1
|
Braak H, Mayer B, Feldengut S, Schön M, Del Tredici K. Sequence and trajectory of early Alzheimer's disease-related tau inclusions in the hippocampal formation of cases without amyloid-β deposits. Acta Neuropathol 2025; 149:50. [PMID: 40407905 PMCID: PMC12102137 DOI: 10.1007/s00401-025-02862-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 05/26/2025]
Abstract
Sporadic Alzheimer's disease (AD) involves specific neuronal types and progresses in a systematic manner, permitting subdivision into six neuropathological stages. Neurofibrillary tangle (NFT) stages I-III display abnormal tau inclusions confined to subcortical nuclei and temporal allocortical regions, frequently without amyloid β (Aβ) deposition. We previously suggested a sequence of neuronal involvement in AD that could proceed from entorhinal pre-α cells to hippocampal prosubicular pyramidal cells and the CA1/CA2 sectors, from there to the thorny excrescences on mossy cells in CA3/CA4, and, finally, from the mossy cells to dentate fascia (Fd) granular cells. Here, we aimed to see if associations existed between the early NFT stages I-III, when Aβ deposits are frequently absent, and the following four categories: (1) anatomical regions and abnormal morphological tau changes in region-specific layers, (2) nerve cell loss, (3) APOE genotype, and (4) the trajectory (directionality) of tau progression in the hippocampal formation. To do so, we examined the transentorhinal/entorhinal regions and hippocampal formation using AT8-immunohistochemistry in 100 µm sections from N = 308 brains with tau inclusions lacking Aβ deposits between NFT stages I and III (average age at death 66.7 years for females, 66.4 years for males). Our results indicated a significantly (p < 0.001) ordered progression of abnormal tau in a direction opposite to currently known unidirectional intrahippocampal connections, thereby indirectly supporting the idea of transneuronal abnormal tau spreading, i.e., anterogradely, through the hippocampal formation. Tau-related neuronal loss was also significant (p < 0.001 for the transentorhinal/entorhinal regions and for sectors CA1/CA2 and p = 0.003 for CA3/CA4/Fd). These findings challenge the amyloid cascade and the PART hypotheses, corroborating the concept that early AD-related tau inclusions and tau-related neuronal loss occur independently of Aβ deposition.
Collapse
Affiliation(s)
- Heiko Braak
- Department of Neurology, Center for Biomedical Research, Clinical Neuroanatomy, University of Ulm, Helmholtzstrasse 8/1, 89081, Ulm, Germany.
| | - Benjamin Mayer
- Institute of Epidemiology and Medical Biometry, University of Ulm, 89075, Ulm, Germany
| | - Simone Feldengut
- Department of Neurology, Center for Biomedical Research, Clinical Neuroanatomy, University of Ulm, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Michael Schön
- Institute for Anatomy and Cell Biology, University of Ulm, 89081, Ulm, Germany
| | - Kelly Del Tredici
- Department of Neurology, Center for Biomedical Research, Clinical Neuroanatomy, University of Ulm, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| |
Collapse
|
2
|
Lavrova A, Satoh R, Pham NTT, Nguyen A, Jack CR, Petersen RC, Ross RR, Dickson DW, Lowe VJ, Whitwell JL, Josephs KA. Investigating the feasibility of 18F-flortaucipir PET imaging in the antemortem diagnosis of primary age-related tauopathy (PART): An observational imaging-pathological study. Alzheimers Dement 2024; 20:8605-8614. [PMID: 39417408 DOI: 10.1002/alz.14301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/08/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024]
Abstract
INTRODUCTION Primary age-related tauopathy (PART) is characterized by neurofibrillary tangles and minimal β-amyloid deposition, diagnosed postmortem. This study investigates 18F-flortaucipir (FTP) PET imaging for antemortem PART diagnosis. METHODS We analyzed FTP PET scans from 50 autopsy-confirmed PART and 13 control subjects. Temporal lobe uptake was assessed both qualitatively and quantitatively. Demographic and clinicopathological characteristics and voxel-level uptake using SPM12 were compared between FTP-positive and FTP-negative cases. Intra-reader reproducibility was evaluated with Krippendorff's alpha. RESULTS Minimal/mild and moderate FTP uptake was seen in 32% of PART cases and 62% of controls, primarily in the left inferior temporal lobe. No demographic or clinicopathological differences were found between FTP-positive and FTP-negative cases. High intra-reader reproducibility (α = 0.83) was noted. DISCUSSION FTP PET imaging did not show a specific uptake pattern for PART diagnosis, indicating that in vivo PART identification using FTP PET is challenging. Similar uptake in controls suggests non-specific uptake in PART. HIGHLIGHTS 18F-flortaucipir (FTP) PET scans were analyzed for diagnosing PART antemortem. 32% of PART cases had minimal/mild FTP uptake in the left inferior temporal lobe. Similar to PART FTP uptake was found in 62% of control subjects. No specific uptake pattern was found, challenging in vivo PART diagnosis.
Collapse
Affiliation(s)
- Anna Lavrova
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ryota Satoh
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Aivi Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Reichard R Ross
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Yoshida K, Hata Y, Ichimata S, Tanaka R, Nishida N. Prevalence and clinicopathological features of primary age-related tauopathy (PART): A large forensic autopsy study. Alzheimers Dement 2024; 20:5411-5420. [PMID: 38938196 PMCID: PMC11350034 DOI: 10.1002/alz.14037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/15/2024] [Accepted: 05/06/2024] [Indexed: 06/29/2024]
Abstract
INTRODUCTION Primary age-related tauopathy (PART), often regarded as a minimally symptomatic pathology of old age, lacks comprehensive cohorts across various age groups. METHODS We examined PART prevalence and clinicopathologic features in 1589 forensic autopsy cases (≥40 years old, mean age ± SD 70.2 ± 14.2 years). RESULTS PART cases meeting criteria for argyrophilic grain diseases (AGD) were AGD+PART (n = 181). The remaining PART cases (n = 719, 45.2%) were classified as comorbid conditions (PART-C, n = 90) or no comorbid conditions (pure PART, n = 629). Compared to controls (n = 208), Alzheimer's disease (n = 133), and AGD+PART, PART prevalence peaked in the individuals in their 60s (65.5%) and declined in the 80s (21.5%). No significant clinical background differences were found (excluding controls). However, PART-C in patients inclusive of age 80 had a higher suicide rate than pure PART (p < 0.05), and AGD+PART showed more dementia (p < 0.01) and suicide (p < 0.05) than pure PART. DISCUSSION Our results advocate a reevaluation of the PART concept and its diagnostic criteria. HIGHLIGHTS We investigated 1589 forensic autopsy cases to investigate the features of primary age-related tauopathy (PART). PART peaked in people in their 60s in our study. Many PART cases over 80s had comorbid pathologies in addition to neurofibrillary tangles pathology. Argyrophilic grain disease and Lewy pathology significantly affected dementia and suicide rates in PART. Our results suggest that the diagnostic criteria of PART need to be reconsidered.
Collapse
Affiliation(s)
- Koji Yoshida
- Department of Legal MedicineFaculty of MedicineUniversity of ToyamaToyamaJapan
- Tanz Centre for Research in Neurodegenerative DiseaseKrembil Discovery TowerUniversity of TorontoTorontoOntarioCanada
- Department of Laboratory Medicine and Pathobiology and Department of MedicineUniversity of TorontoTorontoOntarioCanada
| | - Yukiko Hata
- Department of Legal MedicineFaculty of MedicineUniversity of ToyamaToyamaJapan
| | - Shojiro Ichimata
- Department of Legal MedicineFaculty of MedicineUniversity of ToyamaToyamaJapan
| | - Ryo Tanaka
- Department of NeurologyToyama University HospitalToyamaJapan
| | - Naoki Nishida
- Department of Legal MedicineFaculty of MedicineUniversity of ToyamaToyamaJapan
| |
Collapse
|
4
|
Del Tredici K, Schön M, Feldengut S, Ghebremedhin E, Kaufman SK, Wiesner D, Roselli F, Mayer B, Amunts K, Braak H. Early CA2 Tau Inclusions Do Not Distinguish an Age-Related Tauopathy from Early Alzheimer's Disease. J Alzheimers Dis 2024; 101:1333-1353. [PMID: 39302368 DOI: 10.3233/jad-240483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Background Neuropathologic studies of brains from autopsy series show tau inclusions (pretangles, neuropils threads, neurofibrillary tangles) are detectable more than a decade before amyloid-β (Aβ) deposition in Alzheimer's disease (AD) and develop in a characteristic manner that forms the basis for AD staging. An alternative position views pathological tau without Aβ deposition as a 'primary age-related tauopathy' (PART) rather than prodromal AD. Recently, an early focus of tau inclusions in the Ammon's horn second sector (CA2) with relative sparing of CA1 that occurs before tau inclusions develop in the entorhinal cortex (EC) was proposed as an additional feature of PART. Objective To test the 'definite PART' hypothesis. Methods We used AT8-immunohistochemistry in 100μm sections to examine the EC, transentorhinal cortex (TRE), and Ammon's horn in 325 brains with tau inclusions lacking Aβ deposits (average age at death 66.7 years for females, 66.4 years for males). Results 100% of cases displayed tau inclusions in the TRE. In 89% of cases, the CA1 tau rating was greater than or equal to that in CA2. In 25%, CA2 was devoid of tau inclusions. Only 4% displayed a higher tau score in CA2 than in the TRE, EC, and CA1. The perforant path also displayed early tau changes. APOE genotyping was available for 199/325 individuals. Of these, 44% had an ɛ4 allele that placed them at greater risk for developing later NFT stages and, therefore, clinical AD. Conclusions Our new findings call into question the PART hypothesis and are consistent with the idea that our cases represent prodromal AD.
Collapse
Affiliation(s)
- Kelly Del Tredici
- Clinical Neuroanatomy/Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Michael Schön
- Institute for Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| | - Simone Feldengut
- Clinical Neuroanatomy/Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Estifanos Ghebremedhin
- Institute of Clinical Neuroanatomy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sarah K Kaufman
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Diana Wiesner
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Benjamin Mayer
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Heiko Braak
- Clinical Neuroanatomy/Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| |
Collapse
|
5
|
Del Bigio MR, Krawitz S, Sinha N. Chronic traumatic encephalopathy-neuropathologic change in a routine neuropathology service: 7-year follow-up. J Neuropathol Exp Neurol 2023; 82:948-957. [PMID: 37846159 PMCID: PMC10588000 DOI: 10.1093/jnen/nlad079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
To follow our 2016 study of chronic traumatic encephalopathy neuropathologic change (CTE-NC) in our forensic autopsy service, we prospectively screened all cases with clinical histories of multiple concussions, persistent post-head injury symptoms, or ≥3 hospital investigations for head injuries from 2016 to 2022 inclusive using hyperphosphorylated tau (p-tau) immunostaining. The cases had routine brain sampling plus 4-6 additional lateral hemisphere samples. When "pathognomonic" CTE-NC lesions were identified, additional p-tau immunostaining was done for CTE-NC staging. Of ∼1100 adult brains aged 18-65 years examined, 85 were screened, and 16 were positive for CTE-NC (2 women, 14 men, ages 35-61 years, median 47 years). Alcohol abuse was documented in 14 of 16 (8 in combination with other substances); 5 had developmental brain anomalies (2 presumed genetic, 3 from acquired perinatal insults). Widespread p-tau deposits (high CTE-NC) were found in 7 of 16. Old brain contusions were present in 9 of 16, but CTE-NC did not colocalize. Of particular interest were (1) a man with FGFR3 mutation/hypochondroplasia and life-long head banging, (2) a woman with cerebral palsy and life-long head banging, and (3) a man with bilateral peri-Sylvian polymicrogyria, alcohol abuse, and multiple head injuries. Thus, CTE-NC occurs in association with repeated head trauma outside contact sports. Substance abuse is a common determinant of risk behavior. The utility of diagnosing mild-/low-stage CTE-NC in this population remains to be determined.
Collapse
Affiliation(s)
- Marc R Del Bigio
- Department of Pathology, University of Manitoba & Shared Health Manitoba, Winnipeg, Manitoba, Canada
| | - Sherry Krawitz
- Department of Pathology, University of Manitoba & Shared Health Manitoba, Winnipeg, Manitoba, Canada
| | - Namita Sinha
- Department of Pathology, University of Manitoba & Shared Health Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
6
|
Landau SM, Mormino EC. Tau Pathology Without Aβ-A Limited PART of Clinical Progression. JAMA Neurol 2023; 80:1025-1027. [PMID: 37578768 DOI: 10.1001/jamaneurol.2023.1081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Affiliation(s)
- Susan M Landau
- Helen Wills Neuroscience Institute, University of California, Berkeley
| | - Elizabeth C Mormino
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
- Wu Tsai Neuroscience Institute, Stanford, California
| |
Collapse
|
7
|
Boukhvalova MS, Kastrukoff L, Blanco JCG. Alzheimer's disease and multiple sclerosis: a possible connection through the viral demyelinating neurodegenerative trigger (vDENT). Front Aging Neurosci 2023; 15:1204852. [PMID: 37396655 PMCID: PMC10310923 DOI: 10.3389/fnagi.2023.1204852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Alzheimer's disease (AD) and multiple sclerosis (MS) are two CNS disorders affecting millions of people, for which no cure is available. AD is usually diagnosed in individuals age 65 and older and manifests with accumulation of beta amyloid in the brain. MS, a demyelinating disorder, is most commonly diagnosed in its relapsing-remitting (RRMS) form in young adults (age 20-40). The lack of success in a number of recent clinical trials of immune- or amyloid-targeting therapeutics emphasizes our incomplete understanding of their etiology and pathogenesis. Evidence is accumulating that infectious agents such as viruses may contribute either directly or indirectly. With the emerging recognition that demyelination plays a role in risk and progression of AD, we propose that MS and AD are connected by sharing a common environmental factor (a viral infection such as HSV-1) and pathology (demyelination). In the viral DEmyelinating Neurodegenerative Trigger (vDENT) model of AD and MS, the initial demyelinating viral (e.g., HSV-1) infection provokes the first episode of demyelination that occurs early in life, with subsequent virus reactivations/demyelination and associated immune/inflammatory attacks resulting in RRMS. The accumulating damage and/or virus progression deeper into CNS leads to amyloid dysfunction, which, combined with the inherent age-related defects in remyelination, propensity for autoimmunity, and increased blood-brain barrier permeability, leads to the development of AD dementia later in life. Preventing or diminishing vDENT event(s) early in life, thus, may have a dual benefit of slowing down the progression of MS and reducing incidence of AD at an older age.
Collapse
Affiliation(s)
| | - Lorne Kastrukoff
- Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
8
|
Abbate C. The Adult Neurogenesis Theory of Alzheimer's Disease. J Alzheimers Dis 2023:JAD221279. [PMID: 37182879 DOI: 10.3233/jad-221279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Alzheimer's disease starts in neural stem cells (NSCs) in the niches of adult neurogenesis. All primary factors responsible for pathological tau hyperphosphorylation are inherent to adult neurogenesis and migration. However, when amyloid pathology is present, it strongly amplifies tau pathogenesis. Indeed, the progressive accumulation of extracellular amyloid-β deposits in the brain triggers a state of chronic inflammation by microglia. Microglial activation has a significant pro-neurogenic effect that fosters the process of adult neurogenesis and supports neuronal migration. Unfortunately, this "reactive" pro-neurogenic activity ultimately perturbs homeostatic equilibrium in the niches of adult neurogenesis by amplifying tau pathogenesis in AD. This scenario involves NSCs in the subgranular zone of the hippocampal dentate gyrus in late-onset AD (LOAD) and NSCs in the ventricular-subventricular zone along the lateral ventricles in early-onset AD (EOAD), including familial AD (FAD). Neuroblasts carrying the initial seed of tau pathology travel throughout the brain via neuronal migration driven by complex signals and convey the disease from the niches of adult neurogenesis to near (LOAD) or distant (EOAD) brain regions. In these locations, or in close proximity, a focus of degeneration begins to develop. Then, tau pathology spreads from the initial foci to large neuronal networks along neural connections through neuron-to-neuron transmission.
Collapse
Affiliation(s)
- Carlo Abbate
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| |
Collapse
|
9
|
Gray ALH, Norman V, Oluwatoba DS, Prosser RA, Do TD. Potential Protective Function of Aβ 42 Monomer on Tauopathies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:472-483. [PMID: 36693165 DOI: 10.1021/jasms.2c00343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
While soluble forms of amyloid-β (Aβ) and Tau work together to drive healthy neurons into a disease state, how their interaction may control the prion-like propagation and neurotoxicity of Tau is not fully understood. The cross-linking via disulfide bond formation is crucial for Tau oligomers to obtain stable conformers and spread between cells. This work thus focuses on how Aβ42 regulates this critical process. By studying the interactions between Aβ42 and TauPHF43, a construct that mimics the Tau R3 isoform, has a similar length to Aβ42, and contains one cysteine (Cys-322), we discovered that fresh Aβ42 could protect Tau against the formation of disulfide cross-linked dimers. We showed that the monomeric and small Aβ oligomers (the "nonamyloidogenic Aβ") efficiently disassembled tau dimers and heparin-induced Tau oligomers to recover Tau monomers. Interestingly, Aβ serves the role of an antioxidant to prevent disulfide bond formation, as supported by the experiments of Aβ with cystine. Furthermore, using cyclosporine A (CycA), a macrocyclic β-sheet disruptor, we demonstrated that targeting amyloidogenic Aβ with CycA does not affect the TauPHF43 disassembly driven by Aβ42. Separately, we assessed the initial toxicity of Aβ42 and TauPHF43 in acute brain slices and found that Aβ42 is more toxic than TauPHF43 or the two peptides combined. Our work highlights a potential protective role of Aβ42 monomers in AD that was previously overlooked while focusing on the mechanism behind Aβ42 aggregation leading to tau dysfunction.
Collapse
Affiliation(s)
- Amber L H Gray
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Victoria Norman
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Damilola S Oluwatoba
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Rebecca A Prosser
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Thanh D Do
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
10
|
Walker JM, Gonzales MM, Goette W, Farrell K, White CL, Crary JF, Richardson TE. Cognitive and Neuropsychological Profiles in Alzheimer's Disease and Primary Age-Related Tauopathy and the Influence of Comorbid Neuropathologies. J Alzheimers Dis 2023; 92:1037-1049. [PMID: 36847012 PMCID: PMC11138480 DOI: 10.3233/jad-230022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
BACKGROUND Alzheimer's disease neuropathologic change (ADNC) is defined by the progression of both hyperphosphorylated-tau (p-tau) and amyloid-β (Aβ) and is the most common underlying cause of dementia worldwide. Primary age-related tauopathy (PART), an Aβ-negative tauopathy largely confined to the medial temporal lobe, is increasingly being recognized as an entity separate from ADNC with diverging clinical, genetic, neuroanatomic, and radiologic profiles. OBJECTIVE The specific clinical correlates of PART are largely unknown; we aimed to identify cognitive and neuropsychological differences between PART, ADNC, and subjects with no tauopathy (NT). METHODS We compared 2,884 subjects with autopsy-confirmed intermediate-high stage ADNC to 208 subjects with definite PART (Braak stage I-IV, Thal phase 0, CERAD NP score "absent") and 178 NT subjects from the National Alzheimer's Coordinating Center dataset. RESULTS PART subjects were older than either ADNC or NT patients. The ADNC cohort had more frequent neuropathological comorbidities as well as APOE ɛ4 alleles than the PART or NT cohort, and less frequent APOE ɛ2 alleles than either group. Clinically, ADNC patients performed significantly worse than NT or PART subjects across cognitive measures, but PART subjects had selective deficits in measures of processing speed, executive function, and visuospatial function, although additional cognitive measures were further impaired in the presence of neuropathologic comorbidities. In isolated cases of PART with Braak stage III-IV, there are additional deficits in measures of language. CONCLUSION Overall, these findings demonstrate underlying cognitive features specifically associated with PART, and reinforce the concept that PART is a distinct entity from ADNC.
Collapse
Affiliation(s)
- Jamie M. Walker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mitzi M. Gonzales
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - William Goette
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kurt Farrell
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles L. White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John F. Crary
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Timothy E. Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
11
|
Carlos AF, Machulda MM, Rutledge MH, Nguyen AT, Reichard RR, Baker MC, Rademakers R, Dickson DW, Petersen RC, Josephs KA. Comparison of Clinical, Genetic, and Pathologic Features of Limbic and Diffuse Transactive Response DNA-Binding Protein 43 Pathology in Alzheimer's Disease Neuropathologic Spectrum. J Alzheimers Dis 2023; 93:1521-1535. [PMID: 37182869 PMCID: PMC10923399 DOI: 10.3233/jad-221094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Increasing evidence suggests that TAR DNA-binding protein 43 (TDP-43) pathology in Alzheimer's disease (AD), or AD-TDP, can be diffuse or limbic-predominant. Understanding whether diffuse AD-TDP has genetic, clinical, and pathological features that differ from limbic AD-TDP could have clinical and research implications. OBJECTIVE To better characterize the clinical and pathologic features of diffuse AD-TDP and differentiate it from limbic AD-TDP. METHODS 363 participants from the Mayo Clinic Study of Aging, Alzheimer's Disease Research Center, and Neurodegenerative Research Group with autopsy confirmed AD and TDP-43 pathology were included. All underwent genetic, clinical, neuropsychologic, and neuropathologic evaluations. AD-TDP pathology distribution was assessed using the Josephs 6-stage scale. Stages 1-3 were classified as Limbic, those 4-6 as Diffuse. Multivariable logistic regression was used to identify clinicopathologic features that independently predicted diffuse pathology. RESULTS The cohort was 61% female and old at onset (median: 76 years [IQR:70-82]) and death (median: 88 years [IQR:82-92]). Fifty-four percent were Limbic and 46% Diffuse. Clinically, ∼10-20% increases in odds of being Diffuse associated with 5-year increments in age at onset (p = 0.04), 1-year longer disease duration (p = 0.02), and higher Neuropsychiatric Inventory scores (p = 0.03), while 15-second longer Trailmaking Test-B times (p = 0.02) and higher Block Design Test scores (p = 0.02) independently decreased the odds by ~ 10-15%. There was evidence for association of APOEɛ4 allele with limbic AD-TDP and of TMEM106B rs3173615 C allele with diffuse AD-TDP. Pathologically, widespread amyloid-β plaques (Thal phases: 3-5) decreased the odds of diffuse TDP-43 pathology by 80-90%, while hippocampal sclerosis increased it sixfold (p < 0.001). CONCLUSION Diffuse AD-TDP shows clinicopathologic and genetic features different from limbic AD-TDP.
Collapse
Affiliation(s)
- Arenn F. Carlos
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mary M. Machulda
- Department of Psychology and Psychiatry, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Aivi T. Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - R. Ross Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew C. Baker
- Department of Neuroscience (Neuropathology), Mayo Clinic, Jacksonville, FL 32224, USA
| | - Rosa Rademakers
- Department of Neuroscience (Neuropathology), Mayo Clinic, Jacksonville, FL 32224, USA
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Flanders 2000, Belgium
| | - Dennis W. Dickson
- Department of Neuroscience (Neuropathology), Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | |
Collapse
|
12
|
Stopschinski BE, Weideman RA, McMahan D, Jacob DA, Little BB, Chiang HS, Saez Calveras N, Stuve O. Microglia as a cellular target of diclofenac therapy in Alzheimer's disease. Ther Adv Neurol Disord 2023; 16:17562864231156674. [PMID: 36875711 PMCID: PMC9974624 DOI: 10.1177/17562864231156674] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/26/2023] [Indexed: 03/07/2023] Open
Abstract
Alzheimer's disease (AD) is an untreatable cause of dementia, and new therapeutic approaches are urgently needed. AD pathology is defined by extracellular amyloid plaques and intracellular neurofibrillary tangles. Research of the past decades has suggested that neuroinflammation plays a critical role in the pathophysiology of AD. This has led to the idea that anti-inflammatory treatments might be beneficial. Early studies investigated non-steroidal anti-inflammatory drugs (NSAIDS) such as indomethacin, celecoxib, ibuprofen, and naproxen, which had no benefit. More recently, protective effects of diclofenac and NSAIDs in the fenamate group have been reported. Diclofenac decreased the frequency of AD significantly compared to other NSAIDs in a large retrospective cohort study. Diclofenac and fenamates share similar chemical structures, and evidence from cell and mouse models suggests that they inhibit the release of pro-inflammatory mediators from microglia with leads to the reduction of AD pathology. Here, we review the potential role of diclofenac and NSAIDs in the fenamate group for targeting AD pathology with a focus on its potential effects on microglia.
Collapse
Affiliation(s)
- Barbara E Stopschinski
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Danni McMahan
- Pharmacy Service, Dallas VA Medical Center, Dallas, TX, USA
| | - David A Jacob
- Veterans Integrated Service Network 17, Arlington, TX, USA
| | - Bertis B Little
- School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Hsueh-Sheng Chiang
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nil Saez Calveras
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Olaf Stuve
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Neurology Section, Dallas VA Medical Center, 4500 South Lancaster Road, Dallas, TX 75216, USA
| |
Collapse
|
13
|
Salim S, Ahmad F, Banu A, Mohammad F. Gut microbiome and Parkinson's disease: Perspective on pathogenesis and treatment. J Adv Res 2022:S2090-1232(22)00242-9. [PMID: 36332796 PMCID: PMC10403695 DOI: 10.1016/j.jare.2022.10.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/26/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a disease of ⍺-synuclein aggregation-mediated dopaminergic neuronal loss in the substantia nigra pars compacta, which leads to motor and non-motor symptoms. Through the last two decades of research, there has been growing consensus that inflammation-mediated oxidative stress, mitochondrial dysfunction, and cytokine-induced toxicity are mainly involved in neuronal damage and loss associated with PD. However, it remains unclear how these mechanisms relate to sporadic PD, a more common form of PD. Both enteric and central nervous systems have been implicated in the pathogenesis of sporadic PD, thus highlighting the crosstalk between the gut and brain. AIM of Review: In this review, we summarize how alterations in the gut microbiome can affect PD pathogenesis. We highlight various mechanisms increasing/decreasing the risk of PD development. Based on the previous supporting evidence, we suggest how early interventions could protect against PD development and how controlling specific factors, including our diet, could modify our perspective on disease mechanisms and therapeutics. We explain the strong relationship between the gut microbiota and the brain in PD subjects, by delineating the multiple mechanisms involved inneuroinflammation and oxidative stress. We conclude that the neurodetrimental effects of western diet (WD) and the neuroprotective effects of Mediterranean diets should be further exploredin humans through clinical trials. Key Scientific Concepts of Review: Alterations in the gut microbiome and associated metabolites may contribute to pathogenesis in PD. In some studies, probiotics have been shown to exert anti-oxidative effects in PD via improved mitochondrial dynamics and homeostasis, thus reducing PD-related consequences. However, there is a significant unmet need for randomized clinical trials to investigate the effectiveness of microbial products, probiotic-based supplementation, and dietary intervention in reversing gut microbial dysbiosis in PD.
Collapse
|
14
|
Jiang J, Yang C, Ai JQ, Zhang QL, Cai XL, Tu T, Wan L, Wang XS, Wang H, Pan A, Manavis J, Gai WP, Che C, Tu E, Wang XP, Li ZY, Yan XX. Intraneuronal sortilin aggregation relative to granulovacuolar degeneration, tau pathogenesis and sorfra plaque formation in human hippocampal formation. Front Aging Neurosci 2022; 14:926904. [PMID: 35978952 PMCID: PMC9376392 DOI: 10.3389/fnagi.2022.926904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
Extracellular β-amyloid (Aβ) deposition and intraneuronal phosphorylated-tau (pTau) accumulation are the hallmark lesions of Alzheimer’s disease (AD). Recently, “sorfra” plaques, named for the extracellular deposition of sortilin c-terminal fragments, are reported as a new AD-related proteopathy, which develop in the human cerebrum resembling the spatiotemporal trajectory of tauopathy. Here, we identified intraneuronal sortilin aggregation as a change related to the development of granulovacuolar degeneration (GVD), tauopathy, and sorfra plaques in the human hippocampal formation. Intraneuronal sortilin aggregation occurred as cytoplasmic inclusions among the pyramidal neurons, co-labeled by antibodies to the extracellular domain and intracellular C-terminal of sortilin. They existed infrequently in the brains of adults, while their density as quantified in the subiculum/CA1 areas increased in the brains from elderly lacking Aβ/pTau, with pTau (i.e., primary age-related tauopathy, PART cases), and with Aβ/pTau (probably/definitive AD, pAD/AD cases) pathologies. In PART and pAD/AD cases, the intraneuronal sortilin aggregates colocalized partially with various GVD markers including casein kinase 1 delta (Ck1δ) and charged multivesicular body protein 2B (CHMP2B). Single-cell densitometry established an inverse correlation between sortilin immunoreactivity and that of Ck1δ, CHMP2B, p62, and pTau among pyramidal neurons. In pAD/AD cases, the sortilin aggregates were reduced in density as moving from the subiculum to CA subregions, wherein sorfra plaques became fewer and absent. Taken together, we consider intraneuronal sortilin aggregation an aging/stress-related change implicating protein sorting deficit, which can activate protein clearance responses including via enhanced phosphorylation and hydrolysis, thereby promoting GVD, sorfra, and Tau pathogenesis, and ultimately, neuronal destruction and death.
Collapse
Affiliation(s)
- Juan Jiang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Chen Yang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Jia-Qi Ai
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Qi-Lei Zhang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Xiao-Lu Cai
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Tian Tu
- Department of Neurology, Xiangya Hospital, Changsha, China
| | - Lily Wan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Xiao-Sheng Wang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Hui Wang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Jim Manavis
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Wei-Ping Gai
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Chong Che
- GeneScience Pharmaceuticals Co., Ltd., Changchun High-Tech Dev. Zone, Changchun, China
| | - Ewen Tu
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, China
| | - Xiao-Ping Wang
- Department of Psychiatry, The Second Xiangya Hospital, Changsha, China
| | - Zhen-Yan Li
- Department of Neurosurgery, Xiangya Hospital, Changsha, China
- *Correspondence: Zhen-Yan Li,
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
- Xiao-Xin Yan,
| |
Collapse
|
15
|
Abstract
Senile plaques have been studied in postmortem brains for more than 120 years and the resultant knowledge has not only helped us understand the etiology and pathogenesis of Alzheimer disease (AD), but has also pointed to possible modes of prevention and treatment. Within the last 15 years, it has become possible to image plaques in living subjects. This is arguably the single greatest advance in AD research since the identification of the Aβ peptide as the major plaque constituent. The limitations and potentialities of amyloid imaging are still not completely clear but are perhaps best glimpsed through the perspective gained from the accumulated postmortem histological studies. The basic morphological classification of plaques into neuritic, cored and diffuse has been supplemented by sophisticated immunohistochemical and biochemical analyses and increasingly detailed mapping of plaque brain distribution. Changes in plaque classification and staging have in turn contributed to changes in the definition and diagnostic criteria for AD. All of this information continues to be tested by clinicopathological correlations and it is through the insights thereby gained that we will best be able to employ the powerful tool of amyloid imaging.
Collapse
Affiliation(s)
- Thomas G Beach
- From the Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona, USA
| |
Collapse
|
16
|
Carbamate-based N-Substituted Tryptamine Derivatives as Novel Pleiotropic Molecules for Alzheimer's Disease. Bioorg Chem 2022; 125:105844. [DOI: 10.1016/j.bioorg.2022.105844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/17/2022] [Accepted: 04/23/2022] [Indexed: 12/22/2022]
|
17
|
Leach JM, Edwards LJ, Kana R, Visscher K, Yi N, Aban I, for the Alzheimer’s Disease Neuroimaging Initiative. The spike-and-slab elastic net as a classification tool in Alzheimer's disease. PLoS One 2022; 17:e0262367. [PMID: 35113902 PMCID: PMC8812870 DOI: 10.1371/journal.pone.0262367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/21/2021] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia and has received considerable research attention, including using neuroimaging biomarkers to classify patients and/or predict disease progression. Generalized linear models, e.g., logistic regression, can be used as classifiers, but since the spatial measurements are correlated and often outnumber subjects, penalized and/or Bayesian models will be identifiable, while classical models often will not. Many useful models, e.g., the elastic net and spike-and-slab lasso, perform automatic variable selection, which removes extraneous predictors and reduces model variance, but neither model exploits spatial information in selecting variables. Spatial information can be incorporated into variable selection by placing intrinsic autoregressive priors on the logit probabilities of inclusion within a spike-and-slab elastic net framework. We demonstrate the ability of this framework to improve classification performance by using cortical thickness and tau-PET images from the Alzheimer's Disease Neuroimaging Initiative (ADNI) to classify subjects as cognitively normal or having dementia, and by using a simulation study to examine model performance using finer resolution images.
Collapse
Affiliation(s)
- Justin M. Leach
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Lloyd J. Edwards
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Rajesh Kana
- Department of Psychology, University of Alabama, Tuscaloosa, Alabama, United States of America
| | - Kristina Visscher
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Nengjun Yi
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Inmaculada Aban
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | | |
Collapse
|
18
|
Farrell K, Kim S, Han N, Iida MA, Gonzalez EM, Otero-Garcia M, Walker JM, Richardson TE, Renton AE, Andrews SJ, Fulton-Howard B, Humphrey J, Vialle RA, Bowles KR, de Paiva Lopes K, Whitney K, Dangoor DK, Walsh H, Marcora E, Hefti MM, Casella A, Sissoko CT, Kapoor M, Novikova G, Udine E, Wong G, Tang W, Bhangale T, Hunkapiller J, Ayalon G, Graham RR, Cherry JD, Cortes EP, Borukov VY, McKee AC, Stein TD, Vonsattel JP, Teich AF, Gearing M, Glass J, Troncoso JC, Frosch MP, Hyman BT, Dickson DW, Murray ME, Attems J, Flanagan ME, Mao Q, Mesulam MM, Weintraub S, Woltjer RL, Pham T, Kofler J, Schneider JA, Yu L, Purohit DP, Haroutunian V, Hof PR, Gandy S, Sano M, Beach TG, Poon W, Kawas CH, Corrada MM, Rissman RA, Metcalf J, Shuldberg S, Salehi B, Nelson PT, Trojanowski JQ, Lee EB, Wolk DA, McMillan CT, Keene CD, Latimer CS, Montine TJ, Kovacs GG, Lutz MI, Fischer P, Perrin RJ, Cairns NJ, Franklin EE, Cohen HT, Raj T, Cobos I, Frost B, Goate A, White Iii CL, Crary JF. Genome-wide association study and functional validation implicates JADE1 in tauopathy. Acta Neuropathol 2022; 143:33-53. [PMID: 34719765 PMCID: PMC8786260 DOI: 10.1007/s00401-021-02379-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/13/2021] [Accepted: 10/24/2021] [Indexed: 01/07/2023]
Abstract
Primary age-related tauopathy (PART) is a neurodegenerative pathology with features distinct from but also overlapping with Alzheimer disease (AD). While both exhibit Alzheimer-type temporal lobe neurofibrillary degeneration alongside amnestic cognitive impairment, PART develops independently of amyloid-β (Aβ) plaques. The pathogenesis of PART is not known, but evidence suggests an association with genes that promote tau pathology and others that protect from Aβ toxicity. Here, we performed a genetic association study in an autopsy cohort of individuals with PART (n = 647) using Braak neurofibrillary tangle stage as a quantitative trait. We found some significant associations with candidate loci associated with AD (SLC24A4, MS4A6A, HS3ST1) and progressive supranuclear palsy (MAPT and EIF2AK3). Genome-wide association analysis revealed a novel significant association with a single nucleotide polymorphism on chromosome 4 (rs56405341) in a locus containing three genes, including JADE1 which was significantly upregulated in tangle-bearing neurons by single-soma RNA-seq. Immunohistochemical studies using antisera targeting JADE1 protein revealed localization within tau aggregates in autopsy brains with four microtubule-binding domain repeats (4R) isoforms and mixed 3R/4R, but not with 3R exclusively. Co-immunoprecipitation in post-mortem human PART brain tissue revealed a specific binding of JADE1 protein to four repeat tau lacking N-terminal inserts (0N4R). Finally, knockdown of the Drosophila JADE1 homolog rhinoceros (rno) enhanced tau-induced toxicity and apoptosis in vivo in a humanized 0N4R mutant tau knock-in model, as quantified by rough eye phenotype and terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) in the fly brain. Together, these findings indicate that PART has a genetic architecture that partially overlaps with AD and other tauopathies and suggests a novel role for JADE1 as a modifier of neurofibrillary degeneration.
Collapse
Affiliation(s)
- Kurt Farrell
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - SoongHo Kim
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Natalia Han
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Megan A Iida
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elias M Gonzalez
- Department of Cell Systems and Anatomy, Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, the Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Marcos Otero-Garcia
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, University of California, Los Angeles, CA, USA
| | - Jamie M Walker
- Department of Pathology and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - Timothy E Richardson
- Department of Pathology and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - Alan E Renton
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shea J Andrews
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian Fulton-Howard
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jack Humphrey
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ricardo A Vialle
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kathryn R Bowles
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katia de Paiva Lopes
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristen Whitney
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Diana K Dangoor
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hadley Walsh
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edoardo Marcora
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marco M Hefti
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Alicia Casella
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cheick T Sissoko
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manav Kapoor
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gloriia Novikova
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evan Udine
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Garrett Wong
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Weijing Tang
- Department of Pathology, Stanford University, Palo Alto, USA
| | - Tushar Bhangale
- Department of Human Genetics, Genentech, South San Francisco, CA, USA
| | - Julie Hunkapiller
- Department of Human Genetics, Genentech, South San Francisco, CA, USA
| | - Gai Ayalon
- Neumora Therapeutics, South San Francisco, CA, USA
| | | | - Jonathan D Cherry
- Department of Pathology (Neuropathology), VA Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Etty P Cortes
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Valeriy Y Borukov
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ann C McKee
- Department of Pathology (Neuropathology), VA Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Department of Pathology (Neuropathology), VA Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Jean-Paul Vonsattel
- Department of Pathology and Cell Biology, Department of Neurology, and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Andy F Teich
- Department of Pathology and Cell Biology, Department of Neurology, and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Marla Gearing
- Department of Pathology and Laboratory Medicine (Neuropathology) and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathan Glass
- Department of Pathology and Laboratory Medicine (Neuropathology) and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Juan C Troncoso
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew P Frosch
- Department of Neurology and Pathology, Harvard Medical School and Massachusetts General Hospital, Charlestown, MA, USA
| | - Bradley T Hyman
- Department of Neurology and Pathology, Harvard Medical School and Massachusetts General Hospital, Charlestown, MA, USA
| | | | | | - Johannes Attems
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Margaret E Flanagan
- Department of Pathology (Neuropathology), Northwestern Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Qinwen Mao
- Department of Pathology (Neuropathology), Northwestern Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - M-Marsel Mesulam
- Department of Pathology (Neuropathology), Northwestern Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sandra Weintraub
- Department of Pathology (Neuropathology), Northwestern Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Randy L Woltjer
- Department of Pathology, Oregon Health Sciences University, Portland, OR, USA
| | - Thao Pham
- Department of Pathology, Oregon Health Sciences University, Portland, OR, USA
| | - Julia Kofler
- Department of Pathology (Neuropathology), University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Julie A Schneider
- Departments of Pathology (Neuropathology) and Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Lei Yu
- Departments of Pathology (Neuropathology) and Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Dushyant P Purohit
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Department of Psychiatry, Alzheimer's Disease Research Center, James J. Peters VA Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vahram Haroutunian
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Alzheimer's Disease Research Center, James J. Peters VA Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patrick R Hof
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sam Gandy
- Department of Psychiatry, Alzheimer's Disease Research Center, James J. Peters VA Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Center for Cognitive Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mary Sano
- Department of Psychiatry, Alzheimer's Disease Research Center, James J. Peters VA Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas G Beach
- Department of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Wayne Poon
- Department of Neurology, Department of Epidemiology, Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA, USA
| | - Claudia H Kawas
- Department of Neurology, Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA, USA
| | - María M Corrada
- Department of Neurology, Department of Epidemiology, Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA, USA
| | - Robert A Rissman
- Department of Neurosciences University of California and the Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, California, USA
| | - Jeff Metcalf
- Department of Neurosciences University of California and the Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, California, USA
| | - Sara Shuldberg
- Department of Neurosciences University of California and the Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, California, USA
| | - Bahar Salehi
- Department of Neurosciences University of California and the Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, California, USA
| | - Peter T Nelson
- Department of Pathology (Neuropathology) and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward B Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David A Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Corey T McMillan
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of f Medicine, Seattle, WA, USA
| | - Caitlin S Latimer
- Department of Laboratory Medicine and Pathology, University of f Medicine, Seattle, WA, USA
| | - Thomas J Montine
- Department of Laboratory Medicine and Pathology, University of f Medicine, Seattle, WA, USA
- Department of Pathology, Stanford University, Palo Alto, USA
| | - Gabor G Kovacs
- Laboratory Medicine Program, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Disease and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Mirjam I Lutz
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Peter Fischer
- Department of Psychiatry, Danube Hospital, Vienna, Austria
| | - Richard J Perrin
- Department of Pathology and Immunology, Department of Neurology, Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Nigel J Cairns
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - Erin E Franklin
- Department of Pathology and Immunology, Department of Neurology, Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Herbert T Cohen
- Departments of Medicine, Pathology, and Pharmacology, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Towfique Raj
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Inma Cobos
- Department of Pathology, Stanford University, Palo Alto, USA
| | - Bess Frost
- Department of Cell Systems and Anatomy, Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, the Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Alison Goate
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles L White Iii
- Department of Pathology (Neuropathology), University of Texas Southwestern Medical School, Dallas, TX, USA
| | - John F Crary
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA.
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
19
|
Wisse LEM, Xie L, Das SR, De Flores R, Hansson O, Habes M, Doshi J, Davatzikos C, Yushkevich PA, Wolk DA. Tau pathology mediates age effects on medial temporal lobe structure. Neurobiol Aging 2022; 109:135-144. [PMID: 34740075 PMCID: PMC8800343 DOI: 10.1016/j.neurobiolaging.2021.09.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 01/03/2023]
Abstract
Hippocampal atrophy is endemic in 'normal aging' but it is unclear what factors drive age-related changes in medial temporal lobe (MTL) structural measures. We investigated cross-sectional (n = 191) and longitudinal (n = 164) MTL atrophy patterns in cognitively normal older adults from ADNI-GO/2 with no to low cerebral β-amyloid and assessed whether white matter hyperintensities (WMHs) and cerebrospinal fluid (CSF) phospho tau (p-tau) levels can explain age-related changes in the MTL. Age was significantly associated with hippocampal volumes and Brodmann Area (BA) 35 thickness, regions affected early by neurofibrillary tangle pathology, in the cross-sectional analysis and with anterior and/or posterior hippocampus, entorhinal cortex and BA35 in the longitudinal analysis. CSF p-tau was significantly associated with hippocampal volumes and atrophy rates. Mediation analyses showed that CSF p-tau levels partially mediated age effects on hippocampal atrophy rates. No significant associations were observed for WMHs. These findings point toward a role of tau pathology, potentially reflecting Primary Age-Related Tauopathy, in age-related MTL structural changes and suggests a potential role for tau-targeted interventions in age-associated neurodegeneration and memory decline.
Collapse
Affiliation(s)
- LEM Wisse
- Department of Diagnostic Radiology, Lund University, Lund, Sweden
| | - L Xie
- Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - SR Das
- Penn Memory Center, Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - R De Flores
- Université Normandie, Inserm, Université de Caen-Normandie, Inserm UMR-S U1237, GIP Cyceron, Caen, France
| | - O Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - M Habes
- Biggs Alzheimer’s Institute, UT Health, San Antonio, USA
| | - J Doshi
- Section of Biomedical Image Analysis, University of Pennsylvania, Philadelphia, PA, USA
| | - C Davatzikos
- Section of Biomedical Image Analysis, University of Pennsylvania, Philadelphia, PA, USA
| | - PA Yushkevich
- Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - DA Wolk
- Penn Memory Center, Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | | |
Collapse
|
20
|
Streit WJ, Rotter J, Winter K, Müller W, Khoshbouei H, Bechmann I. Droplet Degeneration of Hippocampal and Cortical Neurons Signifies the Beginning of Neuritic Plaque Formation. J Alzheimers Dis 2021; 85:1701-1720. [PMID: 34958037 DOI: 10.3233/jad-215334] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Neuritic plaques contain neural and microglial elements, and amyloid-β protein (Aβ), but their pathogenesis remains unknown. OBJECTIVE Elucidate neuritic plaque pathogenesis. METHODS Histochemical visualization of hyperphosphorylated-tau positive (p-tau+) structures, microglia, Aβ, and iron. RESULTS Disintegration of large projection neurons in human hippocampus and neocortex presents as droplet degeneration: pretangle neurons break up into spheres of numerous p-tau+ droplets of various sizes, which marks the beginning of neuritic plaques. These droplet spheres develop in the absence of colocalized Aβ deposits but once formed become encased in diffuse Aβ with great specificity. In contrast, neurofibrillary tangles often do not colocalize with Aβ. Double-labelling for p-tau and microglia showed a lack of microglial activation or phagocytosis of p-tau+ degeneration droplets but revealed massive upregulation of ferritin in microglia suggesting presence of high levels of free iron. Perl's Prussian blue produced positive staining of microglia, droplet spheres, and Aβ plaque cores supporting the suggestion that droplet degeneration of pretangle neurons in the hippocampus and cortex represents ferroptosis, which is accompanied by the release of neuronal iron extracellularly. CONCLUSION Age-related iron accumulation and ferroptosis in the CNS likely trigger at least two endogenous mechanisms of neuroprotective iron sequestration and chelation, microglial ferritin expression and Aβ deposition, respectively, both contributing to the formation of neuritic plaques. Since neurofibrillary tangles and Aβ deposits colocalize infrequently, tangle formation likely does not involve release of neuronal iron extracellularly. In human brain, targeted deposition of Aβ occurs specifically in response to ongoing ferroptotic droplet degeneration thereby producing neuritic plaques.
Collapse
Affiliation(s)
- Wolfgang J Streit
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jonas Rotter
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Karsten Winter
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Wolf Müller
- Department of Neuropathology, Leipzig University, Leipzig, Germany
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
| | - Ingo Bechmann
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| |
Collapse
|
21
|
Savola S, Kaivola K, Raunio A, Kero M, Mäkelä M, Pärn K, Palta P, Tanskanen M, Tuimala J, Polvikoski T, Tienari PJ, Paetau A, Myllykangas L. Primary Age‐Related Tauopathy (PART) in a Finnish Population‐Based Study of the Oldest Old (Vantaa 85+). Neuropathol Appl Neurobiol 2021; 48:e12788. [PMID: 34927275 PMCID: PMC9305229 DOI: 10.1111/nan.12788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/16/2021] [Accepted: 12/12/2021] [Indexed: 11/26/2022]
Abstract
Aims Few studies have investigated primary age‐related tauopathy (PART) in a population‐based setting. Here, we assessed its prevalence, genetic background, comorbidities and features of cognitive decline in an unselected elderly population. Methods The population‐based Vantaa 85+ study includes all 601 inhabitants of Vantaa aged ≥ 85 years in 1991. Neuropathological assessment was possible in 301. Dementia (DSM IIIR criteria) and Mini‐Mental State Examination (MMSE) scores were assessed at the baseline of the study and follow‐ups. PART subjects were identified according to the criteria by Crary et al and were compared with subjects with mild and severe Alzheimer's disease (AD) neuropathological changes. The effects of other neuropathologies were taken into account using multivariate and sensitivity assays. Genetic analyses included APOE genotypes and 29 polymorphisms of the MAPT 3′ untranslated region (3′UTR region). Results The frequency of PART was 20% (n = 61/301, definite PART 5%). When PART subjects were compared with those with severe AD pathology, dementia was less common, its age at onset was higher and duration shorter. No such differences were seen when compared with those with milder AD pathology. However, both AD groups showed a steeper decline in MMSE scores in follow‐ups compared with PART. APOE ε4 frequency was lower, and APOE ε2 frequency higher in the PART group compared with each AD group. The detected nominally significant associations between PART and two MAPT 3′UTR polymorphisms and haplotypes did not survive Bonferroni correction. Conclusions PART is common among very elderly. PART subjects differ from individuals with AD‐type changes in the pattern of cognitive decline, associated genetic and neuropathological features.
Collapse
Affiliation(s)
- Sara Savola
- Department of Pathology University of Helsinki Helsinki Finland
- Department of Pathology, HUS Diagnostic Center Helsinki University Hospital Helsinki Finland
| | - Karri Kaivola
- Translational Immunology, Research Programs Unit University of Helsinki Helsinki Finland
- Department of Neurology University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Anna Raunio
- Department of Pathology University of Helsinki Helsinki Finland
- Department of Pathology, HUS Diagnostic Center Helsinki University Hospital Helsinki Finland
| | - Mia Kero
- Department of Pathology University of Helsinki Helsinki Finland
- Department of Pathology, HUS Diagnostic Center Helsinki University Hospital Helsinki Finland
| | - Mira Mäkelä
- Department of Pathology University of Helsinki Helsinki Finland
- Department of Pathology, HUS Diagnostic Center Helsinki University Hospital Helsinki Finland
| | - Kalle Pärn
- Institute for Molecular Medicine Finland (FIMM), HiLIFE University of Helsinki Helsinki Finland
| | - Priit Palta
- Institute for Molecular Medicine Finland (FIMM), HiLIFE University of Helsinki Helsinki Finland
| | - Maarit Tanskanen
- Department of Pathology University of Helsinki Helsinki Finland
- Department of Pathology, HUS Diagnostic Center Helsinki University Hospital Helsinki Finland
| | - Jarno Tuimala
- Department of Pathology University of Helsinki Helsinki Finland
| | - Tuomo Polvikoski
- Translational and Clinical Research Institute Newcastle University Newcastle upon Tyne United Kingdom
| | - Pentti J. Tienari
- Translational Immunology, Research Programs Unit University of Helsinki Helsinki Finland
- Department of Neurology University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Anders Paetau
- Department of Pathology University of Helsinki Helsinki Finland
- Department of Pathology, HUS Diagnostic Center Helsinki University Hospital Helsinki Finland
| | - Liisa Myllykangas
- Department of Pathology University of Helsinki Helsinki Finland
- Department of Pathology, HUS Diagnostic Center Helsinki University Hospital Helsinki Finland
| |
Collapse
|
22
|
Walker JM, White CL, Farrell K, Crary JF, Richardson TE. Neocortical Neurofibrillary Degeneration in Primary Age-Related Tauopathy. J Neuropathol Exp Neurol 2021; 81:146-148. [PMID: 34865093 DOI: 10.1093/jnen/nlab113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jamie M Walker
- Department of Pathology and Laboratory Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA.,Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Charles L White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kurt Farrell
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John F Crary
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Timothy E Richardson
- Department of Pathology and Laboratory Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA.,Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
23
|
Torres AK, Jara C, Park-Kang HS, Polanco CM, Tapia D, Alarcón F, de la Peña A, Llanquinao J, Vargas-Mardones G, Indo JA, Inestrosa NC, Tapia-Rojas C. Synaptic Mitochondria: An Early Target of Amyloid-β and Tau in Alzheimer's Disease. J Alzheimers Dis 2021; 84:1391-1414. [PMID: 34719499 DOI: 10.3233/jad-215139] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is characterized by cognitive impairment and the presence of neurofibrillary tangles and senile plaques in the brain. Neurofibrillary tangles are composed of hyperphosphorylated tau, while senile plaques are formed by amyloid-β (Aβ) peptide. The amyloid hypothesis proposes that Aβ accumulation is primarily responsible for the neurotoxicity in AD. Multiple Aβ-mediated toxicity mechanisms have been proposed including mitochondrial dysfunction. However, it is unclear if it precedes Aβ accumulation or if is a consequence of it. Aβ promotes mitochondrial failure. However, amyloid β precursor protein (AβPP) could be cleaved in the mitochondria producing Aβ peptide. Mitochondrial-produced Aβ could interact with newly formed ones or with Aβ that enter the mitochondria, which may induce its oligomerization and contribute to further mitochondrial alterations, resulting in a vicious cycle. Another explanation for AD is the tau hypothesis, in which modified tau trigger toxic effects in neurons. Tau induces mitochondrial dysfunction by indirect and apparently by direct mechanisms. In neurons mitochondria are classified as non-synaptic or synaptic according to their localization, where synaptic mitochondrial function is fundamental supporting neurotransmission and hippocampal memory formation. Here, we focus on synaptic mitochondria as a primary target for Aβ toxicity and/or formation, generating toxicity at the synapse and contributing to synaptic and memory impairment in AD. We also hypothesize that phospho-tau accumulates in mitochondria and triggers dysfunction. Finally, we discuss that synaptic mitochondrial dysfunction occur in aging and correlates with age-related memory loss. Therefore, synaptic mitochondrial dysfunction could be a predisposing factor for AD or an early marker of its onset.
Collapse
Affiliation(s)
- Angie K Torres
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Jara
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Han S Park-Kang
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Catalina M Polanco
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Diego Tapia
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Fabián Alarcón
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Adely de la Peña
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Jesus Llanquinao
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Gabriela Vargas-Mardones
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Javiera A Indo
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| |
Collapse
|
24
|
Stopschinski BE, Del Tredici K, Estill-Terpack SJ, Ghebremedhin E, Yu FF, Braak H, Diamond MI. Anatomic survey of seeding in Alzheimer's disease brains reveals unexpected patterns. Acta Neuropathol Commun 2021; 9:164. [PMID: 34635189 PMCID: PMC8507321 DOI: 10.1186/s40478-021-01255-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 12/31/2022] Open
Abstract
Tauopathies are heterogeneous neurodegenerative diseases defined by progressive brain accumulation of tau aggregates. The most common tauopathy, sporadic Alzheimer's disease (AD), involves progressive tau deposition that can be divided into specific stages of neurofibrillary tangle pathology. This classification is consistent with experimental data which suggests that network-based propagation is mediated by cell-cell transfer of tau "seeds", or assemblies, that serve as templates for their own replication. Until now, seeding assays of AD brain have largely been limited to areas previously defined by NFT pathology. We now expand this work to additional regions. We selected 20 individuals with AD pathology of NFT stages I, III, and V. We stained and classified 25 brain regions in each using the anti-phospho-tau monoclonal antibody AT8. We measured tau seeding in each of the 500 samples using a cell-based tau "biosensor" assay in which induction of intracellular tau aggregation is mediated by exogenous tau assemblies. We observed a progressive increase in tau seeding according to NFT stage. Seeding frequently preceded NFT pathology, e.g., in the basolateral subnucleus of the amygdala and the substantia nigra, pars compacta. We observed seeding in brain regions not previously known to develop tau pathology, e.g., the globus pallidus and internal capsule, where AT8 staining revealed mainly axonal accumulation of tau. AT8 staining in brain regions identified because of tau seeding also revealed pathology in a previously undescribed cell type: Bergmann glia of the cerebellar cortex. We also detected tau seeding in brain regions not previously examined, e.g., the intermediate reticular zone, dorsal raphe nucleus, amygdala, basal nucleus of Meynert, and olfactory bulb. In conclusion, tau histopathology and seeding are complementary analytical tools. Tau seeding assays reveal pathology in the absence of AT8 signal in some instances, and previously unrecognized sites of tau deposition. The variation in sites of seeding between individuals could underlie differences in the clinical presentation and course of AD.
Collapse
Affiliation(s)
- Barbara E Stopschinski
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, NL10.120, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Kelly Del Tredici
- Clinical Neuroanatomy Section/Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Sandi-Jo Estill-Terpack
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, NL10.120, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390, USA
| | | | - Fang F Yu
- Department for Radiology, Neuroradiology Division, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Heiko Braak
- Clinical Neuroanatomy Section/Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, NL10.120, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390, USA.
| |
Collapse
|
25
|
Iida MA, Farrell K, Walker JM, Richardson TE, Marx GA, Bryce CH, Purohit D, Ayalon G, Beach TG, Bigio EH, Cortes EP, Gearing M, Haroutunian V, McMillan CT, Lee EB, Dickson DW, McKee AC, Stein TD, Trojanowski JQ, Woltjer RL, Kovacs GG, Kofler JK, Kaye J, White CL, Crary JF. Predictors of cognitive impairment in primary age-related tauopathy: an autopsy study. Acta Neuropathol Commun 2021; 9:134. [PMID: 34353357 PMCID: PMC8340493 DOI: 10.1186/s40478-021-01233-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022] Open
Abstract
Primary age-related tauopathy (PART) is a form of Alzheimer-type neurofibrillary degeneration occurring in the absence of amyloid-beta (Aβ) plaques. While PART shares some features with Alzheimer disease (AD), such as progressive accumulation of neurofibrillary tangle pathology in the medial temporal lobe and other brain regions, it does not progress extensively to neocortical regions. Given this restricted pathoanatomical pattern and variable symptomatology, there is a need to reexamine and improve upon how PART is neuropathologically assessed and staged. We performed a retrospective autopsy study in a collection (n = 174) of post-mortem PART brains and used logistic regression to determine the extent to which a set of clinical and neuropathological features predict cognitive impairment. We compared Braak staging, which focuses on hierarchical neuroanatomical progression of AD tau and Aβ pathology, with quantitative assessments of neurofibrillary burden using computer-derived positive pixel counts on digitized whole slide images of sections stained immunohistochemically with antibodies targeting abnormal hyperphosphorylated tau (p-tau) in the entorhinal region and hippocampus. We also assessed other factors affecting cognition, including aging-related tau astrogliopathy (ARTAG) and atrophy. We found no association between Braak stage and cognitive impairment when controlling for age (p = 0.76). In contrast, p-tau burden was significantly correlated with cognitive impairment even when adjusting for age (p = 0.03). The strongest correlate of cognitive impairment was cerebrovascular disease, a well-known risk factor (p < 0.0001), but other features including ARTAG (p = 0.03) and hippocampal atrophy (p = 0.04) were also associated. In contrast, sex, APOE, psychiatric illness, education, argyrophilic grains, and incidental Lewy bodies were not. These findings support the hypothesis that comorbid pathologies contribute to cognitive impairment in subjects with PART. Quantitative approaches beyond Braak staging are critical for advancing our understanding of the extent to which age-related tauopathy changes impact cognitive function.
Collapse
Affiliation(s)
- Megan A Iida
- Department of Pathology, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine At Mount Sinai, Friedman Brain Institute, Neuropathology Brain Bank & Research CoRE, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
| | - Kurt Farrell
- Department of Pathology, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine At Mount Sinai, Friedman Brain Institute, Neuropathology Brain Bank & Research CoRE, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
| | - Jamie M Walker
- Department of Pathology and Laboratory Medicine and The Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - Timothy E Richardson
- Department of Pathology and Laboratory Medicine and The Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - Gabriel A Marx
- Department of Pathology, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine At Mount Sinai, Friedman Brain Institute, Neuropathology Brain Bank & Research CoRE, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
| | - Clare H Bryce
- Department of Pathology, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine At Mount Sinai, Friedman Brain Institute, Neuropathology Brain Bank & Research CoRE, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
| | - Dushyant Purohit
- Department of Pathology, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine At Mount Sinai, Friedman Brain Institute, Neuropathology Brain Bank & Research CoRE, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
| | - Gai Ayalon
- Ultragenyx Pharmaceuticals, Novato, CA, USA
| | | | - Eileen H Bigio
- Department of Pathology, Northwestern Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Etty P Cortes
- Department of Pathology, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine At Mount Sinai, Friedman Brain Institute, Neuropathology Brain Bank & Research CoRE, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
| | - Marla Gearing
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Vahram Haroutunian
- Departments of Psychiatry and Neuroscience, Alzheimer's Disease Research Center, Icahn School of Medicine At Mount Sinai, New York, NY, USA
- JJ Peters VA Medical Center (MIRECC), Bronx, NY, USA
| | - Corey T McMillan
- Department of Neurology, Perelman School of Medicine, Penn FTD Center, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Translational Neuropathology Research Laboratory, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ann C McKee
- Department of Pathology, VA Medical Center & Boston University School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Department of Pathology, VA Medical Center & Boston University School of Medicine, Boston, MA, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Randall L Woltjer
- Department of Pathology, Oregon Health Sciences University, Portland, OR, USA
| | - Gabor G Kovacs
- Laboratory Medicine Program, Krembil Brain Institute University Health Network Toronto Ontario, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Julia K Kofler
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jeffrey Kaye
- Department of Neurology, Oregon Health & Science University, Portland, USA
| | - Charles L White
- Neuropathology Laboratory, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, USA
| | - John F Crary
- Department of Pathology, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine At Mount Sinai, Friedman Brain Institute, Neuropathology Brain Bank & Research CoRE, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA.
| |
Collapse
|
26
|
Alves SS, Silva-Junior RMPD, Servilha-Menezes G, Homolak J, Šalković-Petrišić M, Garcia-Cairasco N. Insulin Resistance as a Common Link Between Current Alzheimer's Disease Hypotheses. J Alzheimers Dis 2021; 82:71-105. [PMID: 34024838 DOI: 10.3233/jad-210234] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Almost 115 years ago, Alois Alzheimer described Alzheimer's disease (AD) for the first time. Since then, many hypotheses have been proposed. However, AD remains a severe health public problem. The current medical approaches for AD are limited to symptomatic interventions and the complexity of this disease has led to a failure rate of approximately 99.6%in AD clinical trials. In fact, no new drug has been approved for AD treatment since 2003. These failures indicate that we are failing in mimicking this disease in experimental models. Although most studies have focused on the amyloid cascade hypothesis of AD, the literature has made clear that AD is rather a multifactorial disorder. Therefore, the persistence in a single theory has resulted in lost opportunities. In this review, we aim to present the striking points of the long scientific path followed since the description of the first AD case and the main AD hypotheses discussed over the last decades. We also propose insulin resistance as a common link between many other hypotheses.
Collapse
Affiliation(s)
- Suélen Santos Alves
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Rui Milton Patrício da Silva-Junior
- Department of Internal Medicine, Ribeirão Preto Medical School -University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Gabriel Servilha-Menezes
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Melita Šalković-Petrišić
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Norberto Garcia-Cairasco
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
27
|
Walker JM, Fudym Y, Farrell K, Iida MA, Bieniek KF, Seshadri S, White CL, Crary JF, Richardson TE. Asymmetry of Hippocampal Tau Pathology in Primary Age-Related Tauopathy and Alzheimer Disease. J Neuropathol Exp Neurol 2021; 80:436-445. [PMID: 33860327 PMCID: PMC8054137 DOI: 10.1093/jnen/nlab032] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Primary age-related tauopathy (PART) is a neurodegenerative entity defined as neurofibrillary degeneration generally restricted to the medial temporal region (Braak stage I-IV) with complete or near absence of diffuse and neuritic plaques. Symptoms range in severity but are generally milder and later in onset than in Alzheimer disease (AD). Recently, an early predilection for neurofibrillary degeneration in the hippocampal CA2 subregion has been demonstrated in PART, whereas AD neuropathologic change (ADNC) typically displays relative sparing of CA2 until later stages. In this study, we utilized a semiquantitative scoring system to evaluate asymmetry of neurofibrillary degeneration between left and right hippocampi in 67 PART cases and 17 ADNC cases. 49% of PART cases demonstrated asymmetric findings in at least one hippocampal subregion, and 79% of the asymmetric cases displayed some degree of CA2 asymmetry. Additionally, 19% of cases revealed a difference in Braak score between the right and left hippocampi. There was a significant difference in CA2 neurofibrillary degeneration (p = 0.0006) and CA2/CA1 ratio (p < 0.0001) when comparing the contralateral sides, but neither right nor left was more consistently affected. These data show the importance of analyzing bilateral hippocampi in the diagnostic evaluation of PART and potentially of other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jamie M Walker
- From the Department of Pathology and Laboratory Medicine, Upstate Medical University, Syracuse, New York, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Yelena Fudym
- Department of Pathology, State University of New York, Upstate Medical University, Syracuse, New York, USA
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kurt Farrell
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Megan A Iida
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kevin F Bieniek
- From the Department of Pathology and Laboratory Medicine, Upstate Medical University, Syracuse, New York, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, Texas, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, Texas, USA
- Department of Neurology, University of Texas Health Science Center, San Antonio, Texas, USA
- The Framingham Heart Study, Framingham, Massachusetts, USA
| | - Charles L White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John F Crary
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Timothy E Richardson
- From the Department of Pathology and Laboratory Medicine, Upstate Medical University, Syracuse, New York, USA
- Department of Pathology, State University of New York, Upstate Medical University, Syracuse, New York, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, Texas, USA
| |
Collapse
|
28
|
Nichols JB, Malek-Ahmadi M, Tariot PN, Serrano GE, Sue LI, Beach TG. Vascular Lesions, APOE ε4, and Tau Pathology in Alzheimer Disease. J Neuropathol Exp Neurol 2021; 80:240-246. [PMID: 33617650 PMCID: PMC7899190 DOI: 10.1093/jnen/nlaa160] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We sought to determine the associations among cerebral amyloid angiopathy (CAA), white matter rarefaction (WMR), circle of Willis atherosclerosis (CWA), and total microinfarct number with Braak neurofibrillary stage in postmortem individuals with and without Alzheimer disease (AD). Data from 355 cases of autopsied individuals with Braak stage I-VI who had antemortem consensus diagnoses of cognitively unimpaired (n = 183), amnestic mild cognitive impairment (n = 31), and AD dementia (n = 141) were used. The association between Braak stage and vascular lesions were individually assessed using multivariable linear regression that adjusted for age at death, APOE ε4 carrier status, sex, education, and neuritic plaque density. CAA (p = 0.007) and WMR (p < 0.001) were associated with Braak stage, independent of amyloid load; microinfarct number and CWA showed no association. Analyses of the interactions between APOE ε4 carrier status and vascular lesions found that greater WMR and positive ε4 carrier status were associated with higher Braak stages. These results suggest that CAA and WMR are statistically linked to the severity of AD-related NFT pathology. The statistical link between WMR and NFT load may be strengthened by the presence of APOE ε4 carrier status. An additional finding was that Lewy body pathology was most prevalent in higher Braak stages.
Collapse
Affiliation(s)
- Jodie B Nichols
- From the Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona, USA
| | | | | | - Geidy E Serrano
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Lucia I Sue
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Thomas G Beach
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| |
Collapse
|
29
|
Sanchez JS, Becker JA, Jacobs HIL, Hanseeuw BJ, Jiang S, Schultz AP, Properzi MJ, Katz SR, Beiser A, Satizabal CL, O'Donnell A, DeCarli C, Killiany R, El Fakhri G, Normandin MD, Gómez-Isla T, Quiroz YT, Rentz DM, Sperling RA, Seshadri S, Augustinack J, Price JC, Johnson KA. The cortical origin and initial spread of medial temporal tauopathy in Alzheimer's disease assessed with positron emission tomography. Sci Transl Med 2021; 13:eabc0655. [PMID: 33472953 PMCID: PMC7978042 DOI: 10.1126/scitranslmed.abc0655] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
Abstract
Advances in molecular positron emission tomography (PET) have enabled anatomic tracking of brain pathology in longitudinal studies of normal aging and dementia, including assessment of the central model of Alzheimer's disease (AD) pathogenesis, according to which TAU pathology begins focally but expands catastrophically under the influence of amyloid-β (Aβ) pathology to mediate neurodegeneration and cognitive decline. Initial TAU deposition occurs many years before Aβ in a specific area of the medial temporal lobe. Building on recent work that enabled focus of molecular PET measurements on specific TAU-vulnerable convolutional temporal lobe anatomy, we applied an automated anatomic sampling method to quantify TAU PET signal in 443 adult participants from several observational studies of aging and AD, spanning a wide range of ages, Aβ burdens, and degrees of clinical impairment. We detected initial cortical emergence of tauopathy near the rhinal sulcus in clinically normal people and, in a subset with longitudinal 2-year follow-up data (n = 104), tracked Aβ-associated spread of TAU from this site first to nearby neocortex of the temporal lobe and then to extratemporal regions. Greater rate of TAU spread was associated with baseline measures of both global Aβ burden and medial temporal lobe TAU. These findings are consistent with clinicopathological correlation studies of Alzheimer's tauopathy and enable precise tracking of AD-related TAU progression for natural history studies and prevention therapeutic trials.
Collapse
Affiliation(s)
- Justin S Sanchez
- Massachusetts General Hospital, Boston, MA 02114, USA.
- Harvard Medical School, Boston, MA 02115, USA
- Gordon Center for Medical Imaging, Boston, MA, 02114, USA
| | - J Alex Becker
- Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Gordon Center for Medical Imaging, Boston, MA, 02114, USA
| | - Heidi I L Jacobs
- Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Gordon Center for Medical Imaging, Boston, MA, 02114, USA
- School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, 6211 LK, Netherlands
| | - Bernard J Hanseeuw
- Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Gordon Center for Medical Imaging, Boston, MA, 02114, USA
- Université Catholique de Louvain, Brussels B-1348, Belgium
| | - Shu Jiang
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Aaron P Schultz
- Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Michael J Properzi
- Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Samantha R Katz
- Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Gordon Center for Medical Imaging, Boston, MA, 02114, USA
| | - Alexa Beiser
- Boston University School of Medicine, Boston, MA 02118, USA
- Boston University School of Public Health, Boston, MA 02118, USA
- Framingham Heart Study, Framingham, MA 01702, USA
| | - Claudia L Satizabal
- Boston University School of Medicine, Boston, MA 02118, USA
- Framingham Heart Study, Framingham, MA 01702, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX 78229, USA
| | - Adrienne O'Donnell
- Boston University School of Public Health, Boston, MA 02118, USA
- Framingham Heart Study, Framingham, MA 01702, USA
| | | | - Ron Killiany
- Boston University School of Medicine, Boston, MA 02118, USA
- Boston University School of Public Health, Boston, MA 02118, USA
| | - Georges El Fakhri
- Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Gordon Center for Medical Imaging, Boston, MA, 02114, USA
| | - Marc D Normandin
- Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Gordon Center for Medical Imaging, Boston, MA, 02114, USA
| | - Teresa Gómez-Isla
- Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Yakeel T Quiroz
- Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Grupo de Neurociencias, Universidad de Antioquia, Antioquia 050010, Colombia
| | - Dorene M Rentz
- Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Reisa A Sperling
- Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Sudha Seshadri
- Boston University School of Medicine, Boston, MA 02118, USA
- Framingham Heart Study, Framingham, MA 01702, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX 78229, USA
| | - Jean Augustinack
- Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Julie C Price
- Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Keith A Johnson
- Massachusetts General Hospital, Boston, MA 02114, USA.
- Harvard Medical School, Boston, MA 02115, USA
- Gordon Center for Medical Imaging, Boston, MA, 02114, USA
- Brigham and Women's Hospital, Boston, MA 02115, USA
| |
Collapse
|
30
|
Walker JM, Richardson TE, Farrell K, Iida MA, Foong C, Shang P, Attems J, Ayalon G, Beach TG, Bigio EH, Budson A, Cairns NJ, Corrada M, Cortes E, Dickson DW, Fischer P, Flanagan ME, Franklin E, Gearing M, Glass J, Hansen LA, Haroutunian V, Hof PR, Honig L, Kawas C, Keene CD, Kofler J, Kovacs GG, Lee EB, Lutz MI, Mao Q, Masliah E, McKee AC, McMillan CT, Mesulam MM, Murray M, Nelson PT, Perrin R, Pham T, Poon W, Purohit DP, Rissman RA, Sakai K, Sano M, Schneider JA, Stein TD, Teich AF, Trojanowski JQ, Troncoso JC, Vonsattel JP, Weintraub S, Wolk DA, Woltjer RL, Yamada M, Yu L, White CL, Crary JF. Early Selective Vulnerability of the CA2 Hippocampal Subfield in Primary Age-Related Tauopathy. J Neuropathol Exp Neurol 2021; 80:102-111. [PMID: 33367843 PMCID: PMC8453611 DOI: 10.1093/jnen/nlaa153] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Primary age-related tauopathy (PART) is a neurodegenerative entity defined as Alzheimer-type neurofibrillary degeneration primarily affecting the medial temporal lobe with minimal to absent amyloid-β (Aβ) plaque deposition. The extent to which PART can be differentiated pathoanatomically from Alzheimer disease (AD) is unclear. Here, we examined the regional distribution of tau pathology in a large cohort of postmortem brains (n = 914). We found an early vulnerability of the CA2 subregion of the hippocampus to neurofibrillary degeneration in PART, and semiquantitative assessment of neurofibrillary degeneration in CA2 was significantly greater than in CA1 in PART. In contrast, subjects harboring intermediate-to-high AD neuropathologic change (ADNC) displayed relative sparing of CA2 until later stages of their disease course. In addition, the CA2/CA1 ratio of neurofibrillary degeneration in PART was significantly higher than in subjects with intermediate-to-high ADNC burden. Furthermore, the distribution of tau pathology in PART diverges from the Braak NFT staging system and Braak stage does not correlate with cognitive function in PART as it does in individuals with intermediate-to-high ADNC. These findings highlight the need for a better understanding of the contribution of PART to cognitive impairment and how neurofibrillary degeneration interacts with Aβ pathology in AD and PART.
Collapse
Affiliation(s)
- Jamie M Walker
- From the Department of Pathology, University of Texas Health Science Center, San Antonio, Texas, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Timothy E Richardson
- From the Department of Pathology, University of Texas Health Science Center, San Antonio, Texas, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, Texas, USA
- Department of Pathology, State University of New York, Upstate Medical University, Syracuse, New York, USA
| | - Kurt Farrell
- Department of Pathology and Nash Family Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research Core, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Megan A Iida
- Department of Pathology and Nash Family Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research Core, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chan Foong
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ping Shang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Johannes Attems
- Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gai Ayalon
- Department of Neuroscience, Genentech Inc., South San Francisco, California, USA
| | - Thomas G Beach
- Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Eileen H Bigio
- Department of Pathology, Northwestern Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andrew Budson
- Department of Pathology, VA Medical Center & Boston University School of Medicine, Boston, Massachusetts, USA
| | - Nigel J Cairns
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - María Corrada
- Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, California, USA
| | - Etty Cortes
- Department of Pathology and Nash Family Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Peter Fischer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Laboratory Medicine Program, University Health Network, and Tanz Centre for Research in Neurodegenerative Disease, Krembil Brain Institute, Toronto, Ontario, Canada
| | - Margaret E Flanagan
- Department of Pathology, Northwestern Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Erin Franklin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Marla Gearing
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jonathan Glass
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lawrence A Hansen
- Departments of Neurosciences and Pathology, University of California, San Diego, La Jolla, California, USA
| | - Vahram Haroutunian
- Department of Psychiatry and Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Patrick R Hof
- Department of Pathology and Nash Family Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research Core, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lawrence Honig
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Claudia Kawas
- Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, California, USA
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Julia Kofler
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Gabor G Kovacs
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Laboratory Medicine Program, University Health Network, and Tanz Centre for Research in Neurodegenerative Disease, Krembil Brain Institute, Toronto, Ontario, Canada
| | - Edward B Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mirjam I Lutz
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Qinwen Mao
- Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Eliezer Masliah
- Departments of Neurosciences and Pathology, University of California, San Diego, La Jolla, California, USA
| | - Ann C McKee
- Department of Pathology, VA Medical Center & Boston University School of Medicine, Boston, Massachusetts, USA
| | - Corey T McMillan
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - M Marsel Mesulam
- Department of Pathology, Northwestern Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Melissa Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Peter T Nelson
- Department of Pathology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Richard Perrin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Thao Pham
- Department of Pathology, Oregon Health Sciences University, Portland, Oregon, USA
| | - Wayne Poon
- Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, California, USA
| | - Dushyant P Purohit
- Department of Pathology and Nash Family Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robert A Rissman
- Departments of Neurosciences and Pathology, University of California, San Diego, La Jolla, California, USA
| | - Kenji Sakai
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Mary Sano
- Department of Psychiatry and Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Julie A Schneider
- Departments of Pathology and Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Thor D Stein
- Department of Pathology, VA Medical Center & Boston University School of Medicine, Boston, Massachusetts, USA
| | - Andrew F Teich
- Department of Pathology & Cell Biology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, New York, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Juan C Troncoso
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jean-Paul Vonsattel
- Department of Pathology & Cell Biology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, New York, USA
| | - Sandra Weintraub
- Department of Pathology, Northwestern Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - David A Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Randall L Woltjer
- Department of Pathology, Oregon Health Sciences University, Portland, Oregon, USA
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Lei Yu
- Departments of Pathology and Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Charles L White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John F Crary
- Department of Pathology and Nash Family Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research Core, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
31
|
Dominguez-Meijide A, Vasili E, Outeiro TF. Pharmacological Modulators of Tau Aggregation and Spreading. Brain Sci 2020; 10:E858. [PMID: 33203009 PMCID: PMC7696562 DOI: 10.3390/brainsci10110858] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022] Open
Abstract
Tauopathies are neurodegenerative disorders characterized by the deposition of aggregates composed of abnormal tau protein in the brain. Additionally, misfolded forms of tau can propagate from cell to cell and throughout the brain. This process is thought to lead to the templated misfolding of the native forms of tau, and thereby, to the formation of newer toxic aggregates, thereby propagating the disease. Therefore, modulation of the processes that lead to tau aggregation and spreading is of utmost importance in the fight against tauopathies. In recent years, several molecules have been developed for the modulation of tau aggregation and spreading. In this review, we discuss the processes of tau aggregation and spreading and highlight selected chemicals developed for the modulation of these processes, their usefulness, and putative mechanisms of action. Ultimately, a stronger understanding of the molecular mechanisms involved, and the properties of the substances developed to modulate them, will lead to the development of safer and better strategies for the treatment of tauopathies.
Collapse
Affiliation(s)
- Antonio Dominguez-Meijide
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073 Goettingen, Germany; (A.D.-M.); (E.V.)
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eftychia Vasili
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073 Goettingen, Germany; (A.D.-M.); (E.V.)
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073 Goettingen, Germany; (A.D.-M.); (E.V.)
- Max Planck Institute for Experimental Medicine, 37075 Goettingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
| |
Collapse
|
32
|
Dani M, Wood M, Mizoguchi R, Fan Z, Edginton T, Hinz R, Win Z, Brooks DJ, Edison P. Tau Aggregation Correlates with Amyloid Deposition in Both Mild Cognitive Impairment and Alzheimer's Disease Subjects. J Alzheimers Dis 2020; 70:455-465. [PMID: 31256120 DOI: 10.3233/jad-181168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Amyloid plaque and tau-containing neurofibrillary tangles are important features of Alzheimer's disease (AD). However, the relationship between these processes is still debated. OBJECTIVE We aimed to investigate local and distant relationships between tau and amyloid deposition in the cortex in mild cognitive impairment (MCI) and AD using PET imaging. METHODS Seventy-nine subjects (51 controls, 13 amyloid-positive MCI subjects, and 15 amyloid positive AD subjects) underwent MRI and 18F-flutemetamol PET. All MCI/AD subjects and 8 healthy controls as well as 33 healthy control subjects from the ADNI dataset also had 18F-AV1451 PET. Regional and distant correlations were examined after sampling target-to-cerebellar ratio images. Biological parametric mapping was used to evaluate voxel level correlations locally. RESULTS We found multiple clusters of voxels with highly significant positive correlations throughout the association cortex in both MCI and AD subjects. CONCLUSION The multiple clusters of positive correlations indicate that tau and amyloid may interact locally and be involved in disease progression. Our findings suggest that targeting both pathologies may be required.
Collapse
Affiliation(s)
- Melanie Dani
- Neurology Imaging Unit, Department of Medicine, Imperial College London, London, UK
| | - Melanie Wood
- Neurology Imaging Unit, Department of Medicine, Imperial College London, London, UK
| | - Ruth Mizoguchi
- Neurology Imaging Unit, Department of Medicine, Imperial College London, London, UK
| | - Zhen Fan
- Neurology Imaging Unit, Department of Medicine, Imperial College London, London, UK
| | - Trudi Edginton
- Department of Psychology, City University of London, London, UK
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - Zarni Win
- Imperial College Healthcare NHS Trust, Charing Cross Hospital, London, UK
| | - David James Brooks
- Neurology Imaging Unit, Department of Medicine, Imperial College London, London, UK.,Department of Nuclear Medicine, Aarhus University, Aarhus, Denmark.,Institute of Neuroscience, University of Newcastle upon Tyne, Newcastle University Campus for Ageing and Vitality, Newcastle, UK
| | - Paul Edison
- Neurology Imaging Unit, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
33
|
Paroni G, Bisceglia P, Seripa D. Understanding the Amyloid Hypothesis in Alzheimer's Disease. J Alzheimers Dis 2020; 68:493-510. [PMID: 30883346 DOI: 10.3233/jad-180802] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The amyloid hypothesis (AH) is still the most accepted model to explain the pathogenesis of inherited Alzheimer's disease (IAD). However, despite the neuropathological overlapping with the non-inherited form (NIAD), AH waver in explaining NIAD. Thus, 30 years after its first statement several questions are still open, mainly regarding the role of amyloid plaques (AP) and apolipoprotein E (APOE). Accordingly, a pathogenetic model including the role of AP and APOE unifying IAD and NIAD pathogenesis is still missing. In the present understanding of the AH, we suggested that amyloid-β (Aβ) peptides production and AP formation is a physiological aging process resulting from a systemic age-related decrease in the efficiency of the proteins catabolism/clearance machinery. In this pathogenetic model Aβ peptides act as neurotoxic molecules, but only above a critical concentration [Aβ]c. A threshold mechanism triggers IAD/NIAD onset only when [Aβ]≥[Aβ]c. In this process, APOE modifies [Aβ]c threshold in an isoform-specific way. Consequently, all factors influencing Aβ anabolism, such as amyloid beta precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2) gene mutations, and/or Aβ catabolism/clearance could contribute to exceed the threshold [Aβ]c, being characteristic of each individual. In this model, AP formation does not depend on [Aβ]c. The present interpretation of the AH, unifying the pathogenetic theories for IAD and NIAD, will explain why AP and APOE4 may be observed in healthy aging and why they are not the cause of AD. It is clear that further studies are needed to confirm our pathogenetic model. Nevertheless, our suggestion may be useful to better understand the pathogenesis of AD.
Collapse
Affiliation(s)
- Giulia Paroni
- Research Laboratory, Complex Structure of Geriatrics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Paola Bisceglia
- Research Laboratory, Complex Structure of Geriatrics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Davide Seripa
- Research Laboratory, Complex Structure of Geriatrics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| |
Collapse
|
34
|
Plascencia-Villa G, Perry G. Status and future directions of clinical trials in Alzheimer's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:3-50. [PMID: 32739008 DOI: 10.1016/bs.irn.2020.03.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Amyloid-β (Aβ) senile plaques and neurofibrillary tangles of tau are generally recognized as the culprits of Alzheimer's disease (AD) and related dementia. About 25 years ago, the amyloid cascade hypotheses postulated a direct correlation of plaques with the development of AD, and it has been the dominant theory since then. In this period, more than 200 clinical trials focused mainly on targeting components of the Aβ cascade have dramatically failed, some of them in Phase III. With a greater than 99.6% failure rate at a cost of several billion from governments, industry, and private funders, therapeutic strategies targeting amyloid and tau are now under scrutiny. Therefore, it is time to reevaluate alternatives to targeting Aβ and tau as effective therapeutic strategies for AD. The diagnosis of AD is currently based on medical examination of symptoms including tests to assess memory impairment, attention, language, and other thinking skills. This is complemented with brain scans, such as computed tomography, magnetic resonance imaging, or positron emission tomography with the help of imaging probes targeting Aβ or tau deposits. This approach has contributed to the tunnel vision focus on Aβ and tau as the main culprits of AD. However, events upstream of these proteopathies (age-related impaired neuronal bioenergetics, lysosome function, neurotrophic signaling, and neuroinflammation, among others) are almost surely where the development of alternative therapeutic interventions should be targeted. Here, we present the current status of therapeutic candidates targeting diverse mechanisms and strategies including Aβ and tau, proteins involved in Aβ production and trafficking (ApoE, α/β/γ-secretases), neuroinflammation, neurotransmitters, neuroprotective agents antimicrobials, and gene and stem cell therapy. There are currently around 33 compounds in Phase III, 78 in Phase II, and 32 more in Phase I trials. With the current world health crisis of increased dementia in a rapidly aging population, effective AD therapies are desperately needed.
Collapse
Affiliation(s)
- Germán Plascencia-Villa
- Department of Biology and Neurosciences Institute, The University of Texas at San Antonio (UTSA), 1 UTSA Circle, San Antonio, TX, United States
| | - George Perry
- Department of Biology and Neurosciences Institute, The University of Texas at San Antonio (UTSA), 1 UTSA Circle, San Antonio, TX, United States.
| |
Collapse
|
35
|
Van Pelt KM, Truttmann MC. Caenorhabditis elegans as a model system for studying aging-associated neurodegenerative diseases. TRANSLATIONAL MEDICINE OF AGING 2020; 4:60-72. [PMID: 34327290 PMCID: PMC8317484 DOI: 10.1016/j.tma.2020.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases (NDs) are a heterogeneous group of aging-associated disorders characterized by the disruption of cellular proteostasis machinery and the misfolding of distinct protein species to form toxic aggregates in neurons. The increasing prevalence of NDs represents a growing healthcare burden worldwide, a concern compounded by the fact that few, if any, treatments exist to target the underlying cause of these diseases. Consequently, the application of a high-throughput, physiologically relevant model system to studies dissecting the molecular mechanisms governing ND pathology is crucial for identifying novel avenues for the development of targeted therapeutics. The nematode Caenorhabditis elegans (C. elegans) has emerged as a powerful tool for the study of disease mechanisms due to its ease of genetic manipulation and swift cultivation, while providing a whole-animal system amendable to numerous molecular and biochemical techniques. To date, numerous C. elegans models have been generated for a variety of NDs, allowing for the large-scale in vivo study of protein-conformation disorders. Furthermore, the comparatively low barriers to entry in the development of transgenic worm models have facilitated the modeling of rare or "orphan" NDs, thereby providing unparalleled insight into the shared mechanisms underlying these pathologies. In this review, we summarize findings from a comprehensive collection of C. elegans neurodegenerative disease models of varying prevalence to emphasize shared mechanisms of proteotoxicity, and highlight the utility of these models in elucidating the molecular basis of ND pathologies.
Collapse
Affiliation(s)
- Kate M. Van Pelt
- Cellular & Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Matthias C. Truttmann
- Cellular & Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Geriatrics Center, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
36
|
Vogel JW, Iturria-Medina Y, Strandberg OT, Smith R, Levitis E, Evans AC, Hansson O. Spread of pathological tau proteins through communicating neurons in human Alzheimer's disease. Nat Commun 2020; 11:2612. [PMID: 32457389 PMCID: PMC7251068 DOI: 10.1038/s41467-020-15701-2] [Citation(s) in RCA: 319] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
Tau is a hallmark pathology of Alzheimer's disease, and animal models have suggested that tau spreads from cell to cell through neuronal connections, facilitated by β-amyloid (Aβ). We test this hypothesis in humans using an epidemic spreading model (ESM) to simulate tau spread, and compare these simulations to observed patterns measured using tau-PET in 312 individuals along Alzheimer's disease continuum. Up to 70% of the variance in the overall spatial pattern of tau can be explained by our model. Surprisingly, the ESM predicts the spatial patterns of tau irrespective of whether brain Aβ is present, but regions with greater Aβ burden show greater tau than predicted by connectivity patterns, suggesting a role of Aβ in accelerating tau spread. Altogether, our results provide evidence in humans that tau spreads through neuronal communication pathways even in normal aging, and that this process is accelerated by the presence of brain Aβ.
Collapse
Affiliation(s)
- Jacob W Vogel
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada.
| | | | | | - Ruben Smith
- Clinical Memory Research Unit, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Lund, Sweden
| | - Elizabeth Levitis
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Alan C Evans
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Oskar Hansson
- Clinical Memory Research Unit, Lund University, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
37
|
Tu T, Jiang J, Zhang QL, Wan L, Li YN, Pan A, Manavis J, Yan XX. Extracellular Sortilin Proteopathy Relative to β-Amyloid and Tau in Aged and Alzheimer's Disease Human Brains. Front Aging Neurosci 2020; 12:93. [PMID: 32477092 PMCID: PMC7236809 DOI: 10.3389/fnagi.2020.00093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/20/2020] [Indexed: 12/14/2022] Open
Abstract
Amyloid plaques and neurofibrillary tangles (NFTs) are hallmark lesions of Alzheimer's disease (AD) related to β-amyloid (Aβ) deposition and intraneuronal phosphorylated tau (pTau) accumulation. Sortilin C-terminal fragments (shortened as "sorfra") can deposit as senile plaque-like lesions within AD brains. The course and pattern of sorfra plaque formation relative to Aβ and pTau pathogenesis remain unknown. In the present study, cerebral and subcortical sections in postmortem human brains (n = 46) from aged and AD subjects were stained using multiple markers (6E10, β-secretase 1, pTau, and sortilin antibodies, as well as Bielschowsky silver stain). The course and pattern of sorfra plaque formation relative to Thal Aβ and Braak NFT pathogenic stages were determined. Sorfra plaques occurred in the temporal, inferior frontal and occipital neocortices in cases with Thal 1 and Braak III stages. They were also found additionally in the hippocampal formation, amygdala, and associative neocortex in cases with Thal 2-4 and Braak IV-V. Lastly, they were also found in the primary motor, somatosensory, and visual cortices in cases with Thal 4-5 and Braak VI. Unlike Aβ and pTau pathologies, sorfra plaques did not occur in subcortical structures in cases with Aβ/pTau lesions in Thal 3-5/Braak IV-VI stages. We establish here that sorfra plaques are essentially a cerebral proteopathy. We believe that the development of sorfra plaques in both cortical and hippocampal regions proceeds in a typical spatiotemporal pattern, and the stages of cerebral sorfra plaque formation partially overlap with that of Aβ and pTau pathologies.
Collapse
Affiliation(s)
- Tian Tu
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Juan Jiang
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Qi-Lei Zhang
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Lily Wan
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Ya-Nan Li
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China.,Center for Morphological Sciences, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jim Manavis
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
38
|
Jicha GA, Nelson PT. Hippocampal Sclerosis, Argyrophilic Grain Disease, and Primary Age-Related Tauopathy. Continuum (Minneap Minn) 2020; 25:208-233. [PMID: 30707194 DOI: 10.1212/con.0000000000000697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Hippocampal sclerosis, argyrophilic grain disease, and primary age-related tauopathy are common Alzheimer disease mimics that currently lack clinical diagnostic criteria. Increased understanding of these pathologic entities is important for the neurologist who may encounter patients with an unusually slowly progressive degenerative dementia that may appear to meet criteria for Alzheimer disease but who progress to develop symptoms that are unusual for classic Alzheimer disease RECENT FINDINGS: Hippocampal sclerosis has traditionally been associated with hypoxic/ischemic injury and poorly controlled epilepsy, but it is now recognized that hippocampal sclerosis may also be associated with a unique degenerative disease of aging or may be an associated pathologic finding in many cases of frontotemporal lobar degeneration. Argyrophilic grain disease has been recognized as an enigma in the field of pathology for over 30 years, but recent discoveries suggest that it may overlap with other tau-related disorders within the spectrum of frontotemporal lobar degeneration. Primary age-related tauopathy has long been recognized as a distinct clinical entity that lies on the Alzheimer pathologic spectrum, with the presence of neurofibrillary tangles that lack the coexistent Alzheimer plaque development; thus, it is thought to represent a distinct pathologic entity. SUMMARY Despite advances in dementia diagnosis that suggest that we have identified and unlocked the mysteries of the major degenerative disease states responsible for cognitive decline and dementia in the elderly, diseases such as hippocampal sclerosis, argyrophilic grain disease, and primary age-related tauopathy demonstrate that we remain on the frontier of discovery and that our diagnostic repertoire of diseases responsible for such clinical symptoms remains in its infancy. Understanding such diagnostic confounds is important for the neurologist in assigning appropriate diagnoses and selecting appropriate therapeutic management strategies for patients with mild cognitive impairment and dementia.
Collapse
|
39
|
Weigand AJ, Bangen KJ, Thomas KR, Delano-Wood L, Gilbert PE, Brickman AM, Bondi MW. Is tau in the absence of amyloid on the Alzheimer's continuum?: A study of discordant PET positivity. Brain Commun 2019; 2:fcz046. [PMID: 32051933 PMCID: PMC7001143 DOI: 10.1093/braincomms/fcz046] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
The amyloid cascade model of Alzheimer’s disease posits the primacy of amyloid beta deposition preceding tau-mediated neurofibrillary tangle formation. The amyloid-tau-neurodegeneration biomarker-only diagnostic framework similarly requires the presence of amyloid beta for a diagnosis on the Alzheimer’s continuum. However, medial temporal lobe tau pathology in the absence of amyloid beta is frequently observed at autopsy in cognitively normal individuals, a phenomenon that may reflect a consequence of aging and has been labelled ‘primary age-related tauopathy’. Alternatively, others argue that this tauopathy reflects an early stage of the developmental continuum leading to Alzheimer’s disease. We used positron emission tomography imaging to investigate amyloid beta and tau positivity and associations with cognition to better inform the conceptualization of biomarker changes in Alzheimer’s pathogenesis. Five hundred twenty-three individuals from the Alzheimer’s Disease Neuroimaging Initiative who had undergone flortaucipir positron emission tomography imaging were selected to derive positron emission tomography positivity thresholds using conditional inference decision tree regression. A subsample of 301 individuals without dementia (i.e. those with normal cognition or mild cognitive impairment) had also undergone florbetapir positron emission tomography imaging within 12 months and were categorized into one of the four groups based on cortical amyloid and Braak stage I/II tau positivity: A−/T−, A+/T−, A−/T+, or A+/T+. Tau positivity in the absence of amyloid beta positivity (i.e. A−/T+) comprised the largest group, representing 45% of the sample. In contrast, only 6% of the sample was identified as A+/T−, and the remainder of the sample fell into A−/T− (22%) or A+/T+ (27%) categories. A−/T− and A+/T− groups had the best cognitive performances across memory, language and executive function; the A−/T+ group showed small-to-moderate relative decreases in cognition; and the A+/T+ group had the worst cognitive performances. Furthermore, there were negative associations between Braak stage I/II tau values and all cognitive domains only in the A−/T+ and A+/T+ groups, with strongest associations for the A+/T+ group. Among our sample of older adults across the Alzheimer’s pathological spectrum, 7-fold fewer individuals have positron emission tomography evidence of amyloid beta pathology in the absence of tau pathology than the converse, challenging prevailing models of amyloid beta’s primacy in Alzheimer’s pathogenesis. Given that cognitive performance in the A−/T+ group was poorer than in individuals without either pathology, our results suggest that medial temporal lobe tau without cortical amyloid beta may reflect an early stage on the Alzheimer’s pathological continuum.
Collapse
Affiliation(s)
- Alexandra J Weigand
- San Diego State University/University of California San Diego Joint Doctoral Program, San Diego, CA 92182, USA
| | - Katherine J Bangen
- VA San Diego Healthcare System, San Diego, CA 92161, USA.,Department of Psychiatry, University of California, San Diego, CA 92161, USA
| | - Kelsey R Thomas
- VA San Diego Healthcare System, San Diego, CA 92161, USA.,Department of Psychiatry, University of California, San Diego, CA 92161, USA
| | - Lisa Delano-Wood
- VA San Diego Healthcare System, San Diego, CA 92161, USA.,Department of Psychiatry, University of California, San Diego, CA 92161, USA
| | - Paul E Gilbert
- Department of Psychology, San Diego State University, San Diego, CA 92182, USA
| | - Adam M Brickman
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Mark W Bondi
- VA San Diego Healthcare System, San Diego, CA 92161, USA.,Department of Psychiatry, University of California, San Diego, CA 92161, USA
| | | |
Collapse
|
40
|
Abstract
Staging of neurodegenerative diseases is based chiefly on the topographical or anatomical extent of aggregated proteinaceous inclusions, and the density or severity of the lesions in a given region is usually assessed semiquantitatively. Associated phenomena, such as cell loss and synapse loss, are evaluated but not staged. This article reviews the development of neuropathological staging of the sporadic Alzheimer's and sporadic Parkinson's diseases. It considers challenges for staging systems, and it poses the question whether neuropathological staging as practiced up to now is still relevant.
Collapse
|
41
|
Hoffmann M, Stiller C, Endres E, Scheiner M, Gunesch S, Sotriffer C, Maurice T, Decker M. Highly Selective Butyrylcholinesterase Inhibitors with Tunable Duration of Action by Chemical Modification of Transferable Carbamate Units Exhibit Pronounced Neuroprotective Effect in an Alzheimer's Disease Mouse Model. J Med Chem 2019; 62:9116-9140. [PMID: 31609115 DOI: 10.1021/acs.jmedchem.9b01012] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this study, the carbamate structure of pseudo-irreversible butyrylcholinesterase (BChE) inhibitors was optimized with regard to a longer binding to the enzyme. A set of compounds bearing different heterocycles (e.g., morpholine, tetrahydroisoquinoline, benzimidazole, piperidine) and alkylene spacers (2 to 10 methylene groups between carbamate and heterocycle) in the carbamate residue was synthesized and characterized in vitro for their binding affinity, binding kinetics, and carbamate hydrolysis. These novel BChE inhibitors are highly selective for hBChE over human acetycholinesterase (hAChE), yielding short-, medium-, and long-acting nanomolar hBChE inhibitors (with a half-life of the carbamoylated enzyme ranging from 1 to 28 h). The inhibitors show neuroprotective properties in a murine hippocampal cell line and a pharmacological mouse model of Alzheimer's disease (AD), suggesting a significant benefit of BChE inhibition for a disease-modifying treatment of AD.
Collapse
Affiliation(s)
- Matthias Hoffmann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry , Julius Maximilian University Würzburg , Am Hubland, D-97074 Würzburg , Germany
| | - Carina Stiller
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry , Julius Maximilian University Würzburg , Am Hubland, D-97074 Würzburg , Germany
| | - Erik Endres
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry , Julius Maximilian University Würzburg , Am Hubland, D-97074 Würzburg , Germany
| | - Matthias Scheiner
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry , Julius Maximilian University Würzburg , Am Hubland, D-97074 Würzburg , Germany
| | - Sandra Gunesch
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry , Julius Maximilian University Würzburg , Am Hubland, D-97074 Würzburg , Germany
| | - Christoph Sotriffer
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry , Julius Maximilian University Würzburg , Am Hubland, D-97074 Würzburg , Germany
| | - Tangui Maurice
- INSERM UMR-S1198 , University of Montpellier , Place Eugène Bataillon , Montpellier F-34095 , France
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry , Julius Maximilian University Würzburg , Am Hubland, D-97074 Würzburg , Germany
| |
Collapse
|
42
|
Abner EL, Neltner JH, Jicha GA, Patel E, Anderson SL, Wilcock DM, Van Eldik LJ, Nelson PT. Diffuse Amyloid-β Plaques, Neurofibrillary Tangles, and the Impact of APOE in Elderly Persons' Brains Lacking Neuritic Amyloid Plaques. J Alzheimers Dis 2019; 64:1307-1324. [PMID: 30040735 DOI: 10.3233/jad-180514] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Data from a large autopsy series were analyzed to address questions pertinent to primary age-related tauopathy (PART) and Alzheimer's disease (AD): what factors are associated with increased severity of neurofibrillary degeneration in brains that lack neuritic amyloid plaques?; is there an association between Apolipoprotein E (APOE) alleles and PART pathologic severity independent of amyloid-β (Aβ) deposits?; and, how do the stains used to detect plaques and tangles impact the experimental results? Neuropathologic data were evaluated from elderly research volunteers whose brain autopsies were performed at University of Kentucky Alzheimer's Disease Center (UK-ADC; N = 145 subjects). All of the included subjects' brains lacked neuritic amyloid plaques according to the CERAD diagnostic criteria and the average final MMSE score before death was 26.8±4.6 stdev. The study incorporated evaluation of tissue with both silver histochemical stains and immunohistochemical stains to compare results; the immunohistochemical stains (Aβ and phospho-tau) were scanned and quantified using digital pathologic methods. Immunohistochemical stains provided important advantages over histochemical stains due to sensitivity and detectability via digital methods. When AD-type pathology was in its presumed earliest phases, neocortical parenchymal Aβ deposits were associated with increased medial temporal lobe neurofibrillary tangles. The observation supports the NIA-AA consensus recommendation for neuropathologic diagnoses, because even these "diffuse" Aβ deposits signal that AD pathobiologic mechanisms are occurring. Further, the data were most compatible with the hypothesis that the APOEɛ4 allele exerts its effect(s) via driving Aβ deposition, i.e., an "upstream" influence, rather than being associated directly with Aβ- independent PART pathology.
Collapse
Affiliation(s)
- Erin L Abner
- Department of Epidemiology, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Janna H Neltner
- Department of Pathology, Division of Neuropathology, University of Kentucky, Lexington, KY, USA
| | - Gregory A Jicha
- Department of Neurology, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Ela Patel
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Sonya L Anderson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Donna M Wilcock
- Department of Physiology, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Linda J Van Eldik
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Peter T Nelson
- Department of Pathology, Division of Neuropathology, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
43
|
Baskota SU, Lopez OL, Greenamyre JT, Kofler J. Spectrum of tau pathologies in Huntington's disease. J Transl Med 2019; 99:1068-1077. [PMID: 30573872 PMCID: PMC9342691 DOI: 10.1038/s41374-018-0166-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 09/26/2018] [Accepted: 10/31/2018] [Indexed: 12/13/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant disorder caused by a trinucleotide expansion in the huntingtin gene. Recently, a new role for tau has been implicated in the pathogenesis of HD, whereas others have argued that postmortem tau pathology findings are attributable to concurrent Alzheimer's disease pathology. The frequency of other well-defined common age-related tau pathologies in HD has not been examined in detail. In this single center, retrospective analysis, we screened seven cases of Huntington's disease (5 females, 2 males, age at death: 47-73 years) for neuronal and glial tau pathology using phospho-tau immunohistochemistry. All seven cases showed presence of neuronal tau pathology. Five cases met diagnostic criteria for primary age-related tauopathy (PART), with three cases classified as definite PART and two cases as possible PART, all with a Braak stage of I. One case was diagnosed with low level of Alzheimer's disease neuropathologic change. In the youngest case, rare perivascular aggregates of tau-positive neurons, astrocytes and processes were identified at sulcal depths, meeting current neuropathological criteria for stage 1 chronic traumatic encephalopathy (CTE). Although the patient had no history of playing contact sports, he experienced several falls, but no definitive concussions during his disease course. Three of the PART cases and the CTE-like case showed additional evidence of aging-related tau astrogliopathy. None of the cases showed significant tau pathology in the striatum. In conclusion, while we found evidence for tau hyperphosphorylation and aggregation in all seven of our HD cases, the tau pathology was readily classifiable into known diagnostic entities and most likely represents non-specific age- or perhaps trauma-related changes. As the tau pathology was very mild in all cases and not unexpected for a population of this age range, it does not appear that the underlying HD may have promoted or accelerated tau accumulation.
Collapse
Affiliation(s)
| | - Oscar L Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - J Timothy Greenamyre
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Julia Kofler
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
44
|
Biomarker profiles of Alzheimer's disease and dynamic of the association between cerebrospinal fluid levels of β-amyloid peptide and tau. PLoS One 2019; 14:e0217026. [PMID: 31086391 PMCID: PMC6516653 DOI: 10.1371/journal.pone.0217026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023] Open
Abstract
Objective To investigate the relationship between cerebrospinal fluid (CSF) β-amyloid peptide (Aβ42) and CSF Tau in a large population of patients referred to memory clinics for investigation of cognitive dysfunction. Methods We analyzed Alzheimer’s disease (AD) biomarkers in CSF taken from 3565 patients referred to 18 French memory clinics. Patients were classified into four profiles according to levels of CSF biomarkers (A: amyloidosis, N: neurodegeneration). The association between CSF Tau and CSF Aβ42 were analyzed using general linear regression models, in the overall population and stratified by biomarkers profiles. We compared linear and quadratic models using Akaike information criterion. We also assessed change in biomarker profiles in a subset of patients who had 2 assessments of biomarkers. Results CSF Tau was negatively associated with CSF Aβ42 in the overall population, following a non-linear quadratic model. However, the nature of this association was different in the 4 profiles: positive association in A-N- profile, negative association in A-N+ and A+N+ profiles, lack of association in A+N- patients. When considering patients with longitudinal data on profiles, 36% of those initially classified as A-N+ evolved to an A+N+ profile. Conclusions The nature of the association between CSF Aβ42 and CFS Tau depends on the A/N profiles of patients. These results suggest an increase in CSF Aβ42 early in the disease before its decline while tau pathology progresses, this pattern is particularly observed in non-APOE4 subjects. This phenomenon may explain why some patients with neurodegeneration only markers convert to an AD profile (A+N+) over time.
Collapse
|
45
|
Besser LM, Mock C, Teylan MA, Hassenstab J, Kukull WA, Crary JF. Differences in Cognitive Impairment in Primary Age-Related Tauopathy Versus Alzheimer Disease. J Neuropathol Exp Neurol 2019; 78:219-228. [PMID: 30715383 PMCID: PMC6380319 DOI: 10.1093/jnen/nly132] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
This study examined differences in neuropsychological test scores between individuals with primary age-related tauopathy (PART) and Alzheimer disease (AD) using cross-sectional data from the National Alzheimer's Coordinating Center. Linear regression tested for differences in 4 cognitive domains stratified by cognitive status (global Clinical Dementia Rating [CDR]). The sample included 240 participants with no neuritic plaques (NP) (definite PART), 186 with sparse NP (possible PART), and 510 with moderate/frequent NP (AD). Four cognitive domain z-score outcome variables (memory, attention, executive function, and semantic memory/language) were calculated using 12 neuropsychological tests. Definite PART participants had a sparing of semantic memory/language compared to those with AD, with a mean adjusted z-score difference of 0.37 (95% confidence interval [CI]: 0.16-0.58) for those with CDR = 0.5 or 1 and of 0.92 (CI: 0.22-1.63) for those with CDR = 2 or 3. Compared to participants with AD, definite PART participants with CDR = 0.5 or 1 had sparing of memory (adjusted z-score difference: 0.61; CI: 0.39-0.84) and definite PART participants with CDR = 2 or 3 had sparing of attention (adjusted z-score difference: 0.76: CI: 0.09-1.43). Patterns of cognitive impairment differed between definite PART and AD, suggesting significant differences in clinical presentation between individuals from these 2 groups.
Collapse
Affiliation(s)
- Lilah M Besser
- School of Urban and Regional Planning, Institute for Healthy Aging and Lifespan Studies, Florida Atlantic University, Boca Raton, Florida
| | - Charles Mock
- Department of Epidemiology, National Alzheimer's Coordinating Center, University of Washington, Seattle, Washington
| | - Merilee A Teylan
- Department of Epidemiology, National Alzheimer's Coordinating Center, University of Washington, Seattle, Washington
| | - Jason Hassenstab
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Walter A Kukull
- Department of Epidemiology, National Alzheimer's Coordinating Center, University of Washington, Seattle, Washington
| | - John F Crary
- Department of Pathology, Fishberg Department of Neuroscience, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
46
|
Streit WJ, Braak H, Del Tredici K, Leyh J, Lier J, Khoshbouei H, Eisenlöffel C, Müller W, Bechmann I. Microglial activation occurs late during preclinical Alzheimer's disease. Glia 2018; 66:2550-2562. [PMID: 30417428 DOI: 10.1002/glia.23510] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 01/10/2023]
Abstract
Sporadic Alzheimer's disease (AD) is marked by a lengthy preclinical phase during which patients are nonsymptomatic but show pathology in variable manifestations. Whether or not neuroinflammation occurs in such nondemented individuals is unknown. We evaluated the medial temporal lobe of 66 nondemented subjects, aged 42-93, in terms of tau pathology, Aβ deposition, and microglial activation. We show that 100% of subjects had neurofibrillary degeneration (NFD), 35% had Aβ deposits, and 8% revealed microglial activation in individuals where early amyloid formation was apparent by Congo Red staining. Amyloid-induced neuroinflammatory clusters of Iba1, CD68, and ferritin-positive microglia were evident in the immediate vicinity of aggregated Aβ. Microglia in the adjacent neuropil were nonactivated. Thus, neuroinflammation in AD represents a highly localized phagocyte reaction, essentially a foreign body response, geared toward removal of insoluble Aβ. Because clustered microglia in some amyloid plaques were dystrophic and ferritin-positive, we hypothesize that these cells were exhausted by their attempts to remove the aggregated, insoluble Aβ. Our findings show that the sequence of pathologic events in AD begins with tau pathology, followed by Aβ deposition, and then by microglial activation. Because only 8% of our subjects revealed all three hallmark pathologic features, we propose that these nondemented individuals were near the threshold of transitioning from nonsymptomatic to symptomatic disease. The onset of neuroinflammation in AD may thus represent a tipping point in AD pathogenesis. Our study suggests that the role of microglia in AD pathogenesis entails primarily the attempted removal of potentially toxic, extracellular material.
Collapse
Affiliation(s)
- Wolfgang J Streit
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida
| | - Heiko Braak
- Clinical Neuroanatomy (Department of Neurology), Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Kelly Del Tredici
- Clinical Neuroanatomy (Department of Neurology), Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Judith Leyh
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Julia Lier
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida
| | | | - Wolf Müller
- Department of Neuropathology, Leipzig University, Leipzig, Germany
| | - Ingo Bechmann
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| |
Collapse
|
47
|
Cho H, Lee HS, Choi JY, Lee JH, Ryu YH, Lee MS, Lyoo CH. Predicted sequence of cortical tau and amyloid-β deposition in Alzheimer disease spectrum. Neurobiol Aging 2018; 68:76-84. [PMID: 29751288 DOI: 10.1016/j.neurobiolaging.2018.04.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 12/23/2022]
Abstract
We investigated sequential order between tau and amyloid-β (Aβ) deposition in Alzheimer disease spectrum using a conditional probability method. Two hundred twenty participants underwent 18F-flortaucipir and 18F-florbetaben positron emission tomography scans and neuropsychological tests. The presence of tau and Aβ in each region and impairment in each cognitive domain were determined by Z-score cutoffs. By comparing pairs of conditional probabilities, the sequential order of tau and Aβ deposition were determined. Probability for the presence of tau in the entorhinal cortex was higher than that of Aβ in all cortical regions, and in the medial temporal cortices, probability for the presence of tau was higher than that of Aβ. Conversely, in the remaining neocortex above the inferior temporal cortex, probability for the presence of Aβ was always higher than that of tau. Tau pathology in the entorhinal cortex may appear earlier than neocortical Aβ and may spread in the absence of Aβ within the neighboring medial temporal regions. However, Aβ may be required for massive tau deposition in the distant cortical areas.
Collapse
Affiliation(s)
- Hanna Cho
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Yong Choi
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea; Division of RI-Convergence Research, Korea Institute Radiological and Medical Sciences, Seoul, South Korea
| | - Jae Hoon Lee
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Hoon Ryu
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Myung Sik Lee
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Chul Hyoung Lyoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
48
|
Ayers JI, Giasson BI, Borchelt DR. Prion-like Spreading in Tauopathies. Biol Psychiatry 2018; 83:337-346. [PMID: 28506438 PMCID: PMC5640465 DOI: 10.1016/j.biopsych.2017.04.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 10/19/2022]
Abstract
Tau is a microtubule-associated protein that functions in regulating cytoskeleton dynamics, especially in neurons. Misfolded and aggregated forms of tau produce pathological structures in a number of neurodegenerative diseases, including Alzheimer's disease (AD) and tauopathy dementias. These disorders can present with a sporadic etiology, such as in AD, or a familial etiology, such as in some cases of frontotemporal dementia with parkinsonism. Notably, the pathological features of tau pathology in these diseases can be very distinct. For example, the tau pathology in corticobasal degeneration is distinct from that of an AD patient. A wealth of evidence has emerged within the last decade to suggest that the misfolded tau in tauopathies possesses prion-like features and that such features may explain the diverse characteristics of tauopathies. The prion-like concept for tauopathies arose initially from the observation that the progressive accumulation of tau pathology as the symptoms of AD progress seemed to follow anatomically linked pathways. Subsequent studies in cell and animal models revealed that misfolded tau can propagate from cell to cell and from region to region in the brain through direct neuroanatomical connections. Studies in these cell and mouse models have demonstrated that experimentally propagated forms of misfolded tau can exist as conformationally distinct "strains" with unique biochemical, morphological, and neuropathological characteristics. This review discusses the clinical, pathological, and genetic diversity of tauopathies and the discoveries underlying the emerging view that the unique features of clinically distinct tauopathies may be a reflection of the strain of misfolded tau that propagates in each disease.
Collapse
Affiliation(s)
- Jacob I Ayers
- Department of Neuroscience, University of Florida, Gainesville, Florida; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida; McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Benoit I Giasson
- Department of Neuroscience, University of Florida, Gainesville, Florida; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida; McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - David R Borchelt
- Department of Neuroscience, University of Florida, Gainesville, Florida; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida; McKnight Brain Institute, University of Florida, Gainesville, Florida.
| |
Collapse
|
49
|
Kametani F, Hasegawa M. Reconsideration of Amyloid Hypothesis and Tau Hypothesis in Alzheimer's Disease. Front Neurosci 2018; 12:25. [PMID: 29440986 PMCID: PMC5797629 DOI: 10.3389/fnins.2018.00025] [Citation(s) in RCA: 570] [Impact Index Per Article: 81.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/12/2018] [Indexed: 12/20/2022] Open
Abstract
The so-called amyloid hypothesis, that the accumulation and deposition of oligomeric or fibrillar amyloid β (Aβ) peptide is the primary cause of Alzheimer's disease (AD), has been the mainstream concept underlying AD research for over 20 years. However, all attempts to develop Aβ-targeting drugs to treat AD have ended in failure. Here, we review recent findings indicating that the main factor underlying the development and progression of AD is tau, not Aβ, and we describe the deficiencies of the amyloid hypothesis that have supported the emergence of this idea.
Collapse
Affiliation(s)
- Fuyuki Kametani
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masato Hasegawa
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
50
|
|