1
|
Sivanantharajah L, Mudher A, Shepherd D. Examining the vulnerability of adult neuron subtypes to tau-mediated toxicity in Drosophila. Transl Psychiatry 2025; 15:127. [PMID: 40188067 PMCID: PMC11972385 DOI: 10.1038/s41398-025-03342-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/26/2025] [Accepted: 03/20/2025] [Indexed: 04/07/2025] Open
Abstract
Selective vulnerability of nerve cells is a feature of neurodegenerative disease. To date, animal models have been limited to examining pathogenic protein expression in broad or heterogeneous neuronal populations. Consequently, noted pathological hallmarks represent an average of disease phenotypes over multiple neuron types, rather than exact measures of individual responses. Here we targeted gene expression to small, precisely defined and homogenous neuronal populations in the Drosophila melanogaster central nervous system (CNS), allowing dissection of selective vulnerability of single types of neurons with single-neuron resolution. Using cellular degeneration as a readout for vulnerability, we found while all neurons were affected by tau some neuron types were more affected (vulnerable) than others (resilient). The tau-mediated pathogenic effects fell on a spectrum, demonstrating that neurons in the fly CNS are differentially vulnerable to tau pathology. Mechanistically, total tau levels did not correlate with vulnerability; rather, the best correlatives of degeneration were significant age-dependent increases in phospho-tau levels in the same neuron type, and tau mislocalisation into dendrites. Lastly, we found that tau phosphorylation in vulnerable neuron types correlated with downstream vesicular and mitochondrial trafficking defects. However, all vulnerable neuron types did not show the same pattern, suggesting multiple paths to degeneration. Beyond highlighting the heterogeneity of neuronal responses to tau in determining vulnerability, this work provides a new, high-resolution, tractable model for studying the age-dependent effects of tau, or any pathogenic protein, on postmitotic neurons with sub-cellular resolution.
Collapse
Affiliation(s)
| | - Amrit Mudher
- Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
| | - David Shepherd
- Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
2
|
Curley M, Rai M, Chuang CL, Pagala V, Stephan A, Coleman Z, Robles-Murguia M, Wang YD, Peng J, Demontis F. Transgenic sensors reveal compartment-specific effects of aggregation-prone proteins on subcellular proteostasis during aging. CELL REPORTS METHODS 2024; 4:100875. [PMID: 39383859 PMCID: PMC11573793 DOI: 10.1016/j.crmeth.2024.100875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/01/2024] [Accepted: 09/12/2024] [Indexed: 10/11/2024]
Abstract
Loss of proteostasis is a hallmark of aging that underlies many age-related diseases. Different cell compartments experience distinctive challenges in maintaining protein quality control, but how aging regulates subcellular proteostasis remains underexplored. Here, by targeting the misfolding-prone FlucDM luciferase to the cytoplasm, mitochondria, and nucleus, we established transgenic sensors to examine subcellular proteostasis in Drosophila. Analysis of detergent-insoluble and -soluble levels of compartment-targeted FlucDM variants indicates that thermal stress, cold shock, and pro-longevity inter-organ signaling differentially affect subcellular proteostasis during aging. Moreover, aggregation-prone proteins that cause different neurodegenerative diseases induce a diverse range of outcomes on FlucDM insolubility, suggesting that subcellular proteostasis is impaired in a disease-specific manner. Further analyses with FlucDM and mass spectrometry indicate that pathogenic tauV337M produces an unexpectedly complex regulation of solubility for different FlucDM variants and protein subsets. Altogether, compartment-targeted FlucDM sensors pinpoint a diverse modulation of subcellular proteostasis by aging regulators.
Collapse
Affiliation(s)
- Michelle Curley
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Mamta Rai
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Chia-Lung Chuang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Vishwajeeth Pagala
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Anna Stephan
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Zane Coleman
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Maricela Robles-Murguia
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Junmin Peng
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
3
|
Premi E, Pengo M, Mattioli I, Cantoni V, Dukart J, Gasparotti R, Buratti E, Padovani A, Bocchetta M, Todd EG, Bouzigues A, Cash DM, Convery RS, Russell LL, Foster P, Thomas DL, van Swieten JC, Jiskoot LC, Seelaar H, Galimberti D, Sanchez-Valle R, Laforce R, Moreno F, Synofzik M, Graff C, Masellis M, Tartaglia MC, Rowe JB, Tsvetanov KA, Vandenberghe R, Finger E, Tiraboschi P, de Mendonça A, Santana I, Butler CR, Ducharme S, Gerhard A, Levin J, Otto M, Sorbi S, Le Ber I, Pasquier F, Rohrer JD, Borroni B. Early neurotransmitters changes in prodromal frontotemporal dementia: A GENFI study. Neurobiol Dis 2023; 179:106068. [PMID: 36898614 DOI: 10.1016/j.nbd.2023.106068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Neurotransmitters deficits in Frontotemporal Dementia (FTD) are still poorly understood. Better knowledge of neurotransmitters impairment, especially in prodromal disease stages, might tailor symptomatic treatment approaches. METHODS In the present study, we applied JuSpace toolbox, which allowed for cross-modal correlation of Magnetic Resonance Imaging (MRI)-based measures with nuclear imaging derived estimates covering various neurotransmitter systems including dopaminergic, serotonergic, noradrenergic, GABAergic and glutamatergic neurotransmission. We included 392 mutation carriers (157 GRN, 164 C9orf72, 71 MAPT), together with 276 non-carrier cognitively healthy controls (HC). We tested if the spatial patterns of grey matter volume (GMV) alterations in mutation carriers (relative to HC) are correlated with specific neurotransmitter systems in prodromal (CDR® plus NACC FTLD = 0.5) and in symptomatic (CDR® plus NACC FTLD≥1) FTD. RESULTS In prodromal stages of C9orf72 disease, voxel-based brain changes were significantly associated with spatial distribution of dopamine and acetylcholine pathways; in prodromal MAPT disease with dopamine and serotonin pathways, while in prodromal GRN disease no significant findings were reported (p < 0.05, Family Wise Error corrected). In symptomatic FTD, a widespread involvement of dopamine, serotonin, glutamate and acetylcholine pathways across all genetic subtypes was found. Social cognition scores, loss of empathy and poor response to emotional cues were found to correlate with the strength of GMV colocalization of dopamine and serotonin pathways (all p < 0.01). CONCLUSIONS This study, indirectly assessing neurotransmitter deficits in monogenic FTD, provides novel insight into disease mechanisms and might suggest potential therapeutic targets to counteract disease-related symptoms.
Collapse
Affiliation(s)
- Enrico Premi
- Neurology, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | - Marta Pengo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Irene Mattioli
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Valentina Cantoni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Juergen Dukart
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research CentreJülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Roberto Gasparotti
- Neuroradiology Unit, Department of Medical and Surgical Specialties, University of Brescia, Brescia, Italy
| | | | - Alessandro Padovani
- Neurology, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy; Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Centre for Cognitive and Clinical Neuroscience, Division of Psychology, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom
| | - Emily G Todd
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Arabella Bouzigues
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - David M Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Rhian S Convery
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Lucy L Russell
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Phoebe Foster
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - David L Thomas
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - John C van Swieten
- Department of Neurology and Alzheimer center, Erasmus Medical Center Rotterdam, the Netherlands
| | - Lize C Jiskoot
- Department of Neurology and Alzheimer center, Erasmus Medical Center Rotterdam, the Netherlands
| | - Harro Seelaar
- Department of Neurology and Alzheimer center, Erasmus Medical Center Rotterdam, the Netherlands
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Raquel Sanchez-Valle
- Neurology Department, Hospital Clinic, Institut d'Investigacions Biomèdiques, Barcelona, Spain
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, Faculté de Médecine, Université Laval, Québec, Canada
| | - Fermin Moreno
- Hospital Universitario Donostia, San Sebastian, Spain
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Caroline Graff
- Karolinska Institutet, Department NVS, Division of Neurogeriatrics, Stockholm, Sweden; Unit for Hereditray Dementia, Theme Aging, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Mario Masellis
- Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Maria Carmela Tartaglia
- Toronto Western Hospital, Tanz Centre for Research in Neurodegenerative Disease, Toronto, ON, Canada
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust and Medical Research Council Cognition and brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Kamen A Tsvetanov
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust and Medical Research Council Cognition and brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Pietro Tiraboschi
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Isabel Santana
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Portugal
| | - Chris R Butler
- Department of Clinical Neurology, University of Oxford, Oxford, United Kingdom
| | - Simon Ducharme
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, United Kingdom; Departments of Geriatric Medicine and Nuclear Medicine, University of Duisburg-Essen, Germany
| | - Johannes Levin
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster of System Neurology, Munich, Germany
| | - Markus Otto
- Department of Neurology, University Hospital Halle, Halle, Germany
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Centre de référence des démences rares ou précoces, IM2A, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Reference Network for Rare Neurological Diseases (ERN-RND)
| | - Florence Pasquier
- University of Lille, France; Inserm 1172, Lille, France; CHU, CNR-MAJ, Labex Distalz, LiCEND Lille, France
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Barbara Borroni
- Neurology, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy; Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
| |
Collapse
|
4
|
Liang SY, Wang ZT, Tan L, Yu JT. Tau Toxicity in Neurodegeneration. Mol Neurobiol 2022; 59:3617-3634. [PMID: 35359226 DOI: 10.1007/s12035-022-02809-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 03/20/2022] [Indexed: 12/22/2022]
Abstract
Tau is a microtubule-associated protein widely distributed in the central nervous system (CNS). The main function of tau is to promote the assembly of microtubules and stabilize their structure. After a long period of research on neurodegenerative diseases, the function and dysfunction of the microtubule-associated protein tau in neurodegenerative diseases and tau neurotoxicity have attracted increasing attention. Tauopathies are a series of progressive neurodegenerative diseases caused by pathological changes in tau, such as abnormal phosphorylation. The pathological features of tauopathies are the deposition of abnormally phosphorylated tau proteins and the aggregation of tau proteins in neurons. This article first describes the normal physiological function and dysfunction of tau proteins and then discusses the enzymes and proteins involved in tau phosphorylation and dephosphorylation, the role of tau in cell dysfunction, and the relationships between tau and several neurodegenerative diseases. The study of tau neurotoxicity provides new directions for the treatment of tauopathies.
Collapse
Affiliation(s)
- Shu-Yu Liang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China
| | - Zuo-Teng Wang
- Department of Neurology, Qingdao Municipal Hospital, College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China. .,Department of Neurology, Qingdao Municipal Hospital, College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, China.
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China.
| |
Collapse
|
5
|
A Novel Neuron-Specific Regulator of the V-ATPase in Drosophila. eNeuro 2021; 8:ENEURO.0193-21.2021. [PMID: 34620624 PMCID: PMC8541823 DOI: 10.1523/eneuro.0193-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/24/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
The V-ATPase is a highly conserved enzymatic complex that ensures appropriate levels of organelle acidification in virtually all eukaryotic cells. While the general mechanisms of this proton pump have been well studied, little is known about the specific regulations of neuronal V-ATPase. Here, we studied CG31030, a previously uncharacterized Drosophila protein predicted from its sequence homology to be part of the V-ATPase family. In contrast to its ortholog ATP6AP1/VhaAC45 which is ubiquitous, we observed that CG31030 expression is apparently restricted to all neurons, and using CRISPR/Cas9-mediated gene tagging, that it is mainly addressed to synaptic terminals. In addition, we observed that CG31030 is essential for fly survival and that this protein co-immunoprecipitates with identified V-ATPase subunits, and in particular ATP6AP2. Using a genetically-encoded pH probe (VMAT-pHluorin) and electrophysiological recordings at the larval neuromuscular junction, we show that CG31030 knock-down induces a major defect in synaptic vesicle acidification and a decrease in quantal size, which is the amplitude of the postsynaptic response to the release of a single synaptic vesicle. These defects were associated with severe locomotor impairments. Overall, our data indicate that CG31030, which we renamed VhaAC45-related protein (VhaAC45RP), is a specific regulator of neuronal V-ATPase in Drosophila that is required for proper synaptic vesicle acidification and neurotransmitter release.
Collapse
|
6
|
Inoshita T, Takemoto D, Imai Y. Analysis of Dopaminergic Functions in Drosophila. Methods Mol Biol 2021; 2322:185-193. [PMID: 34043204 DOI: 10.1007/978-1-0716-1495-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dopaminergic (DA) neurons regulate various physiological functions, including motor function, emotion, learning, sleep, and arousal. Degeneration of DA neurons in the substantia nigra of the midbrain causes motor disturbance in Parkinson's disease (PD). Studies on familial PD have revealed that a subset of PD genes encode proteins that regulate mitochondrial function and synaptic dynamics. Drosophila is a powerful model of PD, whereby genetic interactions of PD genes with well-conserved cellular signaling can be evaluated. Morphological changes in mitochondria, along with dysfunction and degeneration of DA neurons, have been reported in many studies using Drosophila PD models. In this chapter, we will describe imaging methods to visualize mitochondria in DA neurons and to evaluate spontaneous neural activity of DA neurons in the Drosophila brain.
Collapse
Affiliation(s)
- Tsuyoshi Inoshita
- Department of Neurodegenerative and Demented Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Daisaku Takemoto
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuzuru Imai
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan.
| |
Collapse
|
7
|
Aqsa, Sarkar S. Age dependent trans-cellular propagation of human tau aggregates in Drosophila disease models. Brain Res 2020; 1751:147207. [PMID: 33212022 DOI: 10.1016/j.brainres.2020.147207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 11/26/2022]
Abstract
Tauopathies is a class of neurodegenerative disorders which involves the transformation of physiological tau into pathogenic tau. One of the prime causes reported to drive this conversion is tau hyperphosphorylation and the subsequent propagation of pathogenic protein aggregates across the nervous system. Although past attempts have been made to deduce the details of tau propagation, yet not much is known about its mechanism. A better understanding of this aspect of disease pathology can prove to be beneficial for the development of diagnostic and therapeutic approaches. For the first time, we demonstrate that the human tau possesses an intrinsic property to spread trans-cellularly in the fly nervous system irrespective of the tau allele or the neuronal tissue type. Aggregate migration restricted by targeted down-regulation of a specific kinase, elucidates the role of hyper-phosphorylation in its movement. On the contrary to the previous models, our study delivers an easy and rapid in-vivo model for comprehensive examination of tau migration pathology. Henceforth, the developed model would not only be immensely helpful in uncovering the mechanistic in-depths of tau propagation pathology but also aid in modifier and/or drug screening for amelioration of tauopathies.
Collapse
Affiliation(s)
- Aqsa
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110 021, India
| | - Surajit Sarkar
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110 021, India.
| |
Collapse
|
8
|
Dominguez-Meijide A, Vasili E, Outeiro TF. Pharmacological Modulators of Tau Aggregation and Spreading. Brain Sci 2020; 10:E858. [PMID: 33203009 PMCID: PMC7696562 DOI: 10.3390/brainsci10110858] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022] Open
Abstract
Tauopathies are neurodegenerative disorders characterized by the deposition of aggregates composed of abnormal tau protein in the brain. Additionally, misfolded forms of tau can propagate from cell to cell and throughout the brain. This process is thought to lead to the templated misfolding of the native forms of tau, and thereby, to the formation of newer toxic aggregates, thereby propagating the disease. Therefore, modulation of the processes that lead to tau aggregation and spreading is of utmost importance in the fight against tauopathies. In recent years, several molecules have been developed for the modulation of tau aggregation and spreading. In this review, we discuss the processes of tau aggregation and spreading and highlight selected chemicals developed for the modulation of these processes, their usefulness, and putative mechanisms of action. Ultimately, a stronger understanding of the molecular mechanisms involved, and the properties of the substances developed to modulate them, will lead to the development of safer and better strategies for the treatment of tauopathies.
Collapse
Affiliation(s)
- Antonio Dominguez-Meijide
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073 Goettingen, Germany; (A.D.-M.); (E.V.)
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eftychia Vasili
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073 Goettingen, Germany; (A.D.-M.); (E.V.)
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073 Goettingen, Germany; (A.D.-M.); (E.V.)
- Max Planck Institute for Experimental Medicine, 37075 Goettingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
| |
Collapse
|
9
|
Handler A, Graham TGW, Cohn R, Morantte I, Siliciano AF, Zeng J, Li Y, Ruta V. Distinct Dopamine Receptor Pathways Underlie the Temporal Sensitivity of Associative Learning. Cell 2019; 178:60-75.e19. [PMID: 31230716 PMCID: PMC9012144 DOI: 10.1016/j.cell.2019.05.040] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 02/19/2019] [Accepted: 05/20/2019] [Indexed: 12/28/2022]
Abstract
Animals rely on the relative timing of events in their environment to form and update predictive associations, but the molecular and circuit mechanisms for this temporal sensitivity remain incompletely understood. Here, we show that olfactory associations in Drosophila can be written and reversed on a trial-by-trial basis depending on the temporal relationship between an odor cue and dopaminergic reinforcement. Through the synchronous recording of neural activity and behavior, we show that reversals in learned odor attraction correlate with bidirectional neural plasticity in the mushroom body, the associative olfactory center of the fly. Two dopamine receptors, DopR1 and DopR2, contribute to this temporal sensitivity by coupling to distinct second messengers and directing either synaptic depression or potentiation. Our results reveal how dopamine-receptor signaling pathways can detect the order of events to instruct opposing forms of synaptic and behavioral plasticity, allowing animals to flexibly update their associations in a dynamic environment.
Collapse
Affiliation(s)
- Annie Handler
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Thomas G W Graham
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Raphael Cohn
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Ianessa Morantte
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Andrew F Siliciano
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Jianzhi Zeng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, 100871 Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, 100871 Beijing, China
| | - Vanessa Ruta
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
10
|
Weykopf B, Haupt S, Jungverdorben J, Flitsch LJ, Hebisch M, Liu G, Suzuki K, Belmonte JCI, Peitz M, Blaess S, Till A, Brüstle O. Induced pluripotent stem cell-based modeling of mutant LRRK2-associated Parkinson's disease. Eur J Neurosci 2019; 49:561-589. [PMID: 30656775 PMCID: PMC7114274 DOI: 10.1111/ejn.14345] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 12/13/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022]
Abstract
Recent advances in cell reprogramming have enabled assessment of disease-related cellular traits in patient-derived somatic cells, thus providing a versatile platform for disease modeling and drug development. Given the limited access to vital human brain cells, this technology is especially relevant for neurodegenerative disorders such as Parkinson's disease (PD) as a tool to decipher underlying pathomechanisms. Importantly, recent progress in genome-editing technologies has provided an ability to analyze isogenic induced pluripotent stem cell (iPSC) pairs that differ only in a single genetic change, thus allowing a thorough assessment of the molecular and cellular phenotypes that result from monogenetic risk factors. In this review, we summarize the current state of iPSC-based modeling of PD with a focus on leucine-rich repeat kinase 2 (LRRK2), one of the most prominent monogenetic risk factors for PD linked to both familial and idiopathic forms. The LRRK2 protein is a primarily cytosolic multi-domain protein contributing to regulation of several pathways including autophagy, mitochondrial function, vesicle transport, nuclear architecture and cell morphology. We summarize iPSC-based studies that contributed to improving our understanding of the function of LRRK2 and its variants in the context of PD etiopathology. These data, along with results obtained in our own studies, underscore the multifaceted role of LRRK2 in regulating cellular homeostasis on several levels, including proteostasis, mitochondrial dynamics and regulation of the cytoskeleton. Finally, we expound advantages and limitations of reprogramming technologies for disease modeling and drug development and provide an outlook on future challenges and expectations offered by this exciting technology.
Collapse
Affiliation(s)
- Beatrice Weykopf
- Institute of Reconstructive NeurobiologyUniversity of Bonn School of Medicine & University Hospital BonnBonnGermany
- Life & Brain GmbHCellomics UnitBonnGermany
- Precision Neurology Program & Advanced Center for Parkinson's Disease ResearchHarvard Medical School and Brigham & Women's HospitalBostonMassachusetts
| | | | - Johannes Jungverdorben
- Institute of Reconstructive NeurobiologyUniversity of Bonn School of Medicine & University Hospital BonnBonnGermany
- Memorial Sloan Kettering Cancer CenterNew York CityNew York
| | - Lea Jessica Flitsch
- Institute of Reconstructive NeurobiologyUniversity of Bonn School of Medicine & University Hospital BonnBonnGermany
| | - Matthias Hebisch
- Institute of Reconstructive NeurobiologyUniversity of Bonn School of Medicine & University Hospital BonnBonnGermany
| | - Guang‐Hui Liu
- National Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Keiichiro Suzuki
- Gene Expression LaboratoryThe Salk Institute for Biological StudiesLa JollaCalifornia
| | | | - Michael Peitz
- Institute of Reconstructive NeurobiologyUniversity of Bonn School of Medicine & University Hospital BonnBonnGermany
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Sandra Blaess
- Institute of Reconstructive NeurobiologyUniversity of Bonn School of Medicine & University Hospital BonnBonnGermany
| | - Andreas Till
- Institute of Reconstructive NeurobiologyUniversity of Bonn School of Medicine & University Hospital BonnBonnGermany
- Life & Brain GmbHCellomics UnitBonnGermany
| | - Oliver Brüstle
- Institute of Reconstructive NeurobiologyUniversity of Bonn School of Medicine & University Hospital BonnBonnGermany
| |
Collapse
|
11
|
Sivanantharajah L, Mudher A, Shepherd D. An evaluation of Drosophila as a model system for studying tauopathies such as Alzheimer's disease. J Neurosci Methods 2019; 319:77-88. [PMID: 30633936 DOI: 10.1016/j.jneumeth.2019.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/17/2018] [Accepted: 01/07/2019] [Indexed: 12/21/2022]
Abstract
Work spanning almost two decades using the fruit fly, Drosophila melanogaster, to study tau-mediated neurodegeneration has provided valuable and novel insights into the causes and mechanisms of tau-mediated toxicity and dysfunction in tauopathies such as Alzheimer's disease (AD). The fly has proven to be an excellent model for human diseases because of its cost efficiency, and the availability of powerful genetic tools for use in a comparatively less-complicated, but evolutionarily conserved, in vivo system. In this review, we provide a critical evaluation of the insights provided by fly models, highlighting both the advantages and limitations of the system. The fly has contributed to a greater understanding of the causes of tau abnormalities, the role of these abnormalities in mediating toxicity and/or dysfunction, and the nature of causative species mediating tau-toxicity. However, it is not possible to perfectly model all aspects of human degenerative diseases. What sets the fly apart from other animal models is its genetic tractability, which makes it highly amenable to overcoming experimental limitations. The explosion of genetic technology since the first fly disease models were established has translated into fly lines that allow for greater temporal control in restricting tau expression to single neuron types, and lines that can label and monitor the function of subcellular structures and components; thus, fly models offer an unprecedented view of the neurodegenerative process. Emerging genetic technology means that the fly provides an ever-evolving experimental platform for studying disease.
Collapse
Affiliation(s)
| | - Amritpal Mudher
- Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
| | - David Shepherd
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, UK
| |
Collapse
|
12
|
Koppel J, Jimenez H, Adrien L, Chang EH, Malhotra AK, Davies P. Increased tau phosphorylation follows impeded dopamine clearance in a P301L and novel P301L/COMT-deleted (DM) tau mouse model. J Neurochem 2019; 148:127-135. [PMID: 30238463 PMCID: PMC6758923 DOI: 10.1111/jnc.14593] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/24/2018] [Accepted: 09/06/2018] [Indexed: 12/26/2022]
Abstract
In Alzheimer's disease, the phosphorylation of tau is a critical event preceding the formation of neurofibrillary tangles. Previous work exploring the impact of a dopamine blocking antipsychotic on tau phosphorylation in a tau transgenic model suggested that extracellular dopamine may play a regulatory role in the phosphorylation state of tau. In order to test this hypothesis, and in order to develop a mouse model of impaired dopamine metabolism and tauopathy, an extant P301L transgenic tau model of Alzheimer's disease and a novel P301L/catechol-O-methyltransferase deleted model (DM mouse) were treated with the norepinephrine reuptake inhibitor reboxetine, and prefrontal dopamine concentrations and the phosphorylated state of tau was quantified. In two experiments, male and female P301L+/+//COMT+/+ and P301L+/+//COMT-/- (DM) mice were treated with reboxetine 20 mg/kg IP. In one experiment, acutely following reboxetine injection, the prefrontal cortex of mice were microdialyzed for dopamine, and its metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid, utilizing the MetaQuant technique. In another experiment, acutely following reboxetine injections, tau phosphorylation was quantified in the frontal cortex, striatum, and hippocampus of the mice. Reboxetine injections were followed by significant increases from baseline in extracellular dopamine concentrations in P301L and DM mice, with significantly higher peak levels in the DM mice. Treatment was also followed by increases in tau phosphorylation spread throughout brain regions, with a larger impact on female mice. Extracellular dopamine concentrations exert an influence on the phosphorylation state of tau, with surges in dopamine associating with acute increases in tau phosphorylation.
Collapse
Affiliation(s)
- Jeremy Koppel
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institute for Medical Research, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, USA
- The Zucker Hillside Hospital, The Feinstein Institute for Medical Research, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, New York, USA
| | - Heidy Jimenez
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institute for Medical Research, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, USA
| | - Leslie Adrien
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institute for Medical Research, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, USA
| | - Eric H. Chang
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institute for Medical Research, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, USA
| | - Anil K. Malhotra
- The Zucker Hillside Hospital, The Feinstein Institute for Medical Research, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, New York, USA
| | - Peter Davies
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institute for Medical Research, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, USA
| |
Collapse
|
13
|
Chang HY, Sang TK, Chiang AS. Untangling the Tauopathy for Alzheimer's disease and parkinsonism. J Biomed Sci 2018; 25:54. [PMID: 29991349 PMCID: PMC6038292 DOI: 10.1186/s12929-018-0457-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/04/2018] [Indexed: 12/19/2022] Open
Abstract
Tau is a microtubule-associated protein that mainly localizes to the axon to stabilize axonal microtubule structure and neuronal connectivity. Tau pathology is one of the most common proteinopathies that associates with age-dependent neurodegenerative diseases including Alzheimer's disease (AD), and various Parkinsonism. Tau protein undergoes a plethora of intra-molecular modifications and some altered forms promote the production of toxic oligomeric tau and paired helical filaments, and through which further assemble into neurofibrillary tangles, also known as tauopathy. In this review, we will discuss the recent advances of the tauopathy research, primarily focusing on its association with the early axonal manifestation of axonal transport defect, axonal mitochondrial stress, autophagic vesicle accumulation and the proceeding of axon destruction, and the pathogenic Tau spreading across the synapse. Two alternative strategies either by targeting tau protein itself or by improving the age-related physiological decline are currently racing to find the hopeful treatment for tauopathy. Undoubtedly, more studies are needed to combat this devastating condition that has already affected millions of people in our aging population.
Collapse
Affiliation(s)
- Hui-Yun Chang
- Department of Medical Science, Institute of Systems Neuroscience, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013 Taiwan
- Brain Research Center, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013 Taiwan
| | - Tzu-Kang Sang
- Department of Life Science, Institute of Biotechnology, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013 Taiwan
- Brain Research Center, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013 Taiwan
| | - Ann-Shyn Chiang
- Department of Medical Science, Institute of Systems Neuroscience, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013 Taiwan
- Department of Life Science, Institute of Biotechnology, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013 Taiwan
- Brain Research Center, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013 Taiwan
| |
Collapse
|
14
|
Sarkar S. Neurofibrillary tangles mediated human neuronal tauopathies: insights from fly models. J Genet 2018; 97:783-793. [PMID: 30027909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tauopathies represent a group of neurodegenerative disorder which are characterized by the presence of tau positive specialized argyrophilic and insoluble intraneuronal and glial fibrillar lesions known as neurofibrillary tangles (NFTs). Tau is a neuron specific microtubule binding protein which is required for the integrity and functioning of neuronal cells, and hyperphosphorylation of tau and its subsequent aggregation and paired helical filaments (PHFs) and NFTs has emerged as one of the major pathogenic mechanisms of tauopathies in human and mammalian model systems. Modeling of human tauopathies in Drosophila results in manifestation of associated phenotypes, and a recent study has demonstrated that similar to human and mammalian models, accumulation of insoluble tau aggregates in the form of typical neurotoxic NFTs triggers the pathogenesis of tauopathies in fly models. In view of the availability of remarkable genetic tools, Drosophila tau models could be extremely useful for in-depth analysis of the role of NFTs in neurodegeneration and tau aetiology, and also for the screening of novel gene(s) and molecule(s) which suppress the toxicity of tau aggregates.
Collapse
Affiliation(s)
- Surajit Sarkar
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110 021, India.
| |
Collapse
|
15
|
Abstract
BACKGROUND The microtubule-associated protein tau accumulates into toxic aggregates in multiple neurodegenerative diseases. We found previously that loss of D2-family dopamine receptors ameliorated tauopathy in multiple models including a Caenorhabditis elegans model of tauopathy. METHODS To better understand how loss of D2-family dopamine receptors can ameliorate tau toxicity, we screened a collection of C. elegans mutations in dopamine-related genes (n = 45) for changes in tau transgene-induced behavioral defects. These included many genes responsible for dopamine synthesis, metabolism, and signaling downstream of the D2 receptors. RESULTS We identified one dopamine synthesis gene, DOPA decarboxylase (DDC), as a suppressor of tau toxicity in tau transgenic worms. Loss of the C. elegans DDC gene, bas-1, ameliorated the behavioral deficits of tau transgenic worms, reduced phosphorylated and detergent-insoluble tau accumulation, and reduced tau-mediated neuron loss. Loss of function in other genes in the dopamine and serotonin synthesis pathways did not alter tau-induced toxicity; however, their function is required for the suppression of tau toxicity by bas-1. Additional loss of D2-family dopamine receptors did not synergize with bas-1 suppression of tauopathy phenotypes. CONCLUSIONS Loss of the DDC bas-1 reduced tau-induced toxicity in a C. elegans model of tauopathy, while loss of no other dopamine or serotonin synthesis genes tested had this effect. Because loss of activity upstream of DDC could reduce suppression of tau by DDC, this suggests the possibility that loss of DDC suppresses tau via the combined accumulation of dopamine precursor levodopa and serotonin precursor 5-hydroxytryptophan.
Collapse
|
16
|
Distinct phenotypes of three-repeat and four-repeat human tau in a transgenic model of tauopathy. Neurobiol Dis 2017; 105:74-83. [DOI: 10.1016/j.nbd.2017.05.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/12/2017] [Accepted: 05/10/2017] [Indexed: 01/01/2023] Open
|
17
|
Chanu SI, Sarkar S. Targeted downregulation of dMyc restricts neurofibrillary tangles mediated pathogenesis of human neuronal tauopathies in Drosophila. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2111-2119. [DOI: 10.1016/j.bbadis.2017.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 11/16/2022]
|
18
|
Inoshita T, Arano T, Hosaka Y, Meng H, Umezaki Y, Kosugi S, Morimoto T, Koike M, Chang HY, Imai Y, Hattori N. Vps35 in cooperation with LRRK2 regulates synaptic vesicle endocytosis through the endosomal pathway in Drosophila. Hum Mol Genet 2017; 26:2933-2948. [PMID: 28482024 DOI: 10.1093/hmg/ddx179] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/04/2017] [Indexed: 12/22/2022] Open
Abstract
Mutations of the retromer component Vps35 and endosomal kinase LRRK2 are linked to autosomal dominant forms of familial Parkinson's disease (PD). However, the physiological and pathological roles of Vps35 and LRRK2 in neuronal functions are poorly understood. Here, we demonstrated that the loss of Drosophila Vps35 (dVps35) affects synaptic vesicle recycling, dopaminergic synaptic release and sleep behavior associated with dopaminergic activity, which is rescued by the expression of wild-type dVps35 but not the PD-associated mutant dVps35 D647N. Drosophila LRRK2 dLRRK together with Rab5 and Rab11 is also implicated in synaptic vesicle recycling, and the manipulation of these activities improves the Vps35 synaptic phenotypes. These findings indicate that defects of synaptic vesicle recycling in which two late-onset PD genes, Vps35 and LRRK2, are involved could be key aspects of PD etiology.
Collapse
Affiliation(s)
| | - Taku Arano
- Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Yuka Hosaka
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hongrui Meng
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Yujiro Umezaki
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Sakiko Kosugi
- Laboratory of Cellular Neurobiology, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo 192-0392, Japan
| | - Takako Morimoto
- Laboratory of Cellular Neurobiology, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo 192-0392, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hui-Yun Chang
- Institute of Systems Neuroscience and Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China
| | - Yuzuru Imai
- Department of Research for Parkinson's Disease
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Nobutaka Hattori
- Department of Research for Parkinson's Disease
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
19
|
Hosaka Y, Inoshita T, Shiba-Fukushima K, Cui C, Arano T, Imai Y, Hattori N. Reduced TDP-43 Expression Improves Neuronal Activities in a Drosophila Model of Perry Syndrome. EBioMedicine 2017. [PMID: 28625517 PMCID: PMC5514405 DOI: 10.1016/j.ebiom.2017.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Parkinsonian Perry syndrome, involving mutations in the dynein motor component dynactin or p150Glued, is characterized by TDP-43 pathology in affected brain regions, including the substantia nigra. However, the molecular relationship between p150Glued and TDP-43 is largely unknown. Here, we report that a reduction in TDP-43 protein levels alleviates the synaptic defects of neurons expressing the Perry mutant p150G50R in Drosophila. Dopaminergic expression of p150G50R, which decreases dopamine release, disrupts motor ability and reduces the lifespan of Drosophila. p150G50R expression also causes aggregation of dense core vesicles (DCVs), which contain monoamines and neuropeptides, and disrupts the axonal flow of DCVs, thus decreasing synaptic strength. The above phenotypes associated with Perry syndrome are improved by the removal of a copy of Drosophila TDP-43 TBPH, thus suggesting that the stagnation of axonal transport by dynactin mutations promotes TDP-43 aggregation and interferes with the dynamics of DCVs and synaptic activities. Fly model of Perry syndrome exhibits motor disturbance and impaired dopamine release. Perry mutation in dynactin produces aggregation of dense core vesicles (DCVs) in axons and disrupts axonal flux of DCVs. Removal of a copy of the TDP-43 gene improves retrograde flux of DCVs.
Parkinsonian Perry syndrome (PS), caused by mutations in a component of the retrograde transport complex, Dynactin, is pathologically characterized by the accumulation of an RNA-binding protein, TDP-43, in affected neurons. The neuronal accumulation of TDP-43 is observed in various neurodegenerative diseases including amyotrophic lateral sclerosis and Alzheimer's disease. We report that decreased TDP-43 expression improves defects in the axonal transport of dense core vesicles and in the dopamine release in a Drosophila PS model. This study provides insight into the possibility that a transient decrease in TDP-43 in neurons may be a promising therapeutic approach for treating neurodegenerative disorders associated with TDP-43 pathology, including PS.
Collapse
Affiliation(s)
- Yuka Hosaka
- Department of Neurology, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Tsuyoshi Inoshita
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kahori Shiba-Fukushima
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Changxu Cui
- Department of Research for Parkinson's Disease, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Taku Arano
- Center for Genomic and Regenerative Medicine, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Yuzuru Imai
- Department of Neurology, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan; Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan.
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan; Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan; Department of Research for Parkinson's Disease, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan.
| |
Collapse
|
20
|
Berrocal M, Corbacho I, Sepulveda MR, Gutierrez-Merino C, Mata AM. Phospholipids and calmodulin modulate the inhibition of PMCA activity by tau. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:1028-1035. [PMID: 27818274 DOI: 10.1016/j.bbamcr.2016.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 12/18/2022]
Abstract
The disruption of Ca2+ signaling in neurons, together with a failure to keep optimal intracellular Ca2+ concentrations, have been proposed as significant factors for neuronal dysfunction in the Ca2+ hypothesis of Alzheimer's disease (AD). Tau is a protein that plays an essential role in axonal transport and can form abnormal structures such as neurofibrillary tangles that constitute one of the hallmarks of AD. We have recently shown that plasma membrane Ca2+-ATPase (PMCA), a key enzyme in the maintenance of optimal cytosolic Ca2+ levels in cells, is inhibited by tau in membrane vesicles. In the present study we show that tau inhibits synaptosomal PMCA purified from pig cerebrum, and reconstituted in phosphatidylserine-containing lipid bilayers, with a Ki value of 1.5±0.2nM tau. Noteworthy, the inhibitory effect of tau is dependent on the charge of the phospholipid used for PMCA reconstitution. In addition, nanomolar concentrations of calmodulin, the major endogenous activator of PMCA, protects against inhibition of the Ca2+-ATPase activity by tau. Our results in a cellular model such as SH-SY5Y human neuroblastoma cells yielded an inhibition of PMCA by nanomolar tau concentrations and protection by calmodulin against this inhibition similar to those obtained with purified synaptosomal PMCA. Functional studies were also performed with native and truncated versions of human cerebral PMCA4b, an isoform that has been showed to be functionally regulated by amyloid peptides, whose aggregates constitutes another hallmark of AD. Kinetic assays point out that tau binds to the C-terminal tail of PMCA, at a site distinct but close to the calmodulin binding domain. In conclusion, PMCA can be seen as a molecular target for tau-induced cytosolic calcium dysregulation in synaptic terminals. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- María Berrocal
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Isaac Corbacho
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - M Rosario Sepulveda
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Carlos Gutierrez-Merino
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Ana M Mata
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain.
| |
Collapse
|
21
|
Turillazzi E, Neri M, Cerretani D, Cantatore S, Frati P, Moltoni L, Busardò FP, Pomara C, Riezzo I, Fineschi V. Lipid peroxidation and apoptotic response in rat brain areas induced by long-term administration of nandrolone: the mutual crosstalk between ROS and NF-kB. J Cell Mol Med 2016; 20:601-612. [PMID: 26828721 PMCID: PMC5125979 DOI: 10.1111/jcmm.12748] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 11/02/2015] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to evaluate the played by oxidative stress in the apoptotic response in different brain areas of rats chronically treated with supra-physiological doses of nandrolone decanoate (ND). Immunohistochemical study and Western blot analysis were performed to evaluate cells' apoptosis and to measure the effects of expression of specific mediators, such as NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), Bcl-2 (B-cell lymphoma 2), SMAC/DIABLO (second mitochondria-derived activator of caspases/direct IAP-binding protein with low PI) and VMAT2 (vesicular monoamine transporter 2) on apoptosis. The results of the present study indicate that a long-term administration of ND promotes oxidative injury in rat brain specific areas. A link between oxidative stress and NF-κB signalling pathways is supported by our results. In addition to high levels of oxidative stress, we consistently observed a strong immunopositivity to NF-κB. It has been argued that one of the pathways leading to the activation of NF-κB could be under reactive oxygen species (ROS)-mediated control. In fact, growing evidence suggests that although in limited doses, endogenous ROS may play an activating role in NF-κB signalling, while above a certain threshold, they may negatively impact upon this signalling. However, a mutual crosstalk between ROS and NF-κB exists and recent studies have shown that ROS activity is subject to negative feedback regulation by NF-κB, and that this negative regulation of ROS is the means through which NF-κB counters programmed cells.
Collapse
Affiliation(s)
- Emanuela Turillazzi
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Margherita Neri
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Daniela Cerretani
- Pharmacology Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
| | - Santina Cantatore
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Roma, Italy
- Neuromed, Istituto Mediterraneo Neurologico (IRCCS), Pozzilli, Isernia, Italy
| | - Laura Moltoni
- Pharmacology Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
| | - Francesco Paolo Busardò
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Roma, Italy
| | - Cristoforo Pomara
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Irene Riezzo
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Roma, Italy
| |
Collapse
|
22
|
Targeted Downregulation of dMyc Suppresses Pathogenesis of Human Neuronal Tauopathies in Drosophila by Limiting Heterochromatin Relaxation and Tau Hyperphosphorylation. Mol Neurobiol 2016; 54:2706-2719. [DOI: 10.1007/s12035-016-9858-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 03/11/2016] [Indexed: 12/29/2022]
|
23
|
Baker S, Götz J. What we can learn from animal models about cerebral multi-morbidity. ALZHEIMERS RESEARCH & THERAPY 2015; 7:11. [PMID: 25810783 PMCID: PMC4373088 DOI: 10.1186/s13195-015-0097-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Late-onset diseases such as Alzheimer's disease, Parkinson's disease, or frontotemporal lobar degeneration are considered to be protein-folding disorders, with the accumulation of protein deposits causing a gain-of-toxic function. Alzheimer's disease is characterized by two histological hallmark lesions: amyloid-β-containing plaques and tau-containing neurofibrillary tangles. However, signature proteins, including α-synuclein, which are found in an aggregated fibrillar form in the Lewy bodies of Parkinson's disease brains, are also frequently found in Alzheimer's disease. This highlights the fact that, although specific aggregates form the basis for diagnosis, there is a high prevalence of clinical overlap between neuropathological lesions linked to different diseases, a finding known as cerebral co- or multi-morbidity. Furthermore, the proteins forming these lesions interact, and this interaction accelerates an ongoing degenerative process. Here, we review the contribution that transgenic animal models have made to a better mechanistic understanding of the causes and consequences of co- or multi-morbidity. We discuss selected vertebrate and invertebrate models as well as the insight gained from non-transgenic senescence-accelerated mouse-prone mice. This article is part of a series on 'Cerebral multi-morbidity of the aging brain'.
Collapse
Affiliation(s)
- Siân Baker
- Clem Jones Centre for Aging Dementia Research, Queensland Brain Institute, The University of Queensland, Upland Road, Building 79, St Lucia Campus, Brisbane, QLD 4072 Australia
| | - Jürgen Götz
- Clem Jones Centre for Aging Dementia Research, Queensland Brain Institute, The University of Queensland, Upland Road, Building 79, St Lucia Campus, Brisbane, QLD 4072 Australia
| |
Collapse
|
24
|
Puerarin protects dopaminergic neurons in Parkinson's disease models. Neuroscience 2014; 280:88-98. [PMID: 25218963 DOI: 10.1016/j.neuroscience.2014.08.052] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 08/28/2014] [Accepted: 08/29/2014] [Indexed: 11/23/2022]
Abstract
It has been acknowledged that oxidative stress, resulting in the apoptosis of dopaminergic neurons, is a key mechanism in the pathogenesis of Parkinson's disease (PD). Puerarin, extracted from the root of pueraria lobata, has been clinically used for ischemic heart disease and cerebrovascular diseases as an oxygen free radical scavenger. In this study, we aimed to explore the effect of puerarin on dopaminergic cell degeneration in vitro and in vivo and its possible underlying mechanisms. In SH-SY5Y cells, the reduction of cell viability, apoptosis rate and average DCFH-DA fluorescence intensity of puerarin-treated (0, 10, 50, 100 and 150 μM) cells were significantly lower than control group. In rotenone-based rodent models, puerarin treatment for 7 days ameliorated apomorphine-induced rotations significantly in Pue-50 and Pue-100 group by 45.65% and 53.06% in the first week, by 44.60% and 48.45% in the second week. Moreover, compared to control group, puerarin increased tyrosine hydroxylase (TH) expression in the substantia nigra by 85.52% and 84.26% in Pue-50 group and Pue-100 group, and upregulated the vesicular monoamine transporter 2 (VMAT2) by 41.24% in Pue-50 group and 35.20% in Pue-100 group, and decreased ubiquitin expression by 47.55% in Pue-50 group and 69.15% in Pue-100 group. These data indicated that puerarin alleviated the oxidative stress and apoptosis in a PD cellular model, protected the dopaminergic neurons against rotenone toxicity and decreased the abnormal protein overexpressing in PD animal models. These findings suggest that puerarin may develop into a neuroprotective alternative for patients with PD.
Collapse
|
25
|
PINK1-mediated phosphorylation of Parkin boosts Parkin activity in Drosophila. PLoS Genet 2014; 10:e1004391. [PMID: 24901221 PMCID: PMC4046931 DOI: 10.1371/journal.pgen.1004391] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/31/2014] [Indexed: 11/19/2022] Open
Abstract
Two genes linked to early onset Parkinson's disease, PINK1 and Parkin, encode a protein kinase and a ubiquitin-ligase, respectively. Both enzymes have been suggested to support mitochondrial quality control. We have reported that Parkin is phosphorylated at Ser65 within the ubiquitin-like domain by PINK1 in mammalian cultured cells. However, it remains unclear whether Parkin phosphorylation is involved in mitochondrial maintenance and activity of dopaminergic neurons in vivo. Here, we examined the effects of Parkin phosphorylation in Drosophila, in which the phosphorylation residue is conserved at Ser94. Morphological changes of mitochondria caused by the ectopic expression of wild-type Parkin in muscle tissue and brain dopaminergic neurons disappeared in the absence of PINK1. In contrast, phosphomimetic Parkin accelerated mitochondrial fragmentation or aggregation and the degradation of mitochondrial proteins regardless of PINK1 activity, suggesting that the phosphorylation of Parkin boosts its ubiquitin-ligase activity. A non-phosphorylated form of Parkin fully rescued the muscular mitochondrial degeneration due to the loss of PINK1 activity, whereas the introduction of the non-phosphorylated Parkin mutant in Parkin-null flies led to the emergence of abnormally fused mitochondria in the muscle tissue. Manipulating the Parkin phosphorylation status affected spontaneous dopamine release in the nerve terminals of dopaminergic neurons, the survivability of dopaminergic neurons and flight activity. Our data reveal that Parkin phosphorylation regulates not only mitochondrial function but also the neuronal activity of dopaminergic neurons in vivo, suggesting that the appropriate regulation of Parkin phosphorylation is important for muscular and dopaminergic functions. Parkinson's disease is a neurodegenerative disorder caused by degeneration of the midbrain dopaminergic system in addition to other nervous systems. PINK1 and parkin, which encode protein kinase and ubiquitin-ligase, respectively, were identified as the genes responsible for the autosomal recessive form of juvenile Parkinson's disease. These two enzymes are involved in mitochondrial maintenance. Although we previously found that Parkin is phosphorylated by PINK1 in mammalian cultured cells, the physiological significance of this interaction in vivo remained unclear. Here, we describe that the phosphorylation of Parkin altered mitochondrial morphology and function in muscle tissue through the degradation of mitochondrial GTPase proteins (such as Mitofusin and Miro) and a mitochondrial respiratory complex I subunit by increasing its ubiquitin-ligase activity. We also found that the dopaminergic expression of both constitutively phosphorylated and non-phosphorylated forms of Parkin affects the flight activity and shortens the lifespan of flies, suggesting that the appropriate phosphorylation of Parkin is important for both dopaminergic activity and the survival of dopaminergic neurons.
Collapse
|
26
|
Cowan CM, Mudher A. Are tau aggregates toxic or protective in tauopathies? Front Neurol 2013; 4:114. [PMID: 23964266 PMCID: PMC3741634 DOI: 10.3389/fneur.2013.00114] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/29/2013] [Indexed: 11/13/2022] Open
Abstract
Aggregation of highly phosphorylated tau into aggregated forms such as filaments and neurofibrillary tangles is one of the defining pathological hallmarks of Alzheimer's disease and other tauopathies. Hence therapeutic strategies have focused on inhibition of tau phosphorylation or disruption of aggregation. However, animal models imply that tau-mediated dysfunction and toxicity do not require aggregation but instead are caused by soluble hyper-phosphorylated tau. Over the years, our findings from a Drosophila model of tauopathy have reinforced this. We have shown that highly phosphorylated wild-type human tau causes behavioral deficits resulting from synaptic dysfunction, axonal transport disruption, and cytoskeletal destabilization in vivo. These deficits are evident in the absence of neuronal death or filament/tangle formation. Unsurprisingly, both pharmacological and genetic inhibition of GSK-3β rescue these tau phenotypes. However, GSK-3β inhibition also unexpectedly increases tau protein levels, and produces insoluble granular tau oligomers. As well as underlining the growing consensus that tau toxicity is mediated by a highly phosphorylated soluble tau species, our findings further show that not all insoluble tau aggregates are toxic. Some tau aggregates, in particular tau oligomers, are non-toxic, and may even be protective against tau toxicity in vivo. This has serious implications for emerging therapeutic strategies to dissolve tau aggregates, which might be ineffective or even counter-productive. In light of this, it is imperative to identify the key toxic tau species and to understand how it mediates dysfunction and degeneration so that the effective disease-modifying therapies can be developed.
Collapse
Affiliation(s)
- Catherine M Cowan
- Centre for Biological Sciences, University of Southampton , Southampton , UK
| | | |
Collapse
|