corticobasal degeneration, progressive supranuclear palsy, and argyrophilic grain disease. Environmental tauopathies include chronic traumatic encephalopathy and geographically isolated tauopathies such as the Guam-Parkinsonian-dementia complex. The clinical presentation of tauopathies varies based on the brain areas affected, generally presenting with a combination of cognitive and motor symptoms either earlier or later in the disease course. As symptoms overlap and tauopathies such as Alzheimer's disease and argyrophilic grain disease often coexist, accurate clinical diagnosis is challenging when biomarkers are unavailable. Available treatments target cognitive, motor, and behavioral symptoms. Disease-modifying therapies have been the focus of drug development, particularly agents targeting Aß and tau pathology in Alzheimer's disease, although most of these trials have failed.
Collapse
Affiliation(s)
- Gayatri Devi
- Department of Neurology and Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.
| |
Collapse
|
3
|
Spencer PS. Parkinsonism and motor neuron disorders: Lessons from Western Pacific ALS/PDC. J Neurol Sci 2021; 433:120021. [PMID: 34635325 DOI: 10.1016/j.jns.2021.120021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/06/2021] [Accepted: 09/01/2021] [Indexed: 01/16/2023]
Abstract
Recognized worldwide as an unusual "overlap" syndrome, Parkinsonism and motor neuron disease, with or without dementia, is best exemplified by the former high-incidence clusters of Amyotrophic Lateral Sclerosis and Parkinsonism-Dementia Complex (ALS/PDC) in Guam, USA, in the Kii Peninsula of Honshu Island, Japan, and in Papua, Indonesia, on the western side of New Guinea. Western Pacific ALS/PDC is a disappearing neurodegenerative disorder with multiple and sometime overlapping phenotypes (ALS, atypical parkinsonism, dementia) that appear to constitute a single disease of environmental origin, in particular from exposure to genotoxins/neurotoxins in seed of cycad plants (Cycas spp.) formerly used as a traditional source of food (Guam) and/or medicine (Guam, Kii-Japan, Papua-Indonesia). Seed compounds include the principal cycad toxin cycasin, its active metabolite methylazoxymethanol (MAM) and a non-protein amino acid β-N-methylamino-L-alanine (L-BMAA); each reproduces components of ALS/PDC neuropathology when individually administered to laboratory species in single doses perinatally (MAM, L-BMAA) or repeatedly for prolonged periods to young adult animals (L-BMAA). Human exposure to MAM, a potent DNA-alkylating mutagen, also has potential relevance to the high incidence of diverse mutations found among Guamanians with/without ALS/PDC. In sum, seven decades of intensive study of ALS/PDC has revealed field and laboratory approaches leading to discovery of disease etiology that are now being applied to sporadic neurodegenerative disorders such as ALS beyond the Western Pacific region. This article is part of the Special Issue "Parkinsonism across the spectrum of movement disorders and beyond" edited by Joseph Jankovic, Daniel D. Truong and Matteo Bologna.
Collapse
Affiliation(s)
- Peter S Spencer
- Department of Neurology, School of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
4
|
Chung DEC, Roemer S, Petrucelli L, Dickson DW. Cellular and pathological heterogeneity of primary tauopathies. Mol Neurodegener 2021; 16:57. [PMID: 34425874 PMCID: PMC8381569 DOI: 10.1186/s13024-021-00476-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
Microtubule-associated protein tau is abnormally aggregated in neuronal and glial cells in a range of neurodegenerative diseases that are collectively referred to as tauopathies. Multiple studies have suggested that pathological tau species may act as a seed that promotes aggregation of endogenous tau in naïve cells and contributes to propagation of tau pathology. While they share pathological tau aggregation as a common feature, tauopathies are distinct from one another with respect to predominant tau isoforms that accumulate and the selective vulnerability of brain regions and cell types that have tau inclusions. For instance, primary tauopathies present with glial tau pathology, while it is mostly neuronal in Alzheimer's disease (AD). Also, morphologies of tau inclusions can greatly vary even within the same cell type, suggesting distinct mechanisms or distinct tau conformers in each tauopathy. Neuropathological heterogeneity across tauopathies challenges our understanding of pathophysiology behind tau seeding and aggregation, as well as our efforts to develop effective therapeutic strategies for AD and other tauopathies. In this review, we describe diverse neuropathological features of tau inclusions in neurodegenerative tauopathies and discuss what has been learned from experimental studies with mouse models, advanced transcriptomics, and cryo-electron microscopy (cryo-EM) on the biology underlying cell type-specific tau pathology.
Collapse
Affiliation(s)
- Dah-eun Chloe Chung
- Department of Neuroscience, Mayo Clinic, 32224 Jacksonville, FL USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, 77030 Houston, TX USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 77030 Houston, TX USA
| | - Shanu Roemer
- Department of Neuroscience, Mayo Clinic, 32224 Jacksonville, FL USA
| | | | | |
Collapse
|
5
|
Western Pacific ALS-PDC: Evidence implicating cycad genotoxins. J Neurol Sci 2020; 419:117185. [PMID: 33190068 DOI: 10.1016/j.jns.2020.117185] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/20/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
Amyotrophic Lateral Sclerosis and Parkinsonism-Dementia Complex (ALS-PDC) is a disappearing neurodegenerative disorder of apparent environmental origin formerly hyperendemic among Chamorros of Guam-USA, Japanese residents of the Kii Peninsula, Honshu Island, Japan and Auyu-Jakai linguistic groups of Papua-Indonesia on the island of New Guinea. The most plausible etiology is exposure to genotoxins in seed of neurotoxic cycad plants formerly used for food and/or medicine. Primary suspicion falls on methylazoxymethanol (MAM), the aglycone of cycasin and on the non-protein amino acid β-N-methylamino-L-alanine, both of which are metabolized to formaldehyde. Human and animal studies suggest: (a) exposures occurred early in life and sometimes during late fetal brain development, (b) clinical expression of neurodegenerative disease appeared years or decades later, and (c) pathological changes in various tissues indicate the disease was not confined to the CNS. Experimental evidence points to toxic molecular mechanisms involving DNA damage, epigenetic changes, transcriptional mutagenesis, neuronal cell-cycle reactivation and perturbation of the ubiquitin-proteasome system that led to polyproteinopathy and culminated in neuronal degeneration. Lessons learned from research on ALS-PDC include: (a) familial disease may reflect common toxic exposures across generations, (b) primary disease prevention follows cessation of exposure to culpable environmental triggers; and (c) disease latency provides a prolonged period during which to intervene therapeutically. Exposure to genotoxic chemicals ("slow toxins") in the early stages of life should be considered in the search for the etiology of ALS-PDC-related neurodegenerative disorders, including sporadic forms of ALS, progressive supranuclear palsy and Alzheimer's disease.
Collapse
|
6
|
Verheijen BM, Oyanagi K, van Leeuwen FW. Dysfunction of Protein Quality Control in Parkinsonism-Dementia Complex of Guam. Front Neurol 2018; 9:173. [PMID: 29615966 PMCID: PMC5869191 DOI: 10.3389/fneur.2018.00173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/06/2018] [Indexed: 12/12/2022] Open
Abstract
Guam parkinsonism–dementia complex (G-PDC) is an enigmatic neurodegenerative disease that is endemic to the Pacific island of Guam. G-PDC patients are clinically characterized by progressive cognitive impairment and parkinsonism. Neuropathologically, G-PDC is characterized by abundant neurofibrillary tangles, which are composed of hyperphosphorylated tau, marked deposition of 43-kDa TAR DNA-binding protein, and neuronal loss. Although both genetic and environmental factors have been implicated, the etiology and pathogenesis of G-PDC remain unknown. Recent neuropathological studies have provided new clues about the pathomechanisms involved in G-PDC. For example, deposition of abnormal components of the protein quality control system in brains of G-PDC patients indicates a role for proteostasis imbalance in the disease. This opens up promising avenues for new research on G-PDC and could have important implications for the study of other neurodegenerative disorders.
Collapse
Affiliation(s)
- Bert M Verheijen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Kiyomitsu Oyanagi
- Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, Nagano, Japan.,Brain Research Laboratory, Hatsuishi Hospital, Chiba, Japan
| | - Fred W van Leeuwen
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
7
|
Caparros-Lefebvre D, Golbe LI, Deramecourt V, Maurage CA, Huin V, Buée-Scherrer V, Obriot H, Sablonnière B, Caparros F, Buée L, Lees AJ. A geographical cluster of progressive supranuclear palsy in northern France. Neurology 2015; 85:1293-300. [PMID: 26354981 DOI: 10.1212/wnl.0000000000001997] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 05/29/2015] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE To describe a cluster of progressive supranuclear palsy (PSP) in northern France. PSP has not been reported in geographical, temporal, or occupational clusters. A unit of Neurology and Neurogeriatrics opened in 2005 at the Centre Hospitalier de Wattrelos, serving the population of Wattrelos and Leers (combined population 51,551) and parts of neighboring towns. For most of the 20th century, this area was a center for chromate and phosphate ore processing, textile dyeing, and tanning. Significant industrial waste persists close to residential areas. METHODS From 2005 to 2014, 92 patients with PSP at Centre Hospitalier de Wattrelos were identified and studied. Detailed residential data were available in the medical records. Eighty cases have had magnetic resonance head scanning and 60 have died, of whom 13 have been examined neuropathologically. RESULTS The ratio of observed to expected PSP incidence over the period 2005 to 2012 was 12.3 (95% confidence interval: 7.4-35.9). Mean onset age was 74.3 years. The Richardson syndrome/PSP-parkinsonism ratio was 43%/42%. Four other phenotypes each occurred in 2% to 5%. Onset was gait/balance difficulty in 52%. None of the 92 affected patients were relatives and 7 were of North African ancestry. MRI was compatible with a clinical diagnostic of PSP in all cases. Histopathologic examination confirmed neurofibrillary degeneration and tufted astrocytes in all autopsied cases. Western blots revealed a typical tau 4R doublet. The tau H1 haplotype occurred in 95.8% of cases' chromosomes. CONCLUSIONS We have identified a cluster of PSP in a geographical area with severe environmental contamination by industrial metals.
Collapse
Affiliation(s)
- Dominique Caparros-Lefebvre
- From the Unit of Neurology (D.C.-L.), Centre Hospitalier de Wattrelos, France; Department of Neurology (L.I.G.), Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ; University of Lille Nord de France (V.D., C.-A.M., V.H., V.B.-S., H.O., B.S., F.C., L.B.), INSERM UMR 1172, Batiment JPARC, France; and Reta Lila Weston Institute for Neurological Studies (A.J.L.), London, UK.
| | - Lawrence I Golbe
- From the Unit of Neurology (D.C.-L.), Centre Hospitalier de Wattrelos, France; Department of Neurology (L.I.G.), Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ; University of Lille Nord de France (V.D., C.-A.M., V.H., V.B.-S., H.O., B.S., F.C., L.B.), INSERM UMR 1172, Batiment JPARC, France; and Reta Lila Weston Institute for Neurological Studies (A.J.L.), London, UK
| | - Vincent Deramecourt
- From the Unit of Neurology (D.C.-L.), Centre Hospitalier de Wattrelos, France; Department of Neurology (L.I.G.), Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ; University of Lille Nord de France (V.D., C.-A.M., V.H., V.B.-S., H.O., B.S., F.C., L.B.), INSERM UMR 1172, Batiment JPARC, France; and Reta Lila Weston Institute for Neurological Studies (A.J.L.), London, UK
| | - Claude-Alain Maurage
- From the Unit of Neurology (D.C.-L.), Centre Hospitalier de Wattrelos, France; Department of Neurology (L.I.G.), Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ; University of Lille Nord de France (V.D., C.-A.M., V.H., V.B.-S., H.O., B.S., F.C., L.B.), INSERM UMR 1172, Batiment JPARC, France; and Reta Lila Weston Institute for Neurological Studies (A.J.L.), London, UK
| | - Vincent Huin
- From the Unit of Neurology (D.C.-L.), Centre Hospitalier de Wattrelos, France; Department of Neurology (L.I.G.), Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ; University of Lille Nord de France (V.D., C.-A.M., V.H., V.B.-S., H.O., B.S., F.C., L.B.), INSERM UMR 1172, Batiment JPARC, France; and Reta Lila Weston Institute for Neurological Studies (A.J.L.), London, UK
| | - Valerie Buée-Scherrer
- From the Unit of Neurology (D.C.-L.), Centre Hospitalier de Wattrelos, France; Department of Neurology (L.I.G.), Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ; University of Lille Nord de France (V.D., C.-A.M., V.H., V.B.-S., H.O., B.S., F.C., L.B.), INSERM UMR 1172, Batiment JPARC, France; and Reta Lila Weston Institute for Neurological Studies (A.J.L.), London, UK
| | - Helene Obriot
- From the Unit of Neurology (D.C.-L.), Centre Hospitalier de Wattrelos, France; Department of Neurology (L.I.G.), Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ; University of Lille Nord de France (V.D., C.-A.M., V.H., V.B.-S., H.O., B.S., F.C., L.B.), INSERM UMR 1172, Batiment JPARC, France; and Reta Lila Weston Institute for Neurological Studies (A.J.L.), London, UK
| | - Bernard Sablonnière
- From the Unit of Neurology (D.C.-L.), Centre Hospitalier de Wattrelos, France; Department of Neurology (L.I.G.), Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ; University of Lille Nord de France (V.D., C.-A.M., V.H., V.B.-S., H.O., B.S., F.C., L.B.), INSERM UMR 1172, Batiment JPARC, France; and Reta Lila Weston Institute for Neurological Studies (A.J.L.), London, UK
| | - Francois Caparros
- From the Unit of Neurology (D.C.-L.), Centre Hospitalier de Wattrelos, France; Department of Neurology (L.I.G.), Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ; University of Lille Nord de France (V.D., C.-A.M., V.H., V.B.-S., H.O., B.S., F.C., L.B.), INSERM UMR 1172, Batiment JPARC, France; and Reta Lila Weston Institute for Neurological Studies (A.J.L.), London, UK
| | - Luc Buée
- From the Unit of Neurology (D.C.-L.), Centre Hospitalier de Wattrelos, France; Department of Neurology (L.I.G.), Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ; University of Lille Nord de France (V.D., C.-A.M., V.H., V.B.-S., H.O., B.S., F.C., L.B.), INSERM UMR 1172, Batiment JPARC, France; and Reta Lila Weston Institute for Neurological Studies (A.J.L.), London, UK
| | - Andrew J Lees
- From the Unit of Neurology (D.C.-L.), Centre Hospitalier de Wattrelos, France; Department of Neurology (L.I.G.), Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ; University of Lille Nord de France (V.D., C.-A.M., V.H., V.B.-S., H.O., B.S., F.C., L.B.), INSERM UMR 1172, Batiment JPARC, France; and Reta Lila Weston Institute for Neurological Studies (A.J.L.), London, UK
| |
Collapse
|
8
|
Brain-penetrant microtubule-stabilizing compounds as potential therapeutic agents for tauopathies. Biochem Soc Trans 2012; 40:661-6. [PMID: 22817712 DOI: 10.1042/bst20120010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Neurons within the brains of those with AD (Alzheimer's disease) and related neurodegenerative disorders, collectively termed 'tauopathies', contain fibrillar inclusions composed of hyperphosphorylated tau protein. Tau is normally enriched in axons, where it binds and stabilizes MTs (microtubules). Tau hyperphosphorylation and aggregation probably result in reduced MT binding that could affect axonal transport and neuronal function. A possible therapeutic strategy to overcome a loss of tau function in tauopathies is administration of MT-stabilizing agents, such as those used in the treatment of cancer. However, these drugs elicit severe side effects, and most existing MT-stabilizing compounds have poor BBB (blood-brain barrier) permeability, which renders them unsuitable for tauopathy treatment. We identified EpoD (epothilone D) as a brain-penetrant MT-stabilizing agent with preferred pharmacokinetic and pharmacodynamic properties. EpoD was evaluated for its ability to compensate for tau loss-of-function in an established Tg (transgenic) mouse model, using both preventative and interventional dosing paradigms. EpoD at doses much lower than previously used in human cancer patients caused improved axonal MT density and decreased axonal dystrophy in the tau Tg mice, leading to an alleviation of cognitive deficits. Moreover, EpoD reduced the extent of tau pathology in aged tau Tg mice. Importantly, no adverse side effects were observed in the EpoD-treated mice. These results suggest that EpoD might be a viable drug candidate for the treatment of AD and related tauopathies.
Collapse
|
9
|
Kisby G, Palmer V, Lasarev M, Fry R, Iordanov M, Magun E, Samson L, Spencer P. Does the cycad genotoxin MAM implicated in Guam ALS-PDC induce disease-relevant changes in mouse brain that includes olfaction? Commun Integr Biol 2012; 4:731-4. [PMID: 22446540 DOI: 10.4161/cib.17603] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Western Pacific amyotrophic lateral sclerosis (ALS) and parkinsonism-dementia complex (PDC), a prototypical neurodegenerative disease (tauopathy) affecting distinct genetic groups with common exposure to neurotoxic chemicals in cycad seed, has many features of Parkinson's and Alzheimer's diseases (AD), including early olfactory dysfunction. Guam ALS-PDC incidence correlates with cycad flour content of cycasin and its aglycone methylazoxymethanol (MAM), which produces persistent DNA damage (O(6)-methylguanine) in the brains of mice lacking O(6)-methylguanine methyltransferase (Mgmt(-/-)). We described in Mgmt(-/-)mice up to 7 days post-MAM treatment that brain DNA damage was linked to brain gene expression changes found in human neurological disease, cancer, and skin and hair development. This addendum reports 6 months post-MAM treatment- related brain transcriptional changes as well as elevated mitogen activated protein kinases and increased caspase-3 activity, both of which are involved in tau aggregation and neurofibrillary tangle formation typical of ALS-PDC and AD, plus transcriptional changes in olfactory receptors. Does cycasin act as a "slow (geno)toxin" in ALS-PDC?
Collapse
|
10
|
Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, Cairns NJ, Castellani RJ, Crain BJ, Davies P, Del Tredici K, Duyckaerts C, Frosch MP, Haroutunian V, Hof PR, Hulette CM, Hyman BT, Iwatsubo T, Jellinger KA, Jicha GA, Kövari E, Kukull WA, Leverenz JB, Love S, Mackenzie IR, Mann DM, Masliah E, McKee AC, Montine TJ, Morris JC, Schneider JA, Sonnen JA, Thal DR, Trojanowski JQ, Troncoso JC, Wisniewski T, Woltjer RL, Beach TG. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol 2012; 71:362-81. [PMID: 22487856 PMCID: PMC3560290 DOI: 10.1097/nen.0b013e31825018f7] [Citation(s) in RCA: 1483] [Impact Index Per Article: 114.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Clinicopathologic correlation studies are critically important for the field of Alzheimer disease (AD) research. Studies on human subjects with autopsy confirmation entail numerous potential biases that affect both their general applicability and the validity of the correlations. Many sources of data variability can weaken the apparent correlation between cognitive status and AD neuropathologic changes. Indeed, most persons in advanced old age have significant non-AD brain lesions that may alter cognition independently of AD. Worldwide research efforts have evaluated thousands of human subjects to assess the causes of cognitive impairment in the elderly, and these studies have been interpreted in different ways. We review the literature focusing on the correlation of AD neuropathologic changes (i.e. β-amyloid plaques and neurofibrillary tangles) with cognitive impairment. We discuss the various patterns of brain changes that have been observed in elderly individuals to provide a perspective for understanding AD clinicopathologic correlation and conclude that evidence from many independent research centers strongly supports the existence of a specific disease, as defined by the presence of Aβ plaques and neurofibrillary tangles. Although Aβ plaques may play a key role in AD pathogenesis, the severity of cognitive impairment correlates best with the burden of neocortical neurofibrillary tangles.
Collapse
Affiliation(s)
- Peter T Nelson
- Sanders-Brown Center on Aging, Department of Pathology, University of Kentucky, Lexington 40536-0230, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW This review covers the amyotrophic lateral sclerosis (ALS)/parkinsonism dementia complex (PDC) of Guam. Clinical and epidemiological characteristics, genetic possible and environmental causes, and neuropathological features of the disease are discussed. RECENT FINDINGS Recent studies of clinical syndromes and neuropathological studies are compared with previous descriptions of the disease. The latest genetic and environmental studies are also reviewed. SUMMARY In recent years, understanding of the molecular pathogenesis of neurodegenerative diseases has evolved. ALS/PDC shares neuropathological features found in many neurodegenerative diseases such as Alzheimer's disease, Lewy body disease, and frontotemporal lobar degeneration. Thus, examining ALS/PDC may provide further explanations on how various proteins seen in neurodegenerative disorders may be interrelated.
Collapse
|
12
|
Vivacqua G, Casini A, Vaccaro R, Salvi EP, Pasquali L, Fornai F, Yu S, D’Este L. Spinal cord and parkinsonism: Neuromorphological evidences in humans and experimental studies. J Chem Neuroanat 2011; 42:327-40. [DOI: 10.1016/j.jchemneu.2011.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 02/20/2011] [Accepted: 03/01/2011] [Indexed: 12/12/2022]
|
13
|
Is neurodegenerative disease a long-latency response to early-life genotoxin exposure? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2011; 8:3889-921. [PMID: 22073019 PMCID: PMC3210588 DOI: 10.3390/ijerph8103889] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/09/2011] [Accepted: 09/15/2011] [Indexed: 01/03/2023]
Abstract
Western Pacific amyotrophic lateral sclerosis and parkinsonism-dementia complex, a disappearing neurodegenerative disease linked to use of the neurotoxic cycad plant for food and/or medicine, is intensively studied because the neuropathology (tauopathy) is similar to that of Alzheimer's disease. Cycads contain neurotoxic and genotoxic principles, notably cycasin and methylazoxymethanol, the latter sharing chemical relations with nitrosamines, which are derived from nitrates and nitrites in preserved meats and fertilizers, and also used in the rubber and leather industries. This review includes new data that influence understanding of the neurobiological actions of cycad and related genotoxins and the putative mechanisms by which they might trigger neurodegenerative disease.
Collapse
|
14
|
The cycad genotoxin MAM modulates brain cellular pathways involved in neurodegenerative disease and cancer in a DNA damage-linked manner. PLoS One 2011; 6:e20911. [PMID: 21731631 PMCID: PMC3121718 DOI: 10.1371/journal.pone.0020911] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 05/16/2011] [Indexed: 02/02/2023] Open
Abstract
Methylazoxymethanol (MAM), the genotoxic metabolite of the cycad azoxyglucoside cycasin, induces genetic alterations in bacteria, yeast, plants, insects and mammalian cells, but adult nerve cells are thought to be unaffected. We show that the brains of adult C57BL6 wild-type mice treated with a single systemic dose of MAM acetate display DNA damage (O6-methyldeoxyguanosine lesions, O6-mG) that remains constant up to 7 days post-treatment. By contrast, MAM-treated mice lacking a functional gene encoding the DNA repair enzyme O6-mG DNA methyltransferase (MGMT) showed elevated O6-mG DNA damage starting at 48 hours post-treatment. The DNA damage was linked to changes in the expression of genes in cell-signaling pathways associated with cancer, human neurodegenerative disease, and neurodevelopmental disorders. These data are consistent with the established developmental neurotoxic and carcinogenic properties of MAM in rodents. They also support the hypothesis that early-life exposure to MAM-glucoside (cycasin) has an etiological association with a declining, prototypical neurodegenerative disease seen in Guam, Japan, and New Guinea populations that formerly used the neurotoxic cycad plant for food or medicine, or both. These findings suggest environmental genotoxins, specifically MAM, target common pathways involved in neurodegeneration and cancer, the outcome depending on whether the cell can divide (cancer) or not (neurodegeneration). Exposure to MAM-related environmental genotoxins may have relevance to the etiology of related tauopathies, notably, Alzheimer's disease.
Collapse
|
15
|
Garbern JY, Neumann M, Trojanowski JQ, Lee VMY, Feldman G, Norris JW, Friez MJ, Schwartz CE, Stevenson R, Sima AAF. A mutation affecting the sodium/proton exchanger, SLC9A6, causes mental retardation with tau deposition. ACTA ACUST UNITED AC 2010; 133:1391-402. [PMID: 20395263 DOI: 10.1093/brain/awq071] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have studied a family with severe mental retardation characterized by the virtual absence of speech, autism spectrum disorder, epilepsy, late-onset ataxia, weakness and dystonia. Post-mortem examination of two males revealed widespread neuronal loss, with the most striking finding being neuronal and glial tau deposition in a pattern reminiscent of corticobasal degeneration. Electron microscopic examination of isolated tau filaments demonstrated paired helical filaments and ribbon-like structures. Biochemical studies of tau demonstrated a preponderance of 4R tau isoforms. The phenotype was linked to Xq26.3, and further analysis identified an in-frame 9 base pair deletion in the solute carrier family 9, isoform A6 (SLC9A6 gene), which encodes sodium/hydrogen exchanger-6 localized to endosomal vesicles. Sodium/hydrogen exchanger-6 is thought to participate in the targeting of intracellular vesicles and may be involved in recycling synaptic vesicles. The striking tau deposition in our subjects reveals a probable interaction between sodium/proton exchangers and cytoskeletal elements involved in vesicular transport, and raises the possibility that abnormalities of vesicular targeting may play an important role in more common disorders such as Alzheimer's disease and autism spectrum disorders.
Collapse
Affiliation(s)
- James Y Garbern
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Meraz-Ríos MA, Lira-De León KI, Campos-Peña V, De Anda-Hernández MA, Mena-López R. Tau oligomers and aggregation in Alzheimer's disease. J Neurochem 2009; 112:1353-67. [PMID: 19943854 DOI: 10.1111/j.1471-4159.2009.06511.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We are analyzing the physiological function of Tau protein and its abnormal pathological behavior when this protein is self-assemble into pathological filaments. These aggregates of Tau protein are the main components in many diseases such as Alzheimer's disease (AD). Recent studies suggest that Tau acquires complex oligomeric conformations which may be toxic. In this review, we emphasized the possible phenomena implicated in the formation of these oligomers. Studies with chemical inductors indicates that the microtubule-binding domain is the most important region involved in Tau aggregation and showed the requirement of a pre-arrange Tau in abnormal conformation to promote self-assembly. Transgenic animal models and AD neuropathology studies showed that post-translational modifications are also implicated in Tau aggregation and neural cell death during AD development. Therefore, we analyzed some events that could be present during Tau aggregation. Finally, we included a brief discussion of the possible relation between glucose metabolism dysfunction in AD, and data of Tau aggregation by using aggregation inhibitors. In conclusion, the process Tau aggregation deserves further investigations to design possible therapeutic targets to inhibit the toxicity of these aggregates and it is possible that could be extended to other diseases with similar etiology.
Collapse
Affiliation(s)
- Marco A Meraz-Ríos
- Department of Molecular Biomedicine, Center of Research and Advanced Studies CINVESTAV-IPN, México DF, Mexico.
| | | | | | | | | |
Collapse
|
17
|
McMillan P, Korvatska E, Poorkaj P, Evstafjeva Z, Robinson L, Greenup L, Leverenz J, Schellenberg GD, D'Souza I. Tau isoform regulation is region- and cell-specific in mouse brain. J Comp Neurol 2009; 511:788-803. [PMID: 18925637 DOI: 10.1002/cne.21867] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tau is a microtubule-associated protein implicated in neurodegenerative tauopathies. Alternative splicing of the tau gene (MAPT) generates six tau isoforms, distinguishable by the exclusion or inclusion of a repeat region of exon 10, which are referred to as 3-repeat (3R) and 4-repeat (4R) tau, respectively. We developed transgenic mouse models that express the entire human MAPT gene in the presence and absence of the mouse Mapt gene and compared the expression and regulation of mouse and human tau isoforms during development and in the young adult. We found differences between mouse and human tau in the regulation of exon 10 inclusion. Despite these differences, the isoform splicing pattern seen in normal human brain is replicated in our mouse models. In addition, we found that all tau, both in the neonate and young adult, is phosphorylated. We also examined the normal anatomic distribution of mouse and human tau isoforms in mouse brain. We observed developmental and species-specific variations in the expression of 3R- and 4R-tau within the frontal cortex and hippocampus. In addition, there were differences in the cellular distribution of the isoforms. Mice transgenic for the human MAPT gene exhibited higher levels of neuronal cell body expression of tau compared to wildtype mice. This neuronal cell body expression of tau was limited to the 3R isoform, whereas expression of 4R-tau was more "synaptic like," with granular staining of neuropil rather than in neuronal cell bodies. These developmental and species-specific differences in the regulation and distribution of tau isoforms may be important to the understanding of normal and pathologic tau isoform expression.
Collapse
Affiliation(s)
- Pamela McMillan
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Enduring involvement of tau, beta-amyloid, alpha-synuclein, ubiquitin and TDP-43 pathology in the amyotrophic lateral sclerosis/parkinsonism-dementia complex of Guam (ALS/PDC). Acta Neuropathol 2008; 116:625-37. [PMID: 18843496 DOI: 10.1007/s00401-008-0439-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 09/11/2008] [Accepted: 09/18/2008] [Indexed: 12/25/2022]
Abstract
Guam ALS/PDC is a severe tangle forming disorder endemic to Guam with features overlapping such neurodegenerative disorders as Alzheimer disease (AD), Parkinson disease (PD), progressive supranuclear palsy (PSP), ALS, corticobasal degeneration (CBD) and pallido-ponto-nigral degeneration (PPND). Since the prevalence is declining, we examined brain tissue from 35 clinically diagnosed Chamorro patients with ALS/PDC and two Chamorro controls autopsied between 1946 and 2006, to determine if distinct variations in the pathology could be identified up to this time. Although the age at autopsy increased by 4.5-5 years per decade, we identified no qualitative differences in pathological deposits with antibodies against tau, ubiquitin, A beta, alpha-synuclein and TDP-43, indicating that these more recently identified proteins have been involved in the neuropathogenesis over the past 6 decades. Tau and TDP-43 positive neuronal, oligodendroglial and astrocytic inclusions involving multiple nerve fiber tracts occurred in both the ALS and PDC types, reinforcing the concept that these forms are part of the same disorder. The results obtained may help to define the commonality of the Guam disease with other tangle forming disorders and may help in monitoring the epidemiological changes that are taking place.
Collapse
|
19
|
Abstract
The technology, experimental approaches, and bioinformatics that support proteomic research are evolving rapidly. The application of these new capabilities to the study of neurodegenerative diseases is providing insight into the biochemical pathogenesis of neurodegeneration as well as fueling major efforts in biomarker discovery. Here, we review the fundamentals of commonly used proteomic approaches and the outcomes of these investigations with autopsy and cerebrospinal fluid samples from patients with neurodegenerative diseases.
Collapse
|
20
|
Caudle WM, Pan S, Shi M, Quinn T, Hoekstra J, Beyer RP, Montine TJ, Zhang J. Proteomic identification of proteins in the human brain: Towards a more comprehensive understanding of neurodegenerative disease. Proteomics Clin Appl 2008; 2:1484-97. [PMID: 21136796 DOI: 10.1002/prca.200800043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Indexed: 12/21/2022]
Abstract
Proteomics has revealed itself as a powerful tool in the identification and determination of proteins and their biological significance. More recently, several groups have taken advantage of the high-throughput nature of proteomics in order to gain a more in-depth understanding of the human brain. In turn, this information has provided researchers with invaluable insight into the potential pathways and mechanisms involved in the pathogenesis of several neurodegenerative disorders, e.g., Alzheimer and Parkinson disease. Furthermore, these findings likely will improve methods to diagnose disease and monitor disease progression as well as generate novel targets for therapeutic intervention. Despite these advances, comprehensive understanding of the human brain proteome remains challenging, and requires development of improved sample enrichment, better instrumentation, and innovative analytic techniques. In this review, we will focus on the most recent progress related to identification of proteins in the human brain under normal as well as pathological conditions, mainly Alzheimer and Parkinson disease, their potential application in biomarker discovery, and discuss current advances in protein identification aimed at providing a more comprehensive understanding of the brain.
Collapse
Affiliation(s)
- W Michael Caudle
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Woltjer RL, Sonnen JA, Sokal I, Rung LG, Yang W, Kjerulf JD, Klingert D, Johnson C, Rhew I, Tsuang D, Crane PK, Larson EB, Montine TJ. Quantitation and mapping of cerebral detergent-insoluble proteins in the elderly. Brain Pathol 2008; 19:365-74. [PMID: 18652590 DOI: 10.1111/j.1750-3639.2008.00190.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Accumulation of abnormal protein aggregates, detergent-insoluble (DI) proteins and amyloid in the brain are shared features of many neurodegenerative diseases. Previous studies correlating DI proteins and cognitive performance are limited. We addressed these limitations using two sets of autopsy brains, one selected from our Alzheimer's Disease Research Center and the other an unselected series from Adult Changes in Thought (ACT), a population-based study of brain aging. We observed concentrations of 11 proteins and 6 protein variants that can be grouped into three highly correlated clusters: amyloid (A)beta, tau and alpha-synuclein (alpha-syn). While abnormal proteins from each cluster independently correlated with cognitive performance in ACT participants, only increased soluble Abeta oligomers in temporal cortex and increased DI Abeta 42 and DI alpha-syn in prefrontal cortex were negatively correlated with cognitive performance. These data underscore the therapeutic imperative to suppress processes leading to accumulation of soluble Abeta oligomers, DI Abeta 42 and DI alpha-syn, highlight an at least partially independent contribution to cognitive impairment and raise the possibility that the priority for therapeutic targets may vary by brain region in a typical elderly US population.
Collapse
Affiliation(s)
- Randall L Woltjer
- Department of Pathology Oregon Health Sciences University, Portland, OR 97239-3098, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Geser F, Winton MJ, Kwong LK, Xu Y, Xie SX, Igaz LM, Garruto RM, Perl DP, Galasko D, Lee VMY, Trojanowski JQ. Pathological TDP-43 in parkinsonism-dementia complex and amyotrophic lateral sclerosis of Guam. Acta Neuropathol 2008; 115:133-45. [PMID: 17713769 DOI: 10.1007/s00401-007-0257-y] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 06/14/2007] [Accepted: 06/15/2007] [Indexed: 12/12/2022]
Abstract
Pathological TDP-43 is the major disease protein in frontotemporal lobar degeneration characterized by ubiquitin inclusions (FTLD-U) with/without motor neuron disease (MND) and in amyotrophic lateral sclerosis (ALS). As Guamanian parkinsonism-dementia complex (PDC) or Guamanian ALS (G-PDC or G-ALS) of the Chamorro population may present clinically similar to FTLD-U and ALS, TDP-43 pathology may be present in the G-PDC and G-ALS. Thus, we examined cortical or spinal cord samples from 54 Guamanian subjects for evidence of TDP-43 pathology. In addition to cortical neurofibrillary and glial tau pathology, G-PDC was associated with cortical TDP-43 positive dystrophic neurites and neuronal and glial inclusions in gray and/or white matter. Biochemical analyses showed the presence of FTLD-U-like insoluble TDP-43 in G-PDC, but not in Guam controls (G-C). Spinal cord pathology of G-PDC or G-ALS was characterized by tau positive tangles as well as TDP-43 positive inclusions in lower motor neurons and glial cells. G-C had variable tau and negligible TDP-43 pathology. These results indicate that G-PDC and G-ALS are associated with pathological TDP-43 similar to FTLD-U with/without MND as well as ALS, and that neocortical or hippocampal TDP-43 pathology distinguishes controls from disease subjects better than tau pathology. Finally, we conclude that the spectrum of TDP-43 proteinopathies should be expanded to include neurodegenerative cognitive and motor diseases, affecting the Chamorro population of Guam.
Collapse
Affiliation(s)
- Felix Geser
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Alzheimer's Disease Core Center, Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104-4283, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Shaw CA, Höglinger GU. Neurodegenerative diseases: neurotoxins as sufficient etiologic agents? Neuromolecular Med 2007; 10:1-9. [PMID: 17985252 DOI: 10.1007/s12017-007-8016-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2007] [Accepted: 10/09/2007] [Indexed: 11/26/2022]
Abstract
A dominant paradigm in neurological disease research is that the primary etiological factors for diseases such as Alzheimer's (AD), Parkinson's (PD), and amyotrophic lateral sclerosis (ALS) are genetic. Opposed to this perspective are the clear observations from epidemiology that purely genetic casual factors account for a relatively small fraction of all cases. Many who support a genetic etiology for neurological disease take the view that while the percentages may be relatively small, these numbers will rise in the future with the inevitable discoveries of additional genetic mutations. The follow up argument is that even if the last is not true, the events triggered by the aberrant genes identified so far will be shown to impact the same neuronal cell death pathways as those activated by environmental factors that trigger most sporadic disease cases. In this article we present a countervailing view that environmental neurotoxins may be the sole sufficient factor in at least three neurological disease clusters. For each, neurotoxins have been isolated and characterized that, at least in animal models, faithfully reproduce each disorder without the need for genetic co-factors. Based on these data, we will propose a set of principles that would enable any potential toxin to be evaluated as an etiological factor in a given neurodegenerative disease. Finally, we will attempt to put environmental toxins into the context of possible genetically-determined susceptibility.
Collapse
Affiliation(s)
- Christopher A Shaw
- Department of Ophthalmology, University of British Columbia, Vancouver, BC, Canada.
| | | |
Collapse
|