1
|
Abhilash PL, Bharti U, Rashmi SK, Philip M, Raju TR, Kutty BM, Sagar BKC, Alladi PA. Aging and MPTP Sensitivity Depend on Molecular and Ultrastructural Signatures of Astroglia and Microglia in Mice Substantia Nigra. Cell Mol Neurobiol 2025; 45:13. [PMID: 39833644 PMCID: PMC11753320 DOI: 10.1007/s10571-024-01528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
Both astroglia and microglia show region-specific distribution in CNS and often maladapt to age-associated alterations within their niche. Studies on autopsied substantia nigra (SN) of Parkinson's disease (PD) patients and experimental models propose gliosis as a trigger for neuronal loss. Epidemiological studies propose an ethnic bias in PD prevalence, since Caucasians are more susceptible than non-whites. Similarly, different mice strains are variably sensitive to MPTP. We had earlier likened divergent MPTP sensitivity of C57BL/6 J and CD-1 mice with differential susceptibility to PD, based on the numbers of SN neurons. We examined whether the variability was incumbent to inter-strain differences in glial features of male C57BL/6 J and CD-1 mice. Stereological counts showed relatively more microglia and fewer astrocytes in the SN of normal C57BL/6 J mice, suggesting persistence of an immune-vigilant state. MPTP-induced microgliosis and astrogliosis in both strains suggest their involvement in pathogenesis. ELISA of pro-inflammatory cytokines in the ventral-midbrain revealed augmentation of TNF-α and IL-6 at middle age in both strains that reduced at old age, suggesting middle age as a critical, inflamm-aging-associated time point. TNF-α levels were high in C57BL/6 J, through aging and post-MPTP, while IL-6 and IL-1β were upregulated at old age. CD-1 had higher levels of anti-inflammatory cytokine TGF-β. MPTP challenge caused upregulation of enzymes MAO-A, MAO-B, and iNOS in both strains. Post-MPTP enhancement in fractalkine and hemeoxygenase-1 may be neuron-associated compensatory signals. Ultrastructural observations of elongated astroglial/microglial mitochondria vis-à-vis the shrunken ones in neurons suggest a scale-up of their functions with neurotoxic consequences. Thus, astroglia and microglia may modulate aging and PD susceptibility.
Collapse
Affiliation(s)
- P L Abhilash
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bengaluru, 560029, India
| | - Upasna Bharti
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Santhosh Kumar Rashmi
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Mariamma Philip
- Department of Biostatistics, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - T R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bengaluru, 560029, India
| | - Bindu M Kutty
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bengaluru, 560029, India
| | - B K Chandrasekhar Sagar
- Department of Biostatistics, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Phalguni Anand Alladi
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bengaluru, 560029, India.
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India.
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bangalore, India.
| |
Collapse
|
2
|
Liu Y, Wang J, Ning F, Wang G, Xie A. Longitudinal correlation of cerebrospinal fluid GFAP and the progression of cognition decline in different clinical subtypes of Parkinson's disease. Clin Transl Sci 2024; 17:e70111. [PMID: 39676304 DOI: 10.1111/cts.70111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024] Open
Abstract
Glial fibrillary acidic protein (GFAP) is an intermediate filament protein expressed mainly in astrocytes of the central nervous system (CNS), a potential biomarker of cognitive decline in Parkinson's disease (PD). The central motor subtypes of PD include tremor-dominant (TD), postural instability and gait disorder (PIGD), and indeterminate subtypes, whose different course of disease requires the development of biomarkers that can predict progression based on motor subtypes. In this study, we aimed to assess the predictive value of cerebrospinal fluid (CSF) GFAP for PD motor subtypes in PD. Two hundred and sixteen PD patients were recruited in our study from the progression markers initiative. Patients were subgrouped into TD, PIGD, and indeterminate subtypes. Longitudinal relationships between baseline CSF GFAP and cognitive function and CSF biomarkers were assessed using linear mixed-effects models. Cox regression was used to detect cognitive progression in TD patients. The baseline and longitudinal increases in CSF GFAP were associated with a greater decline in episodic memory, CSF α-syn, and a greater increase of CSF NfL in TD and TD-male subtypes. Cox regression showed that higher baseline CSF GFAP levels were corrected with a higher risk of developing mild cognitive impairment (MCI) over a 4-year period in the PD with normal cognition (NC) group (adjusted HR = 1.607, 95% CI 1.907-2.354, p = 0.01). CSF GFAP might be a promising predictor of cognition decline in TD.
Collapse
Affiliation(s)
- Yumei Liu
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Wang
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fangbo Ning
- Department of Neurology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Guojun Wang
- Department of Neurosurgery, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Anmu Xie
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Ngaibi J, Bigued, Kandeda AK, Nguezeye Y, Wangbara TA, Gaoudji L, Taiwe GS, Bum EN. Antiepileptic and anti-inflammatory effects of Lippia multiflora moldenke (Verbenaceae) in mice model of chronic temporal lobe epilepsy induced by pilocarpine. Heliyon 2024; 10:e39483. [PMID: 39498072 PMCID: PMC11533593 DOI: 10.1016/j.heliyon.2024.e39483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 11/07/2024] Open
Abstract
Lippia multiflora Moldenke (Verbenaceae) is an aromatic plant used as a popular medicine with antidepressant, antispasmodic, antifungal, anti-inflammatory, and antioxidant properties. In this study, we explored the effects of L. multiflora in mice chronic model of temporal lobe epilepsy induced by pilocarpine and kindled with pentylenetetrazol. Mice were divided into 7 groups of 10 animals, and received a single dose of pilocarpine (360 mg/kg, i.p.), 20 min after the administration of N-methyl-scopolamine (1 mg/kg, i.p). Thirty days after the induction of status epilepticus, animals were daily treated for 60 days with distilled water (10 mL/kg, per os) for the negative control group, extract (23.07, 57.69, 115.39 and 230.78 mg/kg, per os) for the test groups, and sodium valproate (300 mg/kg, i.p) for the positive control group. On every 10th day, animals were injected with a sub-convulsive dose of pentylenetetrazol (15 mg/kg, i.p) 1 h after the administration of the various treatments to assess the susceptibility of animals to seizures. At the end of behavioural tests, animals were sacrificed and the level of inflammatory cytokines was assessed in the hippocampus. The plant extract reduced (p < 0.001) the occurrence of seizures and the number of spontaneous recurrent seizures induced by pilocarpine in mice. It ameliorated the levels of inflammatory cytokines (TNF-α, INF- γ, IL-1β, IL-6, and IL-10) in the hippocampus. The in vitro studies show that L. multiflora have a high amount of total phenolic content, flavonoids and tannins and also have some good antioxidant properties. These results suggest that L. multiflora aqueous extracts has the potential to be a promising complementary and alternative medicine for the treatment of epilepsy, due to its antiepileptic, anti-inflammatory and antioxidant effects.
Collapse
Affiliation(s)
- Joseph Ngaibi
- Department of Animal Biology, Faculty of Science, University of Dschang, Cameroon, P.O. Box 67, Dschang, Cameroon
| | - Bigued
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Antoine Kavaye Kandeda
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde 1, P.O. Box, Yaounde, Cameroon
| | - Yvette Nguezeye
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon
- Department of Biological Sciences, Faculty of Science, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon
| | - Tchang Alkali Wangbara
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Lamido Gaoudji
- Department of Biological Sciences, Faculty of Science, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon
| | - Germain Sotoing Taiwe
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Cameroon, P.O. Box 63, Buea, Cameroon
| | - Elisabeth Ngo Bum
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
- Department of Biological Sciences, Faculty of Science, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon
| |
Collapse
|
4
|
Coraggio F, Bhushan M, Roumeliotis S, Caroti F, Bevilacqua C, Prevedel R, Rapti G. Age-progressive interplay of HSP-proteostasis, ECM-cell junctions and biomechanics ensures C. elegans astroglial architecture. Nat Commun 2024; 15:2861. [PMID: 38570505 PMCID: PMC10991496 DOI: 10.1038/s41467-024-46827-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
Tissue integrity is sensitive to temperature, tension, age, and is sustained throughout life by adaptive cell-autonomous or extrinsic mechanisms. Safeguarding the remarkably-complex architectures of neurons and glia ensures age-dependent integrity of functional circuits. Here, we report mechanisms sustaining the integrity of C. elegans CEPsh astrocyte-like glia. We combine large-scale genetics with manipulation of genes, cells, and their environment, quantitative imaging of cellular/ subcellular features, tissue material properties and extracellular matrix (ECM). We identify mutants with age-progressive, environment-dependent defects in glial architecture, consequent disruption of neuronal architecture, and abnormal aging. Functional loss of epithelial Hsp70/Hsc70-cochaperone BAG2 causes ECM disruption, altered tissue biomechanics, and hypersensitivity of glia to environmental temperature and mechanics. Glial-cell junctions ensure epithelia-ECM-CEPsh glia association. Modifying glial junctions or ECM mechanics safeguards glial integrity against disrupted BAG2-proteostasis. Overall, we present a finely-regulated interplay of proteostasis-ECM and cell junctions with conserved components that ensures age-progressive robustness of glial architecture.
Collapse
Affiliation(s)
- Francesca Coraggio
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mahak Bhushan
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Spyridon Roumeliotis
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Francesca Caroti
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Carlo Bevilacqua
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Robert Prevedel
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, Rome, Italy
- Interdisciplinary Center of Neurosciences, Heidelberg University, Heidelberg, Germany
- German Center for Lung Research (DZL), Heidelberg, Germany
| | - Georgia Rapti
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, Rome, Italy.
- Interdisciplinary Center of Neurosciences, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
5
|
Che N, Ou R, Li C, Zhang L, Wei Q, Wang S, Jiang Q, Yang T, Xiao Y, Lin J, Zhao B, Chen X, Shang H. Plasma GFAP as a prognostic biomarker of motor subtype in early Parkinson's disease. NPJ Parkinsons Dis 2024; 10:48. [PMID: 38429295 PMCID: PMC10907600 DOI: 10.1038/s41531-024-00664-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/21/2024] [Indexed: 03/03/2024] Open
Abstract
Parkinson's disease (PD) is a heterogeneous movement disorder with different motor subtypes including tremor dominant (TD), indeterminate and postural instability, and gait disturbance (PIGD) motor subtypes. Plasma glial fibrillary acidic protein (GFAP) was elevated in PD patients and may be regarded as a biomarker for motor and cognitive progression. Here we explore if there was an association between plasma GFAP and different motor subtypes and whether baseline plasma GFAP level can predict motor subtype conversion. Patients with PD classified as TD, PIGD or indeterminate subtypes underwent neurological evaluation at baseline and 2 years follow-up. Plasma GFAP in PD patients and controls were measured using an ultrasensitive single molecule array. The study enrolled 184 PD patients and 95 control subjects. Plasma GFAP levels were significantly higher in the PIGD group compared to the TD group at 2-year follow-up. Finally, 45% of TD patients at baseline had a subtype shift and 85% of PIGD patients at baseline remained as PIGD subtypes at 2 years follow-up. Baseline plasma GFAP levels were significantly higher in TD patients converted to PIGD than non-converters in the baseline TD group. Higher baseline plasma GFAP levels were significantly associated with the TD motor subtype conversion (OR = 1.283, P = 0.033) and lower baseline plasma GFAP levels in PIGD patients were likely to shift to TD and indeterminate subtype (OR = 0.551, P = 0.021) after adjusting for confounders. Plasma GFAP may serve as a clinical utility biomarker in differentiating motor subtypes and predicting baseline motor subtypes conversion in PD patients.
Collapse
Affiliation(s)
- Ningning Che
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruwei Ou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingyu Zhang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qianqian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shichan Wang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qirui Jiang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianmi Yang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Xiao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junyu Lin
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bi Zhao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xueping Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Liu X, Liu X, Liu Y, Yang B, Li Y, Li F, Qian K, Zu J, Zhang W, Zhou S, Zhang T, Liu J, Cui G, Xu C. Utility of serum neurofilament light chain and glial fibrillary acidic protein as diagnostic biomarkers of freezing of gait in Parkinson's disease. Brain Res 2024; 1822:148660. [PMID: 37924925 DOI: 10.1016/j.brainres.2023.148660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/11/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
Freezing of gait (FOG) is one of the most distressing features of Parkinson's disease (PD), increasing the risks of fractures and seriously affecting patients' quality of life. We aimed to examine the potential diagnostic roles of serum neurofilament light chain (NFL) and glial fibrillary acidic protein (GFAP) in PD patients with FOG (PD-FOG). We included 99 patients, comprising 54 PD patients without FOG (PD-NoFOG), 45 PD-FOG and 37 healthy controls (HCs). Our results indicated serum markers were significantly higher in PD-FOG and postural instability and gait difficulty (PIGD) motor subtype patients than in PD-NoFOG and non-PIGD subtype patients (P < 0.05), respectively. Patients with high concentrations of the markers NFL and GFAP had higher PIGD scores and greater FOG severity than those with low concentrations. Moreover, serum levels of both NFL and GFAP were significantly positively associated with age, FOG severity, PD-FOG status, and negatively associated with Mini-Mental State Examination (MMSE) scores. Logistic regression analysis identified serum levels of NFL and GFAP as independent risk factors for PD-FOG. Mediation analysis revealed that MMSE scores fully mediated the relationship between serum GFAP levels and FOG-Q scores, accounting for 33.33% of the total effects (indirect effect = 0.01, 95% CI 0.01-0.02). NFL levels differentiated PD-FOG from PD-NoFOG with reliable diagnostic accuracy (AUC 0.75, 95% CI 0.66-0.84), and the combination of NFL, GFAP, duration and MMSE scores demonstrated high accuracy (AUC 0.84, 95% CI 0.76-0.91). Our findings support the notion that NFL and GFAP may be potential biomarkers for the diagnosis of PD-FOG.
Collapse
Affiliation(s)
- Xu Liu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China
| | - Xuanjing Liu
- Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China
| | - Yuning Liu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China
| | - Bo Yang
- Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China
| | - Yangdanyu Li
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China
| | - Fujia Li
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China
| | - Kun Qian
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China
| | - Jie Zu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China
| | - Wei Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China
| | - Su Zhou
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China
| | - Tao Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China
| | - Jing Liu
- Department of Cell Biology and Neurobiology, Life Sciences College, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China.
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China.
| | - Chuanying Xu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu Province 221000, China; Department of Neurology, The First Clinical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China.
| |
Collapse
|
7
|
Dias CM, Issac B, Sun L, Lukowicz A, Talukdar M, Akula SK, Miller MB, Walsh K, Rockowitz S, Walsh CA. Glial dysregulation in the human brain in fragile X-associated tremor/ataxia syndrome. Proc Natl Acad Sci U S A 2023; 120:e2300052120. [PMID: 37252957 PMCID: PMC10265985 DOI: 10.1073/pnas.2300052120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/03/2023] [Indexed: 06/01/2023] Open
Abstract
Short trinucleotide expansions at the FMR1 locus are associated with the late-onset condition fragile X-associated tremor/ataxia syndrome (FXTAS), which shows very different clinical and pathological features from fragile X syndrome (associated with longer expansions), with no clear molecular explanation for these marked differences. One prevailing theory posits that the shorter, premutation expansion uniquely causes extreme neurotoxic increases in FMR1 mRNA (i.e., four to eightfold increases), but evidence to support this hypothesis is largely derived from analysis of peripheral blood. We applied single-nucleus RNA sequencing to postmortem frontal cortex and cerebellum from 7 individuals with premutation and matched controls (n = 6) to assess cell type-specific molecular neuropathology. We found only modest upregulation (~1.3-fold) of FMR1 in some glial populations associated with premutation expansions. In premutation cases, we also identified decreased astrocyte proportions in the cortex. Differential expression and gene ontology analysis demonstrated altered neuroregulatory roles of glia. Using network analyses, we identified cell type-specific and region-specific patterns of FMR1 protein target gene dysregulation unique to premutation cases, with notable network dysregulation in the cortical oligodendrocyte lineage. We used pseudotime trajectory analysis to determine how oligodendrocyte development was altered and identified differences in early gene expression in oligodendrocyte trajectories in premutation cases specifically, implicating early cortical glial developmental perturbations. These findings challenge dogma regarding extremely elevated FMR1 increases in FXTAS and implicate glial dysregulation as a critical facet of premutation pathophysiology, representing potential unique therapeutic targets directly derived from the human condition.
Collapse
Affiliation(s)
- Caroline M. Dias
- Division of Developmental Medicine, Boston Children’s Hospital, Boston, MA02115
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- Department of Pediatrics, Section of Developmental Pediatrics, Section of Genetics and Metabolism, and Denver Fragile X Clinic and Research Center, Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Biju Issac
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, MA02115
| | - Liang Sun
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, MA02115
| | - Abigail Lukowicz
- Department of Pediatrics, Section of Developmental Pediatrics, Section of Genetics and Metabolism, and Denver Fragile X Clinic and Research Center, Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Maya Talukdar
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Harvard-Massachusetts Institute of Technology MD/PhD Program, Program in Bioinformatics & Integrative Genomics, Harvard Medical School, Boston, MA02115
| | - Shyam K. Akula
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Harvard-Massachusetts Institute of Technology MD/PhD Program, Program in Neuroscience, Harvard Medical School, Boston, MA02115
| | - Michael B. Miller
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA02115
| | - Katherine Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
| | - Shira Rockowitz
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, MA02115
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- HHMI, Boston Children’s Hospital, Boston, MA02115
- Department of Neurology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
8
|
Brolin E, Ingelsson M, Bergström J, Erlandsson A. Altered Distribution of SNARE Proteins in Primary Neurons Exposed to Different Alpha-Synuclein Proteoforms. Cell Mol Neurobiol 2023:10.1007/s10571-023-01355-3. [PMID: 37130995 DOI: 10.1007/s10571-023-01355-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/19/2023] [Indexed: 05/04/2023]
Abstract
Growing evidence indicates that the pathological alpha-synuclein (α-syn) aggregation in Parkinson's disease (PD) and dementia with Lewy bodies (DLB) starts at the synapses. Physiologic α-syn is involved in regulating neurotransmitter release by binding to the SNARE complex protein VAMP-2 on synaptic vesicles. However, in which way the SNARE complex formation is affected by α-syn pathology remains unclear. In this study, primary cortical neurons were exposed to either α-syn monomers or preformed fibrils (PFFs) for different time points and the effect on SNARE protein distribution was analyzed with a novel proximity ligation assay (PLA). Short-term exposure to monomers or PFFs for 24 h increased the co-localization of VAMP-2 and syntaxin-1, but reduced the co-localization of SNAP-25 and syntaxin-1, indicating a direct effect of the added α-syn on SNARE protein distribution. Long-term exposure to α-syn PFFs for 7 d reduced VAMP-2 and SNAP-25 co-localization, although there was only a modest induction of ser129 phosphorylated (pS129) α-syn. Similarly, exposure to extracellular vesicles collected from astrocytes treated with α-syn PFFs for 7 d influenced VAMP-2 and SNAP-25 co-localization despite only low levels of pS129 α-syn being formed. Taken together, our results demonstrate that different α-syn proteoforms have the potential to alter the distribution of SNARE proteins at the synapse.
Collapse
Affiliation(s)
- Emma Brolin
- Department of Public Health and Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, SE-752 37, Uppsala, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, SE-752 37, Uppsala, Sweden
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Department of Medicine and Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Joakim Bergström
- Department of Public Health and Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, SE-752 37, Uppsala, Sweden
| | - Anna Erlandsson
- Department of Public Health and Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, SE-752 37, Uppsala, Sweden.
| |
Collapse
|
9
|
Nanclares C, Poynter J, Martell-Martinez HA, Vermilyea S, Araque A, Kofuji P, Lee MK, Covelo A. Dysregulation of astrocytic Ca 2+ signaling and gliotransmitter release in mouse models of α-synucleinopathies. Acta Neuropathol 2023; 145:597-610. [PMID: 36764943 PMCID: PMC10119048 DOI: 10.1007/s00401-023-02547-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023]
Abstract
α-Synuclein is a major component of Lewy bodies (LB) and Lewy neurites (LN) appearing in the postmortem brain of Parkinson's disease (PD) and other α-synucleinopathies. While most studies of α-synucleinopathies have focused on neuronal and synaptic alterations as well as dysfunctions of the astrocytic homeostatic roles, whether the bidirectional astrocyte-neuronal communication is affected in these diseases remains unknown. We have investigated whether the astrocyte Ca2+ excitability and the glutamatergic gliotransmission underlying astrocyte-neuronal signaling are altered in several transgenic mouse models related to α-synucleinopathies, i.e., mice expressing high and low levels of the human A53T mutant α-synuclein (G2-3 and H5 mice, respectively) globally or selectively in neurons (iSyn mice), mice expressing human wildtype α-synuclein (I2-2 mice), and mice expressing A30P mutant α-synuclein (O2 mice). Combining astrocytic Ca2+ imaging and neuronal electrophysiological recordings in hippocampal slices of these mice, we have found that compared to non-transgenic mice, astrocytes in G2-3 mice at different ages (1-6 months) displayed a Ca2+ hyperexcitability that was independent of neurotransmitter receptor activation, suggesting that the expression of α-synuclein mutant A53T altered the intrinsic properties of astrocytes. Similar dysregulation of the astrocyte Ca2+ signal was present in H5 mice, but not in I2-2 and O2 mice, indicating α-synuclein mutant-specific effects. Moreover, astrocyte Ca2+ hyperexcitability was absent in mice expressing the α-synuclein mutant A53T selectively in neurons, indicating that the effects on astrocytes were cell-autonomous. Consistent with these effects, glutamatergic gliotransmission was enhanced in G2-3 and H5 mice, but was unaffected in I2-2, O2 and iSyn mice. These results indicate a cell-autonomous effect of pathogenic A53T expression in astrocytes that may contribute to the altered neuronal and synaptic function observed in α-synucleinopathies.
Collapse
Affiliation(s)
- Carmen Nanclares
- Department of Neuroscience, University of Minnesota, 4-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Jonah Poynter
- Department of Neuroscience, University of Minnesota, 4-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Hector A Martell-Martinez
- Department of Neuroscience, University of Minnesota, 4-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Scott Vermilyea
- Department of Neuroscience, University of Minnesota, 4-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
- Institute for Translational Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN, 55455, USA
| | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, 4-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Paulo Kofuji
- Department of Neuroscience, University of Minnesota, 4-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA.
| | - Michael K Lee
- Department of Neuroscience, University of Minnesota, 4-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA.
- Institute for Translational Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN, 55455, USA.
| | - Ana Covelo
- Department of Neuroscience, University of Minnesota, 4-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA.
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077, Bordeaux, France.
- University of Bordeaux, 33077, Bordeaux, France.
| |
Collapse
|
10
|
Tang Y, Han L, Li S, Hu T, Xu Z, Fan Y, Liang X, Yu H, Wu J, Wang J. Plasma GFAP in Parkinson's disease with cognitive impairment and its potential to predict conversion to dementia. NPJ Parkinsons Dis 2023; 9:23. [PMID: 36759508 PMCID: PMC9911758 DOI: 10.1038/s41531-023-00447-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 01/05/2023] [Indexed: 02/11/2023] Open
Abstract
Glial fibrillary acidic protein (GFAP) has been suggested as a biomarker for reactive astrogliosis. We measured the levels of plasma GFAP by Simoa in 60 patients with PD with normal cognition, 63 with mild cognitive impairment (PD-MCI), 24 with dementia (PDD) and 15 healthy controls. A subgroup of patients with PD-MCI (n = 31) was followed up for 4.1 ± 2.3 years. Compared with healthy controls, plasma GFAP levels were elevated in patients with PDD (adjusted P < 0.001) and PD-MCI (adjusted P = 0.013) and were negatively correlated with the Mini Mental State Examination (MMSE) score in PD participants. Plasma GFAP predicted MCI-to-dementia conversion with an AUC of 0.90, higher than NfL, Tau and pTau181. Our results support that plasma GFAP has potential value for distinguishing patients with PDD, and predicting MCI-to-dementia conversion in PD.
Collapse
Affiliation(s)
- Yilin Tang
- grid.8547.e0000 0001 0125 2443Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Linlin Han
- grid.8547.e0000 0001 0125 2443Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shiyu Li
- grid.8547.e0000 0001 0125 2443Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Tianyu Hu
- grid.8547.e0000 0001 0125 2443Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiheng Xu
- grid.8547.e0000 0001 0125 2443Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yun Fan
- grid.8547.e0000 0001 0125 2443Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoniu Liang
- grid.8547.e0000 0001 0125 2443Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Huan Yu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Jianjun Wu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Jian Wang
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Myers AJ, Brahimi A, Jenkins IJ, Koob AO. The Synucleins and the Astrocyte. BIOLOGY 2023; 12:biology12020155. [PMID: 36829434 PMCID: PMC9952504 DOI: 10.3390/biology12020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Synucleins consist of three proteins exclusively expressed in vertebrates. α-Synuclein (αS) has been identified as the main proteinaceous aggregate in Lewy bodies, a pathological hallmark of many neurodegenerative diseases. Less is understood about β-synuclein (βS) and γ-synuclein (γS), although it is known βS can interact with αS in vivo to inhibit aggregation. Likewise, both γS and βS can inhibit αS's propensity to aggregate in vitro. In the central nervous system, βS and αS, and to a lesser extent γS, are highly expressed in the neural presynaptic terminal, although they are not strictly located there, and emerging data have shown a more complex expression profile. Synapse loss and astrocyte atrophy are early aspects of degenerative diseases of the brain and correlate with disease progression. Synucleins appear to be involved in synaptic transmission, and astrocytes coordinate and organize synaptic function, with excess αS degraded by astrocytes and microglia adjacent to the synapse. βS and γS have also been observed in the astrocyte and may provide beneficial roles. The astrocytic responsibility for degradation of αS as well as emerging evidence on possible astrocytic functions of βS and γS, warrant closer inspection on astrocyte-synuclein interactions at the synapse.
Collapse
Affiliation(s)
- Abigail J. Myers
- Neuroscience Program, Health Science Research Facility, University of Vermont, 149 Beaumont Ave., Burlington, VT 05405, USA
| | - Ayat Brahimi
- Biology Department, University of Hartford, 200 Bloomfield Ave., West Hartford, CT 06117, USA
| | - Imani J. Jenkins
- Biology Department, University of Hartford, 200 Bloomfield Ave., West Hartford, CT 06117, USA
| | - Andrew O. Koob
- Biology Department, University of Hartford, 200 Bloomfield Ave., West Hartford, CT 06117, USA
- Correspondence: ; Tel.: +1-860-768-5780
| |
Collapse
|
12
|
Zhou Z, Zhou J, Liao J, Chen Z, Zheng Y. The Emerging Role of Astrocytic Autophagy in Central Nervous System Disorders. Neurochem Res 2022; 47:3697-3708. [PMID: 35960484 DOI: 10.1007/s11064-022-03714-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/15/2022] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
Astrocytes act as "housekeeping cells" for maintaining cerebral homeostasis and play an important role in many disorders. Recent studies further highlight the contribution of autophagy to astrocytic functions, including astrogenesis, the astrocytic removal of neurotoxins or stressors, and astrocytic polarization. More importantly, genetic and pharmacological approaches have provided evidence that outlines the contributions of astrocytic autophagy to several brain disorders, including neurodegeneration, cerebral ischemia, and depression. In this study, we summarize the emerging role of autophagy in regulating astrocytic functions and discuss the contributions of astrocytic autophagy to different CNS disorders.
Collapse
Affiliation(s)
- Zhuchen Zhou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jing Zhou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jie Liao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Therapeutic functions of astrocytes to treat α-synuclein pathology in Parkinson’s disease. Proc Natl Acad Sci U S A 2022; 119:e2110746119. [PMID: 35858361 PMCID: PMC9304026 DOI: 10.1073/pnas.2110746119] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Intraneuronal inclusions of misfolded α-synuclein (α-syn) and prion-like spread of the pathologic α-syn contribute to progressive neuronal death in Parkinson’s disease (PD). Despite the pathologic significance, no efficient therapeutic intervention targeting α-synucleinopathy has been developed. In this study, we provide evidence that astrocytes, especially those cultured from the ventral midbrain (VM), show therapeutic potential to alleviate α-syn pathology in multiple in vitro and in vivo α-synucleinopathic models. Regulation of neuronal α-syn proteostasis underlies the therapeutic function of astrocytes. Specifically, VM-derived astrocytes inhibited neuronal α-syn aggregation and transmission in a paracrine manner by correcting not only intraneuronal oxidative and mitochondrial stresses but also extracellular inflammatory environments, in which α-syn proteins are prone to pathologic misfolding. The astrocyte-derived paracrine factors also promoted disassembly of extracellular α-syn aggregates. In addition to the aggregated form of α-syn, VM astrocytes reduced total α-syn protein loads both by actively scavenging extracellular α-syn fibrils and by a paracrine stimulation of neuronal autophagic clearance of α-syn. Transplantation of VM astrocytes into the midbrain of PD model mice alleviated α-syn pathology and protected the midbrain dopamine neurons from neurodegeneration. We further showed that cografting of VM astrocytes could be exploited in stem cell–based therapy for PD, in which host-to-graft transmission of α-syn pathology remains a critical concern for long-term cell therapeutic effects.
Collapse
|
14
|
Pandey MK. The Role of Alpha-Synuclein Autoantibodies in the Induction of Brain Inflammation and Neurodegeneration in Aged Humans. Front Aging Neurosci 2022; 14:902191. [PMID: 35721016 PMCID: PMC9204601 DOI: 10.3389/fnagi.2022.902191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 12/05/2022] Open
Affiliation(s)
- Manoj Kumar Pandey
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Manoj Kumar Pandey,
| |
Collapse
|
15
|
Menon S, Armstrong S, Hamzeh A, Visanji NP, Sardi SP, Tandon A. Alpha-Synuclein Targeting Therapeutics for Parkinson's Disease and Related Synucleinopathies. Front Neurol 2022; 13:852003. [PMID: 35614915 PMCID: PMC9124903 DOI: 10.3389/fneur.2022.852003] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022] Open
Abstract
α-Synuclein (asyn) is a key pathogenetic factor in a group of neurodegenerative diseases generically known as synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Although the initial triggers of pathology and progression are unclear, multiple lines of evidence support therapeutic targeting of asyn in order to limit its prion-like misfolding. Here, we review recent pre-clinical and clinical work that offers promising treatment strategies to sequester, degrade, or silence asyn expression as a means to reduce the levels of seed or substrate. These diverse approaches include removal of aggregated asyn with passive or active immunization or by expression of vectorized antibodies, modulating kinetics of misfolding with small molecule anti-aggregants, lowering asyn gene expression by antisense oligonucleotides or inhibitory RNA, and pharmacological activation of asyn degradation pathways. We also discuss recent technological advances in combining low intensity focused ultrasound with intravenous microbubbles to transiently increase blood-brain barrier permeability for improved brain delivery and target engagement of these large molecule anti-asyn biologics.
Collapse
Affiliation(s)
- Sindhu Menon
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
| | - Sabrina Armstrong
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
| | - Amir Hamzeh
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
| | - Naomi P. Visanji
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, Toronto, ON, Canada
| | | | - Anurag Tandon
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Streubel-Gallasch L, Giusti V, Sandre M, Tessari I, Plotegher N, Giusto E, Masato A, Iovino L, Battisti I, Arrigoni G, Shimshek D, Greggio E, Tremblay ME, Bubacco L, Erlandsson A, Civiero L. Parkinson's Disease-Associated LRRK2 Interferes with Astrocyte-Mediated Alpha-Synuclein Clearance. Mol Neurobiol 2021; 58:3119-3140. [PMID: 33629273 PMCID: PMC8257537 DOI: 10.1007/s12035-021-02327-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/09/2021] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative, progressive disease without a cure. To prevent PD onset or at least limit neurodegeneration, a better understanding of the underlying cellular and molecular disease mechanisms is crucial. Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene represent one of the most common causes of familial PD. In addition, LRRK2 variants are risk factors for sporadic PD, making LRRK2 an attractive therapeutic target. Mutations in LRRK2 have been linked to impaired alpha-synuclein (α-syn) degradation in neurons. However, in which way pathogenic LRRK2 affects α-syn clearance by astrocytes, the major glial cell type of the brain, remains unclear. The impact of astrocytes on PD progression has received more attention and recent data indicate that astrocytes play a key role in α-syn-mediated pathology. In the present study, we aimed to compare the capacity of wild-type astrocytes and astrocytes carrying the PD-linked G2019S mutation in Lrrk2 to ingest and degrade fibrillary α-syn. For this purpose, we used two different astrocyte culture systems that were exposed to sonicated α-syn for 24 h and analyzed directly after the α-syn pulse or 6 days later. To elucidate the impact of LRRK2 on α-syn clearance, we performed various analyses, including complementary imaging, transmission electron microscopy, and proteomic approaches. Our results show that astrocytes carrying the G2019S mutation in Lrrk2 exhibit a decreased capacity to internalize and degrade fibrillar α-syn via the endo-lysosomal pathway. In addition, we demonstrate that the reduction of α-syn internalization in the Lrrk2 G2019S astrocytes is linked to annexin A2 (AnxA2) loss of function. Together, our findings reveal that astrocytic LRRK2 contributes to the clearance of extracellular α-syn aggregates through an AnxA2-dependent mechanism.
Collapse
Affiliation(s)
| | | | - Michele Sandre
- Parkinson and Movement Disorders Unit, Department of Neuroscience, University of Padova, Padua, Italy.,PNC, Padua Neuroscience Center, University of Padova, Padua, Italy
| | | | | | | | - Anna Masato
- Department of Biology, University of Padova, Padua, Italy
| | | | - Ilaria Battisti
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, Padua, Italy.,CRIBI Biotechnology Center, University of Padova, Padua, Italy
| | - Derya Shimshek
- Novartis Institutes of BioMedical Research, Basel, Switzerland
| | - Elisa Greggio
- Department of Biology, University of Padova, Padua, Italy
| | | | - Luigi Bubacco
- Department of Biology, University of Padova, Padua, Italy
| | - Anna Erlandsson
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden.
| | - Laura Civiero
- Department of Biology, University of Padova, Padua, Italy. .,IRCCS San Camillo Hospital, Venice, Italy.
| |
Collapse
|
17
|
Schaser AJ, Stackhouse TL, Weston LJ, Kerstein PC, Osterberg VR, López CS, Dickson DW, Luk KC, Meshul CK, Woltjer RL, Unni VK. Trans-synaptic and retrograde axonal spread of Lewy pathology following pre-formed fibril injection in an in vivo A53T alpha-synuclein mouse model of synucleinopathy. Acta Neuropathol Commun 2020; 8:150. [PMID: 32859276 PMCID: PMC7456087 DOI: 10.1186/s40478-020-01026-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/19/2020] [Indexed: 12/20/2022] Open
Abstract
It is necessary to develop an understanding of the specific mechanisms involved in alpha-synuclein aggregation and propagation to develop disease modifying therapies for age-related synucleinopathies, including Parkinson's disease and Dementia with Lewy Bodies. To adequately address this question, we developed a new transgenic mouse model of synucleinopathy that expresses human A53T SynGFP under control of the mouse prion protein promoter. Our characterization of this mouse line demonstrates that it exhibits several distinct advantages over other, currently available, mouse models. This new model allows rigorous study of the initial location of Lewy pathology formation and propagation in the living brain, and strongly suggests that aggregation begins in axonal structures with retrograde propagation to the cell body. This model also shows expeditious development of alpha-synuclein pathology following induction with small, in vitro-generated alpha-synuclein pre-formed fibrils (PFFs), as well as accelerated cell death of inclusion-bearing cells. Using this model, we found that aggregated alpha-synuclein somatic inclusions developed first in neurons, but later showed a second wave of inclusion formation in astrocytes. Interestingly, astrocytes appear to survive much longer after inclusion formation than their neuronal counterparts. This model also allowed careful study of peripheral-to-central spread of Lewy pathology after PFF injection into the hind limb musculature. Our results clearly show evidence of progressive, retrograde trans-synaptic spread of Lewy pathology through known neuroanatomically connected pathways in the motor system. As such, we have developed a promising tool to understand the biology of neurodegeneration associated with alpha-synuclein aggregation and to discover new treatments capable of altering the neurodegenerative disease course of synucleinopathies.
Collapse
Affiliation(s)
- Allison J Schaser
- Department of Neurology and Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Teresa L Stackhouse
- Department of Neurology and Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Leah J Weston
- Department of Neurology and Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Patrick C Kerstein
- Vollum Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Valerie R Osterberg
- Department of Neurology and Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Claudia S López
- Multiscale Microscopy Core, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Charles K Meshul
- Research Services, Veterans Affairs Medical Center, Portland, OR, 97239, USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Randall L Woltjer
- Department of Pathology, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Vivek K Unni
- Department of Neurology and Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, 97239, USA.
- Parkinson Center, Department of Neurology, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
18
|
Rostami J, Fotaki G, Sirois J, Mzezewa R, Bergström J, Essand M, Healy L, Erlandsson A. Astrocytes have the capacity to act as antigen-presenting cells in the Parkinson's disease brain. J Neuroinflammation 2020; 17:119. [PMID: 32299492 PMCID: PMC7164247 DOI: 10.1186/s12974-020-01776-7] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 03/17/2020] [Indexed: 02/10/2023] Open
Abstract
Background Many lines of evidence suggest that accumulation of aggregated alpha-synuclein (αSYN) in the Parkinson’s disease (PD) brain causes infiltration of T cells. However, in which ways the stationary brain cells interact with the T cells remain elusive. Here, we identify astrocytes as potential antigen-presenting cells capable of activating T cells in the PD brain. Astrocytes are a major component of the nervous system, and accumulating data indicate that astrocytes can play a central role during PD progression. Methods To investigate the role of astrocytes in antigen presentation and T-cell activation in the PD brain, we analyzed post mortem brain tissue from PD patients and controls. Moreover, we studied the capacity of cultured human astrocytes and adult human microglia to act as professional antigen-presenting cells following exposure to preformed αSYN fibrils. Results Our analysis of post mortem brain tissue demonstrated that PD patients express high levels of MHC-II, which correlated with the load of pathological, phosphorylated αSYN. Interestingly, a very high proportion of the MHC-II co-localized with astrocytic markers. Importantly, we found both perivascular and infiltrated CD4+ T cells to be surrounded by MHC-II expressing astrocytes, confirming an astrocyte T cell cross-talk in the PD brain. Moreover, we showed that αSYN accumulation in cultured human astrocytes triggered surface expression of co-stimulatory molecules critical for T-cell activation, while cultured human microglia displayed very poor antigen presentation capacity. Notably, intercellular transfer of αSYN/MHC-II deposits occurred between astrocytes via tunneling nanotubes, indicating spreading of inflammation in addition to toxic protein aggregates. Conclusions In conclusion, our data from histology and cell culture studies suggest an important role for astrocytes in antigen presentation and T-cell activation in the PD brain, highlighting astrocytes as a promising therapeutic target in the context of chronic inflammation.
Collapse
Affiliation(s)
- Jinar Rostami
- Molecular Geriatrics, Department of Public Health and Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Grammatiki Fotaki
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Julien Sirois
- Neuroimmunology Unit, department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, 3801, Canada
| | - Ropafadzo Mzezewa
- Molecular Geriatrics, Department of Public Health and Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Joakim Bergström
- Molecular Geriatrics, Department of Public Health and Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Luke Healy
- Neuroimmunology Unit, department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, 3801, Canada
| | - Anna Erlandsson
- Molecular Geriatrics, Department of Public Health and Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden.
| |
Collapse
|
19
|
Innate Immunity: A Common Denominator between Neurodegenerative and Neuropsychiatric Diseases. Int J Mol Sci 2020; 21:ijms21031115. [PMID: 32046139 PMCID: PMC7036760 DOI: 10.3390/ijms21031115] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
The intricate relationships between innate immunity and brain diseases raise increased interest across the wide spectrum of neurodegenerative and neuropsychiatric disorders. Barriers, such as the blood–brain barrier, and innate immunity cells such as microglia, astrocytes, macrophages, and mast cells are involved in triggering disease events in these groups, through the action of many different cytokines. Chronic inflammation can lead to dysfunctions in large-scale brain networks. Neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and frontotemporal dementia, are associated with a substrate of dysregulated immune responses that impair the central nervous system balance. Recent evidence suggests that similar phenomena are involved in psychiatric diseases, such as depression, schizophrenia, autism spectrum disorders, and post-traumatic stress disorder. The present review summarizes and discusses the main evidence linking the innate immunological response in neurodegenerative and psychiatric diseases, thus providing insights into how the responses of innate immunity represent a common denominator between diseases belonging to the neurological and psychiatric sphere. Improved knowledge of such immunological aspects could provide the framework for the future development of new diagnostic and therapeutic approaches.
Collapse
|
20
|
Kery R, Chen APF, Kirschen GW. Genetic targeting of astrocytes to combat neurodegenerative disease. Neural Regen Res 2020; 15:199-211. [PMID: 31552885 PMCID: PMC6905329 DOI: 10.4103/1673-5374.265541] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Astrocytes, glial cells that interact extensively with neurons and other support cells throughout the central nervous system, have recently come under the spotlight for their potential contribution to, or potential regenerative role in a host of neurodegenerative disorders. It is becoming increasingly clear that astrocytes, in concert with microglial cells, activate intrinsic immunological pathways in the setting of neurodegenerative injury, although the direct and indirect consequences of such activation are still largely unknown. We review the current literature on the astrocyte’s role in several neurodegenerative diseases, as well as highlighting recent advances in genetic manipulation of astrocytes that may prove critical to modulating their response to neurological injury, potentially combatting neurodegenerative damage.
Collapse
Affiliation(s)
- Rachel Kery
- Medical Scientist Training Program (MSTP), Stony Brook Medicine; Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Allen P F Chen
- Medical Scientist Training Program (MSTP), Stony Brook Medicine; Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Gregory W Kirschen
- Medical Scientist Training Program (MSTP), Stony Brook Medicine, Stony Brook, NY, USA
| |
Collapse
|
21
|
Lee HJ, Ricarte D, Ortiz D, Lee SJ. Models of multiple system atrophy. Exp Mol Med 2019; 51:1-10. [PMID: 31740682 PMCID: PMC6861264 DOI: 10.1038/s12276-019-0346-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 11/09/2022] Open
Abstract
Multiple system atrophy (MSA) is a neurodegenerative disease with diverse clinical manifestations, including parkinsonism, cerebellar syndrome, and autonomic failure. Pathologically, MSA is characterized by glial cytoplasmic inclusions in oligodendrocytes, which contain fibrillary forms of α-synuclein. MSA is categorized as one of the α-synucleinopathy, and α-synuclein aggregation is thought to be the culprit of the disease pathogenesis. Studies on MSA pathogenesis are scarce relative to studies on the pathogenesis of other synucleinopathies, such as Parkinson’s disease and dementia with Lewy bodies. However, recent developments in cellular and animal models of MSA, especially α-synuclein transgenic models, have driven advancements in research on this disease. Here, we review the currently available models of MSA, which include toxicant-induced animal models, α-synuclein-overexpressing cellular models, and mouse models that express α-synuclein specifically in oligodendrocytes through cell type-specific promoters. We will also discuss the results of studies in recently developed transmission mouse models, into which MSA brain extracts were intracerebrally injected. By reviewing the findings obtained from these model systems, we will discuss what we have learned about the disease and describe the strengths and limitations of the models, thereby ultimately providing direction for the design of better models and future research. A review of the models available for studying multiple system atrophy (MSA), a Parkinson’s-like disease, may help identify new treatment options. MSA is difficult to diagnose and unresponsive to drugs. Similar to Parkinson’s disease, it involves accumulation of protein aggregates in brain and spinal cord cells, but the causes are poorly understood. He-Jin Lee at Konkuk University, and Seung-Jae Lee at Seoul National University College of Medicine in South Korea and coworkers have reviewed the models available to study the disease, including toxin-induced and transgenic animal models, and recent evidence that transferring the protein aggregates into cells causes MSA symptoms. Each model mimics some aspects of the disease, but none captures the full range of symptoms. This review helps highlight research pathways that may illuminate treatments for this complex and debilitating adult-onset disease.
Collapse
Affiliation(s)
- He-Jin Lee
- Department of Anatomy, School of Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-gu, Seoul, 05029, South Korea. .,Research Institute of Medical Science, Konkuk University, Seoul, 05029, South Korea. .,IBST, Konkuk University, Seoul, 05029, South Korea.
| | - Diadem Ricarte
- Department of Anatomy, School of Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Darlene Ortiz
- Department of Anatomy, School of Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Seung-Jae Lee
- Department of Medicine and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| |
Collapse
|
22
|
Krejciova Z, Carlson GA, Giles K, Prusiner SB. Replication of multiple system atrophy prions in primary astrocyte cultures from transgenic mice expressing human α-synuclein. Acta Neuropathol Commun 2019; 7:81. [PMID: 31109379 PMCID: PMC6526619 DOI: 10.1186/s40478-019-0703-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 12/20/2022] Open
Abstract
Glial cytoplasmic inclusions (GCIs) containing aggregated and hyperphosphorylated α-synuclein are the signature neuropathological hallmark of multiple system atrophy (MSA). Native α-synuclein can adopt a prion conformation that self-propagates and spreads throughout the brain ultimately resulting in neurodegeneration. A growing body of evidence argues that, in addition to oligodendrocytes, astrocytes contain α-synuclein inclusions in MSA and other α-synucleinopathies at advanced stages of disease. To study the role of astrocytes in MSA, we added MSA brain homogenate to primary cultures of astrocytes from transgenic (Tg) mouse lines expressing human α-synuclein. Astrocytes from four Tg lines, expressing either wild-type or mutant (A53T or A30P) human α-synuclein, propagated and accumulated α-synuclein prions. Furthermore, we found that MSA-infected astrocytes formed two morphologically distinct α-synuclein inclusions: filamentous and granular. Both types of cytoplasmic inclusions shared several features characteristic of α-synuclein inclusions in synucleinopathies: hyperphosphorylation preceded by aggregation, ubiquitination, thioflavin S–positivity, and co-localization with p62. Our findings demonstrate that human α-synuclein forms distinct inclusion morphologies and propagates within cultured Tg astrocytes exposed to MSA prions, indicating that α-synuclein expression determines the tropism of inclusion formation in certain cells. Thus, our work may prove useful in elucidating the role of astrocytes in the pathogenic mechanisms that feature in neurodegeneration caused by MSA prions.
Collapse
|
23
|
Jiang L, Dong H, Cao H, Ji X, Luan S, Liu J. Exosomes in Pathogenesis, Diagnosis, and Treatment of Alzheimer's Disease. Med Sci Monit 2019; 25:3329-3335. [PMID: 31056537 PMCID: PMC6515980 DOI: 10.12659/msm.914027] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the accumulation of β-amyloid peptide 1-42 and phosphorylation of tau protein in the brain. Thus far, the transfer mechanism of these cytotoxic proteins between nerve cells remains unclear. Recent studies have shown that nanoscale extracellular vesicles (exosomes) originating from cells may play important roles in this transfer process. In addition, several genetic materials and proteins are also involved in intercellular communication by the secretion of the exosomes. That proposes novel avenues for early diagnosis and biological treatment in AD, based on exosome detection and intervention. In this review, exosome-related pathways of cytotoxic protein intercellular transfer in AD, and the effect of membrane proteins on exosomes targeting cells are first introduced. The advances in exosome-related biomarker detection in AD are summarized. Finally, the advantages and challenges of reducing cytotoxic protein accumulation via exosomal intervention for AD treatment are discussed. It is envisaged that future research in exosomes may well provide new insights into the pathogenesis, diagnosis, and treatment of AD.
Collapse
Affiliation(s)
- Liqun Jiang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Huijie Dong
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Hua Cao
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Xiaofei Ji
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Siyu Luan
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| |
Collapse
|
24
|
Ndayisaba A, Jellinger K, Berger T, Wenning GK. TNFα inhibitors as targets for protective therapies in MSA: a viewpoint. J Neuroinflammation 2019; 16:80. [PMID: 30975183 PMCID: PMC6458780 DOI: 10.1186/s12974-019-1477-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/02/2019] [Indexed: 01/06/2023] Open
Abstract
Multiple system atrophy (MSA) is a unique and fatal α-synucleinopathy associated with oligodendroglial inclusions and secondary neurodegeneration affecting striatum, substantia nigra, pons, and cerebellum. The pathogenesis remains elusive; however, there is emerging evidence suggesting a prominent role of neuroinflammation. Here, we critically review the relationship between αS and microglial activation depending on its aggregation state and its role in neuroinflammation to explore the potential of TNFα inhibitors as a treatment strategy for MSA and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Alain Ndayisaba
- Division of Clinical Neurobiology, Department of Neurology, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Kurt Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Gregor K. Wenning
- Division of Clinical Neurobiology, Department of Neurology, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| |
Collapse
|
25
|
Tremblay ME, Cookson MR, Civiero L. Glial phagocytic clearance in Parkinson's disease. Mol Neurodegener 2019; 14:16. [PMID: 30953527 PMCID: PMC6451240 DOI: 10.1186/s13024-019-0314-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/15/2019] [Indexed: 12/21/2022] Open
Abstract
An emerging picture suggests that glial cells' loss of beneficial roles or gain of toxic functions can contribute to neurodegenerative conditions. Among glial cells, microglia and astrocytes have been shown to play phagocytic roles by engulfing synapses, apoptotic cells, cell debris, and released toxic proteins. As pathogenic protein accumulation is a key feature in Parkinson's disease (PD), compromised phagocytic clearance might participate in PD pathogenesis. In contrast, enhanced, uncontrolled and potentially toxic glial clearance capacity could contribute to synaptic degeneration. Here, we summarize the current knowledge of the molecular mechanisms underlying microglial and astrocytic phagocytosis, focusing on the possible implication of phagocytic dysfunction in neuronal degeneration. Several endo-lysosomal proteins displaying genetic variants in PD are highly expressed by microglia and astrocytes. We also present the evidence that lysosomal defects can affect phagocytic clearance and discuss the therapeutic relevance of restoring or enhancing lysosomal function in PD.
Collapse
Affiliation(s)
- Marie-Eve Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC Canada
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec, QC Canada
| | - Mark R. Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD USA
| | - Laura Civiero
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| |
Collapse
|
26
|
|
27
|
Sekar S, Mani S, Rajamani B, Manivasagam T, Thenmozhi AJ, Bhat A, Ray B, Essa MM, Guillemin GJ, Chidambaram SB. Telmisartan Ameliorates Astroglial and Dopaminergic Functions in a Mouse Model of Chronic Parkinsonism. Neurotox Res 2018; 34:597-612. [DOI: 10.1007/s12640-018-9921-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 12/23/2022]
|
28
|
Jewett M, Dickson E, Brolin K, Negrini M, Jimenez-Ferrer I, Swanberg M. Glutathione S-Transferase Alpha 4 Prevents Dopamine Neurodegeneration in a Rat Alpha-Synuclein Model of Parkinson's Disease. Front Neurol 2018; 9:222. [PMID: 29681884 PMCID: PMC5897443 DOI: 10.3389/fneur.2018.00222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/21/2018] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease (PD) is a common, progressive neurodegenerative disease, which typically presents itself with a range of motor symptoms, like resting tremor, bradykinesia, and rigidity, but also non-motor symptoms such as fatigue, constipation, and sleep disturbance. Neuropathologically, PD is characterized by loss of dopaminergic cells in the substantia nigra pars compacta (SNpc) and Lewy bodies, neuronal inclusions containing α-synuclein (α-syn). Mutations and copy number variations of SNCA, the gene encoding α-syn, are linked to familial PD and common SNCA gene variants are associated to idiopathic PD. Large-scale genome-wide association studies have identified risk variants across another 40 loci associated to idiopathic PD. These risk variants do not, however, explain all the genetic contribution to idiopathic PD. The rat Vra1 locus has been linked to neuroprotection after nerve- and brain injury in rats. Vra1 includes the glutathione S-transferase alpha 4 (Gsta4) gene, which encodes a protein involved in clearing lipid peroxidation by-products. The DA.VRA1 congenic rat strain, carrying PVG alleles in Vra1 on a DA strain background, was recently reported to express higher levels of Gsta4 transcripts and to display partial neuroprotection of SNpc dopaminergic neurons in a 6-hydroxydopamine (6-OHDA) induced model for PD. Since α-syn expression increases the risk for PD in a dose-dependent manner, we assessed the neuroprotective effects of Vra1 in an α-syn-induced PD model. Human wild-type α-syn was overexpressed by unilateral injections of the rAAV6-α-syn vector in the SNpc of DA and DA.VRA1 congenic rats. Gsta4 gene expression levels were significantly higher in the striatum and midbrain of DA.VRA1 compared to DA rats at 3 weeks post surgery, in both the ipsilateral and contralateral sides. At 8 weeks post surgery, DA.VRA1 rats suffered significantly lower fiber loss in the striatum and lower loss of dopaminergic neurons in the SNpc compared to DA. Immunofluorescent stainings showed co-expression of Gsta4 with Gfap at 8 weeks suggesting that astrocytic expression of Gsta4 underlies Vra1-mediated neuroprotection to α-syn induced pathology. This is the second PD model in which Vra1 is linked to protection of the nigrostriatal pathway, solidifying Gsta4 as a potential therapeutic target in PD.
Collapse
Affiliation(s)
- Michael Jewett
- Translational Neurogenetics Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Elna Dickson
- Translational Neurogenetics Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Kajsa Brolin
- Translational Neurogenetics Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Matilde Negrini
- Translational Neurogenetics Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Itzia Jimenez-Ferrer
- Translational Neurogenetics Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Maria Swanberg
- Translational Neurogenetics Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| |
Collapse
|
29
|
Kielbinski M, Gzielo K, Soltys Z. Review: Roles for astrocytes in epilepsy: insights from malformations of cortical development. Neuropathol Appl Neurobiol 2018; 42:593-606. [PMID: 27257021 DOI: 10.1111/nan.12331] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/25/2016] [Accepted: 06/03/2016] [Indexed: 12/25/2022]
Abstract
Malformations of cortical development (MCDs), such as cortical dysplasia and tuberous sclerosis complex, are common causes of intractable epilepsy, especially in paediatric patients. Recently, mounting evidence points to a common pathology of these disorders. Hyperactivation of mammalian target of rapamycin (mTOR) has been proposed as a central mechanism in most, if not all, MCDs. The transition from mTOR hyperactivation and cellular abnormalities to large-scale functional changes and seizure is, however, not fully understood. In this article we set out to review currently available information regarding MCD pathology, focusing on glial cells - especially astrocytes - and their interactions with the brain vascular system. A large body of evidence points to these elements as potential targets in MCD. Here, we attempt to provide a review of this evidence and propose some hypotheses regarding the possible chain of events linking primary glial dysfunction and epilepsy. We focus on extracellular matrix remodelling, blood-brain barrier leakage and failure of astrocyte-dependent removal of extracellular debris. We posit that the failure of these systems results in a chronically pro-inflammatory environment, maintaining local astrocytes in a state of gliosis, with increased susceptibility to seizures as a consequence.
Collapse
Affiliation(s)
- M Kielbinski
- Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - K Gzielo
- Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Z Soltys
- Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
30
|
Song N, Wang J, Jiang H, Xie J. Astroglial and microglial contributions to iron metabolism disturbance in Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2018; 1864:967-973. [PMID: 29317336 DOI: 10.1016/j.bbadis.2018.01.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/24/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023]
Abstract
Understandings of the disturbed iron metabolism in Parkinson's disease (PD) are largely from the perspectives of neurons. Neurodegenerative processes in PD trigger universal and conserved astroglial dysfunction and microglial activation. In this review, we start with astroglia and microglia in PD with an emphasis on their roles in spreading α-synuclein pathology, and then focus on their contributions in iron metabolism under normal conditions and the diseased state of PD. Elevated iron in the brain regions affects glial features, meanwhile, glial effects on neuronal iron metabolism are largely dependent on their releasing factors. These advances might be valuable for better understanding and modulating iron metabolism disturbance in PD.
Collapse
Affiliation(s)
- Ning Song
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China; Institute of Brain Science and Disease, Qingdao University, Qingdao 266071, China.
| | - Jun Wang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China; Institute of Brain Science and Disease, Qingdao University, Qingdao 266071, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China; Institute of Brain Science and Disease, Qingdao University, Qingdao 266071, China
| | - Junxia Xie
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China; Institute of Brain Science and Disease, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
31
|
Gustafsson G, Lindström V, Rostami J, Nordström E, Lannfelt L, Bergström J, Ingelsson M, Erlandsson A. Alpha-synuclein oligomer-selective antibodies reduce intracellular accumulation and mitochondrial impairment in alpha-synuclein exposed astrocytes. J Neuroinflammation 2017; 14:241. [PMID: 29228971 PMCID: PMC5725978 DOI: 10.1186/s12974-017-1018-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/01/2017] [Indexed: 11/29/2022] Open
Abstract
Background Due to its neurotoxic properties, oligomeric alpha-synuclein (α-syn) has been suggested as an attractive target for passive immunization against Parkinson’s disease (PD). In mouse models of PD, antibody treatment has been shown to lower the levels of pathogenic α-syn species, including oligomers, although the mechanisms of action remain unknown. We have previously shown that astrocytes rapidly engulf α-syn oligomers that are intracellularly stored, rather than degraded, resulting in impaired mitochondria. Methods The aim of the present study was to investigate if the accumulation of α-syn in astrocytes can be affected by α-syn oligomer-selective antibodies. Co-cultures of astrocytes, neurons, and oligodendrocytes were derived from embryonic mouse cortex and exposed to α-syn oligomers or oligomers pre-incubated with oligomer-selective antibodies. Results In the presence of antibodies, the astrocytes displayed an increased clearance of the exogenously added α-syn, and consequently, the α-syn accumulation in the culture was markedly reduced. Moreover, the addition of antibodies rescued the astrocytes from the oligomer-induced mitochondrial impairment. Conclusions Our results demonstrate that oligomer-selective antibodies can prevent α-syn accumulation and mitochondrial dysfunction in cultured astrocytes.
Collapse
Affiliation(s)
- Gabriel Gustafsson
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Rudbeck Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Veronica Lindström
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Rudbeck Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Jinar Rostami
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Rudbeck Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Eva Nordström
- BioArctic AB, Warfvinges väg 35, 112 51, Stockholm, Sweden
| | - Lars Lannfelt
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Rudbeck Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Joakim Bergström
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Rudbeck Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Martin Ingelsson
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Rudbeck Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Anna Erlandsson
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Rudbeck Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden.
| |
Collapse
|
32
|
Human Astrocytes Transfer Aggregated Alpha-Synuclein via Tunneling Nanotubes. J Neurosci 2017; 37:11835-11853. [PMID: 29089438 PMCID: PMC5719970 DOI: 10.1523/jneurosci.0983-17.2017] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/20/2017] [Accepted: 10/11/2017] [Indexed: 12/30/2022] Open
Abstract
Many lines of evidence suggest that the Parkinson's disease (PD)-related protein α-synuclein (α-SYN) can propagate from cell to cell in a prion-like manner. However, the cellular mechanisms behind the spreading remain elusive. Here, we show that human astrocytes derived from embryonic stem cells actively transfer aggregated α-SYN to nearby astrocytes via direct contact and tunneling nanotubes (TNTs). Failure in the astrocytes' lysosomal digestion of excess α-SYN oligomers results in α-SYN deposits in the trans-Golgi network followed by endoplasmic reticulum swelling and mitochondrial disturbances. The stressed astrocytes respond by conspicuously sending out TNTs, enabling intercellular transfer of α-SYN to healthy astrocytes, which in return deliver mitochondria, indicating a TNT-mediated rescue mechanism. Using a pharmacological approach to inhibit TNT formation, we abolished the transfer of both α-SYN and mitochondria. Together, our results highlight the role of astrocytes in α-SYN cell-to-cell transfer, identifying possible pathophysiological events in the PD brain that could be of therapeutic relevance. SIGNIFICANCE STATEMENT Astrocytes are the major cell type in the brain, yet their role in Parkinson's disease progression remains elusive. Here, we show that human astrocytes actively transfer aggregated α-synuclein (α-SYN) to healthy astrocytes via direct contact and tunneling nanotubes (TNTs), rather than degrade it. The astrocytes engulf large amounts of oligomeric α-SYN that are subsequently stored in the trans-Golgi network region. The accumulation of α-SYN in the astrocytes affects their lysosomal machinery and induces mitochondrial damage. The stressed astrocytes respond by sending out TNTs, enabling intercellular transfer of α-SYN to healthy astrocytes. Our findings highlight an unexpected role of astrocytes in the propagation of α-SYN pathology via TNTs, revealing astrocytes as a potential target for therapeutic intervention.
Collapse
|
33
|
Ferrer I. Diversity of astroglial responses across human neurodegenerative disorders and brain aging. Brain Pathol 2017; 27:645-674. [PMID: 28804999 PMCID: PMC8029391 DOI: 10.1111/bpa.12538] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/24/2017] [Indexed: 12/11/2022] Open
Abstract
Astrogliopathy refers to alterations of astrocytes occurring in diseases of the nervous system, and it implies the involvement of astrocytes as key elements in the pathogenesis and pathology of diseases and injuries of the central nervous system. Reactive astrocytosis refers to the response of astrocytes to different insults to the nervous system, whereas astrocytopathy indicates hypertrophy, atrophy/degeneration and loss of function and pathological remodeling occurring as a primary cause of a disease or as a factor contributing to the development and progression of a particular disease. Reactive astrocytosis secondary to neuron loss and astrocytopathy due to intrinsic alterations of astrocytes occur in neurodegenerative diseases, overlap each other, and, together with astrocyte senescence, contribute to disease-specific astrogliopathy in aging and neurodegenerative diseases with abnormal protein aggregates in old age. In addition to the well-known increase in glial fibrillary acidic protein and other proteins in reactive astrocytes, astrocytopathy is evidenced by deposition of abnormal proteins such as β-amyloid, hyper-phosphorylated tau, abnormal α-synuclein, mutated huntingtin, phosphorylated TDP-43 and mutated SOD1, and PrPres , in Alzheimer's disease, tauopathies, Lewy body diseases, Huntington's disease, amyotrophic lateral sclerosis and Creutzfeldt-Jakob disease, respectively. Astrocytopathy in these diseases can also be manifested by impaired glutamate transport; abnormal metabolism and release of neurotransmitters; altered potassium, calcium and water channels resulting in abnormal ion and water homeostasis; abnormal glucose metabolism; abnormal lipid and, particularly, cholesterol metabolism; increased oxidative damage and altered oxidative stress responses; increased production of cytokines and mediators of the inflammatory response; altered expression of connexins with deterioration of cell-to-cell networks and transfer of gliotransmitters; and worsening function of the blood brain barrier, among others. Increased knowledge of these aspects will permit a better understanding of brain aging and neurodegenerative diseases in old age as complex disorders in which neurons are not the only players.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental TherapeuticsUniversity of BarcelonaBarcelonaSpain
- Institute of NeuropathologyPathologic Anatomy Service, Bellvitge University Hospital, IDIBELL, Hospitalet de LlobregatBarcelonaSpain
- Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
- Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos IIIMadridSpain
| |
Collapse
|
34
|
Sorrentino ZA, Brooks MMT, Hudson V, Rutherford NJ, Golde TE, Giasson BI, Chakrabarty P. Intrastriatal injection of α-synuclein can lead to widespread synucleinopathy independent of neuroanatomic connectivity. Mol Neurodegener 2017; 12:40. [PMID: 28552073 PMCID: PMC5447308 DOI: 10.1186/s13024-017-0182-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/11/2017] [Indexed: 12/16/2022] Open
Abstract
Background Prionoid transmission of α-synuclein (αSyn) aggregates along neuroanatomically connected projections is posited to underlie disease progression in α-synucleinopathies. Here, we specifically wanted to study whether this prionoid progression occurs via direct inter-neuronal transfer and, if so, would intrastriatal injection of αSyn aggregates lead to nigral degeneration. Methods To test prionoid transmission of αSyn aggregates along the nigro-striatal pathway, we injected amyloidogenic αSyn aggregates into two different regions of the striatum of adult human wild type αSyn transgenic mice (Line M20) or non-transgenic (NTG) mice and aged for 4 months. Results M20 mice injected in internal capsule (IC) or caudate putamen (CPu) regions of the striatum showed florid αSyn inclusion pathology distributed throughout the neuraxis, irrespective of anatomic connectivity. These αSyn inclusions were found in different cell types including neurons, astrocytes and even ependymal cells. On the other hand, intra-striatal injection of αSyn fibrils into NTG mice resulted in sparse αSyn pathology, mostly localized in the striatum and entorhinal cortex. Interestingly, NTG mice injected with preformed human αSyn fibrils showed no induction of αSyn inclusion pathology, suggesting the presence of a species barrier for αSyn fibrillar seeds. Modest levels of nigral dopaminergic (DA) neuronal loss was observed exclusively in substantia nigra (SN) of M20 cohorts injected in the IC, even in the absence of frank αSyn inclusions in DA neurons. None of the NTG mice or CPu-injected M20 mice showed DA neurodegeneration. Interestingly, the pattern and distribution of induced αSyn pathology corresponded with neuroinflammation especially in the SN of M20 cohorts. Hypermorphic reactive astrocytes laden with αSyn inclusions were abundantly present in the brains of M20 mice. Conclusions Overall, our findings show that the pattern and extent of dissemination of αSyn pathology does not necessarily follow expected neuroanatomic connectivity. Further, the presence of intra-astrocytic αSyn pathology implies that glial cells participate in αSyn transmission and possibly have a role in non-cell autonomous disease modification. Electronic supplementary material The online version of this article (doi:10.1186/s13024-017-0182-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zachary A Sorrentino
- Department of Neuroscience, University of Florida, 1275 Center Drive, PO Box 100159, Gainesville, FL, 32610, USA.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Mieu M T Brooks
- Department of Neuroscience, University of Florida, 1275 Center Drive, PO Box 100159, Gainesville, FL, 32610, USA.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.,Current address: Department of Neuroscience, Mayo Clinic, Jacksonville, FL, -32224, USA
| | - Vincent Hudson
- Department of Neuroscience, University of Florida, 1275 Center Drive, PO Box 100159, Gainesville, FL, 32610, USA.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Nicola J Rutherford
- Department of Neuroscience, University of Florida, 1275 Center Drive, PO Box 100159, Gainesville, FL, 32610, USA.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Todd E Golde
- Department of Neuroscience, University of Florida, 1275 Center Drive, PO Box 100159, Gainesville, FL, 32610, USA.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.,McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Benoit I Giasson
- Department of Neuroscience, University of Florida, 1275 Center Drive, PO Box 100159, Gainesville, FL, 32610, USA. .,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA. .,McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| | - Paramita Chakrabarty
- Department of Neuroscience, University of Florida, 1275 Center Drive, PO Box 100159, Gainesville, FL, 32610, USA. .,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA. .,McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
35
|
Lindström V, Gustafsson G, Sanders LH, Howlett EH, Sigvardson J, Kasrayan A, Ingelsson M, Bergström J, Erlandsson A. Extensive uptake of α-synuclein oligomers in astrocytes results in sustained intracellular deposits and mitochondrial damage. Mol Cell Neurosci 2017; 82:143-156. [PMID: 28450268 DOI: 10.1016/j.mcn.2017.04.009] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 04/12/2017] [Accepted: 04/20/2017] [Indexed: 12/30/2022] Open
Abstract
The presence of Lewy bodies, mainly consisting of aggregated α-synuclein, is a pathological hallmark of Parkinson's disease (PD) and dementia with Lewy bodies (DLB). The α-synuclein inclusions are predominantly found in neurons, but also appear frequently in astrocytes. However, the pathological significance of α-synuclein inclusions in astrocytes and the capacity of glial cells to clear toxic α-synuclein species remain unknown. In the present study we investigated uptake, degradation and toxic effects of oligomeric α-synuclein in a co-culture system of primary neurons, astrocytes and oligodendrocytes. Alpha-synuclein oligomers were found to co-localize with the glial cells and the astrocytes were found to internalize particularly large amounts of the protein. Following ingestion, the astrocytes started to degrade the oligomers via the lysosomal pathway but, due to incomplete digestion, large intracellular deposits remained. Moreover, the astrocytes displayed mitochondrial abnormalities. Taken together, our data indicate that astrocytes play an important role in the clearance of toxic α-synuclein species from the extracellular space. However, when their degrading capacity is overburdened, α-synuclein deposits can persist and result in detrimental cellular processes.
Collapse
Affiliation(s)
- Veronica Lindström
- Department of Public Health and Caring Sciences/Geriatrics, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, S-751 85 Uppsala, Sweden.
| | - Gabriel Gustafsson
- Department of Public Health and Caring Sciences/Geriatrics, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, S-751 85 Uppsala, Sweden
| | - Laurie H Sanders
- Pittsburgh Institute for Neurodegenerative Diseases, Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Evan H Howlett
- Pittsburgh Institute for Neurodegenerative Diseases, Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Alex Kasrayan
- BioArctic AB, Warfvinges väg 35, S-112 51 Stockholm, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences/Geriatrics, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, S-751 85 Uppsala, Sweden
| | - Joakim Bergström
- Department of Public Health and Caring Sciences/Geriatrics, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, S-751 85 Uppsala, Sweden
| | - Anna Erlandsson
- Department of Public Health and Caring Sciences/Geriatrics, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, S-751 85 Uppsala, Sweden
| |
Collapse
|
36
|
Inflammatory pre-conditioning restricts the seeded induction of α-synuclein pathology in wild type mice. Mol Neurodegener 2017; 12:1. [PMID: 28049533 PMCID: PMC5210310 DOI: 10.1186/s13024-016-0142-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 12/06/2016] [Indexed: 12/02/2022] Open
Abstract
Background Cell-to-cell transmission of α-synuclein (αSyn) is hypothesized to play an important role in disease progression in synucleinopathies. This process involves cellular uptake of extracellular amyloidogenic αSyn seeds followed by seeding of endogenous αSyn. Though it is well known that αSyn is an immunogenic protein that can interact with immune receptors, the role of innate immunity in regulating induction of αSyn pathology in vivo is unknown. Herein, we explored whether altering innate immune activation affects induction of αSyn pathology in wild type mice. Methods We have previously demonstrated that recombinant adeno-associated virus (AAV) mediated expression of the inflammatory cytokine, Interleukin (IL)-6, in neonatal wild type mice brains leads to widespread immune activation in the brain without overt neurodegeneration. To investigate how IL-6 expression affects induction of αSyn pathology, we injected mouse wild type αSyn fibrils in the hippocampus of AAV-IL-6 expressing mice. Control mice received AAV containing an Empty vector (EV) construct. Two separate cohorts of AAV-IL-6 and AAV-EV mice were analyzed in this study: 4 months or 2 months following intrahippocampal αSyn seeding. Results Here, we show that IL-6 expression resulted in widespread gliosis and concurrently reduced αSyn inclusion pathology induced by a single intra-hippocampal injection of exogenous amyloidogenic αSyn. The reduction in αSyn inclusion pathology in IL-6 expressing mice was time-dependent. Suppression of αSyn pathology was accompanied by reductions in both argyrophilic and p62 immunoreactive inclusions. Conclusions Our data supports a beneficial role of inflammatory priming of the CNS in wild type mice challenged with exogenous αSyn. A likely mechanism is efficient astroglial scavenging of exogenous αSyn, at least early in the disease process, and in the absence of human αSyn transgene overexpression. Given evidence that a pro-inflammatory environment may restrict seeding of αSyn pathology, this can be used to design anti-αSyn immunobiotherapies by harnessing innate immune function. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0142-z) contains supplementary material, which is available to authorized users.
Collapse
|
37
|
Hoffmann A, Ettle B, Bruno A, Kulinich A, Hoffmann AC, von Wittgenstein J, Winkler J, Xiang W, Schlachetzki JCM. Alpha-synuclein activates BV2 microglia dependent on its aggregation state. Biochem Biophys Res Commun 2016; 479:881-886. [PMID: 27666480 DOI: 10.1016/j.bbrc.2016.09.109] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 09/21/2016] [Indexed: 12/11/2022]
Abstract
Synucleinopathies such as Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA) are defined by the presence of intracellular alpha-synuclein aggregates in neurons and/or oligodendrocytes. In addition, post mortem tissue analysis revealed profound changes in microglial morphology, indicating microglial activation and neuroinflammation. Thus, alpha-synuclein may directly activate microglia, leading to increased production of key pro-inflammatory cytokines like tumor necrosis factor-alpha (TNF-α) and interleukin-1beta (IL-1β), which in turn modulates the disease progression. The distinct alpha-synuclein species, which mediates the activation of microglia, is not well defined. We hypothesized that microglial activation depends on a specific aggregation state of alpha-synuclein. Here, we show that primarily human fibrillar alpha-synuclein increased the production and secretion of pro-inflammatory cytokines by microglial BV2 cells compared to monomeric and oligomeric alpha-synuclein. BV2 cells also preferentially phagocytosed fibrillar alpha-synuclein compared to alpha-synuclein monomers and oligomers. Microglial uptake of alpha-synuclein fibrils and the consequent activation were time- and concentration-dependent. Moreover, the degree of fibrillization determined the efficiency of microglial internalization. Taken together, our study highlights the specific crosstalk of distinct alpha-synuclein species with microglial cells.
Collapse
Affiliation(s)
- Alana Hoffmann
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Benjamin Ettle
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ariane Bruno
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Kulinich
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Anna-Carin Hoffmann
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Julia von Wittgenstein
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Wei Xiang
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes C M Schlachetzki
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
38
|
Pekny M, Pekna M, Messing A, Steinhäuser C, Lee JM, Parpura V, Hol EM, Sofroniew MV, Verkhratsky A. Astrocytes: a central element in neurological diseases. Acta Neuropathol 2016; 131:323-45. [PMID: 26671410 DOI: 10.1007/s00401-015-1513-1] [Citation(s) in RCA: 560] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/28/2015] [Accepted: 11/21/2015] [Indexed: 12/18/2022]
Abstract
The neurone-centred view of the past disregarded or downplayed the role of astroglia as a primary component in the pathogenesis of neurological diseases. As this concept is changing, so is also the perceived role of astrocytes in the healthy and diseased brain and spinal cord. We have started to unravel the different signalling mechanisms that trigger specific molecular, morphological and functional changes in reactive astrocytes that are critical for repairing tissue and maintaining function in CNS pathologies, such as neurotrauma, stroke, or neurodegenerative diseases. An increasing body of evidence shows that the effects of astrogliosis on the neural tissue and its functions are not uniform or stereotypic, but vary in a context-specific manner from astrogliosis being an adaptive beneficial response under some circumstances to a maladaptive and deleterious process in another context. There is a growing support for the concept of astrocytopathies in which the disruption of normal astrocyte functions, astrodegeneration or dysfunctional/maladaptive astrogliosis are the primary cause or the main factor in neurological dysfunction and disease. This review describes the multiple roles of astrocytes in the healthy CNS, discusses the diversity of astroglial responses in neurological disorders and argues that targeting astrocytes may represent an effective therapeutic strategy for Alexander disease, neurotrauma, stroke, epilepsy and Alzheimer's disease as well as other neurodegenerative diseases.
Collapse
Affiliation(s)
- Milos Pekny
- Department of Clinical Neuroscience and Rehabilitation, Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 405 30, Gothenburg, Sweden.
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.
- University of Newcastle, New South Wales, Australia.
| | - Marcela Pekna
- Department of Clinical Neuroscience and Rehabilitation, Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 405 30, Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- University of Newcastle, New South Wales, Australia
| | - Albee Messing
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI, 53705, USA
| | - Christian Steinhäuser
- Medical faculty, Institute of Cellular Neurosciences, University of Bonn, Bonn, Germany
| | - Jin-Moo Lee
- Department of Neurology, The Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, USA
| | - Vladimir Parpura
- Department of Neurobiology, Civitan International Research Center, Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, Atomic Force Microscopy and Nanotechnology Laboratories, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 429, Birmingham, AL, 35294, USA
| | - Elly M Hol
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael V Sofroniew
- Department of Neurobiology, University of California, Los Angeles, CA, 90095, USA
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
- Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain.
- University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia.
| |
Collapse
|
39
|
Deng J, Lv E, Yang J, Gong X, Zhang W, Liang X, Wang J, Jia J, Wang X. Electroacupuncture remediates glial dysfunction and ameliorates neurodegeneration in the astrocytic α-synuclein mutant mouse model. J Neuroinflammation 2015; 12:103. [PMID: 26016857 PMCID: PMC4449593 DOI: 10.1186/s12974-015-0302-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/16/2015] [Indexed: 12/22/2022] Open
Abstract
Background The acupuncture or electroacupuncture (EA) shows the therapeutic effect on various neurodegenerative diseases. This effect was thought to be partially achieved by its ability to alleviate existing neuroinflammation and glial dysfunction. In this study, we systematically investigated the effect of EA on abnormal neurochemical changes and motor symptoms in a mouse neurodegenerative disease model. Methods The transgenic mouse which expresses a mutant α-synuclein (α-syn) protein, A53T α-syn, in brain astrocytic cells was used. These mice exhibit extensive neuroinflammatory and motor phenotypes of neurodegenerative disorders. In this study, the effects of EA on these phenotypic changes were examined in these mice. Results EA improved the movement detected in multiple motor tests in A53T mutant mice. At the cellular level, EA significantly reduced the activation of microglia and prevented the loss of dopaminergic neurons in the midbrain and motor neurons in the spinal cord. At the molecular level, EA suppressed the abnormal elevation of proinflammatory factors (tumor necrosis factor-α and interleukin-1β) in the striatum and midbrain of A53T mice. In contrast, EA increased striatal and midbrain expression of a transcription factor, nuclear factor E2-related factor 2, and its downstream antioxidants (heme oxygenase-1 and glutamate-cysteine ligase modifier subunits). Conclusions These results suggest that EA possesses the ability to ameliorate mutant α-syn-induced motor abnormalities. This ability may be due to that EA enhances both anti-inflammatory and antioxidant activities and suppresses aberrant glial activation in the diseased sites of brains.
Collapse
Affiliation(s)
- Jiahui Deng
- Departments of Neurobiology and Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Capital Medical University; Beijing Institute for Brain Disorders, Beijing, 100069, China.
| | - E Lv
- Departments of Neurobiology and Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Capital Medical University; Beijing Institute for Brain Disorders, Beijing, 100069, China.
| | - Jian Yang
- Departments of Neurobiology and Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Capital Medical University; Beijing Institute for Brain Disorders, Beijing, 100069, China.
| | - Xiaoli Gong
- Departments of Neurobiology and Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Capital Medical University; Beijing Institute for Brain Disorders, Beijing, 100069, China.
| | - Wenzhong Zhang
- Departments of Neurobiology and Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Capital Medical University; Beijing Institute for Brain Disorders, Beijing, 100069, China.
| | - Xibin Liang
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA.
| | - Jiazeng Wang
- Departments of Neurobiology and Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Capital Medical University; Beijing Institute for Brain Disorders, Beijing, 100069, China.
| | - Jun Jia
- Departments of Neurobiology and Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Capital Medical University; Beijing Institute for Brain Disorders, Beijing, 100069, China.
| | - Xiaomin Wang
- Departments of Neurobiology and Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Capital Medical University; Beijing Institute for Brain Disorders, Beijing, 100069, China.
| |
Collapse
|
40
|
Poddar NK, Zano S, Natarajan R, Yamamoto B, Viola RE. Enhanced brain distribution of modified aspartoacylase. Mol Genet Metab 2014; 113:219-24. [PMID: 25066302 PMCID: PMC4252805 DOI: 10.1016/j.ymgme.2014.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
Abstract
Canavan disease is a fatal neurological disorder caused by defects in the gene that produces the enzyme aspartoacylase. Enzyme replacement therapy can potentially be used to overcome these defects if a stable enzyme form that can gain access to the appropriate neural cells can be produced. Achieving the proper cellular targeting requires a modified form of aspartoacylase that can traverse the blood-brain barrier. A PEGylated form of aspartoacylase that shows dramatic enhancement in brain tissue access and distribution has been produced. While the mechanism of transport has not yet been established, this modified enzyme is significantly less immunogenic than unmodified aspartoacylase. These improved properties set the stage for more extensive enzyme replacement trials as a possible treatment strategy.
Collapse
Affiliation(s)
- Nitesh K Poddar
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Stephen Zano
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Reka Natarajan
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Bryan Yamamoto
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Ronald E Viola
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
41
|
Nam SM, Kim YN, Yoo DY, Yi SS, Choi JH, Hwang IK, Seong JK, Yoon YS. Hypothyroidism affects astrocyte and microglial morphology in type 2 diabetes. Neural Regen Res 2014; 8:2458-67. [PMID: 25206556 PMCID: PMC4146114 DOI: 10.3969/j.issn.1673-5374.2013.26.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/25/2013] [Indexed: 12/03/2022] Open
Abstract
In the present study, we investigated the effects of hypothyroidism on the morphology of astrocytes and microglia in the hippocampus of Zucker diabetic fatty rats and Zucker lean control rats. To induce hypothyroidism, Zucker lean control and Zucker diabetic fatty rats at 7 weeks of age orally received the vehicle or methimazole, an anti-thyroid drug, treatment for 5 weeks and were sacrificed at 12 weeks of age in all groups for blood chemistry and immunohistochemical staining. In the methimazole-treated Zucker lean control and Zucker diabetic fatty rats, the serum circulating thyronine (T3) and thyroxine (T4) levels were significantly decreased compared to levels observed in the vehicle-treated Zucker lean control or Zucker diabetic fatty rats. This reduction was more prominent in the methimazole-treated Zucker diabetic fatty group. Glial fibrillary acidic protein immunoreactive astrocytes and ionized calcium-binding adapter molecule 1 (Iba-1)-immunoreactive microglia in the Zucker lean control and Zucker diabetic fatty group were diffusely detected in the hippocampal CA1 region and dentate gyrus. There were no significant differences in the glial fibrillary acidic protein and Iba-1 immunoreactivity in the CA1 region and dentate gyrus between Zucker lean control and Zucker diabetic fatty groups. However, in the methimazole-treated Zucker lean control and Zucker diabetic fatty groups, the processes of glial fibrillary acidic protein tive astrocytes and Iba-1 immunoreactive microglia, were significantly decreased in both the CA1 region and dentate gyrus compared to that in the vehicle-treated Zucker lean control and Zucker diabetic fatty groups. These results suggest that diabetes has no effect on the morphology of astrocytes and microglia and that hypothyroidism during the onset of diabetes prominently reduces the processes of astrocytes and microglia.
Collapse
Affiliation(s)
- Sung Min Nam
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, South Korea
| | - Yo Na Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, South Korea
| | - Dae Young Yoo
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, South Korea
| | - Sun Shin Yi
- Department of Biomedical Laboratory Science, College of Biomedical Sciences, Soonchunhyang University, Asan 336-745, South Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, South Korea
| | - Je Kyung Seong
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, South Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, South Korea
| |
Collapse
|
42
|
Cabezas R, Avila M, Gonzalez J, El-Bachá RS, Báez E, García-Segura LM, Jurado Coronel JC, Capani F, Cardona-Gomez GP, Barreto GE. Astrocytic modulation of blood brain barrier: perspectives on Parkinson's disease. Front Cell Neurosci 2014; 8:211. [PMID: 25136294 PMCID: PMC4120694 DOI: 10.3389/fncel.2014.00211] [Citation(s) in RCA: 303] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/14/2014] [Indexed: 12/21/2022] Open
Abstract
The blood–brain barrier (BBB) is a tightly regulated interface in the Central Nervous System (CNS) that regulates the exchange of molecules in and out from the brain thus maintaining the CNS homeostasis. It is mainly composed of endothelial cells (ECs), pericytes and astrocytes that create a neurovascular unit (NVU) with the adjacent neurons. Astrocytes are essential for the formation and maintenance of the BBB by providing secreted factors that lead to the adequate association between the cells of the BBB and the formation of strong tight junctions. Under neurological disorders, such as chronic cerebral ischemia, brain trauma, Epilepsy, Alzheimer and Parkinson’s Diseases, a disruption of the BBB takes place, involving a lost in the permeability of the barrier and phenotypical changes in both the ECs and astrocytes. In this aspect, it has been established that the process of reactive gliosis is a common feature of astrocytes during BBB disruption, which has a detrimental effect on the barrier function and a subsequent damage in neuronal survival. In this review we discuss the implications of astrocyte functions in the protection of the BBB, and in the development of Parkinson’s disease (PD) and related disorders. Additionally, we highlight the current and future strategies in astrocyte protection aimed at the development of restorative therapies for the BBB in pathological conditions.
Collapse
Affiliation(s)
- Ricardo Cabezas
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana Bogotá, D.C., Colombia
| | - Marcos Avila
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana Bogotá, D.C., Colombia
| | - Janneth Gonzalez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana Bogotá, D.C., Colombia
| | | | - Eliana Báez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana Bogotá, D.C., Colombia
| | | | - Juan Camilo Jurado Coronel
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana Bogotá, D.C., Colombia
| | - Francisco Capani
- Laboratorio de Citoarquitectura y Plasticidad Neuronal, Facultad de Medicina, Instituto de Investigaciones cardiológicas Prof. Dr. Alberto C. Taquini (ININCA), UBA-CONICET, Buenos Aires Argentina
| | - Gloria Patricia Cardona-Gomez
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, Faculty of Medicine, SIU, University of Antioquia UdeA Medellín, Colombia
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana Bogotá, D.C., Colombia
| |
Collapse
|
43
|
Zhao P, Luo Z, Tian W, Yang J, Ibáñez DP, Huang Z, Tortorella MD, Esteban MA, Fan W. Solving the puzzle of Parkinson's disease using induced pluripotent stem cells. Exp Biol Med (Maywood) 2014; 239:1421-32. [PMID: 24939824 DOI: 10.1177/1535370214538588] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The prevalence and incidence of Parkinson's disease (PD) is increasing due to a prolonged life expectancy. This highlights the need for a better mechanistic understanding and new therapeutic approaches. However, traditional in vitro and in vivo experimental models to study PD are suboptimal, thus hampering the progress in the field. The epigenetic reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) offers a unique way to overcome this problem, as these cells share many properties of embryonic stem cells (ESCs) including the potential to be transformed into different lineages. PD modeling with iPSCs is nowadays facilitated by the growing availability of high-efficiency neural-specific differentiation protocols and the possibility to correct or induce mutations as well as creating marker cell lines using designer nucleases. These technologies, together with steady advances in human genetics, will likely introduce profound changes in the way we interpret PD and develop new treatments. Here, we summarize the different PD iPSCs reported so far and discuss the challenges for disease modeling using these cell lines.
Collapse
Affiliation(s)
- Ping Zhao
- Laboratory of Chromatin and Human Disease, Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China
| | - Zhiwei Luo
- Laboratory of Chromatin and Human Disease, Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China
| | - Weihua Tian
- Laboratory of Chromatin and Human Disease, Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China
| | - Jiayin Yang
- Laboratory of Chromatin and Human Disease, Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China
| | - David P Ibáñez
- Laboratory of Chromatin and Human Disease, Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China
| | - Zhijian Huang
- Laboratory of Chromatin and Human Disease, Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China
| | - Micky D Tortorella
- Drug Discovery Pipeline Group, Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China
| | - Miguel A Esteban
- Laboratory of Chromatin and Human Disease, Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China Guangdong Stem Cell and Regenerative Medicine Research Centre, University of Hong Kong, Hong Kong 999077, and Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China
| | - Wenxia Fan
- Laboratory of Chromatin and Human Disease, Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China
| |
Collapse
|
44
|
Abstract
Common cellular and molecular mechanisms including protein aggregation and inclusion body formation are involved in many neurodegenerative diseases. α-Synuclein is a major component of Lewy bodies in Parkinson's disease (PD) as well as in glial cytoplasmic inclusions in multiple system atrophy (MSA). Tau is a principal component of neurofibrillary and glial tangles in tauopathies. Recently, TDP-43 was identified as a component of ubiquitinated inclusions in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. PD is traditionally considered a movement disorder with hallmark lesions in the brainstem pigmented nuclei. However, pathological changes occur in widespread regions of the central and peripheral nervous systems in this disease. Furthermore, primary glial involvement ("gliodegeneration") can be observed in PD and MSA as well as in tauopathy. The present article reviews abnormal protein accumulation and inclusion body formation inside and outside the central nervous system.
Collapse
Affiliation(s)
- Koichi Wakabayashi
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Japan
| |
Collapse
|
45
|
Huenchuguala S, Muñoz P, Zavala P, Villa M, Cuevas C, Ahumada U, Graumann R, Nore BF, Couve E, Mannervik B, Paris I, Segura-Aguilar J. Glutathione transferase mu 2 protects glioblastoma cells against aminochrome toxicity by preventing autophagy and lysosome dysfunction. Autophagy 2014; 10:618-30. [PMID: 24434817 DOI: 10.4161/auto.27720] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
U373MG cells constitutively express glutathione S-transferase mu 2 (GSTM2) and exhibit (3)H-dopamine uptake, which is inhibited by 2 µM of nomifensine and 15 µM of estradiol. We generated a stable cell line (U373MGsiGST6) expressing an siRNA against GSTM2 that resulted in low GSTM2 expression (26% of wild-type U373MG cells). A significant increase in cell death was observed when U373MGsiGST6 cells were incubated with 50 µM purified aminochrome (18-fold increase) compared with wild-type cells. The incubation of U373MGsiGST6 cells with 75 µM aminochrome resulted in the formation of autophagic vacuoles containing undigested cellular components, as determined using transmission electron microscopy. A significant increase in autophagosomes was determined by measuring endogenous LC3-II, a significant decrease in cell death was observed in the presence of bafilomycin A 1, and a significant increase in cell death was observed in the presence of trehalose. A significant increase in LAMP2 immunostaining was observed, a significant decrease in bright red fluorescence of lysosomes with acridine orange was observed, and bafilomycin A 1 pretreatment reduced the loss of lysosome acidity. A significant increase in cell death was observed in the presence of lysosomal protease inhibitors. Aggregation of TUBA/α-tubulin (tubulin, α) and SQSTM1 protein accumulation were also observed. Moreover, a significant increase in the number of lipids droplets was observed compared with U373MG cells with normal expression of GSTM2. These results support the notion that GSTM2 is a protective enzyme against aminochrome toxicity in astrocytes and that aminochrome cell death in U373MGsiGST6 cells involves autophagic-lysosomal dysfunction.
Collapse
Affiliation(s)
- Sandro Huenchuguala
- Molecular and Clinical Pharmacology; ICBM-Instituto de Ciencias Biomédicas; Faculty of Medicine; University of Chile; Santiago, Chile
| | - Patricia Muñoz
- Molecular and Clinical Pharmacology; ICBM-Instituto de Ciencias Biomédicas; Faculty of Medicine; University of Chile; Santiago, Chile
| | - Patricio Zavala
- Molecular and Clinical Pharmacology; ICBM-Instituto de Ciencias Biomédicas; Faculty of Medicine; University of Chile; Santiago, Chile
| | - Mónica Villa
- Molecular and Clinical Pharmacology; ICBM-Instituto de Ciencias Biomédicas; Faculty of Medicine; University of Chile; Santiago, Chile
| | - Carlos Cuevas
- Molecular and Clinical Pharmacology; ICBM-Instituto de Ciencias Biomédicas; Faculty of Medicine; University of Chile; Santiago, Chile
| | - Ulises Ahumada
- Molecular and Clinical Pharmacology; ICBM-Instituto de Ciencias Biomédicas; Faculty of Medicine; University of Chile; Santiago, Chile
| | - Rebecca Graumann
- Molecular and Clinical Pharmacology; ICBM-Instituto de Ciencias Biomédicas; Faculty of Medicine; University of Chile; Santiago, Chile
| | - Beston F Nore
- Laboratory of Medicine; Clinical Research Center-Novum; Karolinska Institutet; Sweden; Department of Medical Biochemistry; School of Medicine; Faculty of Medical Sciences; University of Sulaimani; Ministry of Higher Education and Research; Kurdistan Regional Government; Iraq
| | - Eduardo Couve
- Department of Biology and Environmental sciences; University of Valparaiso; Valparaiso, Chile
| | - Bengt Mannervik
- Department of Neurochemistry; Stockholm University; Stockholm, Sweden
| | - Irmgard Paris
- Molecular and Clinical Pharmacology; ICBM-Instituto de Ciencias Biomédicas; Faculty of Medicine; University of Chile; Santiago, Chile; Department of Basic Sciences; Santo Tomas University; Viña del Mar, Chile
| | - Juan Segura-Aguilar
- Molecular and Clinical Pharmacology; ICBM-Instituto de Ciencias Biomédicas; Faculty of Medicine; University of Chile; Santiago, Chile
| |
Collapse
|
46
|
Jha MK, Seo M, Kim JH, Kim BG, Cho JY, Suk K. The secretome signature of reactive glial cells and its pathological implications. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2418-28. [PMID: 23269363 DOI: 10.1016/j.bbapap.2012.12.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/23/2012] [Accepted: 12/12/2012] [Indexed: 12/12/2022]
|
47
|
Brower AI, Munson L, Radcliffe RW, Citino SB, Lackey LB, Van Winkle TJ, Stalis I, Terio KA, Summers BA, de Lahunta A. Leukoencephalomyelopathy of mature captive cheetahs and other large felids: a novel neurodegenerative disease that came and went? Vet Pathol 2013; 51:1013-21. [PMID: 24129896 DOI: 10.1177/0300985813506917] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A novel leukoencephalomyelopathy was identified in 73 mature male and female large captive felids between 1994 and 2005. While the majority of identified cases occurred in cheetahs (Acinonyx jubatus), the disease was also found in members of 2 other subfamilies of Felidae: 1 generic tiger (Panthera tigris) and 2 Florida panthers (Puma concolor coryi). The median age at time of death was 12 years, and all but 1 cheetah were housed in the United States. Characteristic clinical history included progressive loss of vision leading to blindness, disorientation, and/or difficulty eating. Neurologic deficits progressed at a variable rate over days to years. Mild to severe bilateral degenerative lesions were present in the cerebral white matter and variably and to a lesser degree in the white matter of the brain stem and spinal cord. Astrocytosis and swelling of myelin sheaths progressed to total white matter degeneration and cavitation. Large, bizarre reactive astrocytes are a consistent histopathologic feature of this condition. The cause of the severe white matter degeneration in these captive felids remains unknown; the lesions were not typical of any known neurotoxicoses, direct effects of or reactions to infectious diseases, or nutritional deficiencies. Leukoencephalomyelopathy was identified in 70 cheetahs, 1 tiger, and 2 panthers over an 11-year period, and to our knowledge, cases have ceased without planned intervention. Given what is known about the epidemiology of the disease and morphology of the lesions, an environmental or husbandry-associated source of neurotoxicity is suspected.
Collapse
Affiliation(s)
- A I Brower
- Department of Surgical Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, UK
| | - L Munson
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA Deceased
| | - R W Radcliffe
- Department of Surgical Sciences, Fossil Rim Wildlife Center, Glen Rose, TX, USA
| | - S B Citino
- White Oak Conservation Center, Yulee, FL, USA
| | - L B Lackey
- International Species Information System, Eagan, MN, USA
| | - T J Van Winkle
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, PA, USA
| | - I Stalis
- San Diego Zoo Global, San Diego, CA, USA
| | - K A Terio
- Zoological Pathology Program, University of Illinois College of Veterinary Medicine, Maywood, IL, USA
| | - B A Summers
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - A de Lahunta
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
48
|
Elkharaz J, Ugun-Klusek A, Constantin-Teodosiu D, Lawler K, Mayer RJ, Billett E, Lowe J, Bedford L. Implications for oxidative stress and astrocytes following 26S proteasomal depletion in mouse forebrain neurones. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1930-8. [PMID: 23851049 DOI: 10.1016/j.bbadis.2013.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/25/2013] [Accepted: 07/01/2013] [Indexed: 02/06/2023]
Abstract
Neurodegenerative diseases are characterized by progressive degeneration of selective neurones in the nervous system, but the underlying mechanisms involved in neuroprotection and neurodegeneration remain unclear. Dysfunction of the ubiquitin proteasome system is one of the proposed hypotheses for the cause and progression of neuronal loss. We have performed quantitative two-dimensional fluorescence difference in-gel electrophoresis combined with peptide mass fingerprinting to reveal proteome changes associated with neurodegeneration following 26S proteasomal depletion in mouse forebrain neurones. Differentially expressed proteins were validated by Western blotting, biochemical assays and immunohistochemistry. Of significance was increased expression of the antioxidant enzyme peroxiredoxin 6 (PRDX6) in astrocytes, associated with oxidative stress. Interestingly, PRDX6 is a bifunctional enzyme with antioxidant peroxidase and phospholipase A2 (PLA2) activities. The PLA2 activity of PRDX6 was also increased following 26S proteasomal depletion and may be involved in neuroprotective or neurodegenerative mechanisms. This is the first in vivo report of oxidative stress caused directly by neuronal proteasome dysfunction in the mammalian brain. The results contribute to understanding neuronal-glial interactions in disease pathogenesis, provide an in vivo link between prominent disease hypotheses and importantly, are of relevance to a heterogeneous spectrum of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jamal Elkharaz
- School of Biomedical Sciences, University of Nottingham, Nottingham, UK
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Targeting microglial K(ATP) channels to treat neurodegenerative diseases: a mitochondrial issue. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:194546. [PMID: 23844272 PMCID: PMC3697773 DOI: 10.1155/2013/194546] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/26/2013] [Accepted: 05/08/2013] [Indexed: 12/11/2022]
Abstract
Neurodegeneration is a complex process involving different cell types and neurotransmitters. A common characteristic of neurodegenerative disorders is the occurrence of a neuroinflammatory reaction in which cellular processes involving glial cells, mainly microglia and astrocytes, are activated in response to neuronal death. Microglia do not constitute a unique cell population but rather present a range of phenotypes closely related to the evolution of neurodegeneration. In a dynamic equilibrium with the lesion microenvironment, microglia phenotypes cover from a proinflammatory activation state to a neurotrophic one directly involved in cell repair and extracellular matrix remodeling. At each moment, the microglial phenotype is likely to depend on the diversity of signals from the environment and of its response capacity. As a consequence, microglia present a high energy demand, for which the mitochondria activity determines the microglia participation in the neurodegenerative process. As such, modulation of microglia activity by controlling microglia mitochondrial activity constitutes an innovative approach to interfere in the neurodegenerative process. In this review, we discuss the mitochondrial KATP channel as a new target to control microglia activity, avoid its toxic phenotype, and facilitate a positive disease outcome.
Collapse
|
50
|
Ahn JH, Park JH, Yan BC, Lee JC, Choi JH, Lee CH, Yoo KY, Hwang IK, Kim JS, Shin HC, Won MH. Comparison of α-synuclein immunoreactivity in the hippocampus between the adult and aged beagle dogs. Cell Mol Neurobiol 2013; 33:75-84. [PMID: 22972205 PMCID: PMC11498021 DOI: 10.1007/s10571-012-9873-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 08/02/2012] [Indexed: 10/27/2022]
Abstract
Alpha-synuclein (α-syn), as a neuroprotein, is expressed in neural tissue, and it is related to a synaptic transmission and neuronal plasticity. In this study, we compared the distribution and immunoreactivity of α-syn and related gliosis in hippocampus between young adult (2-3 years) and aged (10-12 years) beagle dogs. In both groups, α-syn immunoreactivity was detected in neuropil of all the hippocampal sub-regions, but not in neuronal somata. In the aged hippocampus, α-syn immunoreactivity was apparently increased in mossy fibers compared to that in the adult dog. In addition, α-syn protein level was markedly increased in the aged hippocampus. On the other hand, GFAP and Iba-1 immunoreactivity in astrocytes and microglia, respectively, were increased in all the hippocampal sub-regions of the aged group compared to that in the adult group: especially, their immunoreactivity was apparently increased around mossy fibers. In addition, in this study, we could not find any expression of α-syn in astrocytes and microglia. These results indicate that α-syn immunoreactivity apparently increases in the aged hippocampus and that GFAP and Iba-1 immunoreactivity are also apparently increased at the regions with increased α-syn immunoreactivity. This increase in α-syn expression might be a feature of normal aging.
Collapse
Affiliation(s)
- Ji Hyeon Ahn
- Laboratory of Neuroscience, Department of Physical Therapy, College of Rehabilitation Science, Daegu University, Gyeongsan, 712-714 South Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Bing Chun Yan
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Choong Hyun Lee
- Department of Anatomy and Physiology, College of Pharmacy, Dankook University, Cheonan, 330-714 South Korea
| | - Ki-Yeon Yoo
- Department of Oral Anatomy, College of Dentistry, Research Institute of Oral Sciences, Gangneung-Wonju National University, Gangneung, 210-702 South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742 South Korea
| | - Jin Sang Kim
- Laboratory of Neuroscience, Department of Physical Therapy, College of Rehabilitation Science, Daegu University, Gyeongsan, 712-714 South Korea
| | - Hyung-Cheul Shin
- Department of Physiology, Institute of Neurodegeneration and Neuroregeneration, College of Medicine, Hallym University, Chuncheon, 200-702 South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| |
Collapse
|