1
|
Godoy-Corchuelo JM, Ali Z, Brito Armas JM, Martins-Bach AB, García-Toledo I, Fernández-Beltrán LC, López-Carbonero JI, Bascuñana P, Spring S, Jimenez-Coca I, Muñoz de Bustillo Alfaro RA, Sánchez-Barrena MJ, Nair RR, Nieman BJ, Lerch JP, Miller KL, Ozdinler HP, Fisher EMC, Cunningham TJ, Acevedo-Arozena A, Corrochano S. TDP-43-M323K causes abnormal brain development and progressive cognitive and motor deficits associated with mislocalised and increased levels of TDP-43. Neurobiol Dis 2024; 193:106437. [PMID: 38367882 PMCID: PMC10988218 DOI: 10.1016/j.nbd.2024.106437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024] Open
Abstract
TDP-43 pathology is found in several neurodegenerative disorders, collectively referred to as "TDP-43 proteinopathies". Aggregates of TDP-43 are present in the brains and spinal cords of >97% of amyotrophic lateral sclerosis (ALS), and in brains of ∼50% of frontotemporal dementia (FTD) patients. While mutations in the TDP-43 gene (TARDBP) are usually associated with ALS, many clinical reports have linked these mutations to cognitive impairments and/or FTD, but also to other neurodegenerative disorders including Parkinsonism (PD) or progressive supranuclear palsy (PSP). TDP-43 is a ubiquitously expressed, highly conserved RNA-binding protein that is involved in many cellular processes, mainly RNA metabolism. To investigate systemic pathological mechanisms in TDP-43 proteinopathies, aiming to capture the pleiotropic effects of TDP-43 mutations, we have further characterised a mouse model carrying a point mutation (M323K) within the endogenous Tardbp gene. Homozygous mutant mice developed cognitive and behavioural deficits as early as 3 months of age. This was coupled with significant brain structural abnormalities, mainly in the cortex, hippocampus, and white matter fibres, together with progressive cortical interneuron degeneration and neuroinflammation. At the motor level, progressive phenotypes appeared around 6 months of age. Thus, cognitive phenotypes appeared to be of a developmental origin with a mild associated progressive neurodegeneration, while the motor and neuromuscular phenotypes seemed neurodegenerative, underlined by a progressive loss of upper and lower motor neurons as well as distal denervation. This is accompanied by progressive elevated TDP-43 protein and mRNA levels in cortex and spinal cord of homozygous mutant mice from 3 months of age, together with increased cytoplasmic TDP-43 mislocalisation in cortex, hippocampus, hypothalamus, and spinal cord at 12 months of age. In conclusion, we find that Tardbp M323K homozygous mutant mice model many aspects of human TDP-43 proteinopathies, evidencing a dual role for TDP-43 in brain morphogenesis as well as in the maintenance of the motor system, making them an ideal in vivo model system to study the complex biology of TDP-43.
Collapse
Affiliation(s)
- Juan M Godoy-Corchuelo
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
| | - Zeinab Ali
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain; MRC Harwell Institute, Oxfordshire, UK
| | - Jose M Brito Armas
- Unidad de Investigación, Hospital Universitario de Canarias, ITB-ULL and CIBERNED, La Laguna, Spain
| | | | - Irene García-Toledo
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
| | - Luis C Fernández-Beltrán
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain; Department of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan I López-Carbonero
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
| | - Pablo Bascuñana
- Brain Mapping Group, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Shoshana Spring
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Irene Jimenez-Coca
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
| | | | - Maria J Sánchez-Barrena
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry "Blas Cabrera", CSIC, Madrid, Spain
| | - Remya R Nair
- MRC Harwell Institute, Oxfordshire, UK; Nucleic Acid Therapy Accelerator (NATA), Harwell Campus, Oxfordshire, UK
| | - Brian J Nieman
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jason P Lerch
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Karla L Miller
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Hande P Ozdinler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, and UCL Queen Square Motor Neuron Disease Centre, UCL, Institute of Neurology, London, UK
| | - Thomas J Cunningham
- MRC Harwell Institute, Oxfordshire, UK; MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, UK
| | - Abraham Acevedo-Arozena
- Unidad de Investigación, Hospital Universitario de Canarias, ITB-ULL and CIBERNED, La Laguna, Spain.
| | - Silvia Corrochano
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain; MRC Harwell Institute, Oxfordshire, UK.
| |
Collapse
|
2
|
Hung C, Patani R. Elevated 4R tau contributes to endolysosomal dysfunction and neurodegeneration in VCP-related frontotemporal dementia. Brain 2024; 147:970-979. [PMID: 37882537 PMCID: PMC10907086 DOI: 10.1093/brain/awad370] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/27/2023] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two incurable neurodegenerative diseases that exist on a clinical, genetic and pathological spectrum. The VCP gene is highly relevant, being directly implicated in both FTD and ALS. Here, we investigate the effects of VCP mutations on the cellular homoeostasis of human induced pluripotent stem cell-derived cortical neurons, focusing on endolysosomal biology and tau pathology. We found that VCP mutations cause abnormal accumulation of enlarged endolysosomes accompanied by impaired interaction between two nuclear RNA binding proteins: fused in sarcoma (FUS) and splicing factor, proline- and glutamine-rich (SFPQ) in human cortical neurons. The spatial dissociation of intranuclear FUS and SFPQ correlates with alternative splicing of the MAPT pre-mRNA and increased tau phosphorylation. Importantly, we show that inducing 4R tau expression using antisense oligonucleotide technology is sufficient to drive neurodegeneration in control human neurons, which phenocopies VCP-mutant neurons. In summary, our findings demonstrate that tau hyperphosphorylation, endolysosomal dysfunction, lysosomal membrane rupture, endoplasmic reticulum stress and apoptosis are driven by a pathogenic increase in 4R tau.
Collapse
Affiliation(s)
- Christy Hung
- Human Stem Cells and Neurodegeneration Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, London WC1N 1DZ, UK
| | - Rickie Patani
- Human Stem Cells and Neurodegeneration Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
3
|
Lo Piccolo L, Umegawachi T, Yeewa R, Potikanond S, Nimlamool W, Prachayasittikul V, Gotoh Y, Yoshida H, Yamaguchi M, Jantrapirom S. A Novel Drosophila-based Drug Repurposing Platform Identified Fingolimod As a Potential Therapeutic for TDP-43 Proteinopathy. Neurotherapeutics 2023; 20:1330-1346. [PMID: 37493896 PMCID: PMC10480388 DOI: 10.1007/s13311-023-01406-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
Pathogenic changes to TAR DNA-binding protein 43 (TDP-43) leading to alteration of its homeostasis are a common feature shared by several progressive neurodegenerative diseases for which there is no effective therapy. Here, we developed Drosophila lines expressing either wild type TDP-43 (WT) or that carrying an Amyotrophic Lateral Sclerosis /Frontotemporal Lobar Degeneration-associating G384C mutation that recapitulate several aspects of the TDP-43 pathology. To identify potential therapeutics for TDP-43-related diseases, we implemented a drug repurposing strategy that involved three consecutive steps. Firstly, we evaluated the improvement of eclosion rate, followed by the assessment of locomotive functions at early and late developmental stages. Through this approach, we successfully identified fingolimod, as a promising candidate for modulating TDP-43 toxicity. Fingolimod exhibited several beneficial effects in both WT and mutant models of TDP-43 pathology, including post-transcriptional reduction of TDP-43 levels, rescue of pupal lethality, and improvement of locomotor dysfunctions. These findings provide compelling evidence for the therapeutic potential of fingolimod in addressing TDP-43 pathology, thereby strengthening the rationale for further investigation and consideration of clinical trials. Furthermore, our study demonstrates the utility of our Drosophila-based screening pipeline in identifying novel therapeutics for TDP-43-related diseases. These findings encourage further scale-up screening endeavors using this platform to discover additional compounds with therapeutic potential for TDP-43 pathology.
Collapse
Affiliation(s)
- Luca Lo Piccolo
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Medicine, Musculoskeletal Science and Translational Research Centre (MSTR), Chiang Mai University, Chiang Mai, Thailand
| | | | - Ranchana Yeewa
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Chiang Mai, Thailand
| | - Yusuke Gotoh
- Platform Technology Research Unit, Sumitomo Pharma Co., Ltd, Kyoto, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| | | | - Salinee Jantrapirom
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
- Drosophila Centre for Human Diseases and Drug Discovery (DHD), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
4
|
Baughn MW, Melamed Z, López-Erauskin J, Beccari MS, Ling K, Zuberi A, Presa M, Gil EG, Maimon R, Vazquez-Sanchez S, Chaturvedi S, Bravo-Hernández M, Taupin V, Moore S, Artates JW, Acks E, Ndayambaje IS, de Almeida Quadros ARA, Jafar-nejad P, Rigo F, Bennett CF, Lutz C, Lagier-Tourenne C, Cleveland DW. Mechanism of STMN2 cryptic splice-polyadenylation and its correction for TDP-43 proteinopathies. Science 2023; 379:1140-1149. [PMID: 36927019 PMCID: PMC10148063 DOI: 10.1126/science.abq5622] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 02/02/2023] [Indexed: 03/18/2023]
Abstract
Loss of nuclear TDP-43 is a hallmark of neurodegeneration in TDP-43 proteinopathies, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP-43 mislocalization results in cryptic splicing and polyadenylation of pre-messenger RNAs (pre-mRNAs) encoding stathmin-2 (also known as SCG10), a protein that is required for axonal regeneration. We found that TDP-43 binding to a GU-rich region sterically blocked recognition of the cryptic 3' splice site in STMN2 pre-mRNA. Targeting dCasRx or antisense oligonucleotides (ASOs) suppressed cryptic splicing, which restored axonal regeneration and stathmin-2-dependent lysosome trafficking in TDP-43-deficient human motor neurons. In mice that were gene-edited to contain human STMN2 cryptic splice-polyadenylation sequences, ASO injection into cerebral spinal fluid successfully corrected Stmn2 pre-mRNA misprocessing and restored stathmin-2 expression levels independently of TDP-43 binding.
Collapse
Affiliation(s)
- Michael W. Baughn
- Ludwig Institute for Cancer Research, University of California at San Diego; La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego; La Jolla, CA 92093, USA
| | - Ze’ev Melamed
- Ludwig Institute for Cancer Research, University of California at San Diego; La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego; La Jolla, CA 92093, USA
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Jone López-Erauskin
- Ludwig Institute for Cancer Research, University of California at San Diego; La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego; La Jolla, CA 92093, USA
| | - Melinda S Beccari
- Ludwig Institute for Cancer Research, University of California at San Diego; La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego; La Jolla, CA 92093, USA
| | - Karen Ling
- Ionis Pharmaceuticals; Carlsbad, CA 92010, USA
| | - Aamir Zuberi
- Rare Disease Translation Center, The Jackson Laboratory; Bar Harbor, ME 04609
| | - Maximilliano Presa
- Rare Disease Translation Center, The Jackson Laboratory; Bar Harbor, ME 04609
| | - Elena Gonzalo Gil
- Rare Disease Translation Center, The Jackson Laboratory; Bar Harbor, ME 04609
| | - Roy Maimon
- Ludwig Institute for Cancer Research, University of California at San Diego; La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego; La Jolla, CA 92093, USA
| | - Sonia Vazquez-Sanchez
- Ludwig Institute for Cancer Research, University of California at San Diego; La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego; La Jolla, CA 92093, USA
| | - Som Chaturvedi
- Department of Cellular and Molecular Medicine, University of California at San Diego; La Jolla, CA 92093, USA
| | - Mariana Bravo-Hernández
- Department of Cellular and Molecular Medicine, University of California at San Diego; La Jolla, CA 92093, USA
| | - Vanessa Taupin
- Department of Cellular and Molecular Medicine, University of California at San Diego; La Jolla, CA 92093, USA
| | - Stephen Moore
- Department of Cellular and Molecular Medicine, University of California at San Diego; La Jolla, CA 92093, USA
| | - Jonathan W. Artates
- Ludwig Institute for Cancer Research, University of California at San Diego; La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego; La Jolla, CA 92093, USA
| | - Eitan Acks
- Ludwig Institute for Cancer Research, University of California at San Diego; La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego; La Jolla, CA 92093, USA
| | - I. Sandra Ndayambaje
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School; Boston, MA 02114, USA
| | - Ana R. Agra de Almeida Quadros
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School; Boston, MA 02114, USA
| | | | - Frank Rigo
- Ionis Pharmaceuticals; Carlsbad, CA 92010, USA
| | | | - Cathleen Lutz
- Rare Disease Translation Center, The Jackson Laboratory; Bar Harbor, ME 04609
| | - Clotilde Lagier-Tourenne
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School; Boston, MA 02114, USA
- Broad Institute of Harvard University and MIT; Cambridge, MA 02142, USA
| | - Don W. Cleveland
- Ludwig Institute for Cancer Research, University of California at San Diego; La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego; La Jolla, CA 92093, USA
| |
Collapse
|
5
|
Nag N, Tripathi T. Tau-FG-nucleoporin98 interaction and impaired nucleocytoplasmic transport in Alzheimer's disease. Brief Funct Genomics 2022; 22:161-167. [PMID: 35923096 DOI: 10.1093/bfgp/elac022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 11/14/2022] Open
Abstract
An emerging pathophysiology associated with the neurodegenerative Alzheimer's disease (AD) is the impairment of nucleocytoplasmic transport (NCT). The impairment can originate from damage to the nuclear pore complex (NPC) or other factors involved in NCT. The phenylalanine-glycine nucleoporins (FG-Nups) form a crucial component of the NPC, which is central to NCT. Recent discoveries have highlighted that the neuropathological protein tau is involved in direct interactions with the FG-Nups and impairment of the NCT process. Targeting such interactions may lead to the identification of novel interaction inhibitors and offer new therapeutic alternatives for the treatment of AD. This review highlights recent findings associated with impaired NCT in AD and the interaction between tau and the FG-Nups.
Collapse
Affiliation(s)
- Niharika Nag
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Timir Tripathi
- Regional Director's Office, Indira Gandhi National Open University (IGNOU), Regional Centre Kohima, Kenuozou, Kohima 797001, India
| |
Collapse
|
6
|
Iatrou A, Clark EM, Wang Y. Nuclear dynamics and stress responses in Alzheimer's disease. Mol Neurodegener 2021; 16:65. [PMID: 34535174 PMCID: PMC8447732 DOI: 10.1186/s13024-021-00489-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
In response to extracellular and intracellular stressors, the nucleus and nuclear compartments undergo distinct molecular changes to maintain cell homeostasis. In the context of Alzheimer’s disease, misfolded proteins and various cellular stressors lead to profound structural and molecular changes at the nucleus. This review summarizes recent research on nuclear alterations in AD development, from the nuclear envelope changes to chromatin and epigenetic regulation and then to common nuclear stress responses. Finally, we provide our thoughts on the importance of understanding cell-type-specific changes and identifying upstream causal events in AD pathogenesis and highlight novel sequencing and gene perturbation technologies to address those challenges.
Collapse
Affiliation(s)
- Artemis Iatrou
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W. Harrison St., Chicago, IL, 60612, USA
| | - Eric M Clark
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W. Harrison St., Chicago, IL, 60612, USA
| | - Yanling Wang
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W. Harrison St., Chicago, IL, 60612, USA.
| |
Collapse
|
7
|
Hachiya N, Sochocka M, Brzecka A, Shimizu T, Gąsiorowski K, Szczechowiak K, Leszek J. Nuclear Envelope and Nuclear Pore Complexes in Neurodegenerative Diseases-New Perspectives for Therapeutic Interventions. Mol Neurobiol 2021; 58:983-995. [PMID: 33067781 PMCID: PMC7878205 DOI: 10.1007/s12035-020-02168-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
Transport of proteins, transcription factors, and other signaling molecules between the nucleus and cytoplasm is necessary for signal transduction. The study of these transport phenomena is particularly challenging in neurons because of their highly polarized structure. The bidirectional exchange of molecular cargoes across the nuclear envelope (NE) occurs through nuclear pore complexes (NPCs), which are aqueous channels embedded in the nuclear envelope. The NE and NPCs regulate nuclear transport but are also emerging as relevant regulators of chromatin organization and gene expression. The alterations in nuclear transport are regularly identified in affected neurons associated with human neurodegenerative diseases. This review presents insights into the roles played by nuclear transport defects in neurodegenerative disease, focusing primarily on NE proteins and NPCs. The subcellular mislocalization of proteins might be a very desirable means of therapeutic intervention in neurodegenerative disorders.
Collapse
Affiliation(s)
- Naomi Hachiya
- Tokyo Metropolitan Industrial Technology Research Institute, Tokyo, Japan
| | - Marta Sochocka
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Anna Brzecka
- Department of Pulmonology and Lung Cancer, Wroclaw Medical University, Wroclaw, Poland
| | - Takuto Shimizu
- Tokyo Metropolitan Industrial Technology Research Institute, Tokyo, Japan
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | | | | | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, Wybrzeże L. Pasteura 10, 50-367, Wroclaw, Poland.
| |
Collapse
|
8
|
Lei Y, Zhang ZF, Lei RX, Wang S, Zhuang Y, Liu AC, Wu Y, Chen J, Tang JC, Pan MX, Liu R, Liao WJ, Feng YG, Wan Q, Zheng M. DJ-1 Suppresses Cytoplasmic TDP-43 Aggregation in Oxidative Stress-Induced Cell Injury. J Alzheimers Dis 2019; 66:1001-1014. [PMID: 30372676 DOI: 10.3233/jad-180460] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DJ-1 (also called PARK7) is a multifunctional redox-sensitive protein that is protective against oxidative stress-induced cell death. TAR DNA-binding protein 43 (TDP-43) is a major protein component of pathological inclusions in amyotrophic lateral sclerosis and frontotemporal dementia. Reducing aberrant aggregation of TDP-43 is a potential approach to prevent cell death. To investigate whether DJ-1 might inhibit TDP-43 aggregation to exert a protective effect in oxidative stress-induced injury, we tested the protein level and subcellular localization of TDP-43 and DJ-1 in SH-SY5Y cells transfected with wild-type DJ-1, DJ-1 mutant (L166P) cDNA, or DJ-1 siRNA. We show that oxidative stress induced by paraquat leads to the formation of cytosolic TDP-43 aggregation in SH-SY5Y cells. DJ-1 overexpression decreases paraquat-induced cytoplasmic accumulation of TDP-43 in SH-SY5Y cells and protects against paraquat-induced cell death. Transfection of DJ-1 L166P mutant or DJ-1 siRNA leads to increased cytosolic aggregation of TDP-43 in paraquat-treated SH-SY5Y cells and promotes cell death. These data suggest that DJ-1 may protect against oxidative stress-induced cell death through the suppression of cytoplasmic TDP-43 aggregation.
Collapse
Affiliation(s)
- Yang Lei
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Zhi-Feng Zhang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China.,Department of Physiology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Rui-Xue Lei
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Shu Wang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Yang Zhuang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - An-Chun Liu
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Yan Wu
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Juan Chen
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Jun-Chun Tang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Meng-Xian Pan
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Rui Liu
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Wei-Jing Liao
- Center for Brain Clinic, Zhongnan Hospital, Wuhan University School of Medicine, Wuhan, China
| | - Yu-Gong Feng
- Research Institute of Neuroregeneration & Neurorehabilitation, and Department of Neurosurgery, Qingdao University, Qingdao, China
| | - Qi Wan
- Research Institute of Neuroregeneration & Neurorehabilitation, and Department of Neurosurgery, Qingdao University, Qingdao, China
| | - Mei Zheng
- Department of Neurology, Beijing University Third Hospital, Beijing, China
| |
Collapse
|
9
|
Tau and TDP-43 proteinopathies: kindred pathologic cascades and genetic pleiotropy. J Transl Med 2019; 99:993-1007. [PMID: 30742063 PMCID: PMC6609463 DOI: 10.1038/s41374-019-0196-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 12/11/2022] Open
Abstract
We review the literature on Tau and TDP-43 proteinopathies in aged human brains and the relevant underlying pathogenetic cascades. Complex interacting pathways are implicated in Alzheimer's disease and related dementias (ADRD), wherein multiple proteins tend to misfold in a manner that is "reactive," but, subsequently, each proteinopathy may contribute strongly to the clinical symptoms. Tau proteinopathy exists in brains of individuals across a broad spectrum of primary underlying conditions-e.g., developmental, traumatic, and inflammatory/infectious diseases. TDP-43 proteinopathy is also expressed in a wide range of clinical disorders. Although TDP-43 proteinopathy was first described in the central nervous system of patients with amyotrophic lateral sclerosis (ALS) and in subtypes of frontotemporal dementia (FTD/FTLD), TDP-43 proteinopathy is also present in chronic traumatic encephalopathy, cognitively impaired persons in advanced age with hippocampal sclerosis, Huntington's disease, and other diseases. We list known Tau and TDP-43 proteinopathies. There is also evidence of cellular co-localization between Tau and TDP-43 misfolded proteins, suggesting common pathways or protein interactions facilitating misfolding in one protein by the other. Multiple pleiotropic gene variants can alter risk for Tau or TDP-43 pathologies, and certain gene variants (e.g., APOE ε4, Huntingtin triplet repeats) are associated with increases of both Tau and TDP-43 proteinopathies. Studies of genetic risk factors have provided insights into multiple nodes of the pathologic cascades involved in Tau and TDP-43 proteinopathies. Variants from a specific gene can be either a low-penetrant risk factor for a group of diseases, or alternatively, a different variant of the same gene may be a disease-driving allele that is associated with a relatively aggressive and early-onset version of a clinically and pathologically specific disease type. Overall, a complex but enlightening paradigm has emerged, wherein both Tau and TDP-43 proteinopathies are linked to numerous overlapping upstream influences, and both are associated with multiple downstream pathologically- and clinically-defined deleterious effects.
Collapse
|
10
|
Pons M, Prieto S, Miguel L, Frebourg T, Campion D, Suñé C, Lecourtois M. Identification of TCERG1 as a new genetic modulator of TDP-43 production in Drosophila. Acta Neuropathol Commun 2018; 6:138. [PMID: 30541625 PMCID: PMC6292132 DOI: 10.1186/s40478-018-0639-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/23/2018] [Indexed: 12/11/2022] Open
Abstract
TAR DNA-binding protein-43 (TDP-43) is a ubiquitously expressed DNA-/RNA-binding protein that has been linked to numerous aspects of the mRNA life cycle. Similar to many RNA-binding proteins, TDP-43 expression is tightly regulated through an autoregulatory negative feedback loop. Cell function and survival depend on the strict control of TDP-43 protein levels. TDP-43 has been identified as the major constituent of ubiquitin-positive inclusions in patients with Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD). Several observations argue for a pathogenic role of elevated TDP-43 levels in these disorders. Modulation of the cycle of TDP-43 production might therefore provide a new therapeutic strategy. Using a Drosophila model mimicking key features of the TDP-43 autoregulatory feedback loop, we identified CG42724 as a genetic modulator of TDP-43 production in vivo. We found that CG42724 protein influences qualitatively and quantitatively the TDP-43 mRNA transcript pattern. CG42724 overexpression promotes the production of transcripts that can be efficiently released into the cytoplasm for protein translation. Importantly, we showed that TCERG1, the human homolog of the Drosophila CG42724 protein, also caused an increase of TDP-43 protein steady-state levels in mammalian cells. Therefore, our data suggest the possibility that targeting TCERG1 could be therapeutic in TDP-43 proteinopathies.
Collapse
|
11
|
Gao J, Wang L, Huntley ML, Perry G, Wang X. Pathomechanisms of TDP-43 in neurodegeneration. J Neurochem 2018; 146:10.1111/jnc.14327. [PMID: 29486049 PMCID: PMC6110993 DOI: 10.1111/jnc.14327] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/08/2018] [Accepted: 02/20/2018] [Indexed: 12/11/2022]
Abstract
Neurodegeneration, a term that refers to the progressive loss of structure and function of neurons, is a feature of many neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). There is no cure or treatment available that can prevent or reverse neurodegenerative conditions. The causes of neurodegeneration in these diseases remain largely unknown; yet, an extremely small proportion of these devastating diseases are associated with genetic mutations in proteins involved in a wide range of cellular pathways and processes. Over the past decade, it has become increasingly clear that the most notable neurodegenerative diseases, such as ALS, FTLD, and AD, share a common prominent pathological feature known as TAR DNA-binding protein 43 (TDP-43) proteinopathy, which is usually characterized by the presence of aberrant phosphorylation, ubiquitination, cleavage and/or nuclear depletion of TDP-43 in neurons and glial cells. The role of TDP-43 as a neurotoxicity trigger has been well documented in different in vitro and in vivo experimental models. As such, the investigation of TDP-43 pathomechanisms in various major neurodegenerative diseases is on the rise. Here, after a discussion of stages of TDP-43 proteinopathy during disease progression in various major neurodegenerative diseases, we review previous and most recent studies about the potential pathomechanisms with a particular emphasis on ALS, FTLD, and AD, and discuss the possibility of targeting TDP-43 as a common therapeutic approach to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Ju Gao
- Departments of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Luwen Wang
- Departments of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mikayla L. Huntley
- Departments of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Xinglong Wang
- Departments of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
12
|
TDP-43/HDAC6 axis promoted tumor progression and regulated nutrient deprivation-induced autophagy in glioblastoma. Oncotarget 2017; 8:56612-56625. [PMID: 28915616 PMCID: PMC5593587 DOI: 10.18632/oncotarget.17979] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/30/2017] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma Multiforme (GBM) is a lethal primary brain tumor with poor survival lifespan and dismal outcome. Surgical resection of GBM is greatly limited due to the biological significance of brain, giving rise to tumor relapse in GBM patients. Transactive response DNA binding protein-43 (TDP-43) is a DNA/RNA-binding protein known for causing neurodegenerative diseases through post-translational modification; but little is known about its involvement in cancer development. In this study, we found that nutrient deprivation in GBM cell lines elevated TDP-43 expression by a mechanism of evasion from ubiquitin-dependent proteolytic pathway, and subsequently activated the autophagy process. Exogenous overexpression of TDP-43 consistently activated autophagy and suppressed stress-induced apoptosis. The inhibition of autophagy in TDP-43-overexpressing cells effectively increased the apoptotic population under nutrition shortage. Furthermore, we demonstrated that HDAC6 was involved in the activation of autophagy in TDP-43-overexpressing GBM cell lines. The treatment with SAHA, a universal HDAC inhibitor, significantly reduced TDP-43-mediated anti-apoptotic effect. Additionally, the results of immunohistochemistry showed that TDP-43 and HDAC6 collaborated in GBM-tumor lesions and negatively correlated with the relapse-free survival of GBM patients. Taken together, our results suggest that the TDP-43-HDAC6 signaling axis functions as a stress responsive pathway in GBM tumorigenesis and combats nutrient deprivation stress via activating autophagy, while inhibition of HDAC6 overpowers the pathway and provides a novel therapeutic strategy against GBM.
Collapse
|
13
|
Wang W, Arakawa H, Wang L, Okolo O, Siedlak SL, Jiang Y, Gao J, Xie F, Petersen RB, Wang X. Motor-Coordinative and Cognitive Dysfunction Caused by Mutant TDP-43 Could Be Reversed by Inhibiting Its Mitochondrial Localization. Mol Ther 2017; 25:127-139. [PMID: 28129109 DOI: 10.1016/j.ymthe.2016.10.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/10/2016] [Accepted: 10/21/2016] [Indexed: 12/11/2022] Open
Abstract
Dominant missense mutations in TAR DNA-binding protein 43 (TDP-43) cause amyotrophic lateral sclerosis (ALS), and the cytoplasmic accumulation of TDP-43 represents a pathological hallmark in ALS and frontotemporal lobar degeneration (FTD). Behavioral investigation of the transgenic mouse model expressing the disease-causing human TDP-43 M337V mutant (TDP-43M337V mice) is encumbered by premature death in homozygous transgenic mice and a reported lack of phenotype assessed by tail elevation and footprint in hemizygous transgenic mice. Here, using a battery of motor-coordinative and cognitive tests, we report robust motor-coordinative and cognitive deficits in hemizygous TDP-43M337V mice by 8 months of age. After 12 months of age, cortical neurons are significantly affected by the mild expression of mutant TDP-43, characterized by cytoplasmic TDP-43 mislocalization, mitochondrial dysfunction, and neuronal loss. Compared with age-matched non-transgenic mice, TDP-43M337V mice demonstrate a similar expression of total TDP-43 but higher levels of TDP-43 in mitochondria. Interestingly, a TDP-43 mitochondrial localization inhibitory peptide abolishes cytoplasmic TDP-43 accumulation, restores mitochondrial function, prevents neuronal loss, and alleviates motor-coordinative and cognitive deficits in adult hemizygous TDP-43M337V mice. Thus, this study suggests hemizygous TDP-43M337V mice as a useful animal model to study TDP-43 toxicity and further consolidates mitochondrial TDP-43 as a novel therapeutic target for TDP-43-linked neurodegenerative diseases.
Collapse
Affiliation(s)
- Wenzhang Wang
- Department of Pathology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Hiroyuki Arakawa
- Rodent Behavioral Core, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Luwen Wang
- Department of Pathology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Ogoegbunam Okolo
- Department of Pathology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Sandra L Siedlak
- Department of Pathology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Yinfei Jiang
- Department of Pathology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Ju Gao
- Department of Pathology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Fei Xie
- Department of Pathology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Robert B Petersen
- Department of Pathology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Xinglong Wang
- Department of Pathology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, OH 44106, USA.
| |
Collapse
|
14
|
The inhibition of TDP-43 mitochondrial localization blocks its neuronal toxicity. Nat Med 2016; 22:869-78. [PMID: 27348499 PMCID: PMC4974139 DOI: 10.1038/nm.4130] [Citation(s) in RCA: 309] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 05/23/2016] [Indexed: 12/11/2022]
Abstract
Genetic mutations in TAR DNA-binding protein 43 (TARDBP, also known as TDP-43) cause amyotrophic lateral sclerosis (ALS), and an increase in the presence of TDP-43 (encoded by TARDBP) in the cytoplasm is a prominent histopathological feature of degenerating neurons in various neurodegenerative diseases. However, the molecular mechanisms by which TDP-43 contributes to ALS pathophysiology remain elusive. Here we have found that TDP-43 accumulates in the mitochondria of neurons in subjects with ALS or frontotemporal dementia (FTD). Disease-associated mutations increase TDP-43 mitochondrial localization. In mitochondria, wild-type (WT) and mutant TDP-43 preferentially bind mitochondria-transcribed messenger RNAs (mRNAs) encoding respiratory complex I subunits ND3 and ND6, impair their expression and specifically cause complex I disassembly. The suppression of TDP-43 mitochondrial localization abolishes WT and mutant TDP-43-induced mitochondrial dysfunction and neuronal loss, and improves phenotypes of transgenic mutant TDP-43 mice. Thus, our studies link TDP-43 toxicity directly to mitochondrial bioenergetics and propose the targeting of TDP-43 mitochondrial localization as a promising therapeutic approach for neurodegeneration.
Collapse
|
15
|
Zhang X, Shi J, Tian J, Robinson AC, Davidson YS, Mann DM. Expression of one important chaperone protein, heat shock protein 27, in neurodegenerative diseases. ALZHEIMERS RESEARCH & THERAPY 2014; 6:78. [PMID: 25621016 PMCID: PMC4304251 DOI: 10.1186/s13195-014-0078-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 10/20/2014] [Indexed: 12/02/2022]
Abstract
Introduction Many neurodegenerative diseases are characterised by accumulations of misfolded proteins that can colocalise with chaperone proteins (for example, heat shock protein 27 (HSP27)), which might act as modulators of protein aggregation. Methods The role of HSP27 in the pathogenesis of neurodegenerative disorders such as frontotemporal lobar degeneration (FTLD), Alzheimer’s disease (AD) and motor neuron disease (MND) was investigated. We used immunohistochemical and Western blot analysis to determine the distribution and amount of this protein in the frontal and temporal cortices of diseased and control subjects. Results HSP27 immunostaining presented as accumulations of granules within neuronal and glial cell perikarya. Patients with AD and FTLD were affected more often, and showed greater immunostaining for HSP27, than patients with MND and controls. In FTLD, there was no association between HSP27 and histological type. The neuropathological changes of FTLD, AD and MND were not immunoreactive to HSP27. Western blot analysis revealed higher HSP27 expression in FTLD than in controls, but without qualitative differences in banding patterns. Conclusions The pattern of HSP27 immunostaining observed may reflect the extent of ongoing neurodegeneration in affected brain areas and is not specific to FTLD, AD or MND. It may represent an accumulation of misfolded, damaged or unwanted proteins, awaiting or undergoing degradation.
Collapse
Affiliation(s)
- Xuekai Zhang
- The Third Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5 Haiyuncang Street, Dongcheng District, Beijing, 100700 China ; Clinical and Cognitive Sciences Research Group, Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, University of Manchester, Salford Royal Hospital, Salford, M6 8HD UK
| | - Jing Shi
- The Third Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5 Haiyuncang Street, Dongcheng District, Beijing, 100700 China
| | - Jinzhou Tian
- The Third Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5 Haiyuncang Street, Dongcheng District, Beijing, 100700 China ; Beijing University of Chinese Medicine Neurology Centre, Dongzhimen Hospital, Beijing University of Chinese Medicine, 5 Haiyuncang Street, Beijing, 100700 People's Republic of China China
| | - Andrew C Robinson
- Clinical and Cognitive Sciences Research Group, Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, University of Manchester, Salford Royal Hospital, Salford, M6 8HD UK
| | - Yvonne S Davidson
- Clinical and Cognitive Sciences Research Group, Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, University of Manchester, Salford Royal Hospital, Salford, M6 8HD UK
| | - David M Mann
- Clinical and Cognitive Sciences Research Group, Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, University of Manchester, Salford Royal Hospital, Salford, M6 8HD UK ; Clinical and Cognitive Neuroscience Research Group, University of Manchester, Salford Royal Foundation NHS Trust, Salford, M6 8HD UK
| |
Collapse
|
16
|
Flach K, Ramminger E, Hilbrich I, Arsalan-Werner A, Albrecht F, Herrmann L, Goedert M, Arendt T, Holzer M. Axotrophin/MARCH7 acts as an E3 ubiquitin ligase and ubiquitinates tau protein in vitro impairing microtubule binding. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1527-38. [PMID: 24905733 PMCID: PMC4311138 DOI: 10.1016/j.bbadis.2014.05.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 05/05/2014] [Accepted: 05/28/2014] [Indexed: 12/11/2022]
Abstract
Tau is the major microtubule-associated protein in neurons involved in microtubule stabilization in the axonal compartment. Changes in tau gene expression, alternative splicing and posttranslational modification regulate tau function and in tauopathies can result in tau mislocalization and dysfunction, causing tau aggregation and cell death. To uncover proteins involved in the development of tauopathies, a yeast two-hybrid system was used to screen for tau-interacting proteins. We show that axotrophin/MARCH7, a RING-variant domain containing protein with similarity to E3 ubiquitin ligases interacts with tau. We defined the tau binding domain to amino acids 552–682 of axotrophin comprising the RING-variant domain. Co-immunoprecipitation and co-localization confirmed the specificity of the interaction. Intracellular localization of axotrophin is determined by an N-terminal nuclear targeting signal and a C-terminal nuclear export signal. In AD brain nuclear localization is lost and axotrophin is rather associated with neurofibrillary tangles. We find here that tau becomes mono-ubiquitinated by recombinant tau-interacting RING-variant domain, which diminishes its microtubule-binding. In vitro ubiquitination of four-repeat tau results in incorporation of up to four ubiquitin molecules compared to two molecules in three-repeat tau. In summary, we present a novel tau modification occurring preferentially on 4-repeat tau protein which modifies microtubule-binding and may impact on the pathogenesis of tauopathies. We search for tau-interacting proteins using a cytotrap yeast two-hybrid assay. MARCH7 was identified as a tau-binding protein and confirmed by several methods. Recombinant MARCH7 Ring-variant domain uses Ubc5 for E3 self-ubiquitinating activity. MARCH7 Ring-variant domain mono-ubiquitinates tau protein at multiple sites including the microtubule-binding domain. Mono-ubiquitination of tau protein diminishes its microtubule-binding.
Collapse
Affiliation(s)
- Katharina Flach
- Paul Flechsig Institute of Brain Research, Department of Molecular and Cellular Mechanisms of Neurodegeneration, University of Leipzig, 04109 Leipzig, Germany
| | - Ellen Ramminger
- Paul Flechsig Institute of Brain Research, Department of Molecular and Cellular Mechanisms of Neurodegeneration, University of Leipzig, 04109 Leipzig, Germany
| | - Isabel Hilbrich
- Paul Flechsig Institute of Brain Research, Department of Molecular and Cellular Mechanisms of Neurodegeneration, University of Leipzig, 04109 Leipzig, Germany
| | - Annika Arsalan-Werner
- Paul Flechsig Institute of Brain Research, Department of Molecular and Cellular Mechanisms of Neurodegeneration, University of Leipzig, 04109 Leipzig, Germany
| | - Franziska Albrecht
- Paul Flechsig Institute of Brain Research, Department of Molecular and Cellular Mechanisms of Neurodegeneration, University of Leipzig, 04109 Leipzig, Germany
| | - Lydia Herrmann
- Paul Flechsig Institute of Brain Research, Department of Molecular and Cellular Mechanisms of Neurodegeneration, University of Leipzig, 04109 Leipzig, Germany
| | - Michel Goedert
- MRC, Laboratory of Molecular Biology, Neurobiology Division, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Thomas Arendt
- Paul Flechsig Institute of Brain Research, Department of Molecular and Cellular Mechanisms of Neurodegeneration, University of Leipzig, 04109 Leipzig, Germany
| | - Max Holzer
- Paul Flechsig Institute of Brain Research, Department of Molecular and Cellular Mechanisms of Neurodegeneration, University of Leipzig, 04109 Leipzig, Germany.
| |
Collapse
|
17
|
Wang W, Li L, Lin WL, Dickson DW, Petrucelli L, Zhang T, Wang X. The ALS disease-associated mutant TDP-43 impairs mitochondrial dynamics and function in motor neurons. Hum Mol Genet 2013; 22:4706-19. [PMID: 23827948 DOI: 10.1093/hmg/ddt319] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mutations in TDP-43 lead to familial ALS. Expanding evidence suggests that impaired mitochondrial dynamics likely contribute to the selective degeneration of motor neurons in SOD1-associated ALS. In this study, we investigated whether and how TDP-43 mutations might impact mitochondrial dynamics and function. We demonstrated that overexpression of wild-type TDP-43 resulted in reduced mitochondrial length and density in neurites of primary motor neurons, features further exacerbated by ALS-associated TDP-43 mutants Q331K and M337V. In contrast, suppression of TDP-43 resulted in significantly increased mitochondrial length and density in neurites, suggesting a specific role of TDP-43 in regulating mitochondrial dynamics. Surprisingly, both TDP-43 overexpression and suppression impaired mitochondrial movement. We further showed that abnormal localization of TDP-43 in cytoplasm induced substantial and widespread abnormal mitochondrial dynamics. TDP-43 co-localized with mitochondria in motor neurons and their colocalization was enhanced by ALS associated mutant. Importantly, co-expression of mitochondrial fusion protein mitofusin 2 (Mfn2) could abolish TDP-43 induced mitochondrial dynamics abnormalities and mitochondrial dysfunction. Taken together, these data suggest that mutant TDP-43 impairs mitochondrial dynamics through enhanced localization on mitochondria, which causes mitochondrial dysfunction. Therefore, abnormal mitochondrial dynamics is likely a common feature of ALS which could be potential new therapeutic targets to treat ALS.
Collapse
Affiliation(s)
- Wenzhang Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Kovacs GG, Rozemuller AJM, van Swieten JC, Gelpi E, Majtenyi K, Al-Sarraj S, Troakes C, Bódi I, King A, Hortobágyi T, Esiri MM, Ansorge O, Giaccone G, Ferrer I, Arzberger T, Bogdanovic N, Nilsson T, Leisser I, Alafuzoff I, Ironside JW, Kretzschmar H, Budka H. Neuropathology of the hippocampus in FTLD-Tau with Pick bodies: a study of the BrainNet Europe Consortium. Neuropathol Appl Neurobiol 2013; 39:166-78. [DOI: 10.1111/j.1365-2990.2012.01272.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
On the development of markers for pathological TDP-43 in amyotrophic lateral sclerosis with and without dementia. Prog Neurobiol 2011; 95:649-62. [PMID: 21911035 DOI: 10.1016/j.pneurobio.2011.08.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 08/29/2011] [Accepted: 08/29/2011] [Indexed: 11/24/2022]
Abstract
Pathological 43-kDa transactive response sequence DNA-binding protein (TDP-43) has been recognized as the major disease protein in amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration with ubiquitin positive, tau and α-synuclein negative inclusions (FTLD-U) and the transitional forms between these multisystem conditions. In order to develop TDP-43 into a successful ALS biomarker, the natural history of TDP-43 pathology needs to be characterized and the underlying pathophysiology established. Here we propose a spatial and temporal "two-axes" model of central nervous system vulnerability for TDP-43 linked degeneration and review recent studies on potential biomarkers related to pathological TDP-43 in the cerebrospinal fluid (CSF), blood, and skeletal muscle. The model includes the following two arms: Firstly, a "motor neuron disease" or "spinal cord/brainstem to motor cortex" axis (with degeneration possibly ascending from the lower motor neurons to the upper motor neurons); and secondly, a "dementia" or "corticoid/allocortex to neocortex" axis (with a probable spread of TDP-43 linked degeneration from the mediotemporal lobe to wider mesocortical and neocortical brain areas). At the cellular level, there is a gradual disappearance of normal TDP-43 in the nucleus in combination with the formation of pathological aggregates in the cell body and cellular processes, which can also be used to identify the stage of the disease process. Moreover, TDP-43 lesions in subpial/subependymal or perivascular localizations have been noted, and this might account for increased CSF and blood TDP-43 levels through mechanisms that remain to be elucidated.
Collapse
|
20
|
Takeda T, Uchihara T, Mochizuki Y, Ishihara A, Nakamura A, Sasaki S, Uchiyama S, Iwata M, Mizutani T. Supranuclear ophthalmoparesis and vacuolar degeneration of the cerebral white matter in amyotrophic lateral sclerosis: a clinicopathological study. ACTA ACUST UNITED AC 2011; 13:74-83. [PMID: 21861592 DOI: 10.3109/17482968.2011.603731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Possible clinicopathological relationship between vacuolar degeneration of cerebral white matter and clinical manifestation, especially of supranuclear ophthalmoparesis, both infrequent in amyotrophic lateral sclerosis (ALS) patients, was tested. Of 104 ALS sequential series, cases with vacuolar degeneration of the cerebral white matter were selected to yield 14 cases pathologically surveyed in this study. Clinical features were retrospectively assessed in their clinical records. Microscopic examination clarified vacuolar changes with fibrous gliosis, infiltration of macrophages, axonal degeneration with segmental dilatation and partial loss of myelin on electron microscopy. This histological change was extended into the cerebral white matter just under the cortices but sometimes accentuated as restricted areas along the pyramidal tract and precentral regions. In a patient with the most extensive focal lesion, these white matter vacuolar changes were detected with magnetic resonance imaging. The clinical manifestations linked to this focal vacuolar degeneration were disturbance of vertical ocular movements and shorter duration of the illness, compared with patients without vacuolar degeneration. In conclusion, histological demonstration of characteristic vacuolar degeneration in the white matter of ALS and its focal accentuation along precentral-pyramidal tracts are mutually related and possibly linked to clinical manifestations such as supranuclear ophthalmoparesis, an exceptional but possible manifestation of ALS.
Collapse
Affiliation(s)
- Takahiro Takeda
- Department of Neurology, Tokyo Metropolitan Institute for Neuroscience, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kovacs GG, Molnár K, László L, Ströbel T, Botond G, Hönigschnabl S, Reiner-Concin A, Palkovits M, Fischer P, Budka H. A peculiar constellation of tau pathology defines a subset of dementia in the elderly. Acta Neuropathol 2011; 122:205-22. [PMID: 21437732 DOI: 10.1007/s00401-011-0819-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 03/08/2011] [Accepted: 03/12/2011] [Indexed: 12/11/2022]
Abstract
Sporadic tauopathies are characterized by differential cellular and topographical predominance of phospho-tau immunoreactivity and biochemical distinction of the tau protein. Established entities include progressive supranuclear palsy, corticobasal degeneration, Pick's disease, and argyrophilic grain disease. During a community-based longitudinal study on aging, we detected tau pathologies not compatible with these categories. We immunostained for different phospho-tau epitopes, 4R and 3R tau isoforms, α-synuclein, amyloid-β, and phospho-TDP-43, analyzed the MAPT and ApoE genes, and performed western blotting for the tau protein. The mean age of patients (4 women, 3 men) was 83.8 years. Clinical presentations combined dementia with psychiatric symptoms and/or parkinsonism. In addition to neurofibrillary tangles and diffuse neuronal cytoplasmic tau immunoreactivity, the neuropathology was characterized by peculiar cytopathologies (diffuse granular immunopositivity of astrocytic processes and patchy accumulation of thin threads) in a distinctive distribution (frontal and temporal cortices, hippocampus, amygdala, basal ganglia, locus coeruleus, and substantia nigra). Argyrophilic grains were detected in four patients. Few to moderate densities of neuritic plaques but widespread phospho-TDP-43 pathology was observed in five patients. There was variability in the H1/H2 and ApoE alleles and biochemical features of tau protein. We propose these cases as complex tauopathy with a characteristic constellation: some features of primary tauopathies and Alzheimer's disease mixed with additional cytopathologies including a distinctive astrogliopathy, in a characteristic distribution of lesions. These complex tauopathies in the elderly deserve specific diagnostic and eventually therapeutic considerations.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Institute of Neurology, Medical University Vienna, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Grinberg LT, Rueb U, Heinsen H. Brainstem: neglected locus in neurodegenerative diseases. Front Neurol 2011; 2:42. [PMID: 21808630 PMCID: PMC3135867 DOI: 10.3389/fneur.2011.00042] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 06/13/2011] [Indexed: 12/11/2022] Open
Abstract
The most frequent neurodegenerative diseases (NDs) are Alzheimer’s disease (AD), Parkinson’s disease (PD), and frontotemporal lobar degeneration associated with protein TDP-43 (FTLD–TDP). Neuropathologically, NDs are characterized by abnormal intracellular and extra-cellular protein deposits and by disease-specific neuronal death. Practically all terminal stages of NDs are clinically associated with dementia. Therefore, major attention was directed to protein deposits and neuron loss in supratentorial (telencephalic) brain regions in the course of NDs. This was also true for PD, although the pathological hallmark of PD is degeneration of pigmented neurons of the brainstem’s substantia nigra (SN). However, PD pathophysiology was explained by dopamine depletion in the telencephalic basal ganglia due to insufficiency and degeneration of the projection neurons located in SN. In a similar line of argumentation AD- and FTLD-related clinical deficits were exclusively explained by supratentorial allo- and neo-cortical laminar neuronal necrosis. Recent comprehensive studies in AD and PD early stages found considerable and unexpected involvement of brainstem nuclei, which could have the potential to profoundly change our present concepts on origin, spread, and early clinical diagnosis of these diseases. In contrast with PD and AD, few studies addressed brainstem involvement in the course of the different types of FTLD–TDP. Some of the results, including ours, disclosed a higher and more widespread pathology than anticipated. The present review will focus mainly on the impact of brainstem changes during the course of the most frequent NDs including PD, AD, and FTLD–TDP, with special emphasis on the need for more comprehensive research on FTLDs.
Collapse
Affiliation(s)
- Lea Tenenholz Grinberg
- Department of Neurology, Memory and Aging Center, University of California at San Francisco San Francisco, CA, USA
| | | | | |
Collapse
|
23
|
Dakson A, Yokota O, Esiri M, Bigio EH, Horan M, Pendleton N, Richardson A, Neary D, Snowden JS, Robinson A, Davidson YS, Mann DMA. Granular expression of prolyl-peptidyl isomerase PIN1 is a constant and specific feature of Alzheimer's disease pathology and is independent of tau, Aβ and TDP-43 pathology. Acta Neuropathol 2011; 121:635-49. [PMID: 21243369 PMCID: PMC3122037 DOI: 10.1007/s00401-011-0798-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/04/2011] [Accepted: 01/05/2011] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) manifests with progressive memory loss and decline of spatial awareness and motor skills. Neurofibrillary tangles (NFTs) represent one of the pathological hallmarks of AD. Previous studies suggest that the enzyme prolyl-peptidyl cis-trans isomerase PIN1 [protein interacting with NIMA (never in mitosis A)-1] recognizes hyperphosphorylated tau (in NFTs) and facilitates its dephosphorylation, thereby recovering its function. This study aims to determine the frequency, severity and distribution of PIN1 immunoreactivity and its relationship to NFTs and other neuropathological markers of neurodegeneration such as amyloid-β (Aβ) plaques and transcription-responsive DNA-binding protein of M(r) 43 kDa (TDP-43). Immunohistochemical analysis of 194 patients (46 with AD, 43 with Parkinson's disease/dementia with Lewy bodies, 12 with progressive supranuclear palsy/corticobasal degeneration, 36 with frontotemporal lobar degeneration, 21 with motor neuron disease and 34 non-demented (ND) individuals) revealed an increased frequency and severity of PIN1 immunoreactive inclusions in AD as compared to all diagnostic groups (P < 0.001). The hippocampal and cortical distribution of PIN1 granules was distinct from that of NFTs, Aβ and TDP-43 pathologies, though the frequency of neurons with PIN1 immunoreactivity increased with increasing NFT pathology. There was a progressive increase in PIN1 changes in ND individuals as the degree of AD-type pathological changes increased. Present findings indicate that PIN1 changes are a constant feature of AD pathology and could serve as a biomarker of the onset or spread of AD neuropathology independent of tau or Aβ.
Collapse
Affiliation(s)
- Ayoub Dakson
- Mental Health and Neurodegeneration Research Group, School of Community Based Medicine, Faculty of Medical and Human Sciences, Hope Hospital, Greater Manchester Neurosciences Centre, University of Manchester, Stott Lane, Salford M6 8HD, UK
| | - Osamu Yokota
- Mental Health and Neurodegeneration Research Group, School of Community Based Medicine, Faculty of Medical and Human Sciences, Hope Hospital, Greater Manchester Neurosciences Centre, University of Manchester, Stott Lane, Salford M6 8HD, UK
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Margaret Esiri
- Neuropathology Department, Level 1 West Wing, John Radcliffe Infirmary, University of Oxford, Oxford OX3 9DU, UK
| | - Eileen H. Bigio
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60619, USA
| | - Michael Horan
- Mental Health and Neurodegeneration Research Group, School of Community Based Medicine, Faculty of Medical and Human Sciences, Hope Hospital, Greater Manchester Neurosciences Centre, University of Manchester, Stott Lane, Salford M6 8HD, UK
| | - Neil Pendleton
- Mental Health and Neurodegeneration Research Group, School of Community Based Medicine, Faculty of Medical and Human Sciences, Hope Hospital, Greater Manchester Neurosciences Centre, University of Manchester, Stott Lane, Salford M6 8HD, UK
| | - Anna Richardson
- Mental Health and Neurodegeneration Research Group, School of Community Based Medicine, Faculty of Medical and Human Sciences, Hope Hospital, Greater Manchester Neurosciences Centre, University of Manchester, Stott Lane, Salford M6 8HD, UK
| | - David Neary
- Mental Health and Neurodegeneration Research Group, School of Community Based Medicine, Faculty of Medical and Human Sciences, Hope Hospital, Greater Manchester Neurosciences Centre, University of Manchester, Stott Lane, Salford M6 8HD, UK
| | - Julie S. Snowden
- Mental Health and Neurodegeneration Research Group, School of Community Based Medicine, Faculty of Medical and Human Sciences, Hope Hospital, Greater Manchester Neurosciences Centre, University of Manchester, Stott Lane, Salford M6 8HD, UK
| | - Andrew Robinson
- Mental Health and Neurodegeneration Research Group, School of Community Based Medicine, Faculty of Medical and Human Sciences, Hope Hospital, Greater Manchester Neurosciences Centre, University of Manchester, Stott Lane, Salford M6 8HD, UK
| | - Yvonne S. Davidson
- Mental Health and Neurodegeneration Research Group, School of Community Based Medicine, Faculty of Medical and Human Sciences, Hope Hospital, Greater Manchester Neurosciences Centre, University of Manchester, Stott Lane, Salford M6 8HD, UK
| | - David M. A. Mann
- Mental Health and Neurodegeneration Research Group, School of Community Based Medicine, Faculty of Medical and Human Sciences, Hope Hospital, Greater Manchester Neurosciences Centre, University of Manchester, Stott Lane, Salford M6 8HD, UK
| |
Collapse
|
24
|
Habuchi C, Iritani S, Sekiguchi H, Torii Y, Ishihara R, Arai T, Hasegawa M, Tsuchiya K, Akiyama H, Shibayama H, Ozaki N. Clinicopathological study of diffuse neurofibrillary tangles with calcification. J Neurol Sci 2011; 301:77-85. [DOI: 10.1016/j.jns.2010.10.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 10/24/2010] [Accepted: 10/25/2010] [Indexed: 12/11/2022]
|
25
|
Geser F, Robinson JL, Malunda JA, Xie SX, Clark CM, Kwong LK, Moberg PJ, Moore EM, Van Deerlin VM, Lee VMY, Arnold SE, Trojanowski JQ. Pathological 43-kDa transactivation response DNA-binding protein in older adults with and without severe mental illness. ARCHIVES OF NEUROLOGY 2010; 67:1238-50. [PMID: 20937952 PMCID: PMC3050578 DOI: 10.1001/archneurol.2010.254] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Major psychiatric diseases such as schizophrenia and mood disorders have not been linked to a specific pathology, but their clinical features overlap with some aspects of the behavioral variant of frontotemporal lobar degeneration. Although the significance of pathological 43-kDa (transactivation response) DNA-binding protein (TDP-43) for frontotemporal lobar degeneration was appreciated only recently, the prevalence of TDP-43 pathology in patients with severe mental illness vs controls has not been systematically addressed. OBJECTIVE To examine patients with chronic psychiatric diseases, mainly schizophrenia, for evidence of neurodegenerative TDP-43 pathology in comparison with controls. DESIGN Prospective longitudinal clinical evaluation and retrospective medical record review, immunohistochemical identification of pathological TDP-43 in the central nervous system, and genotyping for gene alterations known to cause TDP-43 proteinopathies including the TDP-43 (TARDBP) and progranulin (GRN) genes. SETTING University health system. PARTICIPANTS One hundred fifty-one subjects including 91 patients with severe mental illness (mainly schizophrenia) and 60 controls. MAIN OUTCOME MEASURES Clinical medical record review, neuronal and glial TDP-43 pathology, and TARDP and GRN genotyping status. RESULTS Significant TDP-43 pathology in the amygdala/periamygdaloid region or the hippocampus/transentorhinal cortex was absent in both groups in subjects younger than 65 years but present in elderly subjects (29% [25 of 86] of the psychiatric patients and 29% [10 of 34] of control subjects). Twenty-three percent (8 of 35) of the positive cases showed significant TDP-43 pathology in extended brain scans. There were no evident differences between the 2 groups in the frequency, degree, or morphological pattern of TDP-43 pathology. The latter included (1) subpial and subependymal, (2) focal, or (3) diffuse lesions in deep brain parenchyma and (4) perivascular pathology. A new GRN variant of unknown significance (c.620T>C, p.Met207Thr) was found in 1 patient with schizophrenia with TDP-43 pathology. No known TARDBP mutations or other variants were found in any of the subjects studied herein. CONCLUSIONS The similar findings of TDP-43 pathology in elderly patients with severe mental illness and controls suggest common age-dependent TDP-43 changes in limbic brain areas that may signify that these regions are affected early in the course of a cerebral TDP-43 multisystem proteinopathy. Finally, our data provide an age-related baseline for the development of whole-brain pathological TDP-43 evolution schemata.
Collapse
Affiliation(s)
- Felix Geser
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4283, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lagier-Tourenne C, Polymenidou M, Cleveland DW. TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet 2010; 19:R46-64. [PMID: 20400460 PMCID: PMC3167692 DOI: 10.1093/hmg/ddq137] [Citation(s) in RCA: 759] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 04/06/2010] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are neurodegenerative diseases with clinical and pathological overlap. Landmark discoveries of mutations in the transactive response DNA-binding protein (TDP-43) and fused in sarcoma/translocated in liposarcoma (FUS/TLS) as causative of ALS and FTLD, combined with the abnormal aggregation of these proteins, have initiated a shifting paradigm for the underlying pathogenesis of multiple neurodegenerative diseases. TDP-43 and FUS/TLS are both RNA/DNA-binding proteins with striking structural and functional similarities. Their association with ALS and other neurodegenerative diseases is redirecting research efforts toward understanding the role of RNA processing regulation in neurodegeneration.
Collapse
Affiliation(s)
| | | | - Don W. Cleveland
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-6070, USA
| |
Collapse
|
27
|
Protein coding of neurodegenerative dementias: the neuropathological basis of biomarker diagnostics. Acta Neuropathol 2010; 119:389-408. [PMID: 20198481 DOI: 10.1007/s00401-010-0658-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/12/2010] [Accepted: 02/13/2010] [Indexed: 12/11/2022]
Abstract
Neuropathological diagnosis of neurodegenerative dementias evolved by adapting the results of neuroanatomy, biochemistry, and cellular and molecular biology. Milestone findings of intra- and extracellular argyrophilic structures, visualizing protein deposition, initiated a protein-based classification. Widespread application of immunohistochemical and biochemical investigations revealed that (1) there are modifications of proteins intrinsic to disease (species that are phosphorylated, nitrated, oligomers, proteinase-resistant, with or without amyloid characteristics; cleavage products), (2) disease forms characterized by the accumulation of a single protein only are rather the exception than the rule, and (3) some modifications of proteins elude present neuropathological diagnostic procedures. In this review, we summarize how neuropathology, together with biochemistry, contributes to disease typing, by demonstrating a spectrum of disorders characterized by the deposition of various modifications of various proteins in various locations. Neuropathology may help to elucidate how brain pathologies alter the detectability of proteins in body fluids by upregulation of physiological forms or entrapment of different proteins. Modifications of at least the five most relevant proteins (amyloid-beta, prion protein, tau, alpha-synuclein, and TDP-43), aided by analysis of further "attracted" proteins, are pivotal to be evaluated simultaneously with different methods. This should complement the detection of biomarkers associated with pathogenetic processes, and also neuroimaging and genetic analysis, in order to obtain a highly personalized diagnostic profile. Defining clusters of patients based on the patterns of protein deposition and immunohistochemically or biochemically detectable modifications of proteins ("codes") may have higher prognostic predictive value, may be useful for monitoring therapy, and may open new avenues for research on pathogenesis.
Collapse
|