1
|
Piovani G, Ferraro RM, Giliani SC. Establishment and characterization of Cri Du Chat neuronal stem cells: a novel promising resource to study the syndrome. Hum Cell 2025; 38:98. [PMID: 40343585 PMCID: PMC12064636 DOI: 10.1007/s13577-025-01230-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 05/02/2025] [Indexed: 05/11/2025]
Abstract
The Cri Du Chat (CdC) Syndrome is a rare chromosome disease condition resulting from variable size deletion occurring on the short arm of one of the chromosomes 5. This disorder, which affects one in 50,000 births, is responsible for developmental retardation, the mechanism of which has remained unexplained. TERT, SEMA5 A, CTNND2, TPPP, mapped in chromosome 5 short arm, are known to be expressed in the brain, and to play a role in the development of the nervous system, oligodentrocytes and in the regulation of glutamatergic and dopaminergic synaptic transmission. It is critical to understand how their haploinsufficiency might affect the development and presentation of the disease. In the absence of an animal model and of significant accessible, human tissue, human pluripotent stem cells (iPSC) directly reprogrammed from patient somatic cells open a new area of disease modeling as they can virtually be differentiated into any cell type. Our study reports, for the first time, the generation of neuronal stem cells (NSCs) from CdC-iPSCs line and in addition, subsequent differentiation into a heterogeneous population of neurons. Gene expression of the mentioned and single copy deleted genes was also evaluated by comparing their expression level in iPSC, NSCs and neuron lines. The present research represents the first and the most innovative approach, to create an in vitro CdC neuronal model to have a new translational framework to study the pathologic processes.
Collapse
Affiliation(s)
- Giovanna Piovani
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy.
- Scientific Committee of A.B.C. Associazione Bambini Cri du Chat, 50026, Florence, Italy.
| | - Rosalba Monica Ferraro
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
- "A. Nocivelli" Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Silvia Clara Giliani
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
- "A. Nocivelli" Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| |
Collapse
|
2
|
Kon T, Forrest SL, Lee S, Li J, Chasiotis H, Nassir N, Uddin MJ, Lang AE, Kovacs GG. SNCA and TPPP transcripts increase in oligodendroglial cytoplasmic inclusions in multiple system atrophy. Neurobiol Dis 2024; 198:106551. [PMID: 38839023 DOI: 10.1016/j.nbd.2024.106551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/16/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024] Open
Abstract
Multiple system atrophy (MSA) is characterized by glial cytoplasmic inclusions (GCIs) containing aggregated α-synuclein (α-syn) in oligodendrocytes. The origin of α-syn accumulation in GCIs is unclear, in particular whether abnormal α-syn aggregates result from the abnormal elevation of endogenous α-syn expression in MSA or ingested from the neuronal source. Tubulin polymerization promoting protein (TPPP) has been reported to play a crucial role in developing GCI pathology. Here, the total cell body, nucleus, and cytoplasmic area density of SNCA and TPPP transcripts in neurons and oligodendrocytes with and without various α-syn pathologies in the pontine base in autopsy cases of MSA (n = 4) and controls (n = 2) were evaluated using RNAscope with immunofluorescence. Single-nucleus RNA-sequencing data for TPPP was evaluated using control frontal cortex (n = 3). SNCA and TPPP transcripts were present in the nucleus and cytoplasm of oligodendrocytes in both controls and diseased, with higher area density in GCIs and glial nuclear inclusions in MSA. Area densities of SNCA and TPPP transcripts were lower in neurons showing cytoplasmic inclusions in MSA. Indeed, TPPP transcripts were unexpectedly found in neurons, while the anti-TPPP antibody failed to detect immunoreactivity. Single-nucleus RNA-sequencing revealed significant TPPP transcript expression predominantly in oligodendrocytes, but also in excitatory and inhibitory neurons. This study addressed the unclear origin of accumulated α-syn in GCIs, proposing that the elevation of SNCA transcripts may supply templates for misfolded α-syn. In addition, the parallel behavior of TPPP and SNCA transcripts in GCI development highlights their potential synergistic contribution to inclusion formation. In conclusion, this study advances our understanding of MSA pathogenesis, offers insights into the dynamics of SNCA and TPPP transcripts in inclusion formation, and proposes regulating their transcripts for future molecular therapy to MSA.
Collapse
Affiliation(s)
- Tomoya Kon
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada; Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| | - Shelley L Forrest
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada; Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia; Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, Canada.
| | - Seojin Lee
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| | - Jun Li
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada.
| | - Helen Chasiotis
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada.
| | - Nasna Nassir
- Centre for Applied and Translational Genomics, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
| | - Mohammed J Uddin
- Centre for Applied and Translational Genomics, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates; GenomeArc Inc, Toronto, ON, Canada.
| | - Anthony E Lang
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada; Edmund J Safra Program in Parkinson's Disease and Rossy Progressive Supranuclear Palsy Centre, Toronto Western Hospital, Toronto, ON, Canada; Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada.
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada; Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia; Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Edmund J Safra Program in Parkinson's Disease and Rossy Progressive Supranuclear Palsy Centre, Toronto Western Hospital, Toronto, ON, Canada; Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Liu M, Wang Z, Shang H. Multiple system atrophy: an update and emerging directions of biomarkers and clinical trials. J Neurol 2024; 271:2324-2344. [PMID: 38483626 PMCID: PMC11055738 DOI: 10.1007/s00415-024-12269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 04/28/2024]
Abstract
Multiple system atrophy is a rare, debilitating, adult-onset neurodegenerative disorder that manifests clinically as a diverse combination of parkinsonism, cerebellar ataxia, and autonomic dysfunction. It is pathologically characterized by oligodendroglial cytoplasmic inclusions containing abnormally aggregated α-synuclein. According to the updated Movement Disorder Society diagnostic criteria for multiple system atrophy, the diagnosis of clinically established multiple system atrophy requires the manifestation of autonomic dysfunction in combination with poorly levo-dopa responsive parkinsonism and/or cerebellar syndrome. Although symptomatic management of multiple system atrophy can substantially improve quality of life, therapeutic benefits are often limited, ephemeral, and they fail to modify the disease progression and eradicate underlying causes. Consequently, effective breakthrough treatments that target the causes of disease are needed. Numerous preclinical and clinical studies are currently focusing on a set of hallmarks of neurodegenerative diseases to slow or halt the progression of multiple system atrophy: pathological protein aggregation, synaptic dysfunction, aberrant proteostasis, neuronal inflammation, and neuronal cell death. Meanwhile, specific biomarkers and measurements with higher specificity and sensitivity are being developed for the diagnosis of multiple system atrophy, particularly for early detection of the disease. More intriguingly, a growing number of new disease-modifying candidates, which can be used to design multi-targeted, personalized treatment in patients, are being investigated, notwithstanding the failure of most previous attempts.
Collapse
Affiliation(s)
- Min Liu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Zhiyao Wang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Oláh J, Norris V, Lehotzky A, Ovádi J. Perspective Strategies for Interventions in Parkinsonism: Remedying the Neglected Role of TPPP. Cells 2024; 13:338. [PMID: 38391951 PMCID: PMC10886726 DOI: 10.3390/cells13040338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Neurological disorders such as Parkinsonism cause serious socio-economic problems as there are, at present, only therapies that treat their symptoms. The well-established hallmark alpha-synuclein (SYN) is enriched in the inclusion bodies characteristic of Parkinsonism. We discovered a prominent partner of SYN, termed Tubulin Polymerization Promoting Protein (TPPP), which has important physiological and pathological activities such as the regulation of the microtubule network and the promotion of SYN aggregation. The role of TPPP in Parkinsonism is often neglected in research, which we here attempt to remedy. In the normal brain, SYN and TPPP are expressed endogenously in neurons and oligodendrocytes, respectively, whilst, at an early stage of Parkinsonism, soluble hetero-associations of these proteins are found in both cell types. The cell-to-cell transmission of these proteins, which is central to disease progression, provides a unique situation for specific drug targeting. Different strategies for intervention and for the discovery of biomarkers include (i) interface targeting of the SYN-TPPP hetero-complex; (ii) proteolytic degradation of SYN and/or TPPP using the PROTAC technology; and (iii) depletion of the proteins by miRNA technology. We also discuss the potential roles of SYN and TPPP in the phenotype stabilization of neurons and oligodendrocytes.
Collapse
Affiliation(s)
- Judit Oláh
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.L.); (J.O.)
| | - Vic Norris
- Laboratory of Bacterial Communication and Anti-Infection Strategies, EA 4312, University of Rouen, 76821 Mont Saint Aignan, France;
| | - Attila Lehotzky
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.L.); (J.O.)
| | - Judit Ovádi
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.L.); (J.O.)
| |
Collapse
|
5
|
Schwaiger C, Haider T, Endmayr V, Zrzavy T, Gruber VE, Ricken G, Simonovska A, Hametner S, Schwab JM, Höftberger R. Dynamic induction of the myelin-associated growth inhibitor Nogo-A in perilesional plasticity regions after human spinal cord injury. Brain Pathol 2023; 33:e13098. [PMID: 35698271 PMCID: PMC9836369 DOI: 10.1111/bpa.13098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 05/29/2022] [Indexed: 01/21/2023] Open
Abstract
The myelin-associated inhibitor Nogo-A (Reticulon 4, RTN4) restricts axonal outgrowth, plasticity, and neural circuitry formation in experimental models of spinal cord injury (SCI) and is targeted in clinical interventions starting treatment within 4 weeks post-SCI. Specifically, Nogo-A expressed by oligodendroglia restricts compensatory neurite sprouting. To interrogate the hypothesis of an inducible, lesion reactive Nogo-A expression over time, we analyzed the spatiotemporal Nogo-A expression at the spinal lesion core (region of tissue necrosis and axonal damage/pruning) and perilesional rim (region of plasticity formation). Spinal cord specimens of SCI subjects (n = 22) were compared to neuropathologically unaltered controls (n = 9). Nogo-A expression was investigated ranging from acute (0-3 days), early subacute (4-21 days), late subacute (22-90 days) to early chronic-chronic (91 days to 1.5 years after SCI) stages after SCI. Nogo-A expression in controls is confined to motoneurons in the anterior horn and to oligodendrocytes in gray and white matter. After SCI, the number of Nogo-A+ and TPPP/p25+ oligodendrocytes (i) inclined at the organizing perilesional rim specifically, (ii) increased further over time, and (iii) peaked at chronic stages after SCI. By contrast, at the lesion core, the number of Nogo-A+ and TPPP/p25+ oligodendrocytes did not increase. Increasing numbers of Nogo-A+ oligodendrocytes coincided with oligodendrogenesis corroborated by Nogo-A coexpression of Ki67+ , TPPP/p25+ proliferating oligodendrocytes. Nogo-A oligodendrocyte expression emerges at perilesional (plasticity) regions over time and suggests an extended therapeutical window for anti-Nogo-A pathway targeting interventions beyond 4 weeks in patients after SCI.
Collapse
Affiliation(s)
- Carmen Schwaiger
- Division of Neuropathology and Neurochemistry, Department of NeurologyMedical University of ViennaViennaAustria
| | - Thomas Haider
- Department of Orthopedics and Trauma SurgeryMedical University of ViennaViennaAustria
| | - Verena Endmayr
- Division of Neuropathology and Neurochemistry, Department of NeurologyMedical University of ViennaViennaAustria
| | - Tobias Zrzavy
- Department of NeurologyMedical University of ViennaViennaAustria
| | - Victoria E. Gruber
- Department of Pediatrics and Adolescent MedicineMedical University of Vienna (Affiliated Partner of the ERN EpiCARE)ViennaAustria
| | - Gerda Ricken
- Division of Neuropathology and Neurochemistry, Department of NeurologyMedical University of ViennaViennaAustria
| | - Anika Simonovska
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of NeurologyMedical University of ViennaViennaAustria
| | - Jan M. Schwab
- The Belford Center for Spinal Cord Injury and Departments of Neurology, Physical Medicine and Rehabilitation and NeurosciencesThe Ohio State UniversityColumbusOhioUSA
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of NeurologyMedical University of ViennaViennaAustria
| |
Collapse
|
6
|
Xie J, Chen S, Bopassa JC, Banerjee S. Drosophila tubulin polymerization promoting protein mutants reveal pathological correlates relevant to human Parkinson's disease. Sci Rep 2021; 11:13614. [PMID: 34193896 PMCID: PMC8245532 DOI: 10.1038/s41598-021-92738-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/07/2021] [Indexed: 11/09/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder with no known cure. PD is characterized by locomotion deficits, nigrostriatal dopaminergic neuronal loss, mitochondrial dysfunctions and formation of α-Synuclein aggregates. A well-conserved and less understood family of Tubulin Polymerization Promoting Proteins (TPPP) is also implicated in PD and related disorders, where TPPP exists in pathological aggregates in neurons in patient brains. However, there are no in vivo studies on mammalian TPPP to understand the genetics and neuropathology linking TPPP aggregation or neurotoxicity to PD. Recently, we discovered the only Drosophila homolog of human TPPP named Ringmaker (Ringer). Here, we report that adult ringer mutants display progressive locomotor disabilities, reduced lifespan and neurodegeneration. Importantly, our findings reveal that Ringer is associated with mitochondria and ringer mutants have mitochondrial structural damage and dysfunctions. Adult ringer mutants also display progressive loss of dopaminergic neurons. Together, these phenotypes of ringer mutants recapitulate some of the salient features of human PD patients, thus allowing us to utilize ringer mutants as a fly model relevant to PD, and further explore its genetic and molecular underpinnings to gain insights into the role of human TPPP in PD.
Collapse
Affiliation(s)
- Jing Xie
- Department of Cellular and Integrative Physiology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
- Xiangya School of Medicine, Central South University, Changsha, 410083, Hunan, China
| | - Shuting Chen
- Department of Cellular and Integrative Physiology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
- Xiangya School of Medicine, Central South University, Changsha, 410083, Hunan, China
| | - Jean C Bopassa
- Department of Cellular and Integrative Physiology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Swati Banerjee
- Department of Cellular and Integrative Physiology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| |
Collapse
|
7
|
Doi S, Fujioka N, Ohtsuka S, Kondo R, Yamamoto M, Denda M, Magari M, Kanayama N, Hatano N, Morishita R, Hasegawa T, Tokumitsu H. Regulation of the tubulin polymerization-promoting protein by Ca 2+/S100 proteins. Cell Calcium 2021; 96:102404. [PMID: 33831707 DOI: 10.1016/j.ceca.2021.102404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
To elucidate S100 protein-mediated signaling pathways, we attempted to identify novel binding partners for S100A2 by screening protein arrays carrying 19,676 recombinant glutathione S-transferase (GST)-fused human proteins with biotinylated S100A2. Among newly discovered putative S100A2 interactants, including TMLHE, TRH, RPL36, MRPS34, CDR2L, OIP5, and MED29, we identified and characterized the tubulin polymerization-promoting protein (TPPP) as a novel S100A2-binding protein. We confirmed the interaction of TPPP with Ca2+/S100A2 by multiple independent methods, including the protein array method, S100A2 overlay, and pulldown assay in vitro and in transfected COS-7 cells. Based on the results from the S100A2 overlay assay using various GST-TPPP mutants, the S100A2-binding region was identified in the C-terminal (residues 111-160) of the central core domain of a monomeric form of TPPP that is involved in TPPP dimerization. Chemical cross-linking experiments indicated that S100A2 suppresses dimer formation of His-tagged TPPP in a dose-dependent and a Ca2+-dependent manner. In addition to S100A2, TPPP dimerization is disrupted by other multiple S100 proteins, including S100A6 and S100B, in a Ca2+-dependent manner but not by S100A4. This is consistent with the fact that S100A6 and S100B, but not S100A4, are capable of interacting with GST-TPPP in the presence of Ca2+. Considering these results together, TPPP was identified as a novel target for S100A2, and it is a potential binding target for other multiple S100 proteins, including S100A6 and S100B. Direct binding of the S100 proteins with TPPP may cause disassembly of TPPP dimer formation in response to the increasing concentration of intracellular Ca2+, thus resulting in the regulation of the physiological function of TPPP, such as microtubule organization.
Collapse
Affiliation(s)
- Seita Doi
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Naoki Fujioka
- Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University, Okayama 700-8530, Japan
| | - Satomi Ohtsuka
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Rina Kondo
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Maho Yamamoto
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Miwako Denda
- CellFree Sciences Co., Ltd., Matsuyama, 790-8577, Japan
| | - Masaki Magari
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Naoki Kanayama
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Naoya Hatano
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Ryo Morishita
- CellFree Sciences Co., Ltd., Matsuyama, 790-8577, Japan
| | - Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Hiroshi Tokumitsu
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan.
| |
Collapse
|
8
|
Vargas EJM, Matamoros AJ, Qiu J, Jan CH, Wang Q, Gorczyca D, Han TW, Weissman JS, Jan YN, Banerjee S, Song Y. The microtubule regulator ringer functions downstream from the RNA repair/splicing pathway to promote axon regeneration. Genes Dev 2020; 34:194-208. [PMID: 31919191 PMCID: PMC7000917 DOI: 10.1101/gad.331330.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022]
Abstract
In this study, Vargas et al. set out to elucidate the downstream effectors of the Rtca-mediated RNA repair/splicing pathway. Using genome-wide transcriptome analysis, the authors demonstrate that the microtubule-associated protein (MAP) tubulin polymerization-promoting protein (TPPP) ringer functions downstream from and is suppressed by Rtca via Xbp1-dependent transcription. Ringer cell-autonomously promotes axon regeneration in the peripheral and central nervous system. Promoting axon regeneration in the central and peripheral nervous system is of clinical importance in neural injury and neurodegenerative diseases. Both pro- and antiregeneration factors are being identified. We previously reported that the Rtca mediated RNA repair/splicing pathway restricts axon regeneration by inhibiting the nonconventional splicing of Xbp1 mRNA under cellular stress. However, the downstream effectors remain unknown. Here, through transcriptome profiling, we show that the tubulin polymerization-promoting protein (TPPP) ringmaker/ringer is dramatically increased in Rtca-deficient Drosophila sensory neurons, which is dependent on Xbp1. Ringer is expressed in sensory neurons before and after injury, and is cell-autonomously required for axon regeneration. While loss of ringer abolishes the regeneration enhancement in Rtca mutants, its overexpression is sufficient to promote regeneration both in the peripheral and central nervous system. Ringer maintains microtubule stability/dynamics with the microtubule-associated protein futsch/MAP1B, which is also required for axon regeneration. Furthermore, ringer lies downstream from and is negatively regulated by the microtubule-associated deacetylase HDAC6, which functions as a regeneration inhibitor. Taken together, our findings suggest that ringer acts as a hub for microtubule regulators that relays cellular status information, such as cellular stress, to the integrity of microtubules in order to instruct neuroregeneration.
Collapse
Affiliation(s)
- Ernest J Monahan Vargas
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Andrew J Matamoros
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jingyun Qiu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Calvin H Jan
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California 94158, USA.,Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94158, USA
| | - Qin Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - David Gorczyca
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94158, USA.,Department of Physiology, University of California at San Francisco, San Francisco, California 94158, USA.,Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Tina W Han
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94158, USA.,Department of Physiology, University of California at San Francisco, San Francisco, California 94158, USA.,Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California 94158, USA.,Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94158, USA
| | - Yuh Nung Jan
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94158, USA.,Department of Physiology, University of California at San Francisco, San Francisco, California 94158, USA.,Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Swati Banerjee
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | - Yuanquan Song
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
9
|
Oláh J, Ovádi J. Pharmacological targeting of α-synuclein and TPPP/p25 in Parkinson's disease: challenges and opportunities in a Nutshell. FEBS Lett 2019; 593:1641-1653. [PMID: 31148150 DOI: 10.1002/1873-3468.13464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/10/2023]
Abstract
With the aging of population, neurological disorders, and especially disorders involving defects in protein conformation (also known as proteopathies) pose a serious socio-economic problem. So far there is no effective treatment for most proteopathies, including Parkinson's disease (PD). The mechanism underlying PD pathogenesis is largely unknown, and the hallmark proteins, α-synuclein (SYN) and tubulin polymerization promoting protein (TPPP/p25) are challenging drug targets. These proteins are intrinsically disordered with high conformational plasticity, and have diverse physiological and pathological functions. In the healthy brain, SYN and TPPP/p25 occur in neurons and oligodendrocytes, respectively; however, in PD and multiple system atrophy, they are co-enriched and co-localized in both cell types, thereby marking pathogenesis. Although large inclusions appear at a late disease stage, small, soluble assemblies of SYN promoted by TPPP/p25 are pathogenic. In the light of these issues, we established a new innovative strategy for the validation of a specific drug target based upon the identification of contact surfaces of the pathological SYN-TPPP/p25 complex that may lead to the development of peptidomimetic foldamers suitable for pharmaceutical intervention.
Collapse
Affiliation(s)
- Judit Oláh
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Judit Ovádi
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
10
|
Ferrer I. Oligodendrogliopathy in neurodegenerative diseases with abnormal protein aggregates: The forgotten partner. Prog Neurobiol 2018; 169:24-54. [DOI: 10.1016/j.pneurobio.2018.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 12/31/2022]
|
11
|
Abstract
Multiple system atrophy (MSA) is a devastating and fatal neurodegenerative disorder. The clinical presentation of this disease is highly variable, with parkinsonism, cerebellar ataxia and autonomic failure being the most common - and often debilitating - symptoms. These symptoms progress rapidly, and patients die from MSA-related complications after 9 years of symptom duration on average. Unfortunately, the course of the disease cannot be improved by drug or surgical treatment. In addition, symptomatic treatment options are currently limited, and therapeutic benefits are often only transient. Thus, further interventional studies of candidate disease-modifying and symptomatic therapies are essential to improve patient care. In the past 15 years, the understanding of MSA-specific requirements in trial methodology has improved, resulting in a substantial increase in high-quality interventional studies. In this Review, we discuss MSA risk factors, clinical presentation and neuropathology, and we provide a hypothesis on key pathophysiological events, a summary of recent randomized controlled trials, and an overview of ongoing international collaborations.
Collapse
|
12
|
Oláh J, Bertrand P, Ovádi J. Role of the microtubule-associated TPPP/p25 in Parkinson's and related diseases and its therapeutic potential. Expert Rev Proteomics 2017; 14:301-309. [PMID: 28271739 DOI: 10.1080/14789450.2017.1304216] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The discovery and development of therapeutic strategies for the treatments of Parkinson's disease (PD) and other synucleinopathies are limited by a lack of understanding of the pathomechanisms and their connection with different diseases such as cancers. Areas covered: The hallmarks of these diseases are frequently multifunctional disordered proteins displaying moonlighting and/or chameleon features, which are challenging drug targets. A representative of these proteins is the disordered Tubulin Polymerization Promoting Protein (TPPP/p25) expressed specifically in oligodendrocytes (OLGs) in normal brain. Its non-physiological level is tightly related to the etiology of PD and Multiple System Atrophy (TPPP/p25 enrichment in inclusions of neurons and OLGs, respectively), multiple sclerosis (TPPP/p25-positive OLG destruction), as well as glioma (loss of TPPP/p25 expression). The established anti-proliferative potency of TPPP/p25 may raise its influence in cancer development. The recognition that whereas too much TPPP/p25 could kill neurons in PD, but its loss keeps cells alive in cancer could contribute to our understanding of the interrelationship of 'TPPP/p25 diseases'. Expert commentary: The knowledge accumulated so far underlines the key roles of the multifunctional TPPP/p25 in both physiological and diverse pathological processes, consequently its validation as drug target sorely needs a new innovative strategy that is briefly reviewed here.
Collapse
Affiliation(s)
- Judit Oláh
- a Institute of Enzymology , Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - Philippe Bertrand
- b Institute of Chemistry for Materials and Medias, UMR CNRS 7285, University of Poitiers, 4 Rue Michel Brunet , TSA 51106 Poitiers cedex 9, France.,c REpiCGO network, Cancéropôle Grand Ouest, Maison de la Recherche en Santé, 63, quai Magellan 44000 Nantes , France
| | - Judit Ovádi
- a Institute of Enzymology , Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| |
Collapse
|
13
|
Jellinger KA, Wenning GK. Overlaps between multiple system atrophy and multiple sclerosis: A novel perspective. Mov Disord 2016; 31:1767-1771. [DOI: 10.1002/mds.26870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/30/2016] [Accepted: 10/02/2016] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - Gregor K. Wenning
- Division of Clinical Neurobiology, Department of Neurology; Medical University of Innsbruck; Innsbruck Austria
| |
Collapse
|
14
|
DeBonis S, Neumann E, Skoufias DA. Self protein-protein interactions are involved in TPPP/p25 mediated microtubule bundling. Sci Rep 2015; 5:13242. [PMID: 26289831 PMCID: PMC4542545 DOI: 10.1038/srep13242] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 07/15/2015] [Indexed: 12/26/2022] Open
Abstract
TPPP/p25 is a microtubule-associated protein, detected in protein inclusions associated with various neurodegenerative diseases. Deletion analysis data show that TPPP/p25 has two microtubule binding sites, both located in intrinsically disordered domains, one at the N-terminal and the other in the C-terminal domain. In copolymerization assays the full-length protein exhibits microtubule stimulation and bundling activity. In contrast, at the same ratio relative to tubulin, truncated forms of TPPP/p25 exhibit either lower or no microtubule stimulation and no bundling activity, suggesting a cooperative phenomenon which is enhanced by the presence of the two binding sites. The binding characteristics of the N- and C-terminally truncated proteins to taxol-stabilized microtubules are similar to the full-length protein. However, the C-terminally truncated TPPP/p25 shows a lower Bmax for microtubule binding, suggesting that it may bind to a site of tubulin that is masked in microtubules. Bimolecular fluorescent complementation assays in cells expressing combinations of various TPPP/p25 fragments, but not that of the central folded domain, resulted in the generation of a fluorescence signal colocalized with perinuclear microtubule bundles insensitive to microtubule inhibitors. The data suggest that the central folded domain of TPPP/p25 following binding to microtubules can drive s homotypic protein-protein interactions leading to bundled microtubules.
Collapse
Affiliation(s)
- Salvatore DeBonis
- Université de Grenoble Alpes, F-38044 Grenoble, France.,CNRS, F-38044 Grenoble, France.,CEA, IBS, F-38044 Grenoble, France
| | - Emmanuelle Neumann
- Université de Grenoble Alpes, F-38044 Grenoble, France.,CNRS, F-38044 Grenoble, France.,CEA, IBS, F-38044 Grenoble, France
| | - Dimitrios A Skoufias
- Université de Grenoble Alpes, F-38044 Grenoble, France.,CNRS, F-38044 Grenoble, France.,CEA, IBS, F-38044 Grenoble, France
| |
Collapse
|
15
|
Oligodendroglia and Myelin in Neurodegenerative Diseases: More Than Just Bystanders? Mol Neurobiol 2015; 53:3046-3062. [PMID: 25966971 PMCID: PMC4902834 DOI: 10.1007/s12035-015-9205-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/29/2015] [Indexed: 12/01/2022]
Abstract
Oligodendrocytes, the myelinating cells of the central nervous system, mediate rapid action potential conduction and provide trophic support for axonal as well as neuronal maintenance. Their progenitor cell population is widely distributed in the adult brain and represents a permanent cellular reservoir for oligodendrocyte replacement and myelin plasticity. The recognition of oligodendrocytes, their progeny, and myelin as contributing factors for the pathogenesis and the progression of neurodegenerative disease has recently evolved shaping our understanding of these disorders. In the present review, we aim to highlight studies on oligodendrocytes and their progenitors in neurodegenerative diseases. We dissect oligodendroglial biology and illustrate evolutionary aspects in regard to their importance for neuronal functionality and maintenance of neuronal circuitries. After covering recent studies on oligodendroglia in different neurodegenerative diseases mainly in view of their function as myelinating cells, we focus on the alpha-synucleinopathy multiple system atrophy, a prototypical disorder with a well-defined oligodendroglial pathology.
Collapse
|
16
|
Krismer F, Kuzdas D, Colosimo C, Stefanova N, Wenning GK. Animal Models of Multiple-System Atrophy. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00058-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
17
|
Jellinger KA. Neuropathology of multiple system atrophy: New thoughts about pathogenesis. Mov Disord 2014; 29:1720-41. [DOI: 10.1002/mds.26052] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/29/2014] [Accepted: 09/16/2014] [Indexed: 12/14/2022] Open
|
18
|
Ota K, Obayashi M, Ozaki K, Ichinose S, Kakita A, Tada M, Takahashi H, Ando N, Eishi Y, Mizusawa H, Ishikawa K. Relocation of p25α/tubulin polymerization promoting protein from the nucleus to the perinuclear cytoplasm in the oligodendroglia of sporadic and COQ2 mutant multiple system atrophy. Acta Neuropathol Commun 2014; 2:136. [PMID: 25208467 PMCID: PMC4172786 DOI: 10.1186/s40478-014-0136-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/31/2014] [Indexed: 02/08/2023] Open
Abstract
p25α/tubulin polymerization promoting protein (TPPP) is an oligodendroglial protein that plays crucial roles including myelination, and the stabilization of microtubules. In multiple system atrophy (MSA), TPPP is suggested to relocate from the myelin sheath to the oligodendroglial cell body, before the formation of glial cytoplasmic inclusions (GCIs), the pathologic hallmark of MSA. However, much is left unknown about the re-distribution of TPPP in MSA. We generated new antibodies against the N- and C-terminus of TPPP, and analyzed control and MSA brains, including the brain of a familial MSA patient carrying homozygous mutations in the coenzyme Q2 gene (COQ2). In control brain tissues, TPPP was localized not only in the cytoplasmic component of the oligodendroglia including perinuclear cytoplasm and peripheral processes in the white matter, but also in the nucleus of a fraction (62.4%) of oligodendroglial cells. Immunoelectron microscopic analysis showed TPPP in the nucleus and mitochondrial membrane of normal oligodendroglia, while western blot also supported its nuclear and mitochondrial existence. In MSA, the prevalence of nuclear TPPP was 48.6% in the oligodendroglia lacking GCIs, whereas it was further decreased to 19.6% in the oligodendroglia with phosphorylated α-synuclein (pα-syn)-positive GCIs, both showing a significant decrease compared to controls (62.4%). In contrast, TPPP accumulated in the perinuclear cytoplasm where mitochondrial membrane (TOM20 and cytochrome C) and fission (DRP1) proteins were often immunoreactive. We conclude that in MSA-oligodendroglia, TPPP is reduced, not only in the peripheral cytoplasm, but also in the nucleus and relocated to the perinuclear cytoplasm.
Collapse
|
19
|
Bleasel JM, Wong JH, Halliday GM, Kim WS. Lipid dysfunction and pathogenesis of multiple system atrophy. Acta Neuropathol Commun 2014; 2:15. [PMID: 24502382 PMCID: PMC3922275 DOI: 10.1186/2051-5960-2-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/03/2014] [Indexed: 12/24/2022] Open
Abstract
Multiple system atrophy (MSA) is a progressive neurodegenerative disease characterized by the accumulation of α-synuclein protein in the cytoplasm of oligodendrocytes, the myelin-producing support cells of the central nervous system (CNS). The brain is the most lipid-rich organ in the body and disordered metabolism of various lipid constituents is increasingly recognized as an important factor in the pathogenesis of several neurodegenerative diseases. α-Synuclein is a 17 kDa protein with a close association to lipid membranes and biosynthetic processes in the CNS, yet its precise function is a matter of speculation, particularly in oligodendrocytes. α-Synuclein aggregation in neurons is a well-characterized feature of Parkinson’s disease and dementia with Lewy bodies. Epidemiological evidence and in vitro studies of α-synuclein molecular dynamics suggest that disordered lipid homeostasis may play a role in the pathogenesis of α-synuclein aggregation. However, MSA is distinct from other α-synucleinopathies in a number of respects, not least the disparate cellular focus of α-synuclein pathology. The recent identification of causal mutations and polymorphisms in COQ2, a gene encoding a biosynthetic enzyme for the production of the lipid-soluble electron carrier coenzyme Q10 (ubiquinone), puts membrane transporters as central to MSA pathogenesis, although how such transporters are involved in the early myelin degeneration observed in MSA remains unclear. The purpose of this review is to bring together available evidence to explore the potential role of membrane transporters and lipid dyshomeostasis in the pathogenesis of α-synuclein aggregation in MSA. We hypothesize that dysregulation of the specialized lipid metabolism involved in myelin synthesis and maintenance by oligodendrocytes underlies the unique neuropathology of MSA.
Collapse
|
20
|
Rohan Z, Matej R, Rusina R, Kovacs GG. Oligodendroglial Response in the Spinal Cord in TDP-43 Proteinopathy with Motor Neuron Involvement. NEURODEGENER DIS 2014; 14:117-24. [DOI: 10.1159/000362929] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 04/15/2014] [Indexed: 11/19/2022] Open
|
21
|
Rábano A, Cuadros R, Calero M, Hernández F, Avila J. Specific profile of tau isoforms in argyrophylic grain disease. J Exp Neurosci 2013; 7:51-9. [PMID: 25157208 PMCID: PMC4089774 DOI: 10.4137/jen.s12202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Argyrophylic grain disease (AGD) is a neurodegenerative condition that has been classified among the sporadic tauopathies. Entities in this group present intracellular aggregates of hyperphosphorylated tau, giving rise to characteristic neuronal and glial inclusions. In different tauopathies, the proportion of several tau isoforms present in the aggregates shows specific patterns. AGD has been tentatively classified in the 4R group (predominance of 4R tau isoforms) together with progressive supranuclear palsy and corticobasal degeneration. Pick's disease is included in the 3R group (predominance of 3R isoforms), whereas tau pathology of Alzheimer's disease represents and intermediate group (3 or 4 repeats [3R plus 4R, respectively] isoforms). In this work, we have analyzed tau present in aggregates isolated from brain samples of patients with argyrophylic grain disease. Our results indicate that the main tau isoform present in aggregates obtained from patients with AGD is a hyperphosphorylated isoform containing exons 2 and 10 but lacking exon 3.
Collapse
Affiliation(s)
- Alberto Rábano
- Banco de Tejidos de la Fundación CIEN, CIEN Foundation, Carlos III Institute of Health, Alzheimer Center Reina Sofia Foundation, Madrid, Spain
| | - Raquel Cuadros
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Miguel Calero
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Unidad de Encefalopatías Espongiformes, Centro Nacional de Microbiología, Instituto de Salud Carlos III (CNM-ISCIII), Madrid, Spain
| | - Félix Hernández
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jesús Avila
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
22
|
Kragh CL, Fillon G, Gysbers A, Hansen HD, Neumann M, Richter-Landsberg C, Haass C, Zalc B, Lubetzki C, Gai WP, Halliday GM, Kahle PJ, Jensen PH. FAS-dependent cell death in α-synuclein transgenic oligodendrocyte models of multiple system atrophy. PLoS One 2013; 8:e55243. [PMID: 23372841 PMCID: PMC3555893 DOI: 10.1371/journal.pone.0055243] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 12/27/2012] [Indexed: 12/26/2022] Open
Abstract
Multiple system atrophy is a parkinsonian neurodegenerative disorder. It is cytopathologically characterized by accumulation of the protein p25α in cell bodies of oligodendrocytes followed by accumulation of aggregated α-synuclein in so-called glial cytoplasmic inclusions. p25α is a stimulator of α-synuclein aggregation, and coexpression of α-synuclein and p25α in the oligodendroglial OLN-t40-AS cell line causes α-synuclein aggregate-dependent toxicity. In this study, we investigated whether the FAS system is involved in α-synuclein aggregate dependent degeneration in oligodendrocytes and may play a role in multiple system atrophy. Using rat oligodendroglial OLN-t40-AS cells we demonstrate that the cytotoxicity caused by coexpressing α-synuclein and p25α relies on stimulation of the death domain receptor FAS and caspase-8 activation. Using primary oligodendrocytes derived from PLP-α-synuclein transgenic mice we demonstrate that they exist in a sensitized state expressing pro-apoptotic FAS receptor, which makes them sensitive to FAS ligand-mediated apoptosis. Immunoblot analysis shows an increase in FAS in brain extracts from multiple system atrophy cases. Immunohistochemical analysis demonstrated enhanced FAS expression in multiple system atrophy brains notably in oligodendrocytes harboring the earliest stages of glial cytoplasmic inclusion formation. Oligodendroglial FAS expression is an early hallmark of oligodendroglial pathology in multiple system atrophy that mechanistically may be coupled to α-synuclein dependent degeneration and thus represent a potential target for protective intervention.
Collapse
Affiliation(s)
| | - Gwenaëlle Fillon
- Laboratory for Alzheimer's and Parkinson's Disease Research, Department of Biochemistry, Ludwig Maximilians University, Munich, Germany
| | - Amanda Gysbers
- Neuroscience Research Australia and University of New South Wales, Sydney, New South Wales, Australia
| | - Hanne D. Hansen
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Manuela Neumann
- Institute for Neuropathology, University of Zürich, Zürich, Switzerland
| | | | - Christian Haass
- Laboratory for Alzheimer's and Parkinson's Disease Research, Department of Biochemistry, Ludwig Maximilians University, Munich, Germany
| | - Bernard Zalc
- Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Université Pierre et Marie Curie, Paris, France
| | - Catherine Lubetzki
- Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Université Pierre et Marie Curie, Paris, France
| | - Wei-Ping Gai
- Department of Human Physiology and Centre for Neuroscience, Flinders University School of Medicine, Bedford Park, South Australia, Australia
| | - Glenda M. Halliday
- Neuroscience Research Australia and University of New South Wales, Sydney, New South Wales, Australia
| | - Philipp J. Kahle
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases, Tübingen, Germany
- * E-mail: (PHJ); (PJK)
| | - Poul H. Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- * E-mail: (PHJ); (PJK)
| |
Collapse
|
23
|
|
24
|
Microtubules and Associated Proteins in Oligodendrocytes, the Myelin Forming Cells of the Central Nervous System. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/978-1-62703-266-7_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
25
|
Filatova EV, Alieva AK, Shadrina MI, Slominsky PA. MicroRNAs: Possible role in pathogenesis of Parkinson’s disease. BIOCHEMISTRY (MOSCOW) 2012; 77:813-9. [DOI: 10.1134/s0006297912080020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Zhou RM, Jing YY, Guo Y, Gao C, Zhang BY, Chen C, Shi Q, Tian C, Wang ZY, Gong HS, Han J, Xu BL, Dong XP. Molecular interaction of TPPP with PrP antagonized the CytoPrP-induced disruption of microtubule structures and cytotoxicity. PLoS One 2011; 6:e23079. [PMID: 21857997 PMCID: PMC3155546 DOI: 10.1371/journal.pone.0023079] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 07/05/2011] [Indexed: 11/30/2022] Open
Abstract
Background Tubulin polymerization promoting protein/p25 (TPPP/p25), known as a microtubule-associated protein (MAP), is a brain-specific unstructured protein with a physiological function of stabilizing cellular microtubular ultrastructures. Whether TPPP involves in the normal functions of PrP or the pathogenesis of prion disease remains unknown. Here, we proposed the data that TPPP formed molecular complex with PrP. We also investigated its influence on the aggregation of PrP and fibrillization of PrP106–126 in vitro, its antagonization against the disruption of microtubule structures and cytotoxicity of cytosolic PrP in cells, and its alternation in the brains of scrapie-infected experimental hamsters. Methodology/Principal Findings Using pull-down and immunoprecipitation assays, distinct molecular interaction between TPPP and PrP were identified and the segment of TPPP spanning residues 100–219 and the segment of PrP spanning residues 106–126 were mapped as the regions responsible for protein interaction. Sedimentation experiments found that TPPP increased the aggregation of full-length recombinant PrP (PrP23–231) in vitro. Transmission electron microscopy and Thioflavin T (ThT) assays showed that TPPP enhanced fibril formation of synthetic peptide PrP106–126 in vitro. Expression of TPPP in the cultured cells did not obviously change the microtubule networks observed by a tubulin-specific immunofluorescent assay and cell growth features measured by CCK8 tests, but significantly antagonized the disruption of microtubule structures and rescued the cytotoxicity caused by the accumulation of cytosolic PrP (CytoPrP). Furthermore, Western blots identified that the levels of the endogenous TPPP in the brains of scrapie-infected experimental hamsters were significantly reduced. Conclusion/Significance Those data highlight TPPP may work as a protective factor for cells against the damage effects of the accumulation of abnormal forms of PrPs, besides its function as an agent for dynamic stabilization of microtubular ultrastructures.
Collapse
Affiliation(s)
- Rui-Min Zhou
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
- Henan Provincial Center for Disease Control and Prevention, Zhengzhou, Henan Province, People's Republic of China
| | - Yuan-Yuan Jing
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Yan Guo
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Chen Gao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Bao-Yun Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Chan Tian
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Zhao-Yun Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Han-Shi Gong
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Jun Han
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Bian-Li Xu
- Henan Provincial Center for Disease Control and Prevention, Zhengzhou, Henan Province, People's Republic of China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
27
|
Vincze O, Oláh J, Zádori D, Klivényi P, Vécsei L, Ovádi J. A new myelin protein, TPPP/p25, reduced in demyelinated lesions is enriched in cerebrospinal fluid of multiple sclerosis. Biochem Biophys Res Commun 2011; 409:137-41. [PMID: 21565174 DOI: 10.1016/j.bbrc.2011.04.130] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 04/28/2011] [Indexed: 11/18/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease with variable extent of remyelination coupled with the differentiation of oligodendrocytes, in which Tubulin Polymerization Promoting Protein/p25 (TPPP/p25) plays a crucial role. Previously we reported that the loss of TPPP/p25-positive oligodendrocytes in demyelinated lesions in the brain of MS patients could be a biomarker for MS [2]. In this work we tested the occurrence of TPPP/p25 in the cerebrospinal fluid (CSF) of MS patients, and by elaborating a sensitive assay for quantification of TPPP/p25 we showed that its level is significantly higher than in the case of non-MS patients. Patients with MS were diagnosed at the Department of Neurology, University of Szeged according to the clinical and laboratory diagnostic criteria of McDonald. In non-MS patients no significant pathological changes were detected on magnetic resonance imaging scans, while in MS patients multiple hyperintense T2 lesions in the white matter were detected. Kurtzke Expanded Disability Status Scale scores as well as IgG level and oligoclonal bands of MS patients were demonstrated. The sensitive assay elaborated in this study is based upon Western blot followed by chemiluminescent detection validated by human recombinant protein. The median TPPP/p25 contents in the CSF were 62.8 and 64.7 μg/L for patients with clinically isolated syndromes and relapsing remitting MS, respectively, while this value for non-MS patients was 27.9 μg/L. The enrichment of TPPP/p25 was independent of age, gender and the time period between lumbar puncture and relapse/shub. These data suggest that the TPPP/p25-based assay could be a powerful diagnostic test for MS patients.
Collapse
Affiliation(s)
- Orsolya Vincze
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
28
|
Margis R, Margis R, Rieder CRM. Identification of blood microRNAs associated to Parkinsonĭs disease. J Biotechnol 2011; 152:96-101. [PMID: 21295623 DOI: 10.1016/j.jbiotec.2011.01.023] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 01/13/2011] [Indexed: 12/16/2022]
Abstract
The present study demonstrates that blood samples can be used as a source of miRNA identification associated to Parkinson's disease (PD). A set of six differentially expressed microRNAs were identified. They form two groups according to their expression profile in control, non-treated, early-onset and treated Parkinson's disease subjects. While miR-1, miR-22* and miR-29 expression levels allowed to distinguish non-treated PD from healthy subjects, miR-16-2*, miR-26a2* and miR30a differentiated treated from untreated patients. This study is innovative in contributing to the development of effective PD biomarkers.
Collapse
Affiliation(s)
- Regina Margis
- Neurology Section, Movement Disorders Unit, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, 90035-00 Porto Alegre, RS, Brazil
| | | | | |
Collapse
|
29
|
Höftberger R, Fink S, Aboul-Enein F, Botond G, Olah J, Berki T, Ovadi J, Lassmann H, Budka H, Kovacs GG. Tubulin polymerization promoting protein (TPPP/p25) as a marker for oligodendroglial changes in multiple sclerosis. Glia 2011; 58:1847-57. [PMID: 20737479 DOI: 10.1002/glia.21054] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Multiple sclerosis (MS) is an idiopathic chronic inflammatory demyelinating disease of the central nervous system with variable extent of remyelination. Remyelination originates from oligodendrocyte (OG) precursor cells, which migrate and differentiate into mature OG. Tubulin polymerization promoting protein (TPPP/p25) is located in mature OG and aggregates in oligodendroglial cytoplasmic inclusions in multiple system atrophy. We developed a novel monoclonal anti-TPPP/p25 antibody to quantify OG in different subtypes and disease stages of MS, and possible degenerative changes in OG. We evaluated autopsy material from 25 MS cases, including acute, primary progressive, secondary progressive, relapsing remitting MS, and five controls. Demyelinated lesions revealed loss of TPPP/p25-positive OG within the plaques. In remyelination, TPPP/p25 was first expressed in OG cytoplasms and later became positive in myelin sheaths. We observed increased numbers of TPPP/p25 immunoreactive OG in the normal appearing white matter (NAWM) in MS patients. In MS cases, the cytoplasmic area of TPPP/p25 immunoreactivity in the OG was higher in the periplaque area when compared with NAWM and the plaque, and TPPP/p25 immunoreactive OG cytoplasmic area inversely correlated with the disease duration. There was a lack of phospho-TDP-43, phospho-tau, α-synuclein, and ubiquitin immunoreactivity in OG with enlarged cytoplasm. Our data suggest impaired differentiation, migration, and activation capacity of OG in later disease stages of MS. Upregulation of TPPP/p25 in the periplaque white matter OG without evidence for inclusion body formation might reflect an activation state. Distinct and increased expression of TPPP/p25 in MS renders it a potential prognostic and diagnostic marker of MS.
Collapse
Affiliation(s)
- Romana Höftberger
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Fjorback AW, Sundbye S, Dächsel JC, Sinning S, Wiborg O, Jensen PH. P25α / TPPP expression increases plasma membrane presentation of the dopamine transporter and enhances cellular sensitivity to dopamine toxicity. FEBS J 2010; 278:493-505. [PMID: 21182589 DOI: 10.1111/j.1742-4658.2010.07970.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Parkinson's disease is characterized by preferential degeneration of the dopamine-producing neurons of the brain stem substantia nigra. Imbalances between mechanisms governing dopamine transport across the plasma membrane and cellular storage vesicles increase the level of toxic pro-oxidative cytosolic dopamine. The microtubule-stabilizing protein p25α accumulates in dopaminergic neurons in Parkinson's disease. We hypothesized that p25α modulates the subcellular localization of the dopamine transporter via effects on sorting vesicles, and thereby indirectly affects its cellular activity. Here we show that co-expression of the dopamine transporter with p25α in HEK-293-MSR cells increases dopamine uptake via increased plasma membrane presentation of the transporter. No direct interaction between p25α and the dopamine transporter was demonstrated, but they co-fractionated during subcellular fractionation of brain tissue from striatum, and direct binding of p25α peptides to brain vesicles was demonstrated. Truncations of the p25α peptide revealed that the requirement for stimulating dopamine uptake is located in the central core and were similar to those required for vesicle binding. Co-expression of p25α and the dopamine transporter in HEK-293-MSR cells sensitized them to the toxicity of extracellular dopamine. Neuronal expression of p25α thus holds the potential to sensitize the cells toward dopamine and toxins carried by the dopamine transporter.
Collapse
Affiliation(s)
- Anja W Fjorback
- Centre for Psychiatric Research, Aarhus University Hospital, Denmark
| | | | | | | | | | | |
Collapse
|
31
|
Lowe J. Neuropathology of dementia with Lewy bodies. HANDBOOK OF CLINICAL NEUROLOGY 2010; 89:321-30. [PMID: 18631757 DOI: 10.1016/s0072-9752(07)01231-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- James Lowe
- School of Molecular Medical Sciences, Medical School, Queens Medical Centre, Nottingham, UK.
| |
Collapse
|
32
|
Hasegawa T, Baba T, Kobayashi M, Konno M, Sugeno N, Kikuchi A, Itoyama Y, Takeda A. Role of TPPP/p25 on α-synuclein-mediated oligodendroglial degeneration and the protective effect of SIRT2 inhibition in a cellular model of multiple system atrophy. Neurochem Int 2010; 57:857-66. [PMID: 20849899 DOI: 10.1016/j.neuint.2010.09.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Revised: 08/31/2010] [Accepted: 09/02/2010] [Indexed: 10/19/2022]
Abstract
Multiple system atrophy (MSA) is a progressive neurodegenerative disorder presenting variable combinations of parkinsonism, cerebellar ataxia, corticospinal and autonomic dysfunction. Alpha-synuclein (α-SYN)-immunopositive glial cytoplasmic inclusions (GCIs) represent the neuropathological hallmark of MSA, and tubulin polymerization promoting protein (TPPP)/p25 in oligodendroglia has been known as a potent stimulator of α-SYN aggregation. To gain insight into the molecular pathomechanisms of GCI formation and subsequent oligodendroglial degeneration, we ectopically expressed α-SYN and TPPP in HEK293T and oligodendroglial KG1C cell lines. Here we showed that TPPP specifically accelerated α-SYN oligomer formation and co-immunoprecipitation analysis revealed the specific interaction of TPPP and α-SYN. Moreover, phosphorylation of α-SYN at Ser-129 facilitated the TPPP-mediated α-SYN oligomerization. TPPP facilitated α-SYN-positive cytoplasmic perinuclear inclusions mimicking GCI in both cell lines; however, apoptotic cell death was only observed in KG1C cells. This apoptotic cell death was partly rescued by sirtuin 2 (SIRT2) inhibition. Together, our results provide further insight into the molecular pathogenesis of MSA and potential therapeutic approaches.
Collapse
Affiliation(s)
- Takafumi Hasegawa
- Department of Neurology, Tohoku University School of Medicine, 1-1, Seiryomachi, Aobaku, Sendai, Miyagi 980-8574, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Skorobogatko YV, Deuso J, Adolf-Bryfogle J, Nowak MG, Gong Y, Lippa CF, Vosseller K. Human Alzheimer's disease synaptic O-GlcNAc site mapping and iTRAQ expression proteomics with ion trap mass spectrometry. Amino Acids 2010; 40:765-79. [PMID: 20563614 DOI: 10.1007/s00726-010-0645-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 05/27/2010] [Indexed: 12/31/2022]
Abstract
Neuronal synaptic functional deficits are linked to impaired learning and memory in Alzheimer's disease (AD). We recently demonstrated that O-GlcNAc, a novel cytosolic and nuclear carbohydrate post-translational modification, is enriched at neuronal synapses and positively regulates synaptic plasticity linked to learning and memory in mice. Reduced levels of O-GlcNAc have been observed in AD, suggesting a possible link to deficits in synaptic plasticity. Using lectin enrichment and mass spectrometry, we mapped several human cortical synaptic O-GlcNAc modification sites. Overlap in patterns of O-GlcNAcation between mouse and human appears to be high, as previously mapped mouse synaptic O-GlcNAc sites in Bassoon, Piccolo, and tubulin polymerization promoting protein p25 were identified in human. Novel O-GlcNAc modification sites were identified on Mek2 and RPN13/ADRM1. Mek2 is a signaling component of the Erk 1/2 pathway involved in synaptic plasticity. RPN13 is a component of the proteasomal degradation pathway. The potential interplay of phosphorylation with mapped O-GlcNAc sites, and possible implication of those sites in synaptic plasticity in normal versus AD states is discussed. iTRAQ is a powerful differential isotopic quantitative approach in proteomics. Pulsed Q dissociation (PQD) is a recently introduced fragmentation strategy that enables detection of low mass iTRAQ reporter ions in ion trap mass spectrometry. We optimized LTQ ion trap settings for PQD-based iTRAQ quantitation and demonstrated its utility in O-GlcNAc site mapping. Using iTRAQ, abnormal synaptic expression levels of several proteins previously implicated in AD pathology were observed in addition to novel changes in synaptic specific protein expression including Synapsin II.
Collapse
Affiliation(s)
- Yuliya V Skorobogatko
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Papp-Lantos inclusions and the pathogenesis of multiple system atrophy: an update. Acta Neuropathol 2010; 119:657-67. [PMID: 20309568 DOI: 10.1007/s00401-010-0672-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/11/2010] [Accepted: 03/13/2010] [Indexed: 12/20/2022]
Abstract
Multiple systemic atrophy (MSA) is a progressive, adult-onset neurodegenerative disorder of undetermined aetiology characterized by a distinctive oligodendrogliopathy with argyrophilic glial cytoplasmic inclusions (GCIs) and selective neurodegeneration. GCIs or Papp-Lantos inclusions, described more than 20 years ago, are now accepted as the hallmarks for the definite neuropathological diagnosis of MSA and suggested to play a central role in the pathogenesis of this disorder. GCIs are composed of hyperphosphorylated alpha-synuclein (alphaSyn), ubiquitin, LRRK2 (leucin-rich repeat serine/threonine-protein) and many other proteins, suggesting that MSA represents an invariable synucleinopathy of non-neuronal type, a specific form of proteinopathies. The origin of alphaSyn deposition in GCIs is not yet fully understood, but recent findings of dysregulation in the metabolism of myelin basic protein (MBP) and p25alpha, a central nervous system-specific protein, also called TPPP (tubulin polymerization promoting protein), strengthened the working model of MSA as a primary glial disorder and may explain frequent alterations of myelin in MSA. However, it is unknown whether these changes represent an early event or myelin dysregulation occurs further downstream in MSA pathogenesis. The association between polymorphisms at the SNCA gene locus and the risk for developing MSA also points to a primary role of alphaSyn in its pathogenesis, while in a MBP promoter-driven alphaSyn transgenic mouse model gliosis accompanied the neurodegenerative process originating in oligodendrocytes. Because alphaSyn represents a major component in both oligodendroglial and neuronal inclusions in MSA, some authors suggested both a primary oligodendrogliopathy and a neuronal synucleinopathy, but current biomolecular data and animal models support a crucial role of the Papp-Lantos inclusions and of aberrant alphaSyn accumulation as their main constituent, causing oligodendroglial pathology, myelin disruption and, finally, neuronal degeneration in MSA. The relationship between oligodendrocytes involved by Papp-Lantos inclusions and those in degenerating neurons in the course of MSA needs further elucidation.
Collapse
|
35
|
Tokési N, Lehotzky A, Horváth I, Szabó B, Oláh J, Lau P, Ovádi J. TPPP/p25 promotes tubulin acetylation by inhibiting histone deacetylase 6. J Biol Chem 2010; 285:17896-906. [PMID: 20308065 DOI: 10.1074/jbc.m109.096578] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
TPPP/p25 (tubulin polymerization-promoting protein/p25) is an unstructured protein that induces microtubule polymerization in vitro and is aligned along the microtubule network in transfected mammalian cells. In normal human brain, TPPP/p25 is expressed predominantly in oligodendrocytes, where its expression is proved to be crucial for their differentiation process. Here we demonstrated that the expression of TPPP/p25 in HeLa cells, in doxycycline-inducible CHO10 cells, and in the oligodendrocyte CG-4 cells promoted the acetylation of alpha-tubulin at residue Lys-40, whereas its down-regulation by specific small interfering RNA in CG-4 cells or by the withdrawal of doxycycline from CHO10 cells decreased the acetylation level of alpha-tubulin. Our results indicate that TPPP/p25 binds to HDAC6 (histone deacetylase 6), an enzyme responsible for tubulin deacetylation. Moreover, we demonstrated that the direct interaction of these two proteins resulted in the inhibition of the deacetylase activity of HDAC6. The measurement of HDAC6 activity showed that TPPP/p25 is able to induce almost complete (90%) inhibition at 3 microM concentration. In addition, treatment of the cells with nocodazole, vinblastine, or cold exposure revealed that microtubule acetylation induced by trichostatin A, a well known HDAC6 inhibitor, does not cause microtubule stabilization. In contrast, the microtubule bundling activity of TPPP/p25 was able to protect the microtubules from depolymerization. Finally, we demonstrated that, similarly to other HDAC6 inhibitors, TPPP/p25 influences the microtubule dynamics by decreasing the growth velocity of the microtubule plus ends and also affects cell motility as demonstrated by time lapse video experiments. Thus, we suggest that TPPP/p25 is a multiple effector of the microtubule organization.
Collapse
Affiliation(s)
- Natália Tokési
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Karolina u 29, H-1113, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
36
|
Lehotzky A, Lau P, Tokési N, Muja N, Hudson LD, Ovádi J. Tubulin polymerization-promoting protein (TPPP/p25) is critical for oligodendrocyte differentiation. Glia 2010; 58:157-68. [PMID: 19606501 DOI: 10.1002/glia.20909] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
TPPP/p25, a recently identified tubulin polymerization-promoting protein (TPPP), is expressed mainly in myelinating oligodendrocytes of the CNS. Here, we show that TPPP/p25 is strongly upregulated during the differentiation of primary oligodendrocyte cells as well as the CG-4 cell line. The microRNA expression profile of CG-4 cells before and after induction of differentiation was established and revealed differential regulation of a limited subset of microRNAs. miR-206, a microRNA predicted to target TPPP/p25, was not detected in oligodendrocytes. Overexpression of miR-206 led to downregulation of TPPP/p25 resulting in inhibition of differentiation. Transfection of siRNAs against TPPP/p25 also inhibited cell differentiation and promoted cell proliferation, providing evidence for an important role of TPPP/p25 during oligodendrogenesis. These results support an essential role for TPPP/p25 in oligodendrocyte differentiation likely via rearrangement of the microtubule system during the process elongation prior to the onset of myelination.
Collapse
Affiliation(s)
- Attila Lehotzky
- Institute of Enzymology, Biological Research Centre, Hungarian Academy of Sciences, H-1113 Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
37
|
Sharma S, Zheng H, Huang YJ, Ertekin A, Hamuro Y, Rossi P, Tejero R, Acton TB, Xiao R, Jiang M, Zhao L, Ma LC, Swapna GVT, Aramini JM, Montelione GT. Construct optimization for protein NMR structure analysis using amide hydrogen/deuterium exchange mass spectrometry. Proteins 2009; 76:882-94. [PMID: 19306341 PMCID: PMC2739808 DOI: 10.1002/prot.22394] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Disordered or unstructured regions of proteins, while often very important biologically, can pose significant challenges for resonance assignment and three-dimensional structure determination of the ordered regions of proteins by NMR methods. In this article, we demonstrate the application of (1)H/(2)H exchange mass spectrometry (DXMS) for the rapid identification of disordered segments of proteins and design of protein constructs that are more suitable for structural analysis by NMR. In this benchmark study, DXMS is applied to five NMR protein targets chosen from the Northeast Structural Genomics project. These data were then used to design optimized constructs for three partially disordered proteins. Truncated proteins obtained by deletion of disordered N- and C-terminal tails were evaluated using (1)H-(15)N HSQC and (1)H-(15)N heteronuclear NOE NMR experiments to assess their structural integrity. These constructs provide significantly improved NMR spectra, with minimal structural perturbations to the ordered regions of the protein structure. As a representative example, we compare the solution structures of the full length and DXMS-based truncated construct for a 77-residue partially disordered DUF896 family protein YnzC from Bacillus subtilis, where deletion of the disordered residues (ca. 40% of the protein) does not affect the native structure. In addition, we demonstrate that throughput of the DXMS process can be increased by analyzing mixtures of up to four proteins without reducing the sequence coverage for each protein. Our results demonstrate that DXMS can serve as a central component of a process for optimizing protein constructs for NMR structure determination.
Collapse
Affiliation(s)
- Seema Sharma
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane, Piscataway, New Jersey 08854
- Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane, Piscataway, New Jersey 08854
| | - Yuanpeng J. Huang
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane, Piscataway, New Jersey 08854
- Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
| | - Asli Ertekin
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane, Piscataway, New Jersey 08854
- Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
| | | | - Paolo Rossi
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane, Piscataway, New Jersey 08854
- Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
| | - Roberto Tejero
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane, Piscataway, New Jersey 08854
- Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
| | - Thomas B. Acton
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane, Piscataway, New Jersey 08854
- Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
| | - Rong Xiao
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane, Piscataway, New Jersey 08854
- Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
| | - Mei Jiang
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane, Piscataway, New Jersey 08854
- Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
| | - Li Zhao
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane, Piscataway, New Jersey 08854
- Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
| | - Li-Chung Ma
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane, Piscataway, New Jersey 08854
- Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
| | - G. V. T. Swapna
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane, Piscataway, New Jersey 08854
- Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
| | - James M. Aramini
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane, Piscataway, New Jersey 08854
- Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
| | - Gaetano T. Montelione
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane, Piscataway, New Jersey 08854
- Northeast Structural Genomics Consortium, Rutgers University, Piscataway, New Jersey 08854
- Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854
| |
Collapse
|
38
|
Ovádi J, Orosz F. An unstructured protein with destructive potential: TPPP/p25 in neurodegeneration. Bioessays 2009; 31:676-86. [DOI: 10.1002/bies.200900008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
39
|
Wenning GK, Stefanova N. Recent developments in multiple system atrophy. J Neurol 2009; 256:1791-808. [PMID: 19471850 DOI: 10.1007/s00415-009-5173-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 04/29/2009] [Accepted: 05/07/2009] [Indexed: 01/16/2023]
Abstract
Multiple system atrophy (MSA) is a rare late onset neurodegenerative disorder which presents with autonomic failure and a complicated motor syndrome including atypical parkinsonism, ataxia and pyramidal signs. MSA is a glial alpha-synucleinopathy with rapid progression and currently poor therapeutic management. This paper reviews the clinical features, natural history and novel diagnostic criteria for MSA as well as contemporary knowledge on pathogenesis based on evidence from neuropathological studies and experimental models. An outline of the rationale for managing symptomatic deterioration in MSA is provided together with a summary of novel experimental therapeutic approaches to decrease disease progression.
Collapse
Affiliation(s)
- Gregor K Wenning
- Section of Clinical Neurobiology, Department of Neurology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria.
| | | |
Collapse
|
40
|
Goldbaum O, Jensen PH, Richter-Landsberg C. The expression of tubulin polymerization promoting protein TPPP/p25alpha is developmentally regulated in cultured rat brain oligodendrocytes and affected by proteolytic stress. Glia 2009; 56:1736-46. [PMID: 18563798 DOI: 10.1002/glia.20720] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The tubulin polymerization-promoting protein (TPPP)/p25alpha was identified as a brain specific protein, is associated with microtubules (MTs) in vitro and can promote abnormal MT assembly. Furthermore it has aggregation promoting properties and is a constituent in pathological protein deposits of neurodegenerative diseases. In the brain, TPPP/p25alpha is present in myelinating oligodendrocytes. Here we show, using cultured rat brain oligodendrocytes, that TPPP/p25alpha expression is increasing during development in culture, and particularly in immature cells is associated with the centrosome. MT binding properties in oligodendrocytes are rather low, however, when MTs are disassembled by nocodazole, TPPP/p25alpha accumulates in the perinuclear region. Treatment of oligodendrocytes with the proteasomal inhibitor MG-132 (1 micaroM; 18 h) caused an increase in the amount of TPPP/p25alpha by about 40%, a decrease in its solubility, and led to the appearance of TPPP/p25alpha-positive cytoplasmic inclusions, which stained with thioflavin S and resembled inclusion bodies. Hence, it might be speculated that acute or chronic malfunction of the proteasomal degradation system, leading to the accumulation of aggregation prone proteins and the pro-aggregatory protein TPPP/p25alpha or to the aggregation of TPPP/p25alpha on its own, is causally related to the protein aggregation process in a variety of neurodegenerative diseases.
Collapse
Affiliation(s)
- Olaf Goldbaum
- Department of Biology, Molecular Neurobiology, University of Oldenburg, Oldenburg, Germany
| | | | | |
Collapse
|
41
|
Orosz F, Lehotzky A, Oláh J, Ovádi J. TPPP/p25: A New Unstructured Protein Hallmarking Synucleinopathies. PROTEIN FOLDING AND MISFOLDING: NEURODEGENERATIVE DISEASES 2008. [DOI: 10.1007/978-1-4020-9434-7_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
42
|
Protein-Based Neuropathology and Molecular Classification of Human Neurodegenerative Diseases. PROTEIN FOLDING AND MISFOLDING: NEURODEGENERATIVE DISEASES 2008. [DOI: 10.1007/978-1-4020-9434-7_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Huang Y, Song YJC, Murphy K, Holton JL, Lashley T, Revesz T, Gai WP, Halliday GM. LRRK2 and parkin immunoreactivity in multiple system atrophy inclusions. Acta Neuropathol 2008; 116:639-46. [PMID: 18936941 DOI: 10.1007/s00401-008-0446-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 10/07/2008] [Accepted: 10/07/2008] [Indexed: 11/26/2022]
Abstract
Certain genetic defects in LRRK2 and parkin are pathogenic for Parkinson's disease (PD) and both proteins deposit in the characteristic Lewy bodies. LRRK2 is thought to be involved in the early initiation of Lewy bodies. The involvement of LRRK2 and parkin in the similar cellular deposition of fibrillar alpha-synuclein in glial cytoplasmic inclusions (GCI) in multiple system atrophy (MSA) has not yet been assessed. To determine whether LRRK2 and parkin may be similarly associated with the abnormal deposition of alpha-synuclein in MSA GCI, paraffin-embedded sections from the basal ganglia of 12 patients with MSA, 4 with PD and 4 controls were immunostained for LRRK2, parkin, alpha-synuclein and oligodendroglial proteins using triple labelling procedures. The severity of neuronal loss was graded and the proportion of abnormally enlarged oligodendroglia containing different combinations of proteins assessed in 80-100 cells per case. Parkin immunoreactivity was observed in only a small proportion of GCI. In contrast, LRRK2 was found in most of the enlarged oligodendroglia in MSA and colocalised with the majority of alpha-synuclein-immunopositive GCI. Degrading myelin sheaths containing LRRK2-immunoreactivity were also observed, showing an association with one of the earliest oligodendroglial abnormalities observed in MSA. The proportion of LRRK2-immunopositive GCI was negatively associated with an increase in neuronal loss and alpha-synuclein-immunopositive dystrophic axons. Our results indicate that an increase in LRRK2 expression occurs early in association with myelin degradation and GCI formation, and that a reduction in LRRK2 expression in oligodendroglia is associated with increased neuronal loss in MSA.
Collapse
Affiliation(s)
- Yue Huang
- Prince of Wales Medical Research Institute, Barker Street, Randwick, NSW, 2031, Australia
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Judit Ovádi
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, H-1113 Budapest, Hungary.
| |
Collapse
|
45
|
Wenning GK, Stefanova N, Jellinger KA, Poewe W, Schlossmacher MG. Multiple system atrophy: a primary oligodendrogliopathy. Ann Neurol 2008; 64:239-46. [PMID: 18825660 DOI: 10.1002/ana.21465] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To this day, the cause of multiple system atrophy (MSA) remains stubbornly enigmatic. A growing body of observations regarding the clinical, morphological, and biochemical phenotypes of MSA has been published, but the interested student is still left without a clue as to its underlying cause. MSA has long been considered a rare cousin of Parkinson's disease and cerebellar degeneration; it is rich in acronyms but poor in genetic and environmental leads. Because of the worldwide research efforts conducted over the last two decades and the discovery of the alpha-synuclein-encoding SNCA gene as a cause of rare familial Parkinson's disease, the MSA field has seen advances on three fronts: the identification of its principal cellular target, that is, oligodendrocytes; the characterization of alpha-synuclein-rich glial cytoplasmic inclusions as a suitable marker at autopsy; and improved diagnostic accuracy in living patients resulting from detailed clinicopathological studies. The working model of MSA as a primary glial disorder was recently strengthened by the finding of dysregulation in the metabolism of myelin basic protein and p25alpha, a central nervous system-specific phosphoprotein (also called tubulin polymerization promoting protein, TPPP). Intriguingly, in early cases of MSA, the oligodendrocytic changes in myelin basic protein and p25alpha processing were recorded even before formation of glial cytoplasmic inclusions became detectable. Here, we review the evolving concept that MSA may not just be related to Parkinson's disease but also share traits with the family of demyelinating disorders. Although these syndromes vary in their respective cause of oligodendrogliopathy, they have in common myelin disruption that is often followed by axonal dysfunction.
Collapse
Affiliation(s)
- Gregor K Wenning
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
46
|
Orosz F, Ovádi J. TPPP orthologs are ciliary proteins. FEBS Lett 2008; 582:3757-64. [DOI: 10.1016/j.febslet.2008.10.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 10/01/2008] [Accepted: 10/02/2008] [Indexed: 10/21/2022]
|
47
|
Lehotzky A, Tőkési N, Gonzalez-Alvarez I, Merino V, Bermejo M, Orosz F, Lau P, Kovacs G, Ovádi J. Progress in the development of early diagnosis and a drug with unique pharmacology to improve cancer therapy. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2008; 366:3599-3617. [PMID: 18644768 PMCID: PMC2696110 DOI: 10.1098/rsta.2008.0106] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Cancer continues to be one of the major health and socio-economic problems worldwide, despite considerable efforts to improve its early diagnosis and treatment. The identification of new constituents as biomarkers for early diagnosis of neoplastic cells and the discovery of new type of drugs with their mechanistic actions are crucial to improve cancer therapy. New drugs have entered the market, thanks to industrial and legislative efforts ensuring continuity of pharmaceutical development. New targets have been identified, but cancer therapy and the anti-cancer drug market still partly depend on anti-mitotic agents. The objective of this paper is to show the effects of KAR-2, a potent anti-mitotic compound, and TPPP/p25, a new unstructured protein, on the structural and functional characteristics of the microtubule system. Understanding the actions of these two potential effectors on the microtubule system could be the clue for early diagnosis and improvement of cancer therapy.
Collapse
Affiliation(s)
- A. Lehotzky
- Institute of Enzymology, Biological Research Centre, Hungarian Academy of SciencesKarolina út 29, 1113 Budapest, Hungary
| | - N. Tőkési
- Institute of Enzymology, Biological Research Centre, Hungarian Academy of SciencesKarolina út 29, 1113 Budapest, Hungary
| | - I. Gonzalez-Alvarez
- Department of Pharmaceutics and Pharmaceutical Technology, University of Valencia46010 Valencia, Spain
| | - V. Merino
- Department of Pharmaceutics and Pharmaceutical Technology, University of Valencia46010 Valencia, Spain
| | - M. Bermejo
- Department of Pharmaceutics and Pharmaceutical Technology, University of Valencia46010 Valencia, Spain
| | - F. Orosz
- Institute of Enzymology, Biological Research Centre, Hungarian Academy of SciencesKarolina út 29, 1113 Budapest, Hungary
| | - P. Lau
- Section of Developmental Genetics, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesda, MD 20892, USA
| | - G.G. Kovacs
- Institute of Neurology, Medical University of Vienna1097 Vienna, Austria
| | - J. Ovádi
- Institute of Enzymology, Biological Research Centre, Hungarian Academy of SciencesKarolina út 29, 1113 Budapest, Hungary
| |
Collapse
|
48
|
Kleinnijenhuis AJ, Hedegaard C, Lundvig D, Sundbye S, Issinger OG, Jensen ON, Jensen PH. Identification of multiple post-translational modifications in the porcine brain specific p25. J Neurochem 2008; 106:925-33. [DOI: 10.1111/j.1471-4159.2008.05437.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Song YJC, Lundvig DMS, Huang Y, Gai WP, Blumbergs PC, Højrup P, Otzen D, Halliday GM, Jensen PH. p25alpha relocalizes in oligodendroglia from myelin to cytoplasmic inclusions in multiple system atrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1291-303. [PMID: 17823288 PMCID: PMC1988878 DOI: 10.2353/ajpath.2007.070201] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
p25alpha is an oligodendroglial protein that can induce aggregation of alpha-synuclein and accumulates in oligodendroglial cell bodies containing fibrillized alpha-synuclein in the neurodegenerative disease multiple system atrophy (MSA). We demonstrate biochemically that p25alpha is a constituent of myelin and a high-affinity ligand for myelin basic protein (MBP), and in situ immunohistochemistry revealed that MBP and p25alpha colocalize in myelin in normal human brains. Analysis of MSA cases reveals dramatic changes in p25alpha and MBP throughout the course of the disease. In situ immunohistochemistry revealed a cellular redistribution of p25alpha immunoreactivity from the myelin to the oligodendroglial cell soma, with no overall change in p25alpha protein concentration using immunoblotting. Concomitantly, an approximately 80% reduction in the concentration of full-length MBP protein was revealed by immunoblotting along with the presence of immunoreactivity for MBP degradation products in oligodendroglia. The oligodendroglial cell bodies in MSA displayed an enlargement along with the relocalization of p25alpha, and this was enhanced after the deposition of alpha-synuclein in the glial cytoplasmic inclusions. Overall, the data indicate that changes in the cellular interactions between MBP and p25alpha occur early in MSA and contribute to abnormalities in myelin and subsequent alpha-synuclein aggregation and the ensuing neuronal degeneration that characterizes this disease.
Collapse
Affiliation(s)
- Yun Ju C Song
- Prince of Wales Medical Research Institute, Randwick, New South Wales, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|