1
|
Zaman M, Sharma G, Almutawa W, Soule TG, Sabouny R, Joel M, Mohan A, Chute C, Joseph JT, Pfeffer G, Shutt TE. The MFN2 Q367H variant reveals a novel pathomechanism connected to mtDNA-mediated inflammation. Life Sci Alliance 2025; 8:e202402921. [PMID: 40175090 PMCID: PMC11966011 DOI: 10.26508/lsa.202402921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/04/2025] Open
Abstract
Pathogenic variants in the mitochondrial protein MFN2 are typically associated with a peripheral neuropathy phenotype, but can also cause a variety of additional pathologies including myopathy. Here, we identified an uncharacterized MFN2 variant, Q367H, in a patient diagnosed with late-onset distal myopathy, but without peripheral neuropathy. Supporting the hypothesis that this variant contributes to the patient's pathology, patient fibroblasts and transdifferentiated myoblasts showed changes consistent with impairment of several MFN2 functions. We also observed mtDNA outside of the mitochondrial network that colocalized with early endosomes, and measured activation of both TLR9 and cGAS-STING inflammation pathways that sense mtDNA. Re-expressing the Q367H variant in MFN2 KO cells also induced mtDNA release, demonstrating this phenotype is a direct result of the variant. As elevated inflammation can cause myopathy, our findings linking the Q367H MFN2 variant with elevated TLR9 and cGAS-STING signalling can explain the patient's myopathy. Thus, we characterize a novel MFN2 variant in a patient with an atypical presentation that separates peripheral neuropathy and myopathy phenotypes, and establish a potential pathomechanism connecting MFN2 dysfunction to mtDNA-mediated inflammation.
Collapse
Affiliation(s)
- Mashiat Zaman
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Govinda Sharma
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Walaa Almutawa
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Tyler Gb Soule
- Department of Neuroscience, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Rasha Sabouny
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Matt Joel
- Department of Neuroscience, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Armaan Mohan
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Cole Chute
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Jeffrey T Joseph
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Department of Pathology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Gerald Pfeffer
- Hotchkiss Brain Institute, Department of Clinical Neurosciences; and Alberta Child Health Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Timothy E Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Hotchkiss Brain Institute, Snyder Institute for Chronic Diseases, Alberta Children's Hospital Research Institute; University of Calgary, Calgary, Canada
| |
Collapse
|
2
|
Zanfardino P, Amati A, Perrone M, Petruzzella V. The Balance of MFN2 and OPA1 in Mitochondrial Dynamics, Cellular Homeostasis, and Disease. Biomolecules 2025; 15:433. [PMID: 40149969 PMCID: PMC11940761 DOI: 10.3390/biom15030433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Mitochondrial dynamics, governed by fusion and fission, are crucial for maintaining cellular homeostasis, energy production, and stress adaptation. MFN2 and OPA1, key regulators of mitochondrial fusion, play essential roles beyond their structural functions, influencing bioenergetics, intracellular signaling, and quality control mechanisms such as mitophagy. Disruptions in these processes, often caused by MFN2 or OPA1 mutations, are linked to neurodegenerative diseases like Charcot-Marie-Tooth disease type 2A (CMT2A) and autosomal dominant optic atrophy (ADOA). This review explores the molecular mechanisms underlying mitochondrial fusion, the impact of MFN2 and OPA1 dysfunction on oxidative phosphorylation and autophagy, and their role in disease progression. Additionally, we discuss the divergent cellular responses to MFN2 and OPA1 mutations, particularly in terms of proliferation, senescence, and metabolic signaling. Finally, we highlight emerging therapeutic strategies to restore mitochondrial integrity, including mTOR modulation and autophagy-targeted approaches, with potential implications for neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | - Vittoria Petruzzella
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Piazza Giulio Cesare, 70124 Bari, Italy; (P.Z.); (A.A.); (M.P.)
| |
Collapse
|
3
|
Mohamed Yusoff AA, Mohd Khair SZN, Abd Radzak SM. Mitochondrial DNA copy number alterations: Key players in the complexity of glioblastoma (Review). Mol Med Rep 2025; 31:78. [PMID: 39886971 PMCID: PMC11795256 DOI: 10.3892/mmr.2025.13443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025] Open
Abstract
Renowned as a highly invasive and lethal tumor derived from neural stem cells in the central nervous system, glioblastoma (GBM) exhibits substantial histopathological variation and genomic complexity, which drive its rapid progression and therapeutic resistance. Alterations in mitochondrial DNA (mtDNA) copy number (CN) serve a crucial role in GBM development and progression, affecting various aspects of tumor biology, including energy production, oxidative stress regulation and cellular adaptability. Fluctuations in mtDNA levels, whether elevated or diminished, can impair mitochondrial function, potentially disrupting oxidative phosphorylation and amplifying reactive oxygen species generation, thereby fueling tumor growth and influencing treatment responses. Understanding the mechanisms of mtDNA‑CN variations, and their interplay with genetic and environmental elements in the tumor microenvironment, is essential for advancing diagnostic and therapeutic strategies. Targeting mtDNA alterations could strengthen treatment efficacy, mitigate resistance and ultimately enhance the prognosis of patients with this aggressive brain tumor. The present review summarizes the existing literature on mtDNA alterations, specifically emphasizing variations in mtDNA‑CN and their association with GBM by surveying articles published between 1996 and 2024, sourced from databases such as Scopus, PubMed and Google Scholar. In addition, the review provides a brief overview of mitochondrial genome architecture, knowledge regarding the regulation of mtDNA integrity and CN, and how mitochondria significantly impact GBM tumorigenesis. This review further presents information on therapeutic approaches for restoring mtDNA‑CN that contribute to optimized mitochondrial function and improved health outcomes.
Collapse
Affiliation(s)
- Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | | | - Siti Muslihah Abd Radzak
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| |
Collapse
|
4
|
Zhang Y, Ma L, Wang Z, Gao C, Yang L, Li M, Tang X, Yuan H, Pang D, Ouyang H. Mfn2 R364W, Mfn2 G176S, and Mfn2 H165R mutations drive Charcot-Marie-Tooth type 2A disease by inducing apoptosis and mitochondrial oxidative phosphorylation damage. Int J Biol Macromol 2024; 278:134673. [PMID: 39142491 DOI: 10.1016/j.ijbiomac.2024.134673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Charcot-Marie-Tooth type 2A (CMT2A) is a single-gene motor sensory neuropathy caused by Mfn2 mutation. It is generally believed that CMT2A involves mitochondrial fusion disruption. However, how Mfn2 mutation mediates the mitochondrial membrane fusion loss and its further pathogenic mechanisms remain unclear. Here, in vivo and in vitro mouse models harboring the Mfn2R364W, Mfn2G176S and Mfn2H165R mutations were constructed. Mitochondrial membrane fusion and fission proteins analysis showed that Mfn2R364W, Mfn2G176S, and Mfn2H165R/+ mutations maintain the expression of Mfn2, but promote Drp1 upregulation and Opa1 hydrolytic cleavage. In Mfn2H165R/H165R mutation, Mfn2, Drp1, and Opa1 all play a role in inducing mitochondrial fragmentation, and the mitochondrial aggregation is affected by Mfn2 loss. Further research into the pathogenesis of CMT2A showed these three mutations all induce mitochondria-mediated apoptosis, and mitochondrial oxidative phosphorylation damage. Overall, loss of overall fusion activity affects mitochondrial DNA (mtDNA) stability and causes mitochondrial loss and dysfunction, ultimately leading to CMT2A disease. Interestingly, the differences in the pathogenesis of CMT2A between Mfn2R364W, Mfn2G176S, Mfn2H165R/+ and Mfn2H165R/H165R mutations, including the distribution of Mfn2 and mitochondria, the expression of mitochondrial outer membrane-associated proteins (Bax, VDAC1 and AIF), and the enzyme activity of mitochondrial complex I, are related to the expression of Mfn2.
Collapse
Affiliation(s)
- Yuanzhu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China; Central Laboratory, People's Hospital of Ningxia Hui Autonomous Region, 750002, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Lerong Ma
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China
| | - Ziru Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China
| | - Chuang Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China; Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Lin Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China
| | - Mengjing Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China
| | - Xiaochun Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China; Chongqing Research Institute, Jilin University, Chongqing, China
| | - Hongming Yuan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China.
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China; Chongqing Research Institute, Jilin University, Chongqing, China.
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China; Chongqing Research Institute, Jilin University, Chongqing, China.
| |
Collapse
|
5
|
Liao YW, Yu CC, Hsieh CW, Chao SC, Hsieh PL. Aberrantly downregulated FENDRR by arecoline elevates ROS and myofibroblast activation via mitigating the miR-214/MFN2 axis. Int J Biol Macromol 2024; 264:130504. [PMID: 38442830 DOI: 10.1016/j.ijbiomac.2024.130504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/19/2023] [Accepted: 02/22/2024] [Indexed: 03/07/2024]
Abstract
Long non-coding RNA FENDRR possesses both anti-fibrotic and anti-cancer properties, but its significance in the development of premalignant oral submucous fibrosis (OSF) remains unclear. Here, we showed that FENDRR was downregulated in OSF specimens and fibrotic buccal mucosal fibroblasts (fBMFs), and overexpression of FENDRR mitigated various myofibroblasts hallmarks, and vice versa. In the course of investigating the mechanism underlying the implication of FENDRR in myofibroblast transdifferentiation, we found that FENDRR can directly bind to miR-214 and exhibit its suppressive effect on myofibroblast activation via titrating miR-214. Moreover, we showed that mitofusin 2 (MFN2), a protein that is crucial to the fusion of mitochondria, was a direct target of miR-214. Our data suggested that FENDRR was positively correlated with MFN2 and MFN2 was required for the inhibitory property of FENDRR pertaining to myofibroblast phenotypes. Additionally, our results showed that the FENDRR/miR-214 axis participated in the arecoline-induced reactive oxygen species (ROS) accumulation and myofibroblast transdifferentiation. Building on these results, we concluded that the aberrant downregulation of FENDRR in OSF may be associated with chronic exposure to arecoline, leading to upregulation of ROS and myofibroblast activation via the miR-214-mediated suppression of MFN2.
Collapse
Affiliation(s)
- Yi-Wen Liao
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan; Institute of Oral Sciences, Chung Shan Medical University, Taichung 402, Taiwan
| | - Cheng-Chia Yu
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 402, Taiwan; School of Dentistry, Chung Shan Medical University, Taichung 402, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Shih-Chi Chao
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan; Institute of Oral Sciences, Chung Shan Medical University, Taichung 402, Taiwan
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
6
|
Hines TJ, Bailey J, Liu H, Guntur AR, Seburn KL, Pratt SL, Funke JR, Tarantino LM, Burgess RW. A Novel ENU-Induced Mfn2 Mutation Causes Motor Deficits in Mice without Causing Peripheral Neuropathy. BIOLOGY 2023; 12:953. [PMID: 37508383 PMCID: PMC10376023 DOI: 10.3390/biology12070953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
Mitochondrial fission and fusion are required for maintaining functional mitochondria. The mitofusins (MFN1 and MFN2) are known for their roles in mediating mitochondrial fusion. Recently, MFN2 has been implicated in other important cellular functions, such as mitophagy, mitochondrial motility, and coordinating endoplasmic reticulum-mitochondria communication. In humans, over 100 MFN2 mutations are associated with a form of inherited peripheral neuropathy, Charcot-Marie-Tooth disease type 2A (CMT2A). Here we describe an ENU-induced mutant mouse line with a recessive neuromuscular phenotype. Behavioral screening showed progressive weight loss and rapid deterioration of motor function beginning at 8 weeks. Mapping and sequencing revealed a missense mutation in exon 18 of Mfn2 (T1928C; Leu643Pro), within the transmembrane domain. Compared to wild-type and heterozygous littermates, Mfn2L643P/L643P mice exhibited diminished rotarod performance and decreases in activity in the open field test, muscular endurance, mean mitochondrial diameter, sensory tests, mitochondrial DNA content, and MFN2 protein levels. However, tests of peripheral nerve physiology and histology were largely normal. Mutant leg bones had reduced cortical bone thickness and bone area fraction. Together, our data indicate that Mfn2L643P causes a recessive motor phenotype with mild bone and mitochondrial defects in mice. Lack of apparent nerve pathology notwithstanding, this is the first reported mouse model with a mutation in the transmembrane domain of the protein, which may be valuable for researchers studying MFN2 biology.
Collapse
Affiliation(s)
| | - Janice Bailey
- Department of Genetics, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Hedi Liu
- Department of Genetics, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Anyonya R Guntur
- Center for Molecular Medicine, Maine Health Institute for Research, Scarborough, ME 04074, USA
| | | | - Samia L Pratt
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Neuroscience Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Jonathan R Funke
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Neuroscience Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Lisa M Tarantino
- Department of Genetics, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robert W Burgess
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Neuroscience Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
7
|
Zanfardino P, Longo G, Amati A, Morani F, Picardi E, Girolamo F, Pafundi M, Cox SN, Manzari C, Tullo A, Doccini S, Santorelli FM, Petruzzella V. Mitofusin 2 mutation drives cell proliferation in Charcot-Marie-Tooth 2A fibroblasts. Hum Mol Genet 2023; 32:333-350. [PMID: 35994048 DOI: 10.1093/hmg/ddac201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 01/20/2023] Open
Abstract
Dominant mutations in ubiquitously expressed mitofusin 2 gene (MFN2) cause Charcot-Marie-Tooth type 2A (CMT2A; OMIM 609260), an inherited sensory-motor neuropathy that affects peripheral nerve axons. Mitofusin 2 protein has been found to take part in mitochondrial fusion, mitochondria-endoplasmic reticulum tethering, mitochondrial trafficking along axons, mitochondrial quality control and various types of cancer, in which MFN2 has been indicated as a tumor suppressor gene. Discordant data on the mitochondrial altered phenotypes in patient-derived fibroblasts harboring MFN2 mutations and in animal models have been reported. We addressed some of these issues by focusing on mitochondria behavior during autophagy and mitophagy in fibroblasts derived from a CMT2AMFN2 patient with an MFN2650G > T/C217F mutation in the GTPase domain. This study investigated mitochondrial dynamics, respiratory capacity and autophagy/mitophagy, to tackle the multifaceted MFN2 contribution to CMT2A pathogenesis. We found that MFN2 mutated fibroblasts showed impairment of mitochondrial morphology, bioenergetics capacity, and impairment of the early stages of autophagy, but not mitophagy. Unexpectedly, transcriptomic analysis of mutated fibroblasts highlighted marked differentially expressed pathways related to cell population proliferation and extracellular matrix organization. We consistently found the activation of mTORC2/AKT signaling and accelerated proliferation in the CMT2AMFN2 fibroblasts. In conclusion, our evidence indicates that MFN2 mutation can positively drive cell proliferation in CMT2AMFN2 fibroblasts.
Collapse
Affiliation(s)
- Paola Zanfardino
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giovanna Longo
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Alessandro Amati
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Federica Morani
- Department of Biology, University of Pisa, 56126 Pisa, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70125 Bari, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, 70125 Bari, Italy
| | - Francesco Girolamo
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Mariella Pafundi
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Sharon N Cox
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Caterina Manzari
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Apollonia Tullo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, 70125 Bari, Italy
| | - Stefano Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Filippo M Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Vittoria Petruzzella
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
8
|
Sharma G, Zaman M, Sabouny R, Joel M, Martens K, Martino D, de Koning AJ, Pfeffer G, Shutt TE. Characterization of a novel variant in the HR1 domain of MFN2 in a patient with ataxia, optic atrophy and sensorineural hearing loss. F1000Res 2022; 10:606. [PMID: 38274408 PMCID: PMC10808857 DOI: 10.12688/f1000research.53230.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/27/2024] Open
Abstract
Background: Pathogenic variants in MFN2 cause Charcot-Marie-Tooth disease (CMT) type 2A (CMT2A) and are the leading cause of the axonal subtypes of CMT. CMT2A is characterized by predominantly distal motor weakness and muscle atrophy, with highly variable severity and onset age. Notably, some MFN2 variants can also lead to other phenotypes such as optic atrophy, hearing loss and lipodystrophy. Despite the clear link between MFN2 and CMT2A, our mechanistic understanding of how dysfunction of the MFN2 protein causes human disease pathologies remains incomplete. This lack of understanding is due in part to the multiple cellular roles of MFN2. Though initially characterized for its role in mediating mitochondrial fusion, MFN2 also plays important roles in mediating interactions between mitochondria and other organelles, such as the endoplasmic reticulum and lipid droplets. Additionally, MFN2 is also important for mitochondrial transport, mitochondrial autophagy, and has even been implicated in lipid transfer. Though over 100 pathogenic MFN2 variants have been described to date, only a few have been characterized functionally, and even then, often only for one or two functions. Method: Several MFN2-mediated functions were characterized in fibroblast cells from a patient presenting with cerebellar ataxia, deafness, blindness, and diffuse cerebral and cerebellar atrophy, who harbours a novel homozygous MFN2 variant, D414V, which is found in a region of the HR1 domain of MFN2 where few pathogenic variants occur. Results: We found evidence for impairment of several MFN2-mediated functions. Consistent with reduced mitochondrial fusion, patient fibroblasts exhibited more fragmented mitochondrial networks and had reduced mtDNA copy number. Additionally, patient fibroblasts had reduced oxygen consumption, fewer mitochondrial-ER contacts, and altered lipid droplets that displayed an unusual perinuclear distribution. Conclusion: Overall, this work characterizes D414V as a novel variant in MFN2 and expands the phenotypic presentation of MFN2 variants to include cerebellar ataxia.
Collapse
Affiliation(s)
- Govinda Sharma
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Mashiat Zaman
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Rasha Sabouny
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Matthew Joel
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Departments of Clinical Neurosciences and Medical Genetics, Cumming School of Medicine, University of Calgary, Hotchkiss Brain Institute, Alberta Child Health Research Institute, Calgary, Alberta, T2N 4N1, Canada
| | - Kristina Martens
- Departments of Clinical Neurosciences and Medical Genetics, Cumming School of Medicine, University of Calgary, Hotchkiss Brain Institute, Alberta Child Health Research Institute, Calgary, Alberta, T2N 4N1, Canada
| | - Davide Martino
- Department of Clinical Neurosciences, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - A.P. Jason de Koning
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Gerald Pfeffer
- Departments of Clinical Neurosciences and Medical Genetics, Cumming School of Medicine, University of Calgary, Hotchkiss Brain Institute, Alberta Child Health Research Institute, Calgary, Alberta, T2N 4N1, Canada
| | - Timothy E. Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| |
Collapse
|
9
|
Abstract
In the course of its short history, mitochondrial DNA (mtDNA) has made a long journey from obscurity to the forefront of research on major biological processes. mtDNA alterations have been found in all major disease groups, and their significance remains the subject of intense research. Despite remarkable progress, our understanding of the major aspects of mtDNA biology, such as its replication, damage, repair, transcription, maintenance, etc., is frustratingly limited. The path to better understanding mtDNA and its role in cells, however, remains torturous and not without errors, which sometimes leave a long trail of controversy behind them. This review aims to provide a brief summary of our current knowledge of mtDNA and highlight some of the controversies that require attention from the mitochondrial research community.
Collapse
Affiliation(s)
- Inna Shokolenko
- Department of Biomedical Sciences, Pat Capps Covey College of Allied Health Professions, University of South Alabama, Mobile, AL 36688, USA
| | - Mikhail Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
- Correspondence:
| |
Collapse
|
10
|
Zaman M, Shutt TE. The Role of Impaired Mitochondrial Dynamics in MFN2-Mediated Pathology. Front Cell Dev Biol 2022; 10:858286. [PMID: 35399520 PMCID: PMC8989266 DOI: 10.3389/fcell.2022.858286] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/07/2022] [Indexed: 12/17/2022] Open
Abstract
The Mitofusin 2 protein (MFN2), encoded by the MFN2 gene, was first described for its role in mediating mitochondrial fusion. However, MFN2 is now recognized to play additional roles in mitochondrial autophagy (mitophagy), mitochondrial motility, lipid transfer, and as a tether to other organelles including the endoplasmic reticulum (ER) and lipid droplets. The tethering role of MFN2 is an important mediator of mitochondrial-ER contact sites (MERCs), which themselves have many important functions that regulate mitochondria, including calcium homeostasis and lipid metabolism. Exemplifying the importance of MFN2, pathogenic variants in MFN2 are established to cause the peripheral neuropathy Charcot-Marie-Tooth Disease Subtype 2A (CMT2A). However, the mechanistic basis for disease is not clear. Moreover, additional pathogenic phenotypes such as lipomatosis, distal myopathy, optic atrophy, and hearing loss, can also sometimes be present in patients with CMT2A. Given these variable patient phenotypes, and the many cellular roles played by MFN2, the mechanistic underpinnings of the cellular impairments by which MFN2 dysfunction leads to disease are likely to be complex. Here, we will review what is known about the various functions of MFN2 that are impaired by pathogenic variants causing CMT2A, with a specific emphasis on the ties between MFN2 variants and MERCs.
Collapse
Affiliation(s)
- Mashiat Zaman
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Timothy E Shutt
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
11
|
Aberrant Mitochondrial Dynamics and Exacerbated Response to Neuroinflammation in a Novel Mouse Model of CMT2A. Int J Mol Sci 2021; 22:ijms222111569. [PMID: 34769001 PMCID: PMC8584238 DOI: 10.3390/ijms222111569] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/06/2021] [Accepted: 10/20/2021] [Indexed: 01/09/2023] Open
Abstract
Charcot-Marie-Tooth disease type 2A (CMT2A) is the most common hereditary axonal neuropathy caused by mutations in MFN2 encoding Mitofusin-2, a multifunctional protein located in the outer mitochondrial membrane. In order to study the effects of a novel MFN2K357T mutation associated with early onset, autosomal dominant severe CMT2A, we generated a knock-in mouse model. While Mfn2K357T/K357T mouse pups were postnatally lethal, Mfn2+/K357T heterozygous mice were asymptomatic and had no histopathological changes in their sciatic nerves up to 10 months of age. However, immunofluorescence analysis of Mfn2+/K357T mice revealed aberrant mitochondrial clustering in the sciatic nerves from 6 months of age, in optic nerves from 8 months, and in lumbar spinal cord white matter at 10 months, along with microglia activation. Ultrastructural analyses confirmed dysmorphic mitochondrial aggregates in sciatic and optic nerves. After exposure of 6-month-old mice to lipopolysaccharide, Mfn2+/K357T mice displayed a higher immune response, a more severe motor impairment, and increased CNS inflammation, microglia activation, and macrophage infiltrates. Overall, ubiquitous Mfn2K357T expression renders the CNS and peripheral nerves of Mfn2+/K357T mice more susceptible to mitochondrial clustering, and augments their response to inflammation, modeling some cellular mechanisms that may be relevant for the development of neuropathy in patients with CMT2A.
Collapse
|
12
|
Mou Y, Dein J, Chen Z, Jagdale M, Li XJ. MFN2 Deficiency Impairs Mitochondrial Transport and Downregulates Motor Protein Expression in Human Spinal Motor Neurons. Front Mol Neurosci 2021; 14:727552. [PMID: 34602978 PMCID: PMC8482798 DOI: 10.3389/fnmol.2021.727552] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is one of the most common genetically inherited neurological disorders and CMT type 2A (CMT 2A) is caused by dominant mutations in the mitofusin-2 (MFN2) gene. MFN2 is located in the outer mitochondrial membrane and is a mediator of mitochondrial fusion, with an essential role in maintaining normal neuronal functions. Although loss of MFN2 induces axonal neuropathy, the detailed mechanism by which MFN2 deficiency results in axonal degeneration of human spinal motor neurons remains largely unknown. In this study, we generated MFN2-knockdown human embryonic stem cell (hESC) lines using lentivirus expressing MFN2 short hairpin RNA (shRNA). Using these hESC lines, we found that MFN2 loss did not affect spinal motor neuron differentiation from hESCs but resulted in mitochondrial fragmentation and dysfunction as determined by live-cell imaging. Notably, MFN2-knockodwn spinal motor neurons exhibited CMT2A disease-related phenotypes, including extensive perikaryal inclusions of phosphorylated neurofilament heavy chain (pNfH), frequent axonal swellings, and increased pNfH levels in long-term cultures. Importantly, MFN2 deficit impaired anterograde and retrograde mitochondrial transport within axons, and reduced the mRNA and protein levels of kinesin and dynein, indicating the interfered motor protein expression induced by MFN2 deficiency. Our results reveal that MFN2 knockdown induced axonal degeneration of spinal motor neurons and defects in mitochondrial morphology and function. The impaired mitochondrial transport in MFN2-knockdown spinal motor neurons is mediated, at least partially, by the altered motor proteins, providing potential therapeutic targets for rescuing axonal degeneration of spinal motor neurons in CMT2A disease.
Collapse
Affiliation(s)
- Yongchao Mou
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, United States.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Joshua Dein
- MD Program, University of Illinois College of Medicine Rockford, Rockford, IL, United States
| | - Zhenyu Chen
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, United States.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Mrunali Jagdale
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, United States.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Xue-Jun Li
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, United States.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
13
|
Pellino G, Faggioli R, Galuppi A, Leon A, Fusco C, Tugnoli V, Suppiej A. Mitofusin 2: The missing link between mtDNA maintenance defects and neurotransmitter disorders. Mitochondrion 2021; 61:159-164. [PMID: 34600155 DOI: 10.1016/j.mito.2021.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/01/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023]
Abstract
Mitofusin (MFN) 2 belongs to the large family of mitochondrial transmembrane GTPases and has a role in dynamic mitochondrial remodeling process governed by fusion and fission. MFN2 pathogenic variants classically cause Charcot-Marie-Tooth disease type 2A (CMT2A), the most common axonal form of CMT, but patients with complex and unusual phenotypes involving the central and peripheral nervous system have been described, with mitochondrial dysfunction proposed as the underlying pathogenic mechanism. Here, we report the first description of a neurochemical pattern of secondary alterations in the metabolism of biogenic amines linked to the de novo presence of the hotspot MFN2 pathogenic variant p.Arg104Trp. The infant presented a very early onset choreic movement disorder associated with severe axial hypotonia and fluctuating dystonia of limbs. The relationship between mitochondrial DNA (mtDNA) maintenance defects and dopaminergic neurotransmitter disorders, governed by MFN2, is discussed.
Collapse
Affiliation(s)
- Giuditta Pellino
- Pediatric Unit, Azienda USL Ferrara - Sant'Anna University Hospital of Ferrara, Ferrara, Italy.
| | - Raffaella Faggioli
- Department of Medical Sciences, Section of Pediatrics, University of Ferrara, Ferrara, Italy
| | - Anna Galuppi
- Child Neurology Unit, Azienda USL Ferrara, Ferrara, Italy
| | - Alberta Leon
- Research & Innovation Srl (R&I Genetics), Padova, Italy
| | - Carlo Fusco
- Child Neurology and Psychiatric Unit-Presidio Ospedaliero Santa Maria Nuova - AUSL - IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | - Valeria Tugnoli
- Department of Neuroscience and Rehabilitation, Division of Neurology, Sant'Anna University Hospital of Ferrara, Ferrara, Italy
| | - Agnese Suppiej
- Department of Medical Sciences, Section of Pediatrics, University of Ferrara, Ferrara, Italy
| |
Collapse
|
14
|
Sharma G, Sabouny R, Joel M, Martens K, Martino D, de Koning AJ, Pfeffer G, Shutt TE. Characterization of a novel variant in the HR1 domain of MFN2 in a patient with ataxia, optic atrophy and sensorineural hearing loss. F1000Res 2021. [DOI: 10.12688/f1000research.53230.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Background: Pathogenic variants in MFN2 cause Charcot-Marie-Tooth disease (CMT) type 2A (CMT2A) and are the leading cause of the axonal subtypes of CMT. CMT2A is characterized by predominantly distal motor weakness and muscle atrophy, with highly variable severity and onset age. Notably, some MFN2 variants can also lead to other phenotypes such as optic atrophy, hearing loss and lipodystrophy. Despite the clear link between MFN2 and CMT2A, our mechanistic understanding of how dysfunction of the MFN2 protein causes human disease pathologies remains incomplete. This lack of understanding is due in part to the multiple cellular roles of MFN2. Though initially characterized for its role in mediating mitochondrial fusion, MFN2 also plays important roles in mediating interactions between mitochondria and other organelles, such as the endoplasmic reticulum and lipid droplets. Additionally, MFN2 is also important for mitochondrial transport, mitochondrial autophagy, and has even been implicated in lipid transfer. Though over 100 pathogenic MFN2 variants have been described to date, only a few have been characterized functionally, and even then, often only for one or two functions. Method: Several MFN2-mediated functions were characterized in fibroblast cells from a patient presenting with cerebellar ataxia, deafness, blindness, and diffuse cerebral and cerebellar atrophy, who harbours a novel homozygous MFN2 variant, D414V, which is found in a region of the HR1 domain of MFN2 where few pathogenic variants occur. Results: We found evidence for impairment of several MFN2-mediated functions. Consistent with reduced mitochondrial fusion, patient fibroblasts exhibited more fragmented mitochondrial networks and had reduced mtDNA copy number. Additionally, patient fibroblasts had reduced oxygen consumption, fewer mitochondrial-ER contacts, and altered lipid droplets that displayed an unusual perinuclear distribution. Conclusion: Overall, this work characterizes D414V as a novel variant in MFN2 and expands the phenotypic presentation of MFN2 variants to include cerebellar ataxia.
Collapse
|
15
|
Sharma G, Pfeffer G, Shutt TE. Genetic Neuropathy Due to Impairments in Mitochondrial Dynamics. BIOLOGY 2021; 10:268. [PMID: 33810506 PMCID: PMC8066130 DOI: 10.3390/biology10040268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria are dynamic organelles capable of fusing, dividing, and moving about the cell. These properties are especially important in neurons, which in addition to high energy demand, have unique morphological properties with long axons. Notably, mitochondrial dysfunction causes a variety of neurological disorders including peripheral neuropathy, which is linked to impaired mitochondrial dynamics. Nonetheless, exactly why peripheral neurons are especially sensitive to impaired mitochondrial dynamics remains somewhat enigmatic. Although the prevailing view is that longer peripheral nerves are more sensitive to the loss of mitochondrial motility, this explanation is insufficient. Here, we review pathogenic variants in proteins mediating mitochondrial fusion, fission and transport that cause peripheral neuropathy. In addition to highlighting other dynamic processes that are impacted in peripheral neuropathies, we focus on impaired mitochondrial quality control as a potential unifying theme for why mitochondrial dysfunction and impairments in mitochondrial dynamics in particular cause peripheral neuropathy.
Collapse
Affiliation(s)
- Govinda Sharma
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Gerald Pfeffer
- Departments of Clinical Neurosciences and Medical Genetics, Cumming School of Medicine, Hotchkiss Brain Institute, Alberta Child Health Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Timothy E. Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| |
Collapse
|
16
|
Maresca A, Carelli V. Molecular Mechanisms behind Inherited Neurodegeneration of the Optic Nerve. Biomolecules 2021; 11:496. [PMID: 33806088 PMCID: PMC8064499 DOI: 10.3390/biom11040496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 01/01/2023] Open
Abstract
Inherited neurodegeneration of the optic nerve is a paradigm in neurology, as many forms of isolated or syndromic optic atrophy are encountered in clinical practice. The retinal ganglion cells originate the axons that form the optic nerve. They are particularly vulnerable to mitochondrial dysfunction, as they present a peculiar cellular architecture, with axons that are not myelinated for a long intra-retinal segment, thus, very energy dependent. The genetic landscape of causative mutations and genes greatly enlarged in the last decade, pointing to common pathways. These mostly imply mitochondrial dysfunction, which leads to a similar outcome in terms of neurodegeneration. We here critically review these pathways, which include (1) complex I-related oxidative phosphorylation (OXPHOS) dysfunction, (2) mitochondrial dynamics, and (3) endoplasmic reticulum-mitochondrial inter-organellar crosstalk. These major pathogenic mechanisms are in turn interconnected and represent the target for therapeutic strategies. Thus, their deep understanding is the basis to set and test new effective therapies, an urgent unmet need for these patients. New tools are now available to capture all interlinked mechanistic intricacies for the pathogenesis of optic nerve neurodegeneration, casting hope for innovative therapies to be rapidly transferred into the clinic and effectively cure inherited optic neuropathies.
Collapse
Affiliation(s)
- Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, 40139 Bologna, Italy;
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, 40139 Bologna, Italy;
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy
| |
Collapse
|
17
|
Lakshmanan LN, Yee Z, Halliwell B, Gruber J, Gunawan R. Thermodynamic analysis of DNA hybridization signatures near mitochondrial DNA deletion breakpoints. iScience 2021; 24:102138. [PMID: 33665557 PMCID: PMC7900216 DOI: 10.1016/j.isci.2021.102138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 11/17/2022] Open
Abstract
Broad evidence in the literature supports double-strand breaks (DSBs) as initiators of mitochondrial DNA (mtDNA) deletion mutations. While DNA misalignment during DSB repair is commonly proposed as the mechanism by which DSBs cause deletion mutations, details such as the specific DNA repair errors are still lacking. Here, we used DNA hybridization thermodynamics to infer the sequence lengths of mtDNA misalignments that are associated with mtDNA deletions. We gathered and analyzed 9,921 previously reported mtDNA deletion breakpoints in human, rhesus monkey, mouse, rat, and Caenorhabditis elegans. Our analysis shows that a large fraction of mtDNA breakpoint positions can be explained by the thermodynamics of short ≤ 5-nt misalignments. The significance of short DNA misalignments supports an important role for erroneous non-homologous and micro-homology-dependent DSB repair in mtDNA deletion formation. The consistency of the results of our analysis across species further suggests a shared mode of mtDNA deletion mutagenesis.
Collapse
Affiliation(s)
- Lakshmi Narayanan Lakshmanan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Zhuangli Yee
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jan Gruber
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Ageing Research Laboratory, Science Division, Yale-NUS College, Singapore, Singapore
| | - Rudiyanto Gunawan
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, USA
- Corresponding author
| |
Collapse
|
18
|
Navaratnarajah T, Anand R, Reichert AS, Distelmaier F. The relevance of mitochondrial morphology for human disease. Int J Biochem Cell Biol 2021; 134:105951. [PMID: 33610749 DOI: 10.1016/j.biocel.2021.105951] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022]
Abstract
Mitochondria are highly dynamic organelles, which undergo frequent structural and metabolic changes to fulfil cellular demands. To facilitate these processes several proteins are required to regulate mitochondrial shape and interorganellar communication. These proteins include the classical mitochondrial fusion (MFN1, MFN2, and OPA1) and fission proteins (DRP1, MFF, FIS1, etc.) as well as several other proteins that are directly or indirectly involved in these processes (e.g. YME1L, OMA1, INF2, GDAP1, MIC13, etc.). During the last two decades, inherited genetic defects in mitochondrial fusion and fission proteins have emerged as an important class of neurodegenerative human diseases with variable onset ranging from infancy to adulthood. So far, no causal treatment strategies are available for these disorders. In this review, we provide an overview about the current knowledge on mitochondrial dynamics under physiological conditions. Moreover, we describe human diseases, which are associated with genetic defects in these pathways.
Collapse
Affiliation(s)
- Tharsini Navaratnarajah
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ruchika Anand
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine-University-Düsseldorf, Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine-University-Düsseldorf, Düsseldorf, Germany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
19
|
Schiavon CR, Shadel GS, Manor U. Impaired Mitochondrial Mobility in Charcot-Marie-Tooth Disease. Front Cell Dev Biol 2021; 9:624823. [PMID: 33598463 PMCID: PMC7882694 DOI: 10.3389/fcell.2021.624823] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a progressive, peripheral neuropathy and the most commonly inherited neurological disorder. Clinical manifestations of CMT mutations are typically limited to peripheral neurons, the longest cells in the body. Currently, mutations in at least 80 different genes are associated with CMT and new mutations are regularly being discovered. A large portion of the proteins mutated in axonal CMT have documented roles in mitochondrial mobility, suggesting that organelle trafficking defects may be a common underlying disease mechanism. This review will focus on the potential role of altered mitochondrial mobility in the pathogenesis of axonal CMT, highlighting the conceptional challenges and potential experimental and therapeutic opportunities presented by this "impaired mobility" model of the disease.
Collapse
Affiliation(s)
- Cara R. Schiavon
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, United States
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Gerald S. Shadel
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, United States
| |
Collapse
|
20
|
Chapman J, Ng YS, Nicholls TJ. The Maintenance of Mitochondrial DNA Integrity and Dynamics by Mitochondrial Membranes. Life (Basel) 2020; 10:life10090164. [PMID: 32858900 PMCID: PMC7555930 DOI: 10.3390/life10090164] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 12/18/2022] Open
Abstract
Mitochondria are complex organelles that harbour their own genome. Mitochondrial DNA (mtDNA) exists in the form of a circular double-stranded DNA molecule that must be replicated, segregated and distributed around the mitochondrial network. Human cells typically possess between a few hundred and several thousand copies of the mitochondrial genome, located within the mitochondrial matrix in close association with the cristae ultrastructure. The organisation of mtDNA around the mitochondrial network requires mitochondria to be dynamic and undergo both fission and fusion events in coordination with the modulation of cristae architecture. The dysregulation of these processes has profound effects upon mtDNA replication, manifesting as a loss of mtDNA integrity and copy number, and upon the subsequent distribution of mtDNA around the mitochondrial network. Mutations within genes involved in mitochondrial dynamics or cristae modulation cause a wide range of neurological disorders frequently associated with defects in mtDNA maintenance. This review aims to provide an understanding of the biological mechanisms that link mitochondrial dynamics and mtDNA integrity, as well as examine the interplay that occurs between mtDNA, mitochondrial dynamics and cristae structure.
Collapse
Affiliation(s)
- James Chapman
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Correspondence: (J.C.); (T.J.N.)
| | - Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Thomas J. Nicholls
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Correspondence: (J.C.); (T.J.N.)
| |
Collapse
|
21
|
Luna-Sanchez M, Benincá C, Cerutti R, Brea-Calvo G, Yeates A, Scorrano L, Zeviani M, Viscomi C. Opa1 Overexpression Protects from Early-Onset Mpv17 -/--Related Mouse Kidney Disease. Mol Ther 2020; 28:1918-1930. [PMID: 32562616 PMCID: PMC7403474 DOI: 10.1016/j.ymthe.2020.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/06/2020] [Accepted: 06/08/2020] [Indexed: 12/29/2022] Open
Abstract
Moderate overexpression of Opa1, the master regulator of mitochondrial cristae morphology, significantly improved mitochondrial damage induced by drugs, surgical denervation, or oxidative phosphorylation (OXPHOS) defects due to specific impairment of a single mitochondrial respiratory chain complex. Here, we investigated the effectiveness of this approach in the Mpv17-/- mouse, characterized by profound, multisystem mitochondrial DNA (mtDNA) depletion. After the crossing with Opa1tg mice, we found a surprising anticipation of the severe, progressive focal segmental glomerulosclerosis, previously described in Mpv17-/- animals as a late-onset clinical feature (after 12-18 months of life). In contrast, Mpv17-/- animals from this new "mixed" strain died at 8-9 weeks after birth because of severe kidney failure However, Mpv17-/-::Opa1tg mice lived much longer than Mpv17-/- littermates and developed the kidney dysfunction much later. mtDNA content and OXPHOS activities were significantly higher in Mpv17-/-::Opa1tg than in Mpv17-/- kidneys and similar to those for wild-type (WT) littermates. Mitochondrial network and cristae ultrastructure were largely preserved in Mpv17-/-::Opa1tg versus Mpv17-/- kidney and isolated podocytes. Mechanistically, the protective effect of Opa1 overexpression in this model was mediated by a block in apoptosis due to the stabilization of the mitochondrial cristae. These results demonstrate that strategies aiming at increasing Opa1 expression or activity can be effective against mtDNA depletion syndromes.
Collapse
Affiliation(s)
- Marta Luna-Sanchez
- University of Cambridge - MRC Mitochondrial Biology Unit, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Cristiane Benincá
- University of Cambridge - MRC Mitochondrial Biology Unit, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Raffaele Cerutti
- University of Cambridge - MRC Mitochondrial Biology Unit, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Gloria Brea-Calvo
- Centro Andaluz de Biología de Desarrollo and CIBERER, ISCIII, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
| | - Anna Yeates
- Medical Research Council - Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Luca Scorrano
- Venetian Institute of Molecular Medicine, Via Orus 2, 35128 Padova, Italy; Department of Biology, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Massimo Zeviani
- Venetian Institute of Molecular Medicine, Via Orus 2, 35128 Padova, Italy; Department of Neurosciences, University of Padova, via Giustiniani 2, 35128 Padova, Italy.
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy.
| |
Collapse
|
22
|
La Morgia C, Maresca A, Caporali L, Valentino ML, Carelli V. Mitochondrial diseases in adults. J Intern Med 2020; 287:592-608. [PMID: 32463135 DOI: 10.1111/joim.13064] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/07/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023]
Abstract
Mitochondrial medicine is a field that expanded exponentially in the last 30 years. Individually rare, mitochondrial diseases as a whole are probably the most frequent genetic disorder in adults. The complexity of their genotype-phenotype correlation, in terms of penetrance and clinical expressivity, natural history and diagnostic algorithm derives from the dual genetic determination. In fact, in addition to the about 1.500 genes encoding mitochondrial proteins that reside in the nuclear genome (nDNA), we have the 13 proteins encoded by the mitochondrial genome (mtDNA), for which 22 specific tRNAs and 2 rRNAs are also needed. Thus, besides Mendelian genetics, we need to consider all peculiarities of how mtDNA is inherited, maintained and expressed to fully understand the pathogenic mechanisms of these disorders. Yet, from the initial restriction to the narrow field of oxidative phosphorylation dysfunction, the landscape of mitochondrial functions impinging on cellular homeostasis, driving life and death, is impressively enlarged. Finally, from the clinical standpoint, starting from the neuromuscular field, where brain and skeletal muscle were the primary targets of mitochondrial dysfunction as energy-dependent tissues, after three decades virtually any subspecialty of medicine is now involved. We will summarize the key clinical pictures and pathogenic mechanisms of mitochondrial diseases in adults.
Collapse
Affiliation(s)
- C La Morgia
- From the, Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - A Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - L Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - M L Valentino
- From the, Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - V Carelli
- From the, Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| |
Collapse
|
23
|
Larrea D, Pera M, Gonnelli A, Quintana-Cabrera R, Akman HO, Guardia-Laguarta C, Velasco KR, Area-Gomez E, Dal Bello F, De Stefani D, Horvath R, Shy ME, Schon EA, Giacomello M. MFN2 mutations in Charcot-Marie-Tooth disease alter mitochondria-associated ER membrane function but do not impair bioenergetics. Hum Mol Genet 2020; 28:1782-1800. [PMID: 30649465 PMCID: PMC6522073 DOI: 10.1093/hmg/ddz008] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/27/2018] [Accepted: 12/31/2018] [Indexed: 12/23/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) type 2A is a form of peripheral neuropathy, due almost exclusively to dominant mutations in the nuclear gene encoding the mitochondrial protein mitofusin-2 (MFN2). However, there is no understanding of the relationship of clinical phenotype to genotype. MFN2 has two functions: it promotes inter-mitochondrial fusion and mediates endoplasmic reticulum (ER)-mitochondrial tethering at mitochondria-associated ER membranes (MAM). MAM regulates a number of key cellular functions, including lipid and calcium homeostasis, and mitochondrial behavior. To date, no studies have been performed to address whether mutations in MFN2 in CMT2A patient cells affect MAM function, which might provide insight into pathogenesis. Using fibroblasts from three CMT2AMFN2 patients with different mutations in MFN2, we found that some, but not all, examined aspects of ER-mitochondrial connectivity and of MAM function were indeed altered, and correlated with disease severity. Notably, however, respiratory chain function in those cells was unimpaired. Our results suggest that CMT2AMFN2 is a MAM-related disorder but is not a respiratory chain-deficiency disease. The alterations in MAM function described here could also provide insight into the pathogenesis of other forms of CMT.
Collapse
Affiliation(s)
- Delfina Larrea
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Marta Pera
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | | | | | - H Orhan Akman
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | | | - Kevin R Velasco
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Estela Area-Gomez
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | | | | | - Rita Horvath
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Michael E Shy
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Eric A Schon
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.,Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
| | | |
Collapse
|
24
|
Mitochondrial fission and fusion: A dynamic role in aging and potential target for age-related disease. Mech Ageing Dev 2020; 186:111212. [PMID: 32017944 DOI: 10.1016/j.mad.2020.111212] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/16/2020] [Accepted: 01/29/2020] [Indexed: 12/26/2022]
Abstract
The mitochondria is the major hub to convert energy for cellular processes. Dysregulation of mitochondrial function is one of the classical hallmarks of aging, and mitochondrial interventions have repeatedly been shown to improve outcomes in age-related diseases. Crucial to mitochondrial regulation is the dynamic nature of their network structure. Mitochondria separate and merge using fission and fusion processes in response to changes in energy and stress status. While many mitochondrial processes are already characterized in relation to aging, specific evidence in multicellular organisms causally linking mitochondrial dynamics to the regulation of lifespan is limited. There does exist, however, a large body of evidence connecting mitochondrial dynamics to other aging-related cellular processes and implicates them in a number of human diseases. Here, we discuss the mechanisms of mitochondrial fission and fusion, the current evidence of their role in aging of multicellular organisms, and how these connect to cell cycle regulation, quality control, and transmission of energy status. Finally, we discuss the current evidence implicating these processes in age-related human pathologies, such as neurodegenerative or cardio-metabolic diseases. We suggest that deeper understanding of the regulatory mechanisms within this system and downstream implications could benefit in understanding and intervention of these conditions.
Collapse
|
25
|
Donkervoort S, Sabouny R, Yun P, Gauquelin L, Chao KR, Hu Y, Al Khatib I, Töpf A, Mohassel P, Cummings BB, Kaur R, Saade D, Moore SA, Waddell LB, Farrar MA, Goodrich JK, Uapinyoying P, Chan SHS, Javed A, Leach ME, Karachunski P, Dalton J, Medne L, Harper A, Thompson C, Thiffault I, Specht S, Lamont RE, Saunders C, Racher H, Bernier FP, Mowat D, Witting N, Vissing J, Hanson R, Coffman KA, Hainlen M, Parboosingh JS, Carnevale A, Yoon G, Schnur RE, Boycott KM, Mah JK, Straub V, Foley AR, Innes AM, Bönnemann CG, Shutt TE. MSTO1 mutations cause mtDNA depletion, manifesting as muscular dystrophy with cerebellar involvement. Acta Neuropathol 2019; 138:1013-1031. [PMID: 31463572 PMCID: PMC6851037 DOI: 10.1007/s00401-019-02059-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/25/2019] [Accepted: 08/08/2019] [Indexed: 01/12/2023]
Abstract
MSTO1 encodes a cytosolic mitochondrial fusion protein, misato homolog 1 or MSTO1. While the full genotype-phenotype spectrum remains to be explored, pathogenic variants in MSTO1 have recently been reported in a small number of patients presenting with a phenotype of cerebellar ataxia, congenital muscle involvement with histologic findings ranging from myopathic to dystrophic and pigmentary retinopathy. The proposed underlying pathogenic mechanism of MSTO1-related disease is suggestive of impaired mitochondrial fusion secondary to a loss of function of MSTO1. Disorders of mitochondrial fusion and fission have been shown to also lead to mitochondrial DNA (mtDNA) depletion, linking them to the mtDNA depletion syndromes, a clinically and genetically diverse class of mitochondrial diseases characterized by a reduction of cellular mtDNA content. However, the consequences of pathogenic variants in MSTO1 on mtDNA maintenance remain poorly understood. We present extensive phenotypic and genetic data from 12 independent families, including 15 new patients harbouring a broad array of bi-allelic MSTO1 pathogenic variants, and we provide functional characterization from seven MSTO1-related disease patient fibroblasts. Bi-allelic loss-of-function variants in MSTO1 manifest clinically with a remarkably consistent phenotype of childhood-onset muscular dystrophy, corticospinal tract dysfunction and early-onset non-progressive cerebellar atrophy. MSTO1 protein was not detectable in the cultured fibroblasts of all seven patients evaluated, suggesting that pathogenic variants result in a loss of protein expression and/or affect protein stability. Consistent with impaired mitochondrial fusion, mitochondrial networks in fibroblasts were found to be fragmented. Furthermore, all fibroblasts were found to have depletion of mtDNA ranging from 30 to 70% along with alterations to mtDNA nucleoids. Our data corroborate the role of MSTO1 as a mitochondrial fusion protein and highlight a previously unrecognized link to mtDNA regulation. As impaired mitochondrial fusion is a recognized cause of mtDNA depletion syndromes, this novel link to mtDNA depletion in patient fibroblasts suggests that MSTO1-deficiency should also be considered a mtDNA depletion syndrome. Thus, we provide mechanistic insight into the disease pathogenesis associated with MSTO1 mutations and further define the clinical spectrum and the natural history of MSTO1-related disease.
Collapse
Affiliation(s)
- S Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - R Sabouny
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - P Yun
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - L Gauquelin
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - K R Chao
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Y Hu
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - I Al Khatib
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - A Töpf
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - P Mohassel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - B B Cummings
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA, USA
| | - R Kaur
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - D Saade
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - S A Moore
- Department of Pathology Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - L B Waddell
- Kids Neuroscience Centre, Kids Research, The Children's Hospital at Westmead, Sydney, NSW 2145, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - M A Farrar
- Department of Neurology, Sydney Children's Hospital, Sydney, NSW, Australia
- UNSW Sydney, School of Women's and Children's Health, Sydney, NSW, Australia
| | - J K Goodrich
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA, USA
| | - P Uapinyoying
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Research for Genetic Medicine, Children's National Medical Center, Washington, DC, USA
| | - S H S Chan
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, China
| | - A Javed
- School of Biomedical Science, The University of Hong Kong, Hong Kong SAR, China
| | - M E Leach
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Oregon Health and Science University, Neuromuscular Program, Doernbecher Children's Hospital, Portland, OR, USA
| | - P Karachunski
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - J Dalton
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - L Medne
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - A Harper
- Department of Neurology, Virginia Commonwealth University, Children's Hospital of Richmond at VCU, Richmond, VA, USA
| | - C Thompson
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | - I Thiffault
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, USA
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, USA
- University of Missouri-Kansas City School of Medicine, Kansas City, USA
| | - S Specht
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - R E Lamont
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - C Saunders
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, USA
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, USA
- University of Missouri-Kansas City School of Medicine, Kansas City, USA
| | - H Racher
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - F P Bernier
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - D Mowat
- UNSW Sydney, School of Women's and Children's Health, Sydney, NSW, Australia
- Department of Medical Genetics, Sydney Children's Hospital, Sydney, NSW, Australia
| | - N Witting
- Department of Neurology, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - J Vissing
- Department of Neurology, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - R Hanson
- University of Missouri-Kansas City School of Medicine, Kansas City, USA
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, USA
| | - K A Coffman
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, USA
- Division of Neurology, Children's Mercy Hospital, Kansas City, USA
| | - M Hainlen
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, USA
- Division of Neurology, Children's Mercy Hospital, Kansas City, USA
| | - J S Parboosingh
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - A Carnevale
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - G Yoon
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | | | - K M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Care4Rare Research Consortium, Ottawa, Canada
| | - J K Mah
- Departments of Pediatrics, Section of Neurology, University of Calgary, Calgary, AB, Canada
| | - V Straub
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - A M Innes
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - C G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - T E Shutt
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada.
- Department of Medical Genetics, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.
| |
Collapse
|
26
|
Sabouny R, Wong R, Lee-Glover L, Greenway SC, Sinasac DS, Khan A, Shutt TE. Characterization of the C584R variant in the mtDNA depletion syndrome gene FBXL4, reveals a novel role for FBXL4 as a regulator of mitochondrial fusion. Biochim Biophys Acta Mol Basis Dis 2019; 1865:165536. [PMID: 31442532 DOI: 10.1016/j.bbadis.2019.165536] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/16/2019] [Accepted: 08/18/2019] [Indexed: 12/16/2022]
Abstract
Mutations in FBXL4 (F-Box and Leucine rich repeat protein 4), a nuclear-encoded mitochondrial protein with an unknown function, cause mitochondrial DNA depletion syndrome. We report two siblings, from consanguineous parents, harbouring a previously uncharacterized homozygous variant in FBXL4 (c.1750 T > C; p.Cys584Arg). Both patients presented with encephalomyopathy, lactic acidosis and cardiac hypertrophy, which are reported features of FBXL4 impairment. Remarkably, dichloroacetate (DCA) administration to the younger sibling improved metabolic acidosis and reversed cardiac hypertrophy. Characterization of FBXL4 patient fibroblasts revealed severe bioenergetic defects, mtDNA depletion, fragmentation of mitochondrial networks, and abnormalities in mtDNA nucleoids. These phenotypes, observed with other pathogenic FBXL4 variants, confirm the pathogenicity of the p.Cys584Arg variant. Although treating FBXL4 fibroblasts with DCA improved extracellular acidification, in line with reduced lactate levels in patients, DCA treatment did not improve any of the other mitochondrial functions. Nonetheless, we highlight DCA as a potentially effective drug for the management of elevated lactate and cardiomyopathy in patients with pathogenic FBXL4 variants. Finally, as the exact mechanism through which FBXL4 mutations lead to mtDNA depletion was unknown, we tested the hypothesis that FBXL4 promotes mitochondrial fusion. Using a photo-activatable GFP fusion assay, we found reduced mitochondrial fusion rates in cells harbouring a pathogenic FBXL4 variant. Meanwhile, overexpression of wildtype FBXL4, but not the p.Cys584Arg variant, promoted mitochondrial hyperfusion. Thus, we have uncovered a novel function for FBXL4 in promoting mitochondrial fusion, providing important mechanistic insights into the pathogenic mechanism underlying FBXL4 dysfunction.
Collapse
Affiliation(s)
- Rasha Sabouny
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.
| | - Rachel Wong
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Laurie Lee-Glover
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Steven C Greenway
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - David S Sinasac
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Aneal Khan
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Timothy E Shutt
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
27
|
Duraisamy AJ, Mohammad G, Kowluru RA. Mitochondrial fusion and maintenance of mitochondrial homeostasis in diabetic retinopathy. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1617-1626. [PMID: 30922813 DOI: 10.1016/j.bbadis.2019.03.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/11/2019] [Accepted: 03/22/2019] [Indexed: 01/01/2023]
Abstract
Mitochondria are dynamic in structure, and undergo continuous fusion-fission to maintain their homeostasis. In diabetes, retinal mitochondria are swollen, their membrane is damaged and mitochondrial fusion protein, mitofusin 2 (Mfn2), is decreased. DNA methylation machinery is also activated and methylation status of genes implicated in mitochondrial damage and biogenesis is altered. This study aims to investigate the role of mitochondrial fusion in the development of diabetic retinopathy, and to illustrate the molecular mechanism responsible for Mfn2 suppression. Using human retinal endothelial cells, manipulated for Mfn2, we investigated the role of fusion in mitochondrial structural and functional damage in diabetes. The molecular mechanism of its suppression in diabetic milieu was determined by investigating Mfn2 promoter DNA methylation, and confirmed using molecular and pharmacological inhibitors of DNA methylation. Similar studies were performed in the retinal microvasculature (prepared by hypotonic shock method) of diabetic rats, and human donors with documented diabetic retinopathy. Overexpression of Mfn2 prevented glucose-induced increase in mitochondrial fragmentation, decrease in complex III activity and increase in membrane permeability, mtDNA damage and apoptosis. High glucose hypermethylated Mfn2 promoter and decreased transcription factor (SP1) binding, and Dnmt inhibition protected Mfn2 promoter from these changes. In streptozotocin-induced diabetic rats, intravitreal administration of Dnmt1-siRNA attenuated Mfn2 promoter hypermethylation and restored its expression. Human donors with diabetic retinopathy confirmed Mfn2 promoter DNA hypermethylation. Thus, regulating Mfn2 and its epigenetic modifications by molecular/pharmacological means will protect mitochondrial homeostasis in diabetes, and could attenuate the development of retinopathy in diabetic patients.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Cell Line
- DNA (Cytosine-5-)-Methyltransferase 1/antagonists & inhibitors
- DNA (Cytosine-5-)-Methyltransferase 1/genetics
- DNA (Cytosine-5-)-Methyltransferase 1/metabolism
- DNA Methylation
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetic Retinopathy/genetics
- Diabetic Retinopathy/metabolism
- Diabetic Retinopathy/pathology
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Epigenesis, Genetic
- GTP Phosphohydrolases/genetics
- GTP Phosphohydrolases/metabolism
- Homeostasis/genetics
- Humans
- Male
- Middle Aged
- Mitochondria/genetics
- Mitochondria/metabolism
- Mitochondria/pathology
- Mitochondrial Dynamics
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Promoter Regions, Genetic
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Rats
- Rats, Wistar
- Retina/metabolism
- Retina/pathology
- Signal Transduction
- Sp1 Transcription Factor/genetics
- Sp1 Transcription Factor/metabolism
- Streptozocin/administration & dosage
Collapse
Affiliation(s)
- Arul J Duraisamy
- Kresge Eye Institute, Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University, Detroit, MI, United States of America
| | - Ghulam Mohammad
- Kresge Eye Institute, Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University, Detroit, MI, United States of America
| | - Renu A Kowluru
- Kresge Eye Institute, Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University, Detroit, MI, United States of America.
| |
Collapse
|
28
|
Hahn A, Zuryn S. The Cellular Mitochondrial Genome Landscape in Disease. Trends Cell Biol 2018; 29:227-240. [PMID: 30509558 DOI: 10.1016/j.tcb.2018.11.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022]
Abstract
Mitochondrial genome (mitochondrial DNA, mtDNA) lesions that unbalance bioenergetic and oxidative outputs are an important cause of human disease. A major impediment in our understanding of the pathophysiology of mitochondrial disorders is the complexity with which mtDNA mutations are spatiotemporally distributed and managed within individual cells, tissues, and organs. Unlike the comparatively static nuclear genome, accumulating evidence highlights the variability, dynamism, and modifiability of the mtDNA nucleotide sequence between individual cells over time. In this review, we summarize and discuss the impact of mtDNA defects on disease within the context of a mosaic and shifting mutational landscape.
Collapse
Affiliation(s)
- Anne Hahn
- The University of Queensland, Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, Brisbane, Australia
| | - Steven Zuryn
- The University of Queensland, Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, Brisbane, Australia.
| |
Collapse
|
29
|
Nicholls TJ, Gustafsson CM. Separating and Segregating the Human Mitochondrial Genome. Trends Biochem Sci 2018; 43:869-881. [PMID: 30224181 DOI: 10.1016/j.tibs.2018.08.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 12/17/2022]
Abstract
Cells contain thousands of copies of the mitochondrial genome. These genomes are distributed within the tubular mitochondrial network, which is itself spread across the cytosol of the cell. Mitochondrial DNA (mtDNA) replication occurs throughout the cell cycle and ensures that cells maintain a sufficient number of mtDNA copies. At replication termination the genomes must be resolved and segregated within the mitochondrial network. Defects in mtDNA replication and segregation are a cause of human mitochondrial disease associated with failure of cellular energy production. This review focuses upon recent developments on how mitochondrial genomes are physically separated at the end of DNA replication, and how these genomes are subsequently segregated and distributed around the mitochondrial network.
Collapse
Affiliation(s)
- Thomas J Nicholls
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, SE-405 30 Gothenburg, Sweden.
| | - Claes M Gustafsson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
30
|
Finsterer J, Fiorini AC, Scorza CA, Scorza FA. CMT2 due to homozygous MFN2 variants is a multiorgan mitochondrial disorder. Eur J Paediatr Neurol 2018; 22:889-891. [PMID: 29752145 DOI: 10.1016/j.ejpn.2018.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 04/24/2018] [Indexed: 10/17/2022]
Affiliation(s)
| | - Ana C Fiorini
- Programa de Estudos Pós-Graduado em Fonoaudiologia, Pontifícia Universidade Católica de São Paulo (PUC-SP), Departamento de Fonoaudiologia, Escola Paulista de Medicina/Universidade Federal de São Paul o (EPM/UNIFESP), São Paulo, Brazil.
| | - Carla A Scorza
- Disciplina de Neurociência, Escola Paulista de Medicina/Universidade Federal de São Paulo/. (EPM/UNIFESP), São Paulo, Brazil.
| | - Fulvio A Scorza
- Disciplina de Neurociência, Escola Paulista de Medicina/Universidade Federal de São Paulo/. (EPM/UNIFESP), São Paulo, Brazil
| |
Collapse
|
31
|
Nuclear genes involved in mitochondrial diseases caused by instability of mitochondrial DNA. J Appl Genet 2018; 59:43-57. [PMID: 29344903 PMCID: PMC5799321 DOI: 10.1007/s13353-017-0424-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023]
Abstract
Mitochondrial diseases are defined by a respiratory chain dysfunction and in most of the cases manifest as multisystem disorders with predominant expression in muscles and nerves and may be caused by mutations in mitochondrial (mtDNA) or nuclear (nDNA) genomes. Most of the proteins involved in respiratory chain function are nuclear encoded, although 13 subunits of respiratory chain complexes (together with 2 rRNAs and 22 tRNAs necessary for their translation) encoded by mtDNA are essential for cell function. nDNA encodes not only respiratory chain subunits but also all the proteins responsible for mtDNA maintenance, especially those involved in replication, as well as other proteins necessary for the transcription and copy number control of this multicopy genome. Mutations in these genes can cause secondary instability of the mitochondrial genome in the form of depletion (decreased number of mtDNA molecules in the cell), vast multiple deletions or accumulation of point mutations which in turn leads to mitochondrial diseases inherited in a Mendelian fashion. The list of genes involved in mitochondrial DNA maintenance is long, and still incomplete.
Collapse
|
32
|
Upadhyay M, Agarwal S, Bhadauriya P, Ganesh S. Loss of laforin or malin results in increased Drp1 level and concomitant mitochondrial fragmentation in Lafora disease mouse models. Neurobiol Dis 2017; 100:39-51. [DOI: 10.1016/j.nbd.2017.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/24/2016] [Accepted: 01/03/2017] [Indexed: 02/02/2023] Open
|
33
|
Suárez-Rivero JM, Villanueva-Paz M, de la Cruz-Ojeda P, de la Mata M, Cotán D, Oropesa-Ávila M, de Lavera I, Álvarez-Córdoba M, Luzón-Hidalgo R, Sánchez-Alcázar JA. Mitochondrial Dynamics in Mitochondrial Diseases. Diseases 2016; 5:diseases5010001. [PMID: 28933354 PMCID: PMC5456341 DOI: 10.3390/diseases5010001] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/13/2016] [Accepted: 12/21/2016] [Indexed: 01/09/2023] Open
Abstract
Mitochondria are very versatile organelles in continuous fusion and fission processes in response to various cellular signals. Mitochondrial dynamics, including mitochondrial fission/fusion, movements and turnover, are essential for the mitochondrial network quality control. Alterations in mitochondrial dynamics can cause neuropathies such as Charcot-Marie-Tooth disease in which mitochondrial fusion and transport are impaired, or dominant optic atrophy which is caused by a reduced mitochondrial fusion. On the other hand, mitochondrial dysfunction in primary mitochondrial diseases promotes reactive oxygen species production that impairs its own function and dynamics, causing a continuous vicious cycle that aggravates the pathological phenotype. Mitochondrial dynamics provides a new way to understand the pathophysiology of mitochondrial disorders and other diseases related to mitochondria dysfunction such as diabetes, heart failure, or Hungtinton’s disease. The knowledge about mitochondrial dynamics also offers new therapeutics targets in mitochondrial diseases.
Collapse
Affiliation(s)
- Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain.
| | - Marina Villanueva-Paz
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain.
| | - Patricia de la Cruz-Ojeda
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain.
| | - Mario de la Mata
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain.
| | - David Cotán
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain.
| | - Manuel Oropesa-Ávila
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain.
| | - Isabel de Lavera
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain.
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain.
| | - Raquel Luzón-Hidalgo
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain.
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain.
| |
Collapse
|
34
|
Bannerman P, Burns T, Xu J, Miers L, Pleasure D. Mice Hemizygous for a Pathogenic Mitofusin-2 Allele Exhibit Hind Limb/Foot Gait Deficits and Phenotypic Perturbations in Nerve and Muscle. PLoS One 2016; 11:e0167573. [PMID: 27907123 PMCID: PMC5132404 DOI: 10.1371/journal.pone.0167573] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/16/2016] [Indexed: 12/31/2022] Open
Abstract
Charcot-Marie-Tooth disease type 2A (CMT2A), the most common axonal form of hereditary sensory motor neuropathy, is caused by mutations of mitofusin-2 (MFN2). Mitofusin-2 is a GTPase required for fusion of mitochondrial outer membranes, repair of damaged mitochondria, efficient mitochondrial energetics, regulation of mitochondrial-endoplasmic reticulum calcium coupling and axonal transport of mitochondria. We knocked T105M MFN2 preceded by a loxP-flanked STOP sequence into the mouse Rosa26 locus to permit cell type-specific expression of this pathogenic allele. Crossing these mice with nestin-Cre transgenic mice elicited T105M MFN2 expression in neuroectoderm, and resulted in diminished numbers of mitochondria in peripheral nerve axons, an alteration in skeletal muscle fiber type distribution, and a gait abnormality.
Collapse
Affiliation(s)
- Peter Bannerman
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, Sacramento, California, United States of America
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States of America
- * E-mail:
| | - Travis Burns
- Department of Neurology, University of California Davis, Sacramento, California, United States of America
| | - Jie Xu
- Department of Neurology, University of California Davis, Sacramento, California, United States of America
| | - Laird Miers
- Department of Neurology, University of California Davis, Sacramento, California, United States of America
| | - David Pleasure
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, Sacramento, California, United States of America
- Department of Neurology, University of California Davis, Sacramento, California, United States of America
| |
Collapse
|
35
|
Mi X, Tang W, Chen X, Liu F, Tang X. Mitofusin 2 attenuates the histone acetylation at collagen IV promoter in diabetic nephropathy. J Mol Endocrinol 2016; 57:233-249. [PMID: 27997345 DOI: 10.1530/jme-16-0031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/03/2016] [Indexed: 12/15/2022]
Abstract
Extracellular matrix (ECM) increase in diabetic nephropathy (DN) is closely related to mitochondrial dysfunction. The mechanism of protective function of mitofusin 2 (Mfn2) for mitochondria remains largely unknown. In this study, the molecular mechanisms for the effect of Mfn2 on mitochondria and subsequent collagen IV expression in DN were investigated. Ras-binding-deficient mitofusin 2 (Mfn2-Ras(Δ)) were overexpressed in rat glomerular mesangial cells, and then the cells were detected for mitochondrial morphology, cellular reactive oxygen species (ROS), mRNA and protein expression of collagen IV with advanced glycation end-product (AGE) stimulation. Preliminary results reveal that the mitochondrial dysfunction and the increased synthesis of collagen IV after AGE stimulation were reverted by Mfn2-Ras(Δ) overexpression. Bioinformatical computations were performed to search transcriptional factor motifs in the promoter region of collagen IV. Three specific regions for TFAP2A binding were identified, followed by validation with chromatin immunoprecipitation experiments. Knocking down TFAP2A significantly decreased the TF binding in the first two regions and the gene expression of collagen IV. Furthermore, results reveal that Mfn2-Ras(Δ) overexpression significantly mitigated TFAP2A binding and also reverted the histone acetylation at Regions 1 and 2 after AGE stimulation. In streptozotocin-induced diabetic rats, Mfn2-Ras(Δ) overexpression also ameliorated glomerular mesangial lesions with decreased collagen IV expression, accompanied by decreased acetylation and TFAP2A binding at Region 1. In conclusion, this study highlights the pathway by which mitochondria affect the histone acetylation of gene promoter and provides a new potential therapy approach for DN.
Collapse
Affiliation(s)
- Xuhua Mi
- Division of NephrologyWest China Hospital, Sichuan University, Chengdu, China
| | - Wanxin Tang
- Division of NephrologyWest China Hospital, Sichuan University, Chengdu, China
| | - Xiaolei Chen
- Division of NephrologyWest China Hospital, Sichuan University, Chengdu, China
| | - Fei Liu
- Division of NephrologyWest China Hospital, Sichuan University, Chengdu, China
| | - Xiaohong Tang
- Division of NephrologyWest China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Rizzo F, Ronchi D, Salani S, Nizzardo M, Fortunato F, Bordoni A, Stuppia G, Del Bo R, Piga D, Fato R, Bresolin N, Comi GP, Corti S. Selective mitochondrial depletion, apoptosis resistance, and increased mitophagy in human Charcot-Marie-Tooth 2A motor neurons. Hum Mol Genet 2016; 25:4266-4281. [PMID: 27506976 DOI: 10.1093/hmg/ddw258] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/21/2016] [Accepted: 07/21/2016] [Indexed: 01/10/2023] Open
Abstract
Charcot-Marie-Tooth 2A (CMT2A) is an inherited peripheral neuropathy caused by mutations in MFN2, which encodes a mitochondrial membrane protein involved in mitochondrial network homeostasis. Because MFN2 is expressed ubiquitously, the reason for selective motor neuron (MN) involvement in CMT2A is unclear. To address this question, we generated MNs from induced pluripotent stem cells (iPSCs) obtained from the patients with CMT2A as an in vitro disease model. CMT2A iPSC-derived MNs (CMT2A-MNs) exhibited a global reduction in mitochondrial content and altered mitochondrial positioning without significant differences in survival and axon elongation. RNA sequencing profiles and protein studies of key components of the apoptotic executioner program (i.e. p53, BAX, caspase 8, cleaved caspase 3, and the anti-apoptotic marker Bcl2) demonstrated that CMT2A-MNs are more resistant to apoptosis than wild-type MNs. Exploring the balance between mitochondrial biogenesis and the regulation of autophagy-lysosome transcription, we observed an increased autophagic flux in CMT2A-MNs that was associated with increased expression of PINK1, PARK2, BNIP3, and a splice variant of BECN1 that was recently demonstrated to be a trigger for mitochondrial autophagic removal. Taken together, these data suggest that the striking reduction in mitochondria in MNs expressing mutant MFN2 is not the result of impaired biogenesis, but more likely the consequence of enhanced mitophagy. Thus, these pathways represent possible novel molecular therapeutic targets for the development of an effective cure for this disease.
Collapse
Affiliation(s)
- Federica Rizzo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Dario Ronchi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sabrina Salani
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Monica Nizzardo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Fortunato
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andreina Bordoni
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giulia Stuppia
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Roberto Del Bo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Piga
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Romana Fato
- Department of Pharmacy and Biotecnology (FaBiT), University of Bologna, Bologna, Italy
| | - Nereo Bresolin
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo P Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
37
|
Mitochondrial DNA disturbances and deregulated expression of oxidative phosphorylation and mitochondrial fusion proteins in sporadic inclusion body myositis. Clin Sci (Lond) 2016; 130:1741-51. [PMID: 27413019 DOI: 10.1042/cs20160080] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/13/2016] [Indexed: 12/11/2022]
Abstract
Sporadic inclusion body myositis (sIBM) is one of the most common myopathies in elderly people. Mitochondrial abnormalities at the histological level are present in these patients. We hypothesize that mitochondrial dysfunction may play a role in disease aetiology. We took the following measurements of muscle and peripheral blood mononuclear cells (PBMCs) from 30 sIBM patients and 38 age- and gender-paired controls: mitochondrial DNA (mtDNA) deletions, amount of mtDNA and mtRNA, mitochondrial protein synthesis, mitochondrial respiratory chain (MRC) complex I and IV enzymatic activity, mitochondrial mass, oxidative stress and mitochondrial dynamics (mitofusin 2 and optic atrophy 1 levels). Depletion of mtDNA was present in muscle from sIBM patients and PBMCs showed deregulated expression of mitochondrial proteins in oxidative phosphorylation. MRC complex IV/citrate synthase activity was significantly decreased in both tissues and mitochondrial dynamics were affected in muscle. Depletion of mtDNA was significantly more severe in patients with mtDNA deletions, which also presented deregulation of mitochondrial fusion proteins. Imbalance in mitochondrial dynamics in muscle was associated with increased mitochondrial genetic disturbances (both depletion and deletions), demonstrating that proper mitochondrial turnover is essential for mitochondrial homoeostasis and muscle function in these patients.
Collapse
|
38
|
Pasanen P, Myllykangas L, Pöyhönen M, Kiuru-Enari S, Tienari PJ, Laaksovirta H, Toppila J, Ylikallio E, Tyynismaa H, Auranen M. Intrafamilial clinical variability in individuals carrying the CHCHD10 mutation Gly66Val. Acta Neurol Scand 2016. [PMID: 26224640 DOI: 10.1111/ane.12470] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Mutations in the CHCHD10 gene, which encodes a mitochondrially targeted protein, have emerged as an important cause of motor neuron disease and frontotemporal lobar degeneration. The aim of this study was to assess the clinical variability in a large family carrying the p.Gly66Val mutation of the CHCHD10 gene. This mutation has recently been reported to cause late-onset spinal muscular atrophy (SMAJ) or sensorimotor axonal Charcot-Marie-Tooth neuropathy (CMT2) in the Finnish population. MATERIALS AND METHODS Nine affected members of an extended Finnish pedigree were included in the study. Detailed clinical and neurophysiological examinations were performed. The CHCHD10 p.Gly66Val mutation was examined by Sanger sequencing. RESULTS The heterozygous p.Gly66Val mutation was present in all affected individuals from whom a DNA sample was available. The clinical phenotype varied from proximal sensorimotor neuropathy to spinal muscular atrophy and in one case resembled motor neuron disease ALS at its early stages. The age of onset varied from 30 to 73 years. CONCLUSIONS Our data demonstrate that even within the same family, the p.Gly66Val variant can cause variable phenotypes ranging from CMT2-type axonal neuropathy to spinal muscular atrophy, which may also present as an ALS-like disease. The spectrum of CHCHD10-related neuromuscular disease has widened rapidly, and we recommend keeping the threshold for genetic testing low particularly when dominant inheritance or mitochondrial pathology is present.
Collapse
Affiliation(s)
- P. Pasanen
- Department of Medical Biochemistry and Genetics; Institute of Biomedicine; University of Turku; Turku Finland
| | - L. Myllykangas
- Department of Pathology; University of Helsinki and HUSLAB; Helsinki Finland
| | - M. Pöyhönen
- Department of Clinical Genetics; Helsinki University Central Hospital and Department of Medical Genetics; Haartman Institute; University of Helsinki; Helsinki Finland
| | - S. Kiuru-Enari
- Clinical Neurosciences, Neurology; University of Helsinki and Helsinki University Central Hospital; Helsinki Finland
| | - P. J. Tienari
- Clinical Neurosciences, Neurology; University of Helsinki and Helsinki University Central Hospital; Helsinki Finland
- Research Programs Unit; Molecular Neurology; University of Helsinki; Helsinki Finland
| | - H. Laaksovirta
- Clinical Neurosciences, Neurology; University of Helsinki and Helsinki University Central Hospital; Helsinki Finland
- Research Programs Unit; Molecular Neurology; University of Helsinki; Helsinki Finland
| | - J. Toppila
- Department of Clinical Neurophysiology; HUS Medical Imaging Center; Helsinki University Central Hospital; Helsinki Finland
| | - E. Ylikallio
- Research Programs Unit; Molecular Neurology; University of Helsinki; Helsinki Finland
| | - H. Tyynismaa
- Research Programs Unit; Molecular Neurology; University of Helsinki; Helsinki Finland
| | - M. Auranen
- Clinical Neurosciences, Neurology; University of Helsinki and Helsinki University Central Hospital; Helsinki Finland
- Research Programs Unit; Molecular Neurology; University of Helsinki; Helsinki Finland
| |
Collapse
|
39
|
Exome Sequence Analysis Suggests that Genetic Burden Contributes to Phenotypic Variability and Complex Neuropathy. Cell Rep 2015; 12:1169-83. [PMID: 26257172 DOI: 10.1016/j.celrep.2015.07.023] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 05/27/2015] [Accepted: 07/09/2015] [Indexed: 02/08/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous distal symmetric polyneuropathy. Whole-exome sequencing (WES) of 40 individuals from 37 unrelated families with CMT-like peripheral neuropathy refractory to molecular diagnosis identified apparent causal mutations in ∼ 45% (17/37) of families. Three candidate disease genes are proposed, supported by a combination of genetic and in vivo studies. Aggregate analysis of mutation data revealed a significantly increased number of rare variants across 58 neuropathy-associated genes in subjects versus controls, confirmed in a second ethnically discrete neuropathy cohort, suggesting that mutation burden potentially contributes to phenotypic variability. Neuropathy genes shown to have highly penetrant Mendelizing variants (HPMVs) and implicated by burden in families were shown to interact genetically in a zebrafish assay exacerbating the phenotype established by the suppression of single genes. Our findings suggest that the combinatorial effect of rare variants contributes to disease burden and variable expressivity.
Collapse
|
40
|
Ahmed N, Ronchi D, Comi GP. Genes and Pathways Involved in Adult Onset Disorders Featuring Muscle Mitochondrial DNA Instability. Int J Mol Sci 2015; 16:18054-76. [PMID: 26251896 PMCID: PMC4581235 DOI: 10.3390/ijms160818054] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 12/31/2022] Open
Abstract
Replication and maintenance of mtDNA entirely relies on a set of proteins encoded by the nuclear genome, which include members of the core replicative machinery, proteins involved in the homeostasis of mitochondrial dNTPs pools or deputed to the control of mitochondrial dynamics and morphology. Mutations in their coding genes have been observed in familial and sporadic forms of pediatric and adult-onset clinical phenotypes featuring mtDNA instability. The list of defects involved in these disorders has recently expanded, including mutations in the exo-/endo-nuclease flap-processing proteins MGME1 and DNA2, supporting the notion that an enzymatic DNA repair system actively takes place in mitochondria. The results obtained in the last few years acknowledge the contribution of next-generation sequencing methods in the identification of new disease loci in small groups of patients and even single probands. Although heterogeneous, these genes can be conveniently classified according to the pathway to which they belong. The definition of the molecular and biochemical features of these pathways might be helpful for fundamental knowledge of these disorders, to accelerate genetic diagnosis of patients and the development of rational therapies. In this review, we discuss the molecular findings disclosed in adult patients with muscle pathology hallmarked by mtDNA instability.
Collapse
Affiliation(s)
- Naghia Ahmed
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Centre, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, via Francesco Sforza 35, Milan 20122, Italy.
| | - Dario Ronchi
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Centre, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, via Francesco Sforza 35, Milan 20122, Italy.
| | - Giacomo Pietro Comi
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Centre, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, via Francesco Sforza 35, Milan 20122, Italy.
| |
Collapse
|
41
|
Kawalec M, Boratyńska-Jasińska A, Beręsewicz M, Dymkowska D, Zabłocki K, Zabłocka B. Mitofusin 2 Deficiency Affects Energy Metabolism and Mitochondrial Biogenesis in MEF Cells. PLoS One 2015; 10:e0134162. [PMID: 26230519 PMCID: PMC4521854 DOI: 10.1371/journal.pone.0134162] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 07/06/2015] [Indexed: 12/13/2022] Open
Abstract
Mitofusin 2 (Mfn2), mitochondrial outer membrane protein which is involved in rearrangement of these organelles, was first described in pathology of hypertension and diabetes, and more recently much attention is paid to its functions in Charcot-Marie-Tooth type 2A neuropathy (CMT2A). Here, cellular energy metabolism was investigated in mouse embryonic fibroblasts (MEF) differing in the presence of the Mfn2 gene; control (MEFwt) and with Mfn2 gene depleted MEFMfn2-/-. These two cell lines were compared in terms of various parameters characterizing mitochondrial bioenergetics. Here, we have shown that relative rate of proliferation of MEFMfn2-/- cells versus control fibroblasts depend on serum supplementation of the growth media. Moreover, MEFMfn2-/- cells exhibited significantly increased respiration rate in comparison to MEFwt, regardless of serum supplementation of the medium. This effect was correlated with increased level of mitochondrial markers (TOM20 and NAO) as well as mitochondrial transcription factor A (TFAM) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) protein levels and unchanged total ATP content. Interestingly, mitochondrial DNA content in MEFMfn2-/- cells was not reduced. Fundamentally, these results are in contrast to a commonly accepted belief that mitofusin 2 deficiency inevitably results in debilitation of mitochondrial energy metabolism. However, we suggest a balance between negative metabolic consequences of mitofusin 2 deficiency and adaptive processes exemplified by increased level of PGC-1α and TFAM transcription factor which prevent an excessive depletion of mtDNA and severe impairment of cell metabolism.
Collapse
Affiliation(s)
- Maria Kawalec
- Molecular Biology Unit, Mossakowski Medical Research Centre, PAS, Warsaw, Poland
| | | | | | - Dorota Dymkowska
- Department of Biochemistry, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Krzysztof Zabłocki
- Department of Biochemistry, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Barbara Zabłocka
- Molecular Biology Unit, Mossakowski Medical Research Centre, PAS, Warsaw, Poland
| |
Collapse
|
42
|
Dello Russo C, Padula F, Di Giacomo G, Mesoraca A, Gabrielli I, Bizzoco D, Giorlandino C. A new approach for Next Generation Sequencing in prenatal diagnosis applied to a case of Charcot-Marie-Tooth syndrome. Prenat Diagn 2015; 35:1018-21. [DOI: 10.1002/pd.4627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/19/2015] [Accepted: 05/23/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Claudio Dello Russo
- Altamedica; Fetal-Maternal Medical Centre-Department of Human Genetics; Rome Italy
| | - Francesco Padula
- Altamedica; Fetal-Maternal Medical Centre-Department of Prenatal Diagnosis; Rome Italy
| | - Gianluca Di Giacomo
- Altamedica; Fetal-Maternal Medical Centre-Department of Human Genetics; Rome Italy
| | - Alvaro Mesoraca
- Altamedica; Fetal-Maternal Medical Centre-Department of Human Genetics; Rome Italy
| | - Ivan Gabrielli
- Altamedica; Fetal-Maternal Medical Centre-Department of Human Genetics; Rome Italy
| | - Domenico Bizzoco
- Altamedica; Fetal-Maternal Medical Centre-Department of Human Genetics; Rome Italy
| | - Claudio Giorlandino
- Altamedica; Fetal-Maternal Medical Centre-Department of Prenatal Diagnosis; Rome Italy
| |
Collapse
|
43
|
Stuppia G, Rizzo F, Riboldi G, Del Bo R, Nizzardo M, Simone C, Comi GP, Bresolin N, Corti S. MFN2-related neuropathies: Clinical features, molecular pathogenesis and therapeutic perspectives. J Neurol Sci 2015; 356:7-18. [PMID: 26143526 DOI: 10.1016/j.jns.2015.05.033] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 05/18/2015] [Accepted: 05/26/2015] [Indexed: 12/16/2022]
Abstract
Mitofusin 2 (MFN2) is a GTPase dynamin-like protein of the outer mitochondrial membrane, encoded in the nuclear genome by the MFN2 gene located on the short (p) arm of chromosome 1. MFN2 protein is involved in several intracellular pathways, but is mainly involved in a network that has an essential role in several mitochondrial functions, including fusion, axonal transport, interorganellar communication and mitophagy. Mutations in the gene encoding MFN2 are associated with Charcot-Marie-Tooth disease type 2A (CMT2A), a neurological disorder characterized by a wide clinical phenotype that involves the central and peripheral nervous system. Here, we present the clinical, genetic and neuropathological features of human diseases associated with MFN2 mutations. We also report proposed pathogenic mechanisms through which MFN2 mutations likely contribute to the development of neurodegeneration. MFN2-related disorders may occur more frequently than previously considered, and they may represent a paradigm for the study of the defective mitochondrial dynamics that seem to play a significant role in the molecular and cellular pathogenesis of common neurodegenerative diseases; thus they may also lead to the identification of related therapeutic targets.
Collapse
Affiliation(s)
- Giulia Stuppia
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Federica Rizzo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Giulietta Riboldi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Roberto Del Bo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Monica Nizzardo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Chiara Simone
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Giacomo P Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Nereo Bresolin
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
44
|
Zhang Y, Zhao YP, Gao YF, Fan ZM, Liu MY, Cai XY, Xia ZK, Gao CL. Silencing miR-106b improves palmitic acid-induced mitochondrial dysfunction and insulin resistance in skeletal myocytes. Mol Med Rep 2015; 11:3834-41. [PMID: 25529328 DOI: 10.3892/mmr.2014.3124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 10/24/2014] [Indexed: 11/06/2022] Open
Abstract
MicroRNA‑106b (miR‑106b) is reported to correlate closely with skeletal muscle insulin resistance. In the current study the effect of miR‑106b on palmitic acid (PA)‑induced mitochondrial dysfunction and insulin resistance was investigated in C2C12 myotubes via the silencing of miR‑106b. MiR‑106b expression was increased under PA treatment, while miR‑106b loss of function improved insulin sensitivity by upregulating its target mitofusin‑2 (Mfn2) in C2C12 myocytes. Furthermore, miR‑106b loss of function partly improved mitochondrial morphological lesions and increased the levels of mitochondial DNA and intracellular adenosine triphosphate that had been impaired by PA exposure in C2C12 myocytes. MiR‑106b loss of function attenuated the levels of intracellular reactive oxygen species (ROS), and upregulated the expression levels of the estrogen‑related receptor (ERR)‑α/peroxisome proliferative activated receptor γ coactivator (PGC)‑1α/Mfn2 axis under PA exposure. In addition, miR‑106b negatively regulated skeletal muscle mitochondrial function and insulin sensitivity under PA‑induced insulin resistance by targeting Mfn2, which may be associated with reduced ROS and upregulation of the ERR‑α/PGC‑1α/Mfn2 axis.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pediatrics, Jinling Hospital, Nanjing University, School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Ya-Ping Zhao
- Department of Pediatrics, The 82nd Hospital of the People's Liberation Army, Huai'an, Jiangsu 223001, P.R. China
| | - Yuan-Fu Gao
- Department of Pediatrics, Jinling Hospital, Nanjing University, School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Zhong-Min Fan
- Department of Pediatrics, Jinling Hospital, Nanjing University, School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Meng-Yuan Liu
- Department of Pediatrics, Jinling Hospital, Nanjing University, School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Xiao-Yi Cai
- Department of Pediatrics, Jinling Hospital, Nanjing University, School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Zheng-Kun Xia
- Department of Pediatrics, Jinling Hospital, Nanjing University, School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Chun-Lin Gao
- Department of Pediatrics, Jinling Hospital, Nanjing University, School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
45
|
Carelli V, Maresca A, Caporali L, Trifunov S, Zanna C, Rugolo M. Mitochondria: Biogenesis and mitophagy balance in segregation and clonal expansion of mitochondrial DNA mutations. Int J Biochem Cell Biol 2015; 63:21-4. [PMID: 25666555 DOI: 10.1016/j.biocel.2015.01.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/20/2015] [Accepted: 01/29/2015] [Indexed: 12/31/2022]
Abstract
Mitochondria are cytoplasmic organelles containing their own multi-copy genome. They are organized in a highly dynamic network, resulting from balance between fission and fusion, which maintains homeostasis of mitochondrial mass through mitochondrial biogenesis and mitophagy. Mitochondrial DNA (mtDNA) mutates much faster than nuclear DNA. In particular, mtDNA point mutations and deletions may occur somatically and accumulate with aging, coexisting with the wild type, a condition known as heteroplasmy. Under specific circumstances, clonal expansion of mutant mtDNA may occur within single cells, causing a wide range of severe human diseases when mutant overcomes wild type. Furthermore, mtDNA deletions accumulate and clonally expand as a consequence of deleterious mutations in nuclear genes involved in mtDNA replication and maintenance, as well as in mitochondrial fusion genes (mitofusin-2 and OPA1), possibly implicating mtDNA nucleoids segregation. We here discuss how the intricacies of mitochondrial homeostasis impinge on the intracellular propagation of mutant mtDNA. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies.
Collapse
Affiliation(s)
- Valerio Carelli
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy; Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.
| | - Alessandra Maresca
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy; Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Leonardo Caporali
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy; Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Selena Trifunov
- Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy; Unit of Cellular Biochemistry, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Claudia Zanna
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy; Unit of Cellular Biochemistry, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Michela Rugolo
- Unit of Cellular Biochemistry, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
46
|
Busch KB, Kowald A, Spelbrink JN. Quality matters: how does mitochondrial network dynamics and quality control impact on mtDNA integrity? Philos Trans R Soc Lond B Biol Sci 2015; 369:20130442. [PMID: 24864312 DOI: 10.1098/rstb.2013.0442] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Mammalian mtDNA encodes for 13 core proteins of oxidative phosphorylation. Mitochondrial DNA mutations and deletions cause severe myopathies and neuromuscular diseases. Thus, the integrity of mtDNA is pivotal for cell survival and health of the organism. We here discuss the possible impact of mitochondrial fusion and fission on mtDNA maintenance as well as positive and negative selection processes. Our focus is centred on the important question of how the quality of mtDNA nucleoids can be assured when selection and mitochondrial quality control works on functional and physiological phenotypes constituted by oxidative phosphorylation proteins. The organelle control theory suggests a link between phenotype and nucleoid genotype. This is discussed in the light of new results presented here showing that mitochondrial transcription factor A/nucleoids are restricted in their intramitochondrial mobility and probably have a limited sphere of influence. Together with recent published work on mitochondrial and mtDNA heteroplasmy dynamics, these data suggest first, that single mitochondria might well be internally heterogeneous and second, that nucleoid genotypes might be linked to local phenotypes (although the link might often be leaky). We discuss how random or site-specific mitochondrial fission can isolate dysfunctional parts and enable their elimination by mitophagy, stressing the importance of fission in the process of mtDNA quality control. The role of fusion is more multifaceted and less understood in this context, but the mixing and equilibration of matrix content might be one of its important functions.
Collapse
Affiliation(s)
- Karin B Busch
- Division of Mitochondrial Dynamics, School of Biology and Chemistry, University of Osnabrück, 49069 Osnabrück, Germany
| | - Axel Kowald
- Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Johannes N Spelbrink
- Department of Pediatrics, Nijmegen Centre for Mitochondrial Disorders, Radboud University Medical Centre, Geert Grooteplein 10, PO Box 9101, 6500 HB Nijmegen, The Netherlands FinMIT Centre of Excellence, Institute of Biomedical Technology and Tampere University Hospital, Pirkanmaa Hospital District, 33014 Tampere, Finland
| |
Collapse
|
47
|
Abstract
Mitochondria are highly specialized in function, but mitochondrial and, therefore, cellular integrity is maintained through their dynamic nature. Through the frequent processes of fusion and fission, mitochondria continuously change in shape and adjust function to meet cellular requirements. Abnormalities in fusion/fission dynamics generate cellular dysfunction that may lead to diseases. Mutations in the genes encoding mitochondrial fusion/fission proteins, such as MFN2 and OPA1, have been associated with an increasing number of genetic disorders, including Charcot-Marie-Tooth disease type 2A (CMT2A) and autosomal dominant optic atrophy. In this review, we address the mitochondrial dynamic changes in several important genetic diseases, which will bring the new insight of clinical relevance of mitochondrial genetics.
Collapse
Affiliation(s)
- Le Chen
- Molecular & Cellular Cardiology, University of California, Davis, One Shields Avenue Davis, CA, 95616, USA,
| | | | | |
Collapse
|
48
|
Fukuoh A, Cannino G, Gerards M, Buckley S, Kazancioglu S, Scialo F, Lihavainen E, Ribeiro A, Dufour E, Jacobs HT. Screen for mitochondrial DNA copy number maintenance genes reveals essential role for ATP synthase. Mol Syst Biol 2014; 10:734. [PMID: 24952591 PMCID: PMC4265055 DOI: 10.15252/msb.20145117] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The machinery of mitochondrial DNA (mtDNA) maintenance is only partially characterized and is of wide interest due to its involvement in disease. To identify novel components of this machinery, plus other cellular pathways required for mtDNA viability, we implemented a genome-wide RNAi screen in Drosophila S2 cells, assaying for loss of fluorescence of mtDNA nucleoids stained with the DNA-intercalating agent PicoGreen. In addition to previously characterized components of the mtDNA replication and transcription machineries, positives included many proteins of the cytosolic proteasome and ribosome (but not the mitoribosome), three proteins involved in vesicle transport, some other factors involved in mitochondrial biogenesis or nuclear gene expression, > 30 mainly uncharacterized proteins and most subunits of ATP synthase (but no other OXPHOS complex). ATP synthase knockdown precipitated a burst of mitochondrial ROS production, followed by copy number depletion involving increased mitochondrial turnover, not dependent on the canonical autophagy machinery. Our findings will inform future studies of the apparatus and regulation of mtDNA maintenance, and the role of mitochondrial bioenergetics and signaling in modulating mtDNA copy number.
Collapse
Affiliation(s)
- Atsushi Fukuoh
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate school of Medical Sciences, Fukuoka, Japan Department of Medical Laboratory Science, Junshin Gakuen University, Fukuoka, Japan
| | - Giuseppe Cannino
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Mike Gerards
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Suzanne Buckley
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Selena Kazancioglu
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Filippo Scialo
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Eero Lihavainen
- Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Andre Ribeiro
- Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Eric Dufour
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Howard T Jacobs
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland Research Program of Molecular Neurology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
49
|
Wilnai Y, Enns GM, Niemi AK, Higgins J, Vogel H. Abnormal hepatocellular mitochondria in methylmalonic acidemia. Ultrastruct Pathol 2014; 38:309-14. [PMID: 24933007 DOI: 10.3109/01913123.2014.921657] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Methylmalonic acidemia (MMA) is one of the most frequently encountered forms of branched-chain organic acidemias. Biochemical abnormalities seen in some MMA patients, such as lactic acidemia and increased tricarboxylic acid cycle intermediate excretion, suggest mitochondrial dysfunction. In order to investigate the possibility of mitochondrial involvement in MMA, we examined liver tissue for evidence of mitochondrial ultrastructural abnormalities. Five explanted livers obtained from MMA mut(0) patients undergoing liver transplantation were biopsied. All patients had previous episodes of metabolic acidosis, lactic acidemia, ketonuria, and hyperammonemia. All biopsies revealed a striking mitochondriopathy by electron microscopy. Mitochondria were markedly variable in size, shape, and conformation of cristae. The inner matrix appeared to be greatly expanded and the cristae were diminutive and disconnected. No crystalloid inclusions were noted. This series clearly documents extensive mitochondrial ultrastructure abnormalities in liver samples from MMA patients undergoing transplantation, providing pathological evidence for mitochondrial dysfunction in the pathophysiology of MMA mut(0). Considering the trend to abnormally large mitochondria, the metabolic effects of MMA may restrict mitochondrial fission or promote fusion. The correlation between mitochondrial dysfunction and morphological abnormalities in MMA may provide insights for better understanding and monitoring of optimized or novel therapeutic strategies.
Collapse
Affiliation(s)
- Yael Wilnai
- Department of Pediatrics, Division of Medical Genetics, Lucile Packard Children's Hospital, Stanford University Medical Center , Palo Alto, CA , USA and
| | | | | | | | | |
Collapse
|
50
|
Novel mitofusin 2 splice-site mutation causes Charcot–Marie–Tooth disease type 2 with prominent sensory dysfunction. Neuromuscul Disord 2014; 24:360-4. [DOI: 10.1016/j.nmd.2014.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 01/07/2014] [Accepted: 01/16/2014] [Indexed: 11/23/2022]
|