1
|
Wang E, Rotondo F, Cusimano MD. Alpha thalassemia/mental retardation X-linked (ATRX) protein expression in human pituitary neuroendocrine tumours and its reported correlation to prognosis and clinical outcomes: A systematic review. PLoS One 2025; 20:e0313380. [PMID: 40440300 PMCID: PMC12121788 DOI: 10.1371/journal.pone.0313380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/23/2025] [Indexed: 06/02/2025] Open
Abstract
Mutations in Alpha thalassemia/mental retardation X-linked (ATRX) have been implicated in several cancers, including gliomas, sarcomas, neuroendocrine tumors, and other mesenchymal malignancies. ATRX loss contributes to oncogenesis, accelerates tumor growth, and reduces survival by disrupting epigenetic and telomere mechanisms. Additionally, ATRX loss can increase tumor sensitivity to treatment therapies. While research has explored ATRX expression in many cancers, data on its relationship to prognosis in pituitary neuroendocrine tumors (PitNETs) remain inconsistent. This systematic review aims to summarize all available studies on ATRX mutations and expression in PitNETs. A systematic search of PubMed, Scopus, and EMBASE databases was conducted to identify publications between 2014 and 2025 that investigated ATRX mutations or expression in PitNETs, following PRISMA 2020 guidelines. Of 32 identified studies, ten met the inclusion criteria, covering a total of 513 PitNETs. Only 20 tumors (3.9%) showed a loss of ATRX expression. Among these, 60% exhibited corticotrophic pathology, while 20% displayed lactotrophic pathology. A small subset of tumors (30%) was classified as pituitary carcinomas with aggressive and proliferative characteristics. Additionally, 10% demonstrated the alternative lengthening of telomeres (ALT) phenotype, 50% had concurrent TP53 mutations, and 25% had elevated Ki-67 indices, indicating a higher proliferative index. Although ATRX mutations are rare in PitNETs, tumors with ATRX loss tend to be more aggressive and exhibit proliferative and transformative properties. Due to the limited number of cases, further studies with larger, prospective cohorts are needed to better understand the role of ATRX loss in PitNET progression and aggressiveness.
Collapse
Affiliation(s)
- Edward Wang
- Department of Surgery, Division of Neurosurgery, St. Michael’s Hospital, Injury Prevention Research Office, Li Ka Shing Knowledge Institute, Keenan Research Centre, University of Toronto, Toronto, ON, Canada
| | - Fabio Rotondo
- Department of Laboratory Medicine, Division of Pathology, Unity Health Toronto-St. Michael’s Hospital, Toronto, ON, Canada
| | - Michael D. Cusimano
- Department of Surgery, Division of Neurosurgery, St. Michael’s Hospital, Injury Prevention Research Office, Li Ka Shing Knowledge Institute, Keenan Research Centre, University of Toronto, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Weidl D, Capper D, Onken J, Liu I, Glaser D, Orben F, Eberle K, Coburger J, Bullinger L. Epidemiology of WHO grade 2 and grade 3 gliomas from 2009 to 2021 in Germany. J Neurooncol 2025:10.1007/s11060-025-05068-z. [PMID: 40358804 DOI: 10.1007/s11060-025-05068-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025]
Abstract
PURPOSE This study provides a comprehensive analysis of the real-world epidemiology of histologically assessed IDH-mutated or IDH-wildtype grade II and III gliomas in Germany between 2009 and 2021, supplemented with a literature-based approach of setting the data in the context of the WHO 2021 classification. METHODS Data from the Centre for Cancer Registry Data (ZfKD) at the Robert Koch-Institute (RKI) was utilized, encompassing all incident cases of histologically (according to the WHO classification of the respective time) newly diagnosed grade II and III gliomas diagnosed between 2009 and 2021, representing a subgroup of the total number of 14,053 glioma cases (including high grade glioma). Data were supplemented with an exploratory literature review on IDH-mutation rates and epidemiology data from the German low-grade glioma (LoG-Glio) disease registry. RESULTS The tumor class distribution of newly diagnosed gliomas showed the majority being classified as grade IV glioma and only 9.0% and 9.2% as grade II or III, respectively. The incidence remained stable over the observation period. Literature data indicate mutation rates of IDH of approximately 86% in grade II and 60% in grade III gliomas diagnosed using pre-WHO-2021 criteria. Applying these proportions to 2009-2021 mean incidence cases numbers in an estimate of 459 grade 2 and 328 grade 3 IDH-mutated gliomas (combining astrocytoma and oligodendroglioma) and an incidence rate of 0.6 and 0.5 per 100.000 population for newly diagnosed IDH-mutated gliomas in Germany. CONCLUSION This study gives an overview of the incidence of WHO grade 2 and grade 3 gliomas among the German population. Furthermore, this study highlights the need of molecular information being integrated into epidemiologic monitoring of gliomas to obtain more precise insights into survival and prognostic factors.
Collapse
Affiliation(s)
| | - David Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin (CCM), Berlin, Germany
| | - Julia Onken
- Department of Neurosurgery with Pediatric Neurosurgery, Charité - Universitätsmedizin Berlin (CVK), Berlin, Germany
| | - Ilon Liu
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | - Jan Coburger
- Germany Department Neurosurgery, Universitätsklinikum Ulm, Ulm, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin (CVK), Berlin, Germany
| |
Collapse
|
3
|
Faried A, Hadi EJ, Agustina H. Poor diagnostic value of isocitrate dehydrogenase 1 R132H immunohistochemistry for determination of isocitrate dehydrogenase 1 status in patients with glioblastoma. Surg Neurol Int 2025; 16:140. [PMID: 40353177 PMCID: PMC12065504 DOI: 10.25259/sni_881_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 03/15/2025] [Indexed: 05/14/2025] Open
Abstract
Background The World Health Organization (WHO) classification of central nervous system (CNS) tumors is a major advance toward improving the diagnosis of adult brain tumors. Despite the promise of isocitrate dehydrogenase (IDH) mutations as an important biomarker for glioblastoma, not all institutions have ready access to mutation detection polymerase chain reaction (PCR) methods, and deoxyribonucleic acid (DNA) sequencing may be problematic in very small biopsies. However, a simultaneous evaluation of IDH1 status by DNA sequencing and immunohistochemistry (IHC) to determine the sensitivity and specificity of both methods, along with their predictive value, was unavailable. Methods This retrospective study included 33 patients who underwent surgical resection or biopsy, January 2016-December 2019. The diagnosis of glioblastoma was established. Surgically resected tumor tissues were fixated in 10%-formaldehyde preserved in paraffin-embedded blocks. Glioblastoma was classified according to the 2021 WHO classification of CNS tumors. The enrolled patients were followed up to obtain the overall survival rate (median follow-up time, 30 months). Results Thirty-three patients (14 male; 19 female), mean age of 44.74 ± 15.49 years. Eight had WHO Grade II, 2 with WHO Grade III, and 23 with WHO Grade IV. The sensitivity and specificity of IDH1 IHC were 81.82% (P = 0.0007), a positive predictive value of 90.00% (69.90-98.22%), and a negative predictive value of 69.23% (42.37-87.32%). The survival rate was significantly higher in IDH1 mutant than wild-type IDH1, whether based on IHC or PCR (P = 0.0014). Conclusion IDH1 status evaluation is crucial to predicting the survival rate and important for guiding the treatment decision for patients with glioblastoma. Despite the lesser sensitivity and specificity of IHC in comparison to DNA sequencing in this study, larger prospective studies are needed to validate our preliminary finding.
Collapse
Affiliation(s)
- Ahmad Faried
- Department of Neurosurgery, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Edward Jaya Hadi
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Hasrayati Agustina
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
4
|
Mandelberg N, Hodges TR, Wang TJC, McGranahan T, Olson JJ, Orringer DA. Congress of Neurological Surgeons systematic review and evidence based guideline on neuropathology for WHO grade II diffuse glioma: update. J Neurooncol 2025; 172:195-218. [PMID: 39747718 DOI: 10.1007/s11060-024-04898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/22/2024] [Indexed: 01/04/2025]
Abstract
QUESTIONS AND RECOMMENDATIONS FROM THE PRIOR VERSION OF THESE GUIDELINES WITHOUT CHANGE: TARGET POPULATION: Adult patients (age ≥ 18 years) who have suspected low-grade diffuse glioma. QUESTION What are the optimal neuropathological techniques to diagnose low-grade diffuse glioma in the adult? RECOMMENDATION Level I Histopathological analysis of a representative surgical sample of the lesion should be used to provide the diagnosis of low-grade diffuse glioma. Level III Both frozen section and cytopathologic/smear evaluation should be used to aid the intra-operative assessment of low-grade diffuse glioma diagnosis. A resection specimen is preferred over a biopsy specimen, to minimize the potential for sampling error issues. TARGET POPULATION Patients with histologically-proven WHO grade II diffuse glioma. QUESTION In adult patients (age ≥ 18 years) with histologically-proven WHO grade II diffuse glioma, is testing for IDH1 mutation (R132H and/or others) warranted? If so, is there a preferred method? RECOMMENDATION Level II IDH gene mutation assessment, via IDH1 R132H antibody and/or IDH1/2 mutation hotspot sequencing, is highly-specific for low-grade diffuse glioma, and is recommended as an additional test for classification and prognosis. TARGET POPULATION Patients with histologically-proven WHO grade II diffuse glioma. QUESTION In adult patients (age ≥ 18 years) with histologically-proven WHO grade II diffuse glioma, is testing for 1p/19q loss warranted? If so, is there a preferred method? RECOMMENDATION Level III 1p/19q loss-of-heterozygosity testing, by FISH, array-CGH or PCR, is recommended as an additional test in oligodendroglial cases for prognosis and potential treatment planning. TARGET POPULATION Patients with histologically proven WHO grade II diffuse glioma. QUESTION In adult patients (age > 18 years) with histologically-proven WHO grade II diffuse glioma, is methyl-guanine methyl-transferase (MGMT) promoter methylation testing warranted? If so, is there a preferred method? RECOMMENDATION There is insufficient evidence to recommend MGMT promoter methylation testing as a routine for low-grade diffuse gliomas. It is recommended that patients be enrolled in properly designed clinical trials to assess the value of this and related markers for this target population. TARGET POPULATION Patients with histologically-proven WHO grade II diffuse glioma. QUESTION In adult patients (age ≥ 18 years) with histologically proven WHO grade II diffuse glioma, is Ki-67/MIB1 immunohistochemistry warranted? If so, is there a preferred method to quantitate results? RECOMMENDATION Level III Ki67/MIB1 immunohistochemistry is recommended as an option for prognostic assessment. NEW RECOMMENDATION TARGET POPULATION: Adult patients (age ≥ 18 years) who have suspected WHO grade II diffuse glioma. QUESTION Is testing for ATRX mutations helpful for predicting survival and making treatment recommendations? RECOMMENDATION There is insufficient evidence to recommend ATRX mutation testing as a means of predicting survival or making treatment recommendations. TARGET POPULATION Adult patients (age ≥ 18 years) who have suspected WHO grade II diffuse glioma. QUESTION Does the addition of intraoperative optical histologic methods provide accuracy beyond the use of conventional histologic methods in diagnosis and management? RECOMMENDATION There is insufficient evidence at this time to suggest that intraoperative optical histologic methods offer increased diagnostic accuracy when compared to conventional techniques.
Collapse
Affiliation(s)
- Nataniel Mandelberg
- Department of Neurosurgery, NYU Langone Health and NYU Grossman School of Medicine, 530 1st Avenue, Skirball Suite 8R, New York, NY, 10016, USA
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, New York, NY, USA
| | - Tiffany R Hodges
- Department of Neurosurgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Tony J C Wang
- Department of Radiation Oncology, Columbia University Medical Center, New York, NY, USA
| | - Tresa McGranahan
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Jeffrey J Olson
- Department of Neurological Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Daniel A Orringer
- Department of Neurosurgery, NYU Langone Health and NYU Grossman School of Medicine, 530 1st Avenue, Skirball Suite 8R, New York, NY, 10016, USA.
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, New York, NY, USA.
| |
Collapse
|
5
|
He L, Fei F, Zhou C, Bai X, Yu S, Wang L, Xu R, Liu H. Establishment and validation of a nomogram for predicting IDH-wildtype glioblastomas in nonenhancing adult-type diffuse gliomas. Neurooncol Adv 2025; 7:vdaf035. [PMID: 40321617 PMCID: PMC12048881 DOI: 10.1093/noajnl/vdaf035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025] Open
Abstract
Background Approximately 8.94%-44.44% of nonenhancing adult-type diffuse gliomas are identified as glioblastomas. Our purpose is to develop a nomogram that can predict glioblastomas from nonenhancing adult-type diffuse gliomas. Methods Nonenhancing adult-type diffuse gliomas were collected from Beijing Tiantan Hospital and TCIA public database. Univariate and multivariate logistic regression were performed to screen features on the training set. The features with P < .05 in multivariate logistic regression were used to establish the prediction model. The testing and validation sets were used to test the model. Results A total of 557 and 67 nonenhancing adult-type diffuse gliomas were collected from Beijing Tiantan Hospital and TCIA, respectively. The T2-FLAIR mismatch sign exhibited 100% specificity but low sensitivity (<30%) in ruling out glioblastoma. Age, tumor location, rADC(kurtosis), and rADC(median) were identified as independent predictors and employed for developing the prediction model. The AUC of the model was 0.901, 0.861, and 0.945 in the training, testing, and validation set, respectively. The best cutoff value of nomoscore was 138.5, which achieved sensitivity of 0.935, 0.714, and 0.895, specificity of 0.777, 0.782, and 0.8775 in the training, testing, and validation sets, respectively. Survival analysis shown that patients with nomoscore above 138.5 had significantly poorer survival time than those with scores below 138.5. Conclusions Positive T2-FLAIR mismatch sign can effectively rule out glioblastoma in nonenhancing adult-type diffuse gliomas with high specificity. Nonenhancing adult-type diffuse gliomas with nomoscore above 138.5 are highly suspicious for glioblastoma or nonglioblastoma with a poor prognosis.
Collapse
Affiliation(s)
- Lei He
- Department of Neurosurgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Fan Fei
- Department of Neurosurgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chengzhi Zhou
- Department of Neurosurgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoyan Bai
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuqing Yu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hanjie Liu
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, America
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Sutherland I, DeWitt J, Thomas A. Rare dual-genotype IDH mutant glioma: Review of previously reported cases and two new cases of true "oligoastrocytoma". Neuropathology 2024; 44:401-407. [PMID: 38581197 DOI: 10.1111/neup.12975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/08/2024]
Abstract
In 2016, the World Health Organization (WHO) eliminated "oligoastrocytoma" from the classification of central nervous system (CNS) tumors, in favor of an integrated histologic and molecular diagnosis. Consistent with the 2016 classification, in the 2021 classification, oligodendrogliomas are defined by mutations in isocitrate dehydrogenase (IDH) with concurrent 1p19q codeletion, while astrocytomas are IDH mutant tumors, usually with ATRX loss. In 2007, a 24-year-old man presented with a brain tumor histologically described as astrocytoma, but with molecular studies consistent with an oligodendroglioma, IDH mutant and 1p19q-codeleted. Years later, at resection, pathology revealed an astrocytoma, with variable ATRX expression and mutations of IDH, ATRX, TP53, and TERT by DNA sequencing. Fluorescence in situ hybridization studies confirmed 1p19q codeletion in sections of the tumor shown to histologically retain ATRX expression. Separately, in 2017, a 36-year-old woman presented with a frontal brain tumor with pathology consistent with an oligodendroglioma, IDH mutant and 1p19q-codeleted. Two years later, pathology revealed an astrocytoma, IDH1 mutant, with ATRX loss. These two cases likely represent the rare occurrence of dual-genotype IDH mutant infiltrating glioma. Nine cases of dual-genotype IDH mutant glioma were previously reported in the literature. We present two cases in which this distinct molecular phenotype is present in a tumor in the same location with surgeries at two points in time, both with 1p19q codeletion and ATRX loss at the time of resection. Whether this represents a true "collision tumor" or genetic switching over time is not known, but the co-occurrence of these hybrid mutations supports a diagnosis of dual-genotype IDH mutant glioma.
Collapse
Affiliation(s)
| | - John DeWitt
- Department of Laboratory Services, University of Vermont Medical Center, Burlington, Vermont, USA
| | - Alissa Thomas
- Department of Neuro-Oncology, University of Vermont Medical Center, Burlington, Vermont, USA
| |
Collapse
|
7
|
Zhu H, Li Y, Ding Y, Liu Y, Shen N, Xie Y, Yan S, Liu D, Zhang X, Li L, Zhu W. Multi-pool chemical exchange saturation transfer MRI in glioma grading, molecular subtyping and evaluating tumor proliferation. J Neurooncol 2024; 169:287-297. [PMID: 38874844 DOI: 10.1007/s11060-024-04729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE To evaluate the performance of multi-pool Chemical exchange saturation transfer (CEST) MRI in prediction of glioma grade, isocitrate dehydrogenase (IDH) mutation, alpha-thalassemia/mental retardation syndrome X-linked (ATRX) loss and Ki-67 labeling index (LI), based on the fifth edition of the World Health Organization classification of central nervous system tumors (WHO CNS5). METHODS 95 patients with adult-type diffuse gliomas were analyzed. The amide, direct water saturation (DS), nuclear Overhauser enhancement (NOE), semi-solid magnetization transfer (MT) and amine signals were derived using Lorentzian fitting, and asymmetry-based amide proton transfer-weighted (APTwasym) signal was calculated. The mean value of tumor region was measured and intergroup differences were estimated using student-t test. The receiver operating curve (ROC) and area under the curve (AUC) analysis were used to evaluate the diagnostic performance of signals and their combinations. Spearman correlation analysis was performed to evaluate tumor proliferation. RESULTS The amide and DS signals were significantly higher in high-grade gliomas compared to low-grade gliomas, as well as in IDH-wildtype gliomas compared to IDH-mutant gliomas (all p < 0.001). The DS, MT and amine signals showed significantly differences between ATRX loss and retention in grade 2/3 IDH-mutant gliomas (all p < 0.05). The combination of signals showed the highest AUC in prediction of grade (0.857), IDH mutation (0.814) and ATRX loss (0.769). Additionally, the amide and DS signals were positively correlated with Ki-67 LI (both p < 0.001). CONCLUSION Multi-pool CEST MRI demonstrated good potential to predict glioma grade, IDH mutation, ATRX loss and Ki-67 LI.
Collapse
Affiliation(s)
- Hongquan Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, PR China
| | - Yuanhao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, PR China
| | - Yuejie Ding
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, PR China
| | - Yufei Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, PR China
| | - Nanxi Shen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, PR China
| | - Yan Xie
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, PR China
| | - Su Yan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, PR China
| | - Dong Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, PR China
| | - Xiaoxiao Zhang
- Department of Clinical, Philips Healthcare, Wuhan, China
| | - Li Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, PR China.
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, PR China.
| |
Collapse
|
8
|
Ozono I, Onishi S, Yonezawa U, Taguchi A, Khairunnisa NI, Amatya VJ, Yamasaki F, Takeshima Y, Horie N. Super T2-FLAIR mismatch sign: a prognostic imaging biomarker for non-enhancing astrocytoma, IDH-mutant. J Neurooncol 2024; 169:571-579. [PMID: 38995493 PMCID: PMC11341624 DOI: 10.1007/s11060-024-04758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
PURPOSE The T2-FLAIR mismatch sign is a highly specific diagnostic imaging biomarker for astrocytoma, IDH-mutant. However, a definitive prognostic imaging biomarker has yet to be identified. This study investigated imaging prognostic markers, specifically analyzing T2-weighted and FLAIR images of this tumor. METHODS We retrospectively analyzed 31 cases of non-enhancing astrocytoma, IDH-mutant treated at our institution, and 30 cases from The Cancer Genome Atlas (TCGA)/The Cancer Imaging Archive (TCIA). We defined "super T2-FLAIR mismatch sign" as having a significantly strong low signal comparable to cerebrospinal fluid at non-cystic lesions rather than just a pale FLAIR low-signal tumor lesion as in conventional T2-FLAIR mismatch sign. Cysts were defined as having a round or oval shape and were excluded from the criteria for the super T2-FLAIR mismatch sign. We evaluated the presence or absence of the T2-FLAIR mismatch sign and super T2-FLAIR mismatch sign using preoperative MRI and analyzed the progression-free survival (PFS) and overall survival (OS) by log-rank test. RESULTS The T2-FLAIR mismatch sign was present in 17 cases (55%) in our institution and 9 cases (30%) within the TCGA-LGG dataset without any correlation with PFS or OS. However, the super T2-FLAIR mismatch sign was detected in 8 cases (26%) at our institution and 13 cases (43%) in the TCGA-LGG dataset. At our institution, patients displaying the super T2-FLAIR mismatch sign showed significantly extended PFS (122.7 vs. 35.9 months, p = 0.0491) and OS (not reached vs. 116.7 months, p = 0.0232). Similarly, in the TCGA-LGG dataset, those with the super T2-FLAIR mismatch sign exhibited notably longer OS (not reached vs. 44.0 months, p = 0.0177). CONCLUSION The super T2-FLAIR mismatch is a promising prognostic imaging biomarker for non-enhancing astrocytoma, IDH-mutant.
Collapse
Affiliation(s)
- Iori Ozono
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shumpei Onishi
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Ushio Yonezawa
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Akira Taguchi
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Novita Ikbar Khairunnisa
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Vishwa Jeet Amatya
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Fumiyuki Yamasaki
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Yukio Takeshima
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nobutaka Horie
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
9
|
Halldorsson S, Nagymihaly RM, Patel A, Brandal P, Panagopoulos I, Leske H, Lund-Iversen M, Sahm F, Vik-Mo EO. Accurate and comprehensive evaluation of O6-methylguanine-DNA methyltransferase promoter methylation by nanopore sequencing. Neuropathol Appl Neurobiol 2024; 50:e12984. [PMID: 38783575 DOI: 10.1111/nan.12984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
AIMS The methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) promoter region is essential in evaluating the prognosis and predicting the drug response in patients with glioblastoma. In this study, we evaluated the utility of using nanopore long-read sequencing as a method for assessing methylation levels throughout the MGMT CpG-island, compared its performance to established techniques and demonstrated its clinical applicability. METHODS We analysed 165 samples from CNS tumours, focusing on the MGMT CpG-island using nanopore sequencing. Oxford Nanopore Technologies (ONT) MinION and PromethION flow cells were employed for single sample or barcoded assays, guided by a CRISPR/Cas9 protocol, adaptive sampling or as part of a whole genome sequencing assay. Methylation data obtained through nanopore sequencing were compared to results obtained via pyrosequencing and methylation bead arrays. Hierarchical clustering was applied to nanopore sequencing data for patient stratification. RESULTS Nanopore sequencing displayed a strong correlation (R2 = 0.91) with pyrosequencing results for the four CpGs of MGMT analysed by both methods. The MGMT-STP27 algorithm's classification was effectively reproduced using nanopore data. Unsupervised hierarchical clustering revealed distinct patterns in methylated and unmethylated samples, providing comparable survival prediction capabilities. Nanopore sequencing yielded high-confidence results in a rapid timeframe, typically within hours of sequencing, and extended the analysis to all 98 CpGs of the MGMT CpG-island. CONCLUSIONS This study presents nanopore sequencing as a valid and efficient method for determining MGMT promotor methylation status. It offers a comprehensive view of the MGMT promoter methylation landscape, which enables the identification of potentially clinically relevant subgroups of patients. Further exploration of the clinical implications of patient stratification using nanopore sequencing of MGMT is warranted.
Collapse
Affiliation(s)
- Skarphedinn Halldorsson
- Vilhelm Magnus Laboratory, Institute for Surgical Research, Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Richard Mark Nagymihaly
- Vilhelm Magnus Laboratory, Institute for Surgical Research, Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Areeba Patel
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Petter Brandal
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Henning Leske
- Department of Pathology, Oslo University Hospital, Oslo, Norway
- University of Oslo, Oslo, Norway
| | | | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Einar O Vik-Mo
- Vilhelm Magnus Laboratory, Institute for Surgical Research, Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Wagatsuma K, Ikemoto K, Inaji M, Kamitaka Y, Hara S, Tamura K, Miwa K, Tsuzura K, Tsuruki T, Miyaji N, Ishibashi K, Ishii K. Impact of [ 11C]methionine PET with Bayesian penalized likelihood reconstruction on glioma grades based on new WHO 2021 classification. Ann Nucl Med 2024; 38:400-407. [PMID: 38466549 DOI: 10.1007/s12149-024-01911-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/02/2024] [Indexed: 03/13/2024]
Abstract
OBJECTIVE The uptake of [11C]methionine in positron emission tomography (PET) imaging overlapped in earlier images of tumors. Bayesian penalized likelihood (BPL) reconstruction increases the quantitative values of tumors compared with conventional ordered subset-expectation maximization (OSEM). The present study aimed to grade glioma malignancy based on the new WHO 2021 classification using [11C]methionine PET images reconstructed using BPL. METHODS We categorized 32 gliomas in 28 patients as grades 2/3 (n = 15) and 4 (n = 17) based on the WHO 2021 classification. All [11C]methionine images were reconstructed using OSEM + time-of-flight (TOF) and BPL + TOF (β = 200). Maximum standardized uptake value (SUVmax) and tumor-to-normal tissue ratio (T/Nmax) were measured at each lesion. RESULTS The mean SUVmax was 4.65 and 4.93 in grade 2/3 and 6.38 and 7.11 in grade 4, and the mean T/Nmax was 7.08 and 7.22 in grade 2/3 and 9.30 and 10.19 in grade 4 for OSEM and BPL, respectively. The BPL significantly increased these values in grade 4 gliomas. The area under the receiver operator characteristic (ROC) curve (AUC) for SUVmax was the highest (0.792) using BPL. CONCLUSIONS The BPL increased mean SUVmax and mean T/Nmax in lesions with higher contrast such as grade 4 glioma. The discrimination power between grades 2/3 and 4 in SUVmax was also increased using [11C]methionine PET images reconstructed with BPL.
Collapse
Affiliation(s)
- Kei Wagatsuma
- School of Allied Health Sciences, Kitasato University, 1-15-1 Kitazato, Minami-Ku, Sagamihara, Kanagawa, 252-0373, Japan.
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan.
| | - Kensuke Ikemoto
- School of Allied Health Sciences, Kitasato University, 1-15-1 Kitazato, Minami-Ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Motoki Inaji
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Yuto Kamitaka
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Shoko Hara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Kaoru Tamura
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Kenta Miwa
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, 10-6 Sakaemachi, Fukushima-Shi, Fukushima, 960-8516, Japan
| | - Kaede Tsuzura
- Department of Medical Technology, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Taisei Tsuruki
- School of Allied Health Sciences, Kitasato University, 1-15-1 Kitazato, Minami-Ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Noriaki Miyaji
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, 10-6 Sakaemachi, Fukushima-Shi, Fukushima, 960-8516, Japan
| | - Kenji Ishibashi
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan
| |
Collapse
|
11
|
Qi P, Yao QL, Lao IW, Ren M, Bai QM, Cai X, Xue T, Wei R, Zhou XY. A custom next-generation sequencing panel for 1p/19q codeletion and mutational analysis in gliomas. J Neuropathol Exp Neurol 2024; 83:258-267. [PMID: 38408388 DOI: 10.1093/jnen/nlae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
The World Health Organization has updated their classification system for the diagnosis of gliomas, combining histological features with molecular data including isocitrate dehydrogenase 1 and codeletion of chromosomal arms 1p and 19q. 1p/19q codeletion analysis is commonly performed by fluorescence in situ hybridization (FISH). In this study, we developed a 57-gene targeted next-generation sequencing (NGS) panel including 1p/19q codeletion detection mainly to assess diagnosis and potential treatment response in melanoma, gastrointestinal stromal tumor, and glioma patients. Loss of heterozygosity analysis was performed using the NGS method on 37 formalin-fixed paraffin-embedded glioma tissues that showed 1p and/or 19q loss determined by FISH. Conventional methods were applied for the validation of some glioma-related gene mutations. In 81.1% (30 of 37) and 94.6% (35 of 37) of cases, 1p and 19q were found to be in agreement whereas concordance for 1p/19q codeletion and no 1p/19q codeletion was found in 94.7% (18 of 19) and 94.4% (17 of 18) of cases, respectively. Overall, comparing NGS results with those of conventional methods showed high concordance. In conclusion, the NGS panel allows reliable analysis of 1p/19q codeletion and mutation at the same time.
Collapse
Affiliation(s)
- Peng Qi
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Qian-Lan Yao
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - I Weng Lao
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Min Ren
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Qian-Ming Bai
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Xu Cai
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Tian Xue
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Ran Wei
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Xiao-Yan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Valdes PA, Yu CC(J, Aronson J, Ghosh D, Zhao Y, An B, Bernstock JD, Bhere D, Felicella MM, Viapiano MS, Shah K, Chiocca EA, Boyden ES. Improved immunostaining of nanostructures and cells in human brain specimens through expansion-mediated protein decrowding. Sci Transl Med 2024; 16:eabo0049. [PMID: 38295184 PMCID: PMC10911838 DOI: 10.1126/scitranslmed.abo0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
Proteins are densely packed in cells and tissues, where they form complex nanostructures. Expansion microscopy (ExM) variants have been used to separate proteins from each other in preserved biospecimens, improving antibody access to epitopes. Here, we present an ExM variant, decrowding expansion pathology (dExPath), that can expand proteins away from each other in human brain pathology specimens, including formalin-fixed paraffin-embedded (FFPE) clinical specimens. Immunostaining of dExPath-expanded specimens reveals, with nanoscale precision, previously unobserved cellular structures, as well as more continuous patterns of staining. This enhanced molecular staining results in observation of previously invisible disease marker-positive cell populations in human glioma specimens, with potential implications for tumor aggressiveness. dExPath results in improved fluorescence signals even as it eliminates lipofuscin-associated autofluorescence. Thus, this form of expansion-mediated protein decrowding may, through improved epitope access for antibodies, render immunohistochemistry more powerful in clinical science and, perhaps, diagnosis.
Collapse
Affiliation(s)
- Pablo A. Valdes
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, 77555
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA, 02115
- Media Arts and Sciences, MIT, Cambridge, MA, USA, 02115
| | - Chih-Chieh (Jay) Yu
- Media Arts and Sciences, MIT, Cambridge, MA, USA, 02115
- Department of Biological Engineering, MIT, MA, USA, 02139
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA, 02139
- RIKEN Center for Brain Science, Saitama, Japan, 351-0198
| | - Jenna Aronson
- Media Arts and Sciences, MIT, Cambridge, MA, USA, 02115
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA, 02139
- RIKEN Center for Brain Science, Saitama, Japan, 351-0198
| | - Debarati Ghosh
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA, 02139
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA, 02139
| | - Yongxin Zhao
- Media Arts and Sciences, MIT, Cambridge, MA, USA, 02115
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA, 15213
| | - Bobae An
- Media Arts and Sciences, MIT, Cambridge, MA, USA, 02115
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA, 02139
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA, 02115
- Koch Institute, MIT, Cambridge, MA, USA, 02139
| | - Deepak Bhere
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA, 02115
- Department of Pathology, Microbiology and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, SC, USA, 29209
- Center for Stem Cell and Translational Immunotherapy, Harvard Medical School/Brigham and Women’s Hospital, Boston, MA, USA, 02115
| | - Michelle M. Felicella
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA, 77555
| | - Mariano S. Viapiano
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA, 13210
| | - Khalid Shah
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA, 02115
- Center for Stem Cell and Translational Immunotherapy, Harvard Medical School/Brigham and Women’s Hospital, Boston, MA, USA, 02115
| | - E. Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA, 02115
| | - Edward S. Boyden
- Media Arts and Sciences, MIT, Cambridge, MA, USA, 02115
- Department of Biological Engineering, MIT, MA, USA, 02139
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA, 02139
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA, 02139
- Koch Institute, MIT, Cambridge, MA, USA, 02139
- MIT Center for Neurobiological Engineering and K. Lisa Yang Center for Bionics, MIT, Cambridge, MA, USA, 02139
- Howard Hughes Medical Institute, Cambridge, MA, USA, 02139
| |
Collapse
|
13
|
Gupta P, Siraj F, Shankar KB, Rawat M, Mankotia DS, Yadav V, Dagar A. Clinical and histopathological spectrum of cranial small round cell tumors: An experience from a tertiary care center. J Cancer Res Ther 2024; 20:238-242. [PMID: 38554327 DOI: 10.4103/jcrt.jcrt_383_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 09/21/2022] [Indexed: 04/01/2024]
Abstract
BACKGROUND Small round cell tumors (SRCTs) are a group of malignant neoplasms with minimal or no differentiation, characterized by the presence of round cells with high nuclear-cytoplasmic ratio. Although SRCTs can occur in any part of the body, involvement of central nervous system (CNS) is uncommon. AIM We aimed to study the clinicopathological spectrum of cranial SRCT diagnosed in our institute over a period of four years (2016-2019). MATERIAL AND METHODS A retrospective review of medical records (2016-2019) with a morphological diagnosis of cranial SRCT was made. Both intra-axial and extra-axial tumors were included. A total of 60 cases were retrieved, and the clinical and histopathological features were studied. Special cytochemical staining and immunohistochemistry were performed, where needed. RESULTS The mean age at presentation was 18.4 years (range, 1-60 years), with a male-to-female ratio of 2.5:1. The most common site was posterior fossa of brain (n = 28, 47%), followed by dorso-lumbar spine (n = 9, 15%). The most common type of tumor was medulloblastoma (n = 29, 48.3%), followed by Ewing sarcoma (ES)/peripheral primitive neuroectodermal tumor (pPNET) (n = 11, 18.3%), non-Hodgkin lymphoma (NHL) (n = 9, 15%), neuroblastoma (n = 3, 5%), and CNS embryonal tumor, NOS (n = 2, 3.3%). One case each of atypical teratoid rhabdoid tumor (ATRT), rhabdomyosarcoma, pineoblastoma, melanoma, rhabdomyosarcoma, and undifferentiated pleomorphic sarcoma was also documented. CONCLUSIONS SRCTs have a variable age of presentation. Their incidence in CNS is low as compared to other organ systems. On light microscopy, the histopathology of these lesions is overlapping, posing a great diagnostic dilemma for the pathologist. The use of ancillary techniques like immunohistochemistry helps in arriving at the correct diagnosis. Treatment strategy and tumor prognosis also vary along the entire spectrum of SRCT, thus making exact characterization essential for proper management.
Collapse
Affiliation(s)
- Pooja Gupta
- Department of Pathology, ICMR-National Institute of Pathology, New Delhi, India
| | - Fouzia Siraj
- Department of Pathology, ICMR-National Institute of Pathology, New Delhi, India
| | - K B Shankar
- Department of Neurosurgery, Vardhman Mahavir Medical College and Safdarjung Hospital New Delhi, India
| | - Manish Rawat
- Department of Neurosurgery, Vardhman Mahavir Medical College and Safdarjung Hospital New Delhi, India
| | - Dipanker S Mankotia
- Department of Neurosurgery, Vardhman Mahavir Medical College and Safdarjung Hospital New Delhi, India
| | - Vivek Yadav
- Department of Neurosurgery, Vardhman Mahavir Medical College and Safdarjung Hospital New Delhi, India
| | - Amit Dagar
- Department of Neurosurgery, Vardhman Mahavir Medical College and Safdarjung Hospital New Delhi, India
| |
Collapse
|
14
|
Rynda AY, Olyushin VE, Rostovtsev DM, Kukanov KK, Sklyar SS, Zabrodskaya YM. [Patients with long-term survival in malignant gliomas after photodynamic therapy]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:54-61. [PMID: 39072567 DOI: 10.17116/jnevro202412406154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
OBJECTIVE Analysis of long-lived patients from the group of patients with glioblastomas after using photodynamic therapy in the structure of their complex treatment in order to assess the influence of various factors on their life expectancy. MATERIAL AND METHODS In total, a single-center, retrospective categorical study analyzed the long-term results of treatment of 63 patients with glioblastoma in the structure of complex treatment including photodynamic therapy. Clinical factors (age, sex, number of cases, preoperative Karnofsky index, location and size of the tumor, radicality of the operation), histological (nuclear polymorphism, mitosis, vascular proliferation, necrosis), immunohistochemical (Ki-67, p53 index) molecular-genetic factors (expression of VEGF, MGMT, IDH, CD34), amount of radiation and chemotherapy were analyzed. RESULTS In the entire group of patients, there was a direct correlation of life expectancy with MGMT status, IDH status, the number of courses of chemotherapy, the age of the patient, and the severity of the first surgical intervention. CONCLUSION Clinical features such as age at diagnosis and extent of surgical resection and amount of chemotherapy have predictive value in assessing their effect on life expectancy. Mutations in IDH and MGMT promoter methylation were the most important molecular factors determining long-term patient survival.
Collapse
Affiliation(s)
- A Yu Rynda
- Polenov Russian Neurosurgical Institute - a branch Almazov of the National Medical Research Center, St. Petersburg, Russia
| | - V E Olyushin
- Polenov Russian Neurosurgical Institute - a branch Almazov of the National Medical Research Center, St. Petersburg, Russia
| | - D M Rostovtsev
- Polenov Russian Neurosurgical Institute - a branch Almazov of the National Medical Research Center, St. Petersburg, Russia
| | - K K Kukanov
- Polenov Russian Neurosurgical Institute - a branch Almazov of the National Medical Research Center, St. Petersburg, Russia
| | - S S Sklyar
- Polenov Russian Neurosurgical Institute - a branch Almazov of the National Medical Research Center, St. Petersburg, Russia
| | - Yu M Zabrodskaya
- Polenov Russian Neurosurgical Institute - a branch Almazov of the National Medical Research Center, St. Petersburg, Russia
| |
Collapse
|
15
|
Malhotra K, Dagli MM, Gujral J, Santangelo G, Goyal K, Wathen C, Ozturk AK, Welch WC. Global and Gender Equity in Oligodendroglioma Research: A Comprehensive Bibliometric Analysis Following the COVID-19 Pandemic. Cureus 2023; 15:e51161. [PMID: 38283488 PMCID: PMC10812378 DOI: 10.7759/cureus.51161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
Oligodendrogliomas are rare brain tumors arising from oligodendrocytes; there is a limited understanding of their pathogenesis, which leads to challenges in diagnosis, prognosis, and treatment. This study aimed to conduct a comprehensive bibliometric analysis of the oligodendroglioma literature to assess the current state of research, identify research trends, and elucidate implications for future research. The Lens® database was used to retrieve journal articles related to "oligodendroglioma" without geographic or temporal restrictions. Year-on-year trends in publication and funding were analyzed. Global and gender equity were assessed using the Namsor® Application programming interface. Collaboration patterns were explored using network visualizations. Keyword analysis revealed the most prominent themes in oligodendroglioma research. Out of 9701 articles initially retrieved, 8381 scholarly journal articles were included in the final analysis. Publication trends showed a consistent increase until 2020, followed by a sharp decline likely due to the COVID-19 pandemic. Global representation revealed researchers from 86 countries, with limited participation from low and middle-income countries (LMICs). Gender inequity was evident, with 78.7% of researchers being male. Collaboration analysis revealed a highly interconnected research community. Prognosis, genetic aberrations (particularly "IDH" mutations), and therapeutic options (including chemotherapy and radiotherapy) emerged as dominant research themes. The COVID-19 pandemic impacted oligodendroglioma research funding and publication trends, highlighting the importance of robust funding mechanisms. Global and gender inequities in research participation underscore the need for fostering inclusive collaboration, especially in LMICs. The interconnected research community presents opportunities for knowledge exchange and innovation. Keyword analysis highlights current research trends and a shift to genetic and molecular understanding.
Collapse
Affiliation(s)
- Kashish Malhotra
- Department of Surgery, Dayanand Medical College and Hospital, Ludhiana, IND
- Institute of Applied Health Research, University of Birmingham, Birmingham, GBR
| | - Mert Marcel Dagli
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Jaskeerat Gujral
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Gabrielle Santangelo
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Kashish Goyal
- Department of Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, IND
| | - Connor Wathen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Ali K Ozturk
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - William C Welch
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
16
|
Wang Q, Wang HD, Niu W, Pan H. New molecular prognostic factors of adult diffuse lower-grade gliomas in post-2016 molecular era: a retrospective analysis from single center. Br J Neurosurg 2023; 37:1580-1587. [PMID: 33538212 DOI: 10.1080/02688697.2020.1847249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/03/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Several studies have examined the prognostic significance of IDH1/2 mutation, 1p/19q codeletion and MGMT promoter methylation in lower-grade gliomas but most of these used the 2007 fourth edition of the WHO classification. We evaluate prognostic significance of these indicators in the 2016 WHO updated fourth edition of CNS tumor classification. METHODS A total of 180 intracranial glioma patients diagnosed according WHO 2016 edition between December 2016 and December 2018 Jinling Hospital (Nanjing, China) were reviewed retrospectively. We performed survival analysis on 109 patients with complete molecular pathology and follow-up data. RESULTS Histologically, 52 were diagnosed as astrocytoma (WHO grade II and III), 17 as oligodendrogliomas (WHO grade II and III) and 40 as GBMs. At last follow-up, 50.5% patients had experienced tumor progression and 34.9% had died. Among grade II and III cases 36.2% experienced tumor progression and 27.5% died. In univariate Kaplan-Meier analysis, multifocal tumor, EGFR mutation or amplification, PIK3CA mutation and IDHwt/TERTpwt group were associated with shorter PFS (p < 0.001, p = 0.003, p = 0.005, p < 0.001, respectively) and OS (p = 0.010, p = 0.020, p = 0.018, p < 0.001, respectively) as were older age (≥55 years), multifocal tumor, IDH1/2 wild type, 1p/19q non-codeletion and negative methylation in the MGMT promoter region. A Cox proportional hazards model was created demonstrating that single tumor (HR = 0.180, p = 0.04), MGMTp methylation (HR = 0.095, p = 0.003) and chemoradiotherapy (HR = 0.006, p = 0.002) were independent prognostic factors for OS. CONCLUSIONS Beyond histological classification as well as IDH1/2 mutation, 1p/19q codeletion status, we could incorporate IDH1/2mt combined with TERTpmt, EGFR mutation or amplification and PIK3CA mutation into the diagnostic criteria for DLGGs to supplement WHO 2016 pathological criteria.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Han-Dong Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | | | - Hao Pan
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
17
|
Melnikova L, Golovnin A. Multiple Roles of dXNP and dADD1- Drosophila Orthologs of ATRX Chromatin Remodeler. Int J Mol Sci 2023; 24:16486. [PMID: 38003676 PMCID: PMC10671109 DOI: 10.3390/ijms242216486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The Drosophila melanogaster dADD1 and dXNP proteins are orthologues of the ADD and SNF2 domains of the vertebrate ATRX (Alpha-Thalassemia with mental Retardation X-related) protein. ATRX plays a role in general molecular processes, such as regulating chromatin status and gene expression, while dADD1 and dXNP have similar functions in the Drosophila genome. Both ATRX and dADD1/dXNP interact with various protein partners and participate in various regulatory complexes. Disruption of ATRX expression in humans leads to the development of α-thalassemia and cancer, especially glioma. However, the mechanisms that allow ATRX to regulate various cellular processes are poorly understood. Studying the functioning of dADD1/dXNP in the Drosophila model may contribute to understanding the mechanisms underlying the multifunctional action of ATRX and its connection with various cellular processes. This review provides a brief overview of the currently available information in mammals and Drosophila regarding the roles of ATRX, dXNP, and dADD1. It discusses possible mechanisms of action of complexes involving these proteins.
Collapse
Affiliation(s)
- Larisa Melnikova
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Anton Golovnin
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| |
Collapse
|
18
|
Eckert F, Ganser K, Bender B, Schittenhelm J, Skardelly M, Behling F, Tabatabai G, Hoffmann E, Zips D, Huber SM, Paulsen F. Potential of pre-operative MRI features in glioblastoma to predict for molecular stem cell subtype and patient overall survival. Radiother Oncol 2023; 188:109865. [PMID: 37619660 DOI: 10.1016/j.radonc.2023.109865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/31/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
AIM OF THE STUDY A molecular signature based on 10 mRNA abundances that characterizes the mesenchymal-to-proneural phenotype of glioblastoma stem(like) cells (GSCs) enriched in primary culture has been previously established. As this phenotype has been proposed to be prognostic for disease outcome the present study aims to identify features of the preoperative MR imaging that may predict the GSC phenotype of individual tumors. MATERIAL/METHODS Molecular mesenchymal-to-proneural mRNA signatures and intrinsic radioresistance (SF4, survival fraction at 4 Gy) of primary GSC-enriched cultures were associated with survival data and pre-operative MR imaging of the corresponding glioblastoma patients of a prospective cohort (n = 24). The analyzed imaging parameters comprised linear vectors derived from tumor volume, necrotic volume and edema as contoured manually. RESULTS A necrosis/tumor vector ratio and to a weaker extent the product of this ratio and the edema vector were identified to correlate with the mesenchymal-to-proneural mRNA signature and the SF4 of the patient-derived GSC cultures. Importantly, both parameter combinations were predictive for overall survival of the whole patient cohort. Moreover, the combination of necrosis/tumor vector ratio and edema vector differed significantly between uni- and multifocally recurring tumors. CONCLUSION Features of the preoperative MR images may reflect the molecular signature of the GSC population and might be used in the future as a prognostic factor and for treatment stratification especially in the MGMT promotor-unmethylated sub-cohort of glioblastoma patients.
Collapse
Affiliation(s)
- Franziska Eckert
- Department of Radiation Oncology, University of Tübingen, Germany; Medical University Vienna, Department of Radiation Oncology, Comprehensive Cancer Center Vienna, Vienna, Austria.
| | - Katrin Ganser
- Department of Radiation Oncology, University of Tübingen, Germany
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany
| | - Jens Schittenhelm
- Department of Pathology and Neuropathology, University of Tübingen, Germany
| | - Marco Skardelly
- Department of Neurosurgery, University of Tübingen, Germany; Centre for Neurooncology, University of Tübingen, Germany
| | - Felix Behling
- Centre for Neurooncology, University of Tübingen, Germany
| | | | - Elgin Hoffmann
- Department of Radiation Oncology, University of Tübingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University of Tübingen, Germany; Department of Radiation Oncology, Charité Universitaetsmedizin Berlin, Germany
| | - Stephan M Huber
- Department of Radiation Oncology, University of Tübingen, Germany
| | - Frank Paulsen
- Department of Radiation Oncology, University of Tübingen, Germany
| |
Collapse
|
19
|
Yoon BH, Park JS, Kang S, Kwon NJ, Lee KS, Kim CY, Choe G. IDH-wildtype secondary glioblastoma arising in IDH-mutant diffuse astrocytoma: a case report. Br J Neurosurg 2023; 37:1233-1236. [PMID: 33095064 DOI: 10.1080/02688697.2020.1837733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/13/2020] [Indexed: 10/23/2022]
Abstract
Primary glioblastoma develops de novo without clinical or histological evidence of a low-grade precursor lesion, whereas secondary glioblastoma develops from a low-grade glioma. The present report describes an extraordinary case of IDH-wildtype secondary glioblastoma arising in IDH-mutant diffuse astrocytoma. A 31-year-old female had a surgical history of IDH-mutant diffuse astrocytoma on the left frontal lobe six years before. Magnetic resonance imaging revealed new infiltrative lesions in the left frontal lobe adjacent to the previous lesion. The patient underwent tumourectomy, and the new infiltrative lesion was diagnosed as glioblastoma. Interestingly, the IDH-1 (p.Arg132His) mutation was found in diffuse astrocytoma but not in glioblastoma based on next generation sequencing. ATRX (p.Gln1670Ter) and TP53 (p.His193Arg) mutations were found in both lesions. Additionally, the PTEN (p.His296Pro) mutation was identified only in glioblastoma. A well-accepted hypothesis is that the IDH mutation initiates in glial progenitor cells and causes secondary glioblastoma harboring the IDH mutation to develop from low grade glioma with IDH mutation. However, this case showed that the other genetic mutations can be initiated before the IDH mutation in glioma oncogenesis. Contrary to the previous hypothesis, this is the first case of IDH-wildtype secondary glioblastoma arising in IDH-mutant diffuse astrocytoma.
Collapse
Affiliation(s)
- Byul-Hee Yoon
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ju Sang Park
- Department of Orthopedic Surgery, Sewoori Hospital Joint & Spine Center, Serogu, Daejeon, Republic of Korea
| | | | | | - Kyu Sang Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chae-Yong Kim
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Gheeyoung Choe
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
20
|
Yang X, Hu C, Xing Z, Lin Y, Su Y, Wang X, Cao D. Prediction of Ki-67 labeling index, ATRX mutation, and MGMT promoter methylation status in IDH-mutant astrocytoma by morphological MRI, SWI, DWI, and DSC-PWI. Eur Radiol 2023; 33:7003-7014. [PMID: 37133522 DOI: 10.1007/s00330-023-09695-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/19/2023] [Accepted: 03/09/2023] [Indexed: 05/04/2023]
Abstract
OBJECTIVE Noninvasive detection of molecular status of astrocytoma is of great clinical significance for predicting therapeutic response and prognosis. We aimed to evaluate whether morphological MRI (mMRI), SWI, DWI, and DSC-PWI could predict Ki-67 labeling index (LI), ATRX mutation, and MGMT promoter methylation status in IDH mutant (IDH-mut) astrocytoma. METHODS We retrospectively analyzed mMRI, SWI, DWI, and DSC-PWI in 136 patients with IDH-mut astrocytoma.The features of mMRI and intratumoral susceptibility signals (ITSS) were compared using Fisher exact test or chi-square tests. Wilcoxon rank sum test was used to compare the minimum ADC (ADCmin), and minimum relative ADC (rADCmin) of IDH-mut astrocytoma in different molecular markers status. Mann-Whitney U test was used to compare the rCBVmax of IDH-mut astrocytoma with different molecular markers status. Receiver operating characteristic curves was performed to evaluate their diagnostic performances. RESULTS ITSS, ADCmin, rADCmin, and rCBVmax were significantly different between high and low Ki-67 LI groups. ITSS, ADCmin, and rADCmin were significantly different between ATRX mutant and wild-type groups. Necrosis, edema, enhancement, and margin pattern were significantly different between low and high Ki-67 LI groups. Peritumoral edema was significantly different between ATRX mutant and wild-type groups. Grade 3 IDH-mut astrocytoma with unmethylated MGMT promoter was more likely to show enhancement compared to the methylated group. CONCLUSIONS mMRI, SWI, DWI, and DSC-PWI were shown to have the potential to predict Ki-67 LI and ATRX mutation status in IDH-mut astrocytoma. A combination of mMRI and SWI may improve diagnostic performance for predicting Ki-67 LI and ATRX mutation status. CLINICAL RELEVANCE STATEMENT Conventional MRI and functional MRI (SWI, DWI, and DSC-PWI) can predict Ki-67 expression and ATRX mutation status of IDH mutant astrocytoma, which may help clinicians determine personalized treatment plans and predict patient outcomes. KEY POINTS • A combination of multimodal MRI may improve the diagnostic performance to predict Ki-67 LI and ATRX mutation status. • Compared with IDH-mutant astrocytoma with low Ki-67 LI, IDH-mutant astrocytoma with high Ki-67 LI was more likely to show necrosis, edema, enhancement, poorly defined margin, higher ITSS levels, lower ADC, and higher rCBV. • ATRX wild-type IDH-mutant astrocytoma was more likely to show edema, higher ITSS levels, and lower ADC compared to ATRX mutant IDH-mutant astrocytoma.
Collapse
Affiliation(s)
- Xiefeng Yang
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Chengcong Hu
- Department of Pathology, First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, 20 Cha-Zhong Road, Fuzhou, 350005, People's Republic of China
| | - Zhen Xing
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Yu Lin
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Yan Su
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Xingfu Wang
- Department of Pathology, First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, 20 Cha-Zhong Road, Fuzhou, 350005, People's Republic of China.
| | - Dairong Cao
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China.
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People's Republic of China.
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People's Republic of China.
| |
Collapse
|
21
|
An S, Song IH, Woo CG. Diagnostic Value of Nestin Expression in Adult Gliomas. Int J Surg Pathol 2023; 31:1014-1020. [PMID: 36168213 DOI: 10.1177/10668969221125792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Introduction. Nestin, a type VI intermediate filament, is expressed in neuroepithelial cells during embryogenesis and has been expressed in various human tumors. Recent studies reported that the expression was associated with poor prognosis in brain tumors, but the results were inconclusive. In this study, we evaluated usefulness of nestin expression as a prognostic biomarker in consideration of IDH mutation and the World Health Organization (WHO) classification fifth edition. Methods. To investigate nestin expression, immunohistochemistry was performed on 92 adult brain gliomas using tissue microarrays. We analyzed the clinical characteristics and survival outcomes according to nestin expression and examined whether nestin expression alone affects the prognosis, independent of IDH mutation. Results. Sixty patients (65.2%) were nestin-positive (weak and strong). Nestin expression and intensity were significantly correlated with pathologic diagnosis and IDH mutation. The patients with high-grade gliomas showed a higher frequency and stronger intensity of nestin expression than those with low-grade gliomas (P < .001). The majority (93.6%) of gliomas with IDH mutation showed no expression or weak positivity. Multivariate Cox proportional hazard regression analysis for overall survival demonstrated that nestin expression (weak, hazard ratio [HR] 5.39, P = .036; strong, HR 8.43, P = .007) was an independent prognostic factor. Moreover, patients with nestin-expressing glioma showed shorter survival (P < .001). Conclusions. Nestin seems to be strongly expressed in the vast majority of glioblastomas, IDH-wildtype and rarely in IDH-mutant gliomas. Clear correlation between nestin expression and pathologic diagnosis makes an accurate patient diagnosis. Expression and intensity of nestin were significantly correlated with worse survival.
Collapse
Affiliation(s)
- Soyeon An
- Department of Pathology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Korea
| | - In Hye Song
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Chang Gok Woo
- Department of Pathology, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Korea
| |
Collapse
|
22
|
Meyer HS, Wiestler B, Hönikl LS, Delbridge C, Ketterer C, Gempt J, Meyer B. Clinical, radiological and pathological features of temporomesial tumors in the adult. A single center experience from 15 years. Front Oncol 2023; 13:1236269. [PMID: 37700844 PMCID: PMC10493778 DOI: 10.3389/fonc.2023.1236269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/10/2023] [Indexed: 09/14/2023] Open
Abstract
Introduction The mesial temporal lobe plays a distinct role in epileptogenesis, and tumors in this part of the brain potentially have specific clinical and radiological features. Differentiating high-grade from lower-grade tumors or non-neoplastic lesions can be challenging, preventing the decision for early resection that can be critical in high-grade tumors. Methods A brain tumor database was analyzed retrospectively to identify patients with temporomesial tumors. We determined clinical features (age, sex, symptoms leading to clinical presentation) as well as neuroradiological (tumor location and the presence of contrast enhancement on initial magnetic resonance imaging (MRI)) and neuropathological findings. Results We identified 324 temporal tumors. 39 involved the mesial temporal lobe. 77% of temporomesial tumors occured in males, and 77% presented with seizures, regardless of tumor type or grade. In patients 50 years or older, 90% were male and 80% had glioblastoma (GBM); there was no GBM in patients younger than 50 years. 50% of GBMs lacked contrast enhancement. Male sex was significantly associated with GBM. In both contrast-enhancing and non-enhancing tumors, age of 50 years or older was also significantly associated with GBM. Conclusion In middle-aged and older patients with a mesial temporal lobe tumor, GBM is the most likely diagnosis even when there is no MRI contrast enhancement. Prolonged diagnostic workup or surveillance strategies should be avoided and early resection may be justified in these patients.
Collapse
Affiliation(s)
- Hanno S. Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benedikt Wiestler
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Lisa S. Hönikl
- Department of Neurosurgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Claire Delbridge
- Department of Neuropathology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Carl Ketterer
- Department of Neurosurgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jens Gempt
- Department of Neurosurgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
23
|
Ebiko Y, Tamura K, Hara S, Inaji M, Tanaka Y, Nariai T, Ishii K, Maehara T. T2-FLAIR mismatch sign correlates with 11C-methionine uptake in lower-grade diffuse gliomas. J Neurooncol 2023; 164:257-265. [PMID: 37589920 DOI: 10.1007/s11060-023-04417-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
PURPOSE The T2-FLAIR mismatch sign is recognized as an imaging finding highly suggestive of IDH-mutant astrocytomas. This study was designed to determine whether the T2-FLAIR mismatch sign correlates with uptake of 11C-methionine in lower-grade gliomas. METHODS We included 78 histopathologically verified lower-grade gliomas (grade 2: 31 cases, grade 3: 47 cases) in this study. 78 patients underwent 11C-methionine positron emission tomography (MET-PET) scans and magnetic resonance (MR) imaging scans prior to histological diagnosis. The tumor-to-normal ratio (T/N) of 11C-methionine uptake was calculated by dividing the maximum standardized uptake value (SUV) for the tumor by the mean SUV of the normal brain. MR imaging scans were evaluated for the presence of the T2-FLAIR mismatch sign by three independent reviewers. We compared molecular status, the T2-FLAIR mismatch sign and 11C-methionine uptake among patients with different lower-grade glioma molecular types. RESULTS The 78 lower-grade gliomas were assigned to one of three molecular groups: Group A (IDH-mutant and 1p/19q non-codeleted, n = 22), Group O (IDH-mutant and 1p/19q codeleted, n = 20), and Group W (IDH wildtype, n = 36). T2-FLAIR mismatch was found in 16 cases (20.5%) that were comprised of 8 (36.4%), 0 (0%), 8 (22.2%) cases in the molecular group A, O and W, respectively. The median T/N ratio of MET-PET in tumors with T2-FLAIR mismatch was 1.50, which was significantly lower than that of tumors without T2-FLAIR mismatch (1.83, p < 0.001, Mann-Whitney U test). In the Groups A and W (excluding Group O), the median T/N ratio on MET-PET in groups A and W (but not group O) with T2-FLAIR mismatch was 1.50, which was significantly lower than that of tumors without T2-FLAIR mismatch (1.81, p = 0.002, Mann-Whitney U test). CONCLUSION The T2-FLAIR mismatch sign correlated with lower 11C-methionine uptake in lower grade gliomas.
Collapse
Affiliation(s)
- Yusuke Ebiko
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo- ku, Tokyo, 113-8519, Japan
| | - Kaoru Tamura
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo- ku, Tokyo, 113-8519, Japan.
| | - Shoko Hara
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo- ku, Tokyo, 113-8519, Japan
- Research Team of Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Motoki Inaji
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo- ku, Tokyo, 113-8519, Japan
- Research Team of Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yoji Tanaka
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo- ku, Tokyo, 113-8519, Japan
| | - Tadashi Nariai
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo- ku, Tokyo, 113-8519, Japan
- Research Team of Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kenji Ishii
- Research Team of Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Taketoshi Maehara
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo- ku, Tokyo, 113-8519, Japan
| |
Collapse
|
24
|
Annakib S, Rigau V, Darlix A, Gozé C, Duffau H, Bauchet L, Jarlier M, Fabbro M. Bevacizumab in recurrent WHO grades II-III glioma. Front Oncol 2023; 13:1212714. [PMID: 37534252 PMCID: PMC10391542 DOI: 10.3389/fonc.2023.1212714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/29/2023] [Indexed: 08/04/2023] Open
Abstract
Purpose The management of recurrent WHO grades II-III (rGII-III) glioma is not well established. This study describes the clinical outcomes in patients who received bevacizumab as rescue treatment. Methods In this retrospective study, the main inclusion criteria were as follows: adult patients with histologicaly proved rGII-III glioma according 2016 WHO classification treated with bevacizumab from 2011 to 2019, T1 contrast enhancement on MRI. Efficacy was assessed using the high-grade glioma 2017 Response Assessment in Neuro-Oncology criteria. Progression-free survival (PFS) and overall survival (OS) were estimated using the Kaplan-Meier method. Results Eighty-one patients were included (M/F ratio: 1.7, median age at diagnosis: 38 years) among whom 46 (56.8%) had an initial diagnosis of grade II glioma. Previous treatments included at least one surgical intervention, radiotherapy (98.8%), and ≥ 2 chemotherapy lines (64.2%). After bevacizumab initiation, partial response, stable disease, and progressive disease were observed in 27.2%, 22.2%, and 50.6% of patients. The median PFS and OS were 4.9 months (95% confidence interval [CI] 3.7-6.1) and 7.6 months (95% CI 5.5-9.9). Bevacizumab severe toxicity occurred in 12.3%. Twenty-four (29.6%) patients discontinued bevacizumab without radiological progression. Oligodendroglioma and age ≥ 38 years at diagnosis were more frequent in this subgroup (odds ratio = 0.24, 95% CI 0.07-0.84, p = 0.023 and 0.36, 95% CI 0.13-0.99, p = 0.042). Ten of these 24 patients were alive at 12 months and two patients at 8 years after bevacizumab initiation, without any subsequent treatment. Conclusion Bevacizumab can be an option for heavily pretreated patients with rGII-III glioma with contrast enhancement. In our study, bevacizumab displayed prolonged activity in a subgroup of patients.
Collapse
Affiliation(s)
- Soufyan Annakib
- Department of Medical Oncology, Institut Régional du Cancer de Montpellier, University of Montpellier, Montpellier, France
- Department of Medical Oncology, CHU de Nîmes, University of Montpellier, Nimes, France
| | - Valérie Rigau
- Department of Pathology and Onco-biology, CHU de Montpellier, University of Montpellier, Montpellier, France
- Institut de Génomique Fonctionnelle, INSERM, CNRS, University of Montpellier, Montpellier, France
| | - Amélie Darlix
- Department of Medical Oncology, Institut Régional du Cancer de Montpellier, University of Montpellier, Montpellier, France
- Institut de Génomique Fonctionnelle, INSERM, CNRS, University of Montpellier, Montpellier, France
| | - Catherine Gozé
- Department of Pathology and Onco-biology, CHU de Montpellier, University of Montpellier, Montpellier, France
- Institut de Génomique Fonctionnelle, INSERM, CNRS, University of Montpellier, Montpellier, France
- Faculty of Medicine, University of Montpellier, Montpellier, France
| | - Hugues Duffau
- Institut de Génomique Fonctionnelle, INSERM, CNRS, University of Montpellier, Montpellier, France
- Department of Neurosurgery, CHU de Montpellier, University of Montpellier, Montpellier, France
| | - Luc Bauchet
- Institut de Génomique Fonctionnelle, INSERM, CNRS, University of Montpellier, Montpellier, France
- Department of Neurosurgery, CHU de Montpellier, University of Montpellier, Montpellier, France
| | - Marta Jarlier
- Department of Biostatistics, Institut Régional du Cancer de Montpellier, University of Montpellier, Montpellier, France
| | - Michel Fabbro
- Department of Medical Oncology, Institut Régional du Cancer de Montpellier, University of Montpellier, Montpellier, France
| |
Collapse
|
25
|
Shabanzadeh Nejabad Z, Mabroukzadeh Kavari H, Saffar H, Tavangar SM, Sefidbakht S, Khoshnevisan A, Zare-Mirzaie A, Vasei M, Jafari E, Yaghmaii M, Saffar H. Practice of IDH1, ATRX, and P53 Immunohistochemistry in Integrated Diagnosis of Adult Diffuse Gliomas: Single Center Study. Appl Immunohistochem Mol Morphol 2023; 31:390-398. [PMID: 37278280 DOI: 10.1097/pai.0000000000001135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 05/03/2023] [Indexed: 06/07/2023]
Abstract
Diffuse gliomas exhibit different molecular and genetic profiles with a wide range of heterogeneity and prognosis. Recently, molecular parameters including ATRX, P53, and IDH mutation status or absence or presence of 1p/19q co-deletion have become a crucial part of the diagnosis of diffuse glioma. In the present study, we tried to analyze the routine practice of the above-mentioned molecular markers focusing on the IHC method in cases of adult diffuse gliomas to evaluate their utility in the integrated diagnosis of adult diffuse gliomas. In total, 134 cases of adult diffuse glioma were evaluated. Using the IHC method, 33,12, and 12 cases of IDH mutant Astrocytoma grade 2, 3, 4, and 45 cases of gliobalstoma, IDH wild type, were molecularly diagnosed. By adding the FISH study for 1p/19q co-deletion, 9 and 8 cases of oligodendroglioma grade 2 and 3 also were included. Two IDH mutant cases were negative for IDH1 in IHC but revealed a positive mutation in further molecular testing. Finally, we were not able to incorporate a complete integrated diagnosis in 16/134(11.94%) of cases. The main molecularly unclassified group was histologically high-grade diffuse glial tumors in patients less than 55 years old and negative IDH1 immunostaining. P53 was positive in 23/33 grade 2, 4/12 grade 3, and 7/12 grade 4 astrocytomas, respectively. Four out of 45 glioblastomas showed positive immunostain, and all oligodendrogliomas were negative. In conclusion, a panel of IHC markers for IDH1 R132H, P53, and ATRX significantly improves the molecular classification of adult diffuse gliomas in daily practice and can be used as a tool to select limited cases for co-deletion testing in the low resources area.
Collapse
Affiliation(s)
| | | | - Hana Saffar
- Department of Pathology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences
| | | | - Salma Sefidbakht
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences
| | - Alireza Khoshnevisan
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences
| | - Ali Zare-Mirzaie
- Department of Pathology, Molecular Pathology, School of Medicine, Iran University of Medical Sciences
| | - Mohammad Vasei
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences
| | - Ensieh Jafari
- Department of Biology, Faculty of Basic Science, Noor Danesh University, Isfahan
| | - Marjan Yaghmaii
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Science, Tehran, Iran
| | - Hiva Saffar
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences
| |
Collapse
|
26
|
Sun W, Song C, Tang C, Pan C, Xue P, Fan J, Qiao Y. Performance of deep learning algorithms to distinguish high-grade glioma from low-grade glioma: A systematic review and meta-analysis. iScience 2023; 26:106815. [PMID: 37250800 PMCID: PMC10209541 DOI: 10.1016/j.isci.2023.106815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/23/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
This study aims to evaluate deep learning (DL) performance in differentiating low- and high-grade glioma. Search online database for studies continuously published from 1st January 2015 until 16th August 2022. The random-effects model was used for synthesis, based on pooled sensitivity (SE), specificity (SP), and area under the curve (AUC). Heterogeneity was estimated using the Higgins inconsistency index (I2). 33 were ultimately included in the meta-analysis. The overall pooled SE and SP were 94% and 93%, with an AUC of 0.98. There was great heterogeneity in this field. Our evidence-based study shows DL achieves high accuracy in glioma grading. Subgroup analysis reveals several limitations in this field: 1) Diagnostic trials require standard method for data merging for AI; 2) small sample size; 3) poor-quality image preprocessing; 4) not standard algorithm development; 5) not standard data report; 6) different definition of HGG and LGG; and 7) poor extrapolation.
Collapse
Affiliation(s)
- Wanyi Sun
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng Song
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chao Tang
- Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Chenghao Pan
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Xue
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinhu Fan
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Youlin Qiao
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
27
|
Chen GR, Zhang YB, Zheng SF, Xu YW, Lin P, Shang-Guan HC, Lin YX, Kang DZ, Yao PS. Decreased SPTBN2 expression regulated by the ceRNA network is associated with poor prognosis and immune infiltration in low‑grade glioma. Exp Ther Med 2023; 25:253. [PMID: 37153896 PMCID: PMC10161196 DOI: 10.3892/etm.2023.11952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/24/2023] [Indexed: 05/10/2023] Open
Abstract
The majority of low-grade gliomas (LGGs) in adults invariably progress to glioblastoma over time. Spectrin β non-erythrocytic 2 (SPTBN2) is detected in numerous tumors and is involved in tumor occurrence and metastasis. However, the specific roles and detailed mechanisms of SPTBN2 in LGG are largely unknown. The present study performed pan-cancer analysis for the expression and prognosis of SPTBN2 in LGG using The Cancer Genome Atlas and The Genotype-Tissue Expression. Western blotting was used to detect the amount of SPTBN2 between glioma tissues and normal brain tissues. Subsequently, based on expression, prognosis, correlation and immune infiltration, non-coding RNAs (ncRNAs) were identified that regulated SPTBN2 expression. Finally, tumor immune infiltrates associated with SPTBN2 and prognosis were performed. Lower expression of SPTBN2 was correlated with an unfavorable outcome in LGG. A significant correlation between the low SPTBN2 mRNA expression and poor clinicopathological features was observed, including wild-type isocitrate dehydrogenase status (P<0.001), 1p/19q non-codeletion (P<0.001) and elders (P=0.019). The western blotting results revealed that, compared with normal brain tissues, the amount of SPTBN2 was significantly lower in LGG tissues (P=0.0266). Higher expression of five microRNAs (miRs/miRNAs), including hsa-miR-15a-5p, hsa-miR-15b-5p, hsa-miR-16-5p, hsa-miR-34c-5p and hsa-miR-424-5p, correlated with poor prognosis by targeting SPTBN2 in LGG. Subsequently, four long ncRNAs (lncRNAs) [ARMCX5-GPRASP2, BASP1-antisense RNA 1 (AS1), EPB41L4A-AS1 and LINC00641] were observed in the regulation of SPTBN2 via five miRNAs. Moreover, the expression of SPTBN2 was significantly correlated with tumor immune infiltration, immune checkpoint expression and biomarkers of immune cells. In conclusion, SPTBN2 was lowly expressed and correlated with an unfavorable prognosis in LGG. A total of six miRNAs and four lncRNAs were identified as being able to modulate SPTBN2 in a lncRNA-miRNA-mRNA network of LGG. Furthermore, the current findings also indicated that SPTBN2 possessed anti-tumor roles by regulating tumor immune infiltration and immune checkpoint expression.
Collapse
Affiliation(s)
- Guo-Rong Chen
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, P.R. China
| | - Yi-Bin Zhang
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, P.R. China
| | - Shu-Fa Zheng
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, P.R. China
| | - Ya-Wen Xu
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, P.R. China
| | - Peng Lin
- Department of Pain, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Huang-Cheng Shang-Guan
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, P.R. China
| | - Yuan-Xiang Lin
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - De-Zhi Kang
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, P.R. China
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Correspondence to: Professor De-Zhi Kang or Dr Pei-Sen Yao, Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Taijiang, Fuzhou, Fujian 350005, P.R. China
| | - Pei-Sen Yao
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, P.R. China
- Correspondence to: Professor De-Zhi Kang or Dr Pei-Sen Yao, Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Taijiang, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
28
|
Tejada Solís S, González Sánchez J, Iglesias Lozano I, Plans Ahicart G, Pérez Núñez A, Meana Carballo L, Gil Salú JL, Fernández Coello A, García Romero JC, Rodríguez de Lope Llorca A, García Duque S, Díez Valle R, Narros Giménez JL, Prat Acín R. Low grade gliomas guide-lines elaborated by the tumor section of Spanish Society of Neurosurgery. NEUROCIRUGIA (ENGLISH EDITION) 2023; 34:139-152. [PMID: 36446721 DOI: 10.1016/j.neucie.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/20/2022] [Accepted: 08/01/2022] [Indexed: 05/06/2023]
Abstract
Adult low-grade gliomas (Low Grade Gliomas, LGG) are tumors that originate from the glial cells of the brain and whose management involves great controversy, starting from the diagnosis, to the treatment and subsequent follow-up. For this reason, the Tumor Group of the Spanish Society of Neurosurgery (GT-SENEC) has held a consensus meeting, in which the most relevant neurosurgical issues have been discussed, reaching recommendations based on the best scientific evidence. In order to obtain the maximum benefit from these treatments, an individualised assessment of each patient should be made by a multidisciplinary team. Experts in each LGG treatment field have briefly described it based in their experience and the reviewed of the literature. Each area has been summarized and focused on the best published evidence. LGG have been surrounded by treatment controversy, although during the last years more accurate data has been published in order to reach treatment consensus. Neurosurgeons must know treatment options, indications and risks to participate actively in the decision making and to offer the best surgical treatment in every case.
Collapse
Affiliation(s)
- Sonia Tejada Solís
- Departamento de Neurocirugía, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain.
| | - Josep González Sánchez
- Departamento de Neurocirugía, Hospital Clínic i Provincial de Barcelona, Barcelona, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Irene Iglesias Lozano
- Departamento de Neurocirugía, Hospital Universitario Puerta del Mar, Cádiz, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Gerard Plans Ahicart
- Departamento de Neurocirugía, Hospital Universitari Bellvitge, Barcelona, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Angel Pérez Núñez
- Departamento de Neurocirugía, Hospital Universitario 12 de Octubre, Madrid, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Leonor Meana Carballo
- Departamento de Neurocirugía, Centro Médico de Asturias, Oviedo, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Jose Luis Gil Salú
- Departamento de Neurocirugía, Hospital Universitario Puerta del Mar, Cádiz, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Alejandro Fernández Coello
- Departamento de Neurocirugía, Hospital Universitari Bellvitge, Barcelona, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Juan Carlos García Romero
- Departamento de Neurocirugía, Hospital Virgen del Rocío, Sevilla, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Angel Rodríguez de Lope Llorca
- Departamento de Neurocirugía, Hospital Virgen de la Salud, Toledo, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Sara García Duque
- Departamento de Neurocirugía, Hospital Universitario La Fe, Valencia, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Ricardo Díez Valle
- Departamento de Neurocirugía, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Jose Luis Narros Giménez
- Departamento de Neurocirugía, Hospital Virgen del Rocío, Sevilla, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Ricardo Prat Acín
- Departamento de Neurocirugía, Hospital Universitario La Fe, Valencia, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain
| |
Collapse
|
29
|
Pang Y, Chen X, Ji T, Cheng M, Wang R, Zhang C, Liu M, Zhang J, Zhong C. The Chromatin Remodeler ATRX: Role and Mechanism in Biology and Cancer. Cancers (Basel) 2023; 15:cancers15082228. [PMID: 37190157 DOI: 10.3390/cancers15082228] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
The alpha-thalassemia mental retardation X-linked (ATRX) syndrome protein is a chromatin remodeling protein that primarily promotes the deposit of H3.3 histone variants in the telomere area. ATRX mutations not only cause ATRX syndrome but also influence development and promote cancer. The primary molecular characteristics of ATRX, including its molecular structures and normal and malignant biological roles, are reviewed in this article. We discuss the role of ATRX in its interactions with the histone variant H3.3, chromatin remodeling, DNA damage response, replication stress, and cancers, particularly gliomas, neuroblastomas, and pancreatic neuroendocrine tumors. ATRX is implicated in several important cellular processes and serves a crucial function in regulating gene expression and genomic integrity throughout embryogenesis. However, the nature of its involvement in the growth and development of cancer remains unknown. As mechanistic and molecular investigations on ATRX disclose its essential functions in cancer, customized therapies targeting ATRX will become accessible.
Collapse
Affiliation(s)
- Ying Pang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai 200120, China
| | - Xu Chen
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai 200120, China
| | - Tongjie Ji
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai 200120, China
| | - Meng Cheng
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai 200120, China
| | - Rui Wang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai 200120, China
| | - Chunyu Zhang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai 200120, China
| | - Min Liu
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai 200120, China
| | - Jing Zhang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai 200120, China
- Institute for Advanced Study, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Road, Shanghai 200120, China
| |
Collapse
|
30
|
Copaciu R, Rashidian J, Lloyd J, Yahyabeik A, McClure J, Cummings K, Su Q. Characterization of an IDH1 R132H Rabbit Monoclonal Antibody, MRQ-67, and Its Applications in the Identification of Diffuse Gliomas. Antibodies (Basel) 2023; 12:antib12010014. [PMID: 36810519 PMCID: PMC9944093 DOI: 10.3390/antib12010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
The current diagnosis of diffuse glioma involves isocitrate dehydrogenase (IDH) mutation testing. Most IDH mutant gliomas carry a G-to-A mutation at IDH1 position 395, resulting in the R132H mutant. R132H immunohistochemistry (IHC), therefore, is used to screen for the IDH1 mutation. In this study, the performance of MRQ-67, a recently generated IDH1 R132H antibody, was characterized in comparison with H09, a frequently used clone. Selective binding was demonstrated by an enzyme-linked immunosorbent assay for MRQ-67 to the R132H mutant, with an affinity higher than that for H09. By Western and dot immunoassays, MRQ-67 was found to bind specifically to the IDH1 R1322H, with a higher capacity than H09. IHC testing with MRQ-67 demonstrated a positive signal in most diffuse astrocytomas (16/22), oligodendrogliomas (9/15), and secondary glioblastomas tested (3/3), but not in primary glioblastomas (0/24). While both clones demonstrated a positive signal with similar patterns and equivalent intensities, H09 exhibited a background stain more frequently. DNA sequencing on 18 samples showed the R132H mutation in all IHC positive cases (5/5), but not in negative cases (0/13). These results demonstrate that MRQ-67 is a high-affinity antibody suitable for specific detection of the IDH1 R132H mutant by IHC and with less background as compared with H09.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qin Su
- Correspondence: ; Tel.: +1-916-746-8961
| |
Collapse
|
31
|
Liu K, Liao X, Chen Y, Jiang S. Adjuvant Chemoradiation Therapy Versus Chemotherapy Alone for Resected Oligodendroglioma: A Surveillance, Epidemiology and End Results (SEER) Analysis. World Neurosurg 2023; 170:e37-e44. [PMID: 36273731 DOI: 10.1016/j.wneu.2022.10.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The benefit of postoperative adjuvant therapy for survival of oligodendrocyte glioma remains unclear. In this study, we compared the effect of chemoradiation therapy (CRT) and chemotherapy (CT) alone in patients who underwent resection. We aim to identify which adjuvant therapy provides more survival benefits. METHODS We identified patients who underwent oligodendroglioma resection in the Surveillance, Epidemiology and End Results (SEER) database. A multivariate Cox regression analysis was used to evaluate the factors affecting survival rates. We used a propensity matching analysis to minimize selection bias in each group. We performed subgroup analyses based on patients' clinical characteristics. RESULTS This study identified 1826 patients who received adjuvant CT (n = 503) or adjuvant CRT (n = 1323). On multivariate analysis, elderly, white and other race, and temporal lobe and parietal lobe tumor site were independent risk factors for improved overall survival (OS). After 1:1 propensity match, we included 501 patients who received CT and 501 with CRT. Patients in the CT group showed improved overall survival rate compared with those who received CRT (median OS: 146 months vs. 111 months). Subgroup analysis showed that improved overall survival in CT group was more significant in patients who were younger or older, male or female, white race, frontal lobe and parietal lobe tumor site, smaller tumor size (≤4 cm), and with gross total resection (GTR) (P < 0.05). CONCLUSIONS In patients with resected oligodendroglioma, adjuvant CT is associated with better survival compared to adjuvant CRT. The benefit was more significant in patients who were younger and older, male and female, white race, frontal lobe and parietal lobe tumor site, smaller tumor size (≤4 cm), and with GTR.
Collapse
Affiliation(s)
- Kepeng Liu
- Department of Anesthesiology, Zhongshan Hospital of Sun Yat-Sen University (Zhongshan City People's Hospital), Zhongshan, Guangdong, China
| | - Xiaozu Liao
- Department of Anesthesiology, Zhongshan Hospital of Sun Yat-Sen University (Zhongshan City People's Hospital), Zhongshan, Guangdong, China
| | - Yong Chen
- Department of Anesthesiology, Zhongshan Hospital of Sun Yat-Sen University (Zhongshan City People's Hospital), Zhongshan, Guangdong, China
| | - Shengjie Jiang
- Department of Anesthesiology, Zhongshan Hospital of Sun Yat-Sen University (Zhongshan City People's Hospital), Zhongshan, Guangdong, China.
| |
Collapse
|
32
|
Zhang L, Pan H, Liu Z, Gao J, Xu X, Wang L, Wang J, Tang Y, Cao X, Kan Y, Wen Z, Chen J, Huang D, Chen S, Li Y. Multicenter clinical radiomics-integrated model based on [ 18F]FDG PET and multi-modal MRI predict ATRX mutation status in IDH-mutant lower-grade gliomas. Eur Radiol 2023; 33:872-883. [PMID: 35984514 DOI: 10.1007/s00330-022-09043-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 07/01/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVES To develop a clinical radiomics-integrated model based on 18 F-fluorodeoxyglucose positron emission tomography ([18F]FDG PET) and multi-modal MRI for predicting alpha thalassemia/mental retardation X-linked (ATRX) mutation status of IDH-mutant lower-grade gliomas (LGGs). METHODS One hundred and two patients (47 ATRX mutant-type, 55 ATRX wild-type) diagnosed with IDH-mutant LGGs (CNS WHO grades 1 and 2) were retrospectively enrolled. A total of 5540 radiomics features were extracted from structural MR (sMR) images (contrast-enhanced T1-weighted imaging, CE-T1WI; T2-weighted imaging, and T2WI), functional MR (fMR) images (apparent diffusion coefficient, ADC; cerebral blood volume, CBV), and metabolic PET images ([18F]FDG PET). The random forest algorithm was used to establish a clinical radiomics-integrated model, integrating the optimal multi-modal radiomics model with three clinical parameters. The predictive effectiveness of the models was evaluated by receiver operating characteristic (ROC) and decision curve analysis (DCA). RESULTS The optimal multi-modal model incorporated sMR (CE-T1WI), fMR (ADC), and metabolic ([18F]FDG) images ([18F]FDG PET+ADC+ CE-T1WI) with the area under curves (AUCs) in the training and test groups of 0.971 and 0.962, respectively. The clinical radiomics-integrated model, incorporating [18F]FDG PET+ADC+CE-T1WI, three clinical parameters (KPS, SFSD, and ATGR), showed the best predictive effectiveness in the training and test groups (0.987 and 0.975, respectively). CONCLUSIONS The clinical radiomics-integrated model with metabolic, structural, and functional information based on [18F]FDG PET and multi-modal MRI achieved promising performance for predicting the ATRX mutation status of IDH-mutant LGGs. KEY POINTS • The clinical radiomics-integrated model based on [18F]FDG PET and multi-modal MRI achieved promising performance for predicting ATRX mutation status in LGGs. • The study investigated the value of multicenter clinical radiomics-integrated model based on [18F]FDG PET and multi-modal MRI in LGGs regarding ATRX mutation status prediction. • The integrated model provided structural, functional, and metabolic information simultaneously and demonstrated with satisfactory calibration and discrimination in the training and test groups (0.987 and 0.975, respectively).
Collapse
Affiliation(s)
- Liqiang Zhang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hongyu Pan
- College of Computer & Information Science, Southwest University, Chongqing, 400715, China
| | - Zhi Liu
- Department of Radiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Jueni Gao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xinyi Xu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Linlin Wang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jie Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yi Tang
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China
| | - Xu Cao
- School of Medical and Life Sciences Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China
| | - Yubo Kan
- Department of Nuclear Medicine, United Medical Imaging Center, Chongqing, 400038, China
| | - Zhipeng Wen
- Department of Radiology, Sichuan Cancer Hospital, Chengdu, 610042, China
| | - Jianjun Chen
- Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Dingde Huang
- Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Shanxiong Chen
- College of Computer & Information Science, Southwest University, Chongqing, 400715, China.
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
33
|
Reuss DE. Updates on the WHO diagnosis of IDH-mutant glioma. J Neurooncol 2023; 162:461-469. [PMID: 36717507 DOI: 10.1007/s11060-023-04250-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/24/2023] [Indexed: 02/01/2023]
Abstract
PURPOSE The WHO classification of Tumors of the Central Nervous System represents the international standard classification for brain tumors. In 2021 the 5th edition (WHO CNS5) was published, and this review summarizes the changes regarding IDH-mutant gliomas and discusses unsolved issues and future perspectives. METHODS This review is based on the 5th edition of the WHO Blue Book of CNS tumors (WHO CNS5) and relevant related papers. RESULTS Major changes include taxonomy and nomenclature of IDH-mutant gliomas. Essential and desirable criteria for classification were established considering technical developments. For the first time molecular features are not only relevant for the classification of IDH-mutant gliomas but may impact grading as well. CONCLUSION WHO CNS5 classification moves forward towards a classification which is founded on tumor biology and serves clinical needs. The rapidly increasing knowledge on the molecular landscape of IDH-mutant gliomas is expected to further refine classification and grading in the future.
Collapse
Affiliation(s)
- David E Reuss
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
| |
Collapse
|
34
|
Li S, Wang C, Chen J, Lan Y, Zhang W, Kang Z, Zheng Y, Zhang R, Yu J, Li W. Signaling pathways in brain tumors and therapeutic interventions. Signal Transduct Target Ther 2023; 8:8. [PMID: 36596785 PMCID: PMC9810702 DOI: 10.1038/s41392-022-01260-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 01/05/2023] Open
Abstract
Brain tumors, although rare, contribute to distinct mortality and morbidity at all ages. Although there are few therapeutic options for brain tumors, enhanced biological understanding and unexampled innovations in targeted therapies and immunotherapies have considerably improved patients' prognoses. Nonetheless, the reduced response rates and unavoidable drug resistance of currently available treatment approaches have become a barrier to further improvement in brain tumor (glioma, meningioma, CNS germ cell tumors, and CNS lymphoma) treatment. Previous literature data revealed that several different signaling pathways are dysregulated in brain tumor. Importantly, a better understanding of targeting signaling pathways that influences malignant behavior of brain tumor cells might open the way for the development of novel targeted therapies. Thus, there is an urgent need for a more comprehensive understanding of the pathogenesis of these brain tumors, which might result in greater progress in therapeutic approaches. This paper began with a brief description of the epidemiology, incidence, risk factors, as well as survival of brain tumors. Next, the major signaling pathways underlying these brain tumors' pathogenesis and current progress in therapies, including clinical trials, targeted therapies, immunotherapies, and system therapies, have been systemically reviewed and discussed. Finally, future perspective and challenges of development of novel therapeutic strategies in brain tumor were emphasized.
Collapse
Affiliation(s)
- Shenglan Li
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Can Wang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinyi Chen
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanjie Lan
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weichunbai Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhuang Kang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi Zheng
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Rong Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianyu Yu
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenbin Li
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
35
|
Horbinski C, Nabors LB, Portnow J, Baehring J, Bhatia A, Bloch O, Brem S, Butowski N, Cannon DM, Chao S, Chheda MG, Fabiano AJ, Forsyth P, Gigilio P, Hattangadi-Gluth J, Holdhoff M, Junck L, Kaley T, Merrell R, Mrugala MM, Nagpal S, Nedzi LA, Nevel K, Nghiemphu PL, Parney I, Patel TR, Peters K, Puduvalli VK, Rockhill J, Rusthoven C, Shonka N, Swinnen LJ, Weiss S, Wen PY, Willmarth NE, Bergman MA, Darlow S. NCCN Guidelines® Insights: Central Nervous System Cancers, Version 2.2022. J Natl Compr Canc Netw 2023; 21:12-20. [PMID: 36634606 DOI: 10.6004/jnccn.2023.0002] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The NCCN Guidelines for Central Nervous System (CNS) Cancers focus on management of the following adult CNS cancers: glioma (WHO grade 1, WHO grade 2-3 oligodendroglioma [1p19q codeleted, IDH-mutant], WHO grade 2-4 IDH-mutant astrocytoma, WHO grade 4 glioblastoma), intracranial and spinal ependymomas, medulloblastoma, limited and extensive brain metastases, leptomeningeal metastases, non-AIDS-related primary CNS lymphomas, metastatic spine tumors, meningiomas, and primary spinal cord tumors. The information contained in the algorithms and principles of management sections in the NCCN Guidelines for CNS Cancers are designed to help clinicians navigate through the complex management of patients with CNS tumors. Several important principles guide surgical management and treatment with radiotherapy and systemic therapy for adults with brain tumors. The NCCN CNS Cancers Panel meets at least annually to review comments from reviewers within their institutions, examine relevant new data from publications and abstracts, and reevaluate and update their recommendations. These NCCN Guidelines Insights summarize the panel's most recent recommendations regarding molecular profiling of gliomas.
Collapse
Affiliation(s)
- Craig Horbinski
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University
| | | | | | | | | | | | - Steven Brem
- Abramson Cancer Center at the University of Pennsylvania
| | | | | | - Samuel Chao
- Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute
| | - Milan G Chheda
- Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine
| | | | | | - Pierre Gigilio
- The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute
| | | | | | | | | | | | | | | | - Lucien A Nedzi
- St. Jude Children's Research Hospital/The University of Tennessee Health Science Center
| | - Kathryn Nevel
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center
| | | | | | | | | | - Vinay K Puduvalli
- The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute
| | | | | | | | - Lode J Swinnen
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | | | | | | | | | | |
Collapse
|
36
|
Viaene AN. Pediatric brain tumors: A neuropathologist's approach to the integrated diagnosis. Front Pediatr 2023; 11:1143363. [PMID: 36969278 PMCID: PMC10030595 DOI: 10.3389/fped.2023.1143363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
The classification of tumors of the central nervous system (CNS) is a rapidly evolving field. While tumors were historically classified on the basis of morphology, the recent integration of molecular information has greatly refined this process. In some instances, molecular alterations provide significant prognostic implications beyond what can be ascertained by morphologic examination alone. Additionally, tumors may harbor molecular alterations that provide a therapeutic target. Pediatric CNS tumors, in particular, rely heavily on the integration of molecular data with histologic, clinical, and radiographic features to reach the most accurate diagnosis. This review aims to provide insight into a neuropathologist's approach to the clinical workup of pediatric brain tumors with an ultimate goal of reaching an integrated diagnosis that provides the most accurate classification and informs prognosis and therapy selection. The primary focus will center on how histology and molecular findings are used in combination with clinical and radiographic information to reach a final, integrated diagnosis.
Collapse
Affiliation(s)
- Angela N. Viaene
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Correspondence: Angela N. Viaene
| |
Collapse
|
37
|
Tyagunova EE, Zakharov AS, Glukhov AI, Dobrokhotova VZ, Shlapakov TI, Kozlov VV, Korotkova NV, Tyagunova TE. Features of epileptiform activity in patients with diagnosed glioblastoma: from genetic and biochemical mechanisms to clinical aspects. HEAD AND NECK TUMORS (HNT) 2022. [DOI: 10.17650/2222-1468-2022-12-3-102-113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction. glioblastomas multiforme (grade Iv gliomas) are common and the most aggressive primary tumors of the brain with very unfavorable prognosis. In all previously published papers on epileptiform activity in glioblastomas, not enough information on encephalogram results is presented.Aim. To study the features of epileptiform activity in patients with glioblastomas and development of a plan for further study of these patients.Materials and methods. An analysis of articles from Elsevier, Embase, Scopus, The Cochrane Library, global Health, Russian Science Citation Index (RSCI) databases, Scholar, google, web of Science, pubmed search engines and scientific electronic library CyberLeninka was performed. materials were selected considering journal indexing system and citations, scientific novelty of the studies, statistical significance of the results. publications repeating data from previous articles or describing animal experiments were excluded from analysis.Results. During the study, data on mechanisms of epileptiform activity pathogenesis, predisposing factors (tumor location in the temporal, frontal or parietal lobes, IDH-1 and / or IDH-2 gene mutations), treatment options in patients with glioblastomas were systemized. Additionally, and original plan of data accumulation for clinical studied taking into account limitations of the previous studies was developed to increase quality of results interpretation.Conclusion. Epileptiform symptoms in glioblastomas negatively affect patients’ quality of life and lifespan. Currently, researchers actively search for an effective method of treatment of epileptic seizures in patients with glioblastomas. The most effective is combination of temozolomide with valproate and levetiracetam due to good control of seizure frequency, low toxicity, and pharmacological synergy between the drugs.
Collapse
Affiliation(s)
- E. E. Tyagunova
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | - A. S. Zakharov
- Pavlov Ryazan State Medical University, Ministry of Health of Russia
| | - A. I. Glukhov
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia; M.V. Lomonosov Moscow State University
| | - V. Z. Dobrokhotova
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia; N. N. Blokhin National Research Institute of Oncology, Ministry of Health of Russia
| | - T. I. Shlapakov
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | - V. V. Kozlov
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | - N. V. Korotkova
- Pavlov Ryazan State Medical University, Ministry of Health of Russia
| | | |
Collapse
|
38
|
Jakola AS, Pedersen LK, Skjulsvik AJ, Myrmel K, Sjåvik K, Solheim O. The impact of resection in IDH-mutant WHO grade 2 gliomas: a retrospective population-based parallel cohort study. J Neurosurg 2022; 137:1321-1328. [PMID: 35245899 PMCID: PMC10193505 DOI: 10.3171/2022.1.jns212514] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/10/2022] [Indexed: 12/17/2022]
Abstract
OBJECTIVE IDH-mutant diffuse low-grade gliomas (dLGGs; WHO grade 2) are often considered to have a more indolent course. In particular, in patients with 1p19q codeleted oligodendrogliomas, survival can be very long. Therefore, extended follow-up in clinical studies of IDH-mutant dLGG is needed. The authors' primary aim was to determine results after a minimum 10-year follow-up in two hospitals advocating different surgical policies. In one center early resection was favored; in the other center an early biopsy and wait-and-scan approach was the dominant management. In addition, the authors present survival and health-related quality of life (HRQOL) in stratified groups of patients with IDH-mutant astrocytoma and oligodendroglioma. METHODS The authors conducted a retrospective, population-based, parallel cohort study with extended long-term follow-up. The inclusion criteria were histopathological diagnosis of IDH-mutant supratentorial dLGG from 1998 through 2009 in patients aged 18 years or older. Follow-up ended January 1, 2021; therefore, all patients had primary surgery more than 10 years earlier. In region A, a biopsy and wait-and-scan approach was favored, while early resections were advocated in region B. Regional referral practice ensured population-based data, since referral to respective centers was based strictly on the patient's residential address. Previous data from EQ-5D-3L, European Organisation for Research and Treatment of Cancer (EORTC) QLQ-C30, and EORTC BN20 questionnaires were reanalyzed with respect to the current selection of IDH-mutant dLGG and to molecular subgroups. The prespecified primary endpoint was long-term regional comparison of overall survival. Secondarily, between-group differences in long-term HRQOL measures were explored. RESULTS Forty-eight patients from region A and 56 patients from region B were included. Early resection was performed in 17 patients (35.4%) from region A compared with 53 patients (94.6%) from region B (p < 0.001). Characteristics at baseline were otherwise similar between cohorts. Overall survival was 7.5 years (95% CI 4.1-10.8) in region A compared with 14.6 years (95% CI 11.5-17.7) in region B (p = 0.04). When stratified according to molecular subgroups, there was only a statistically significant survival benefit in favor of early resection for patients with astrocytomas. The were no apparent differences in the different HRQOL measures between cohorts. CONCLUSIONS In an extended follow-up of patients with IDH-mutant dLGGs, early resection was associated with a sustained and clinically relevant survival benefit. The survival benefit was not counteracted by any detectable reduction in HRQOL.
Collapse
Affiliation(s)
- Asgeir S Jakola
- 1Department of Neurosurgery, St. Olav's University Hospital, Trondheim, Norway
- 2Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
- 3Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | | | - Anne J Skjulsvik
- 5Department of Pathology, St. Olav's University Hospital, Trondheim, Norway
- 6Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristin Myrmel
- 7Department of Clinical Pathology, University Hospital of Northern Norway, Tromsø, Norway; and
| | - Kristin Sjåvik
- 4Department of Neurosurgery, University Hospital of Northern Norway, Tromsø, Norway
| | - Ole Solheim
- 1Department of Neurosurgery, St. Olav's University Hospital, Trondheim, Norway
- 8Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
39
|
Meng L, Zhang R, Fa L, Zhang L, Wang L, Shao G. ATRX status in patients with gliomas: Radiomics analysis. Medicine (Baltimore) 2022; 101:e30189. [PMID: 36123880 PMCID: PMC9478307 DOI: 10.1097/md.0000000000030189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
MATERIAL AND METHODS A cohort of 123 patients diagnosed with gliomas (World Health Organization grades II-IV) who underwent surgery and was treated at our center between January 2016 and July 2020, was enrolled in this retrospective study. Radiomics features were extracted from MR T1WI, T2WI, T2FLAIR, CE-T1WI, and ADC images. Patients were randomly split into training and validation sets at a ratio of 4:1. A radiomics signature was constructed using the least absolute shrinkage and selection operator (LASSO) to train the SVM model using the training set. The prediction accuracy and area under curve and other evaluation indexes were used to explore the performance of the model established in this study for predicting the ATRX mutation state. RESULTS Fifteen radiomic features were selected to generate an ATRX-associated radiomic signature using the LASSO logistic regression model. The area under curve for ATRX mutation (ATRX(-)) on training set was 0.93 (95% confidence interval [CI]: 0.87-1.0), with the sensitivity, specificity and accuracy being 0.91, 0.82 and 0.88, while on the validation set were 0.84 (95% CI: 0.63-0.91), with the sensitivity, specificity and accuracy of 0.73, 0.86, and 0.79, respectively. CONCLUSIONS These results indicate that radiomic features derived from preoperative MRI facilitat efficient prediction of ATRX status in gliomas, thus providing a novel evaluation method for noninvasive imaging biomarkers.
Collapse
Affiliation(s)
- Linlin Meng
- Department of Radiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ran Zhang
- Huiying Medical Technology Co. Ltd, Beijing, China
| | - Liangguo Fa
- Department of Radiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lulu Zhang
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Linlin Wang
- Department of Radiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Guangrui Shao
- Department of Radiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- * Correspondence: Guangrui Shao, Department of Radiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Road, Jinan, Shandong (e-mail: )
| |
Collapse
|
40
|
Richardson TE, Walker JM, Abdullah KG, McBrayer SK, Viapiano MS, Mussa ZM, Tsankova NM, Snuderl M, Hatanpaa KJ. Chromosomal instability in adult-type diffuse gliomas. Acta Neuropathol Commun 2022; 10:115. [PMID: 35978439 PMCID: PMC9386991 DOI: 10.1186/s40478-022-01420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/04/2022] [Indexed: 11/14/2022] Open
Abstract
Chromosomal instability (CIN) is a fundamental property of cancer and a key underlying mechanism of tumorigenesis and malignant progression, and has been documented in a wide variety of cancers, including colorectal carcinoma with mutations in genes such as APC. Recent reports have demonstrated that CIN, driven in part by mutations in genes maintaining overall genomic stability, is found in subsets of adult-type diffusely infiltrating gliomas of all histologic and molecular grades, with resulting elevated overall copy number burden, chromothripsis, and poor clinical outcome. Still, relatively few studies have examined the effect of this process, due in part to the difficulty of routinely measuring CIN clinically. Herein, we review the underlying mechanisms of CIN, the relationship between chromosomal instability and malignancy, the prognostic significance and treatment potential in various cancers, systemic disease, and more specifically, in diffusely infiltrating glioma subtypes. While still in the early stages of discovery compared to other solid tumor types in which CIN is a known driver of malignancy, the presence of CIN as an early factor in gliomas may in part explain the ability of these tumors to develop resistance to standard therapy, while also providing a potential molecular target for future therapies.
Collapse
Affiliation(s)
- Timothy E. Richardson
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15th Floor, 1468 Madison Avenue, New York, NY 10029 USA
| | - Jamie M. Walker
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15th Floor, 1468 Madison Avenue, New York, NY 10029 USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Kalil G. Abdullah
- Department of Neurosurgery, University of Pittsburgh School of Medicine, 200 Lothrop St, Pittsburgh, PA 15213 USA
- Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA 15232 USA
| | - Samuel K. McBrayer
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Mariano S. Viapiano
- Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY 13210 USA
- Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, NY 13210 USA
| | - Zarmeen M. Mussa
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15th Floor, 1468 Madison Avenue, New York, NY 10029 USA
| | - Nadejda M. Tsankova
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15th Floor, 1468 Madison Avenue, New York, NY 10029 USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Matija Snuderl
- Department of Pathology, New York University Langone Health, New York City, NY 10016 USA
| | - Kimmo J. Hatanpaa
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| |
Collapse
|
41
|
Xu J, Meng Y, Qiu K, Topatana W, Li S, Wei C, Chen T, Chen M, Ding Z, Niu G. Applications of Artificial Intelligence Based on Medical Imaging in Glioma: Current State and Future Challenges. Front Oncol 2022; 12:892056. [PMID: 35965542 PMCID: PMC9363668 DOI: 10.3389/fonc.2022.892056] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/22/2022] [Indexed: 12/24/2022] Open
Abstract
Glioma is one of the most fatal primary brain tumors, and it is well-known for its difficulty in diagnosis and management. Medical imaging techniques such as magnetic resonance imaging (MRI), positron emission tomography (PET), and spectral imaging can efficiently aid physicians in diagnosing, treating, and evaluating patients with gliomas. With the increasing clinical records and digital images, the application of artificial intelligence (AI) based on medical imaging has reduced the burden on physicians treating gliomas even further. This review will classify AI technologies and procedures used in medical imaging analysis. Additionally, we will discuss the applications of AI in glioma, including tumor segmentation and classification, prediction of genetic markers, and prediction of treatment response and prognosis, using MRI, PET, and spectral imaging. Despite the benefits of AI in clinical applications, several issues such as data management, incomprehension, safety, clinical efficacy evaluation, and ethical or legal considerations, remain to be solved. In the future, doctors and researchers should collaborate to solve these issues, with a particular emphasis on interdisciplinary teamwork.
Collapse
Affiliation(s)
- Jiaona Xu
- Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuting Meng
- Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kefan Qiu
- Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Win Topatana
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shijie Li
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Wei
- Department of Neurology, Affiliated Ningbo First Hospital, Ningbo, China
| | - Tianwen Chen
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingyu Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Mingyu Chen, ; Zhongxiang Ding, ; Guozhong Niu,
| | - Zhongxiang Ding
- Department of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Mingyu Chen, ; Zhongxiang Ding, ; Guozhong Niu,
| | - Guozhong Niu
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Mingyu Chen, ; Zhongxiang Ding, ; Guozhong Niu,
| |
Collapse
|
42
|
Internò V, Triggiano G, De Santis P, Stucci LS, Tucci M, Porta C. Molecular Aberrations Stratify Grade 2 Astrocytomas Into Several Rare Entities: Prognostic and Therapeutic Implications. Front Oncol 2022; 12:866623. [PMID: 35756624 PMCID: PMC9226400 DOI: 10.3389/fonc.2022.866623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
The identification of specific molecular aberrations guides the prognostic stratification and management of grade 2 astrocytomas. Mutations in isocitrate dehydrogenase (IDH) 1 and 2, found in the majority of adult diffuse low-grade glioma (DLGG), seem to relate to a favorable prognosis compared to IDH wild-type (IDH-wt) counterparts. Moreover, the IDH-wt group can develop additional molecular alterations worsening the prognosis, such as epidermal growth factor receptor amplification (EGFR-amp) and mutation of the promoter of telomerase reverse transcriptase (pTERT-mut). This review analyzes the prognostic impact and therapeutic implications of genetic alterations in adult LGG.
Collapse
Affiliation(s)
- Valeria Internò
- Department of Interdisciplinary Medicine, University of Bari 'Aldo Moro', Bari, Italy.,Division of Medical Oncology, Policlinico Hospital of Bari, Bari, Italy
| | - Giacomo Triggiano
- Division of Medical Oncology, Policlinico Hospital of Bari, Bari, Italy
| | | | | | - Marco Tucci
- Department of Interdisciplinary Medicine, University of Bari 'Aldo Moro', Bari, Italy.,Division of Medical Oncology, Policlinico Hospital of Bari, Bari, Italy
| | - Camillo Porta
- Department of Interdisciplinary Medicine, University of Bari 'Aldo Moro', Bari, Italy.,Division of Medical Oncology, Policlinico Hospital of Bari, Bari, Italy
| |
Collapse
|
43
|
Kikuchi K, Togao O, Yamashita K, Momosaka D, Kikuchi Y, Kuga D, Hata N, Mizoguchi M, Yamamoto H, Iwaki T, Hiwatashi A, Ishigami K. Quantitative relaxometry using synthetic MRI could be better than T2-FLAIR mismatch sign for differentiation of IDH-mutant gliomas: a pilot study. Sci Rep 2022; 12:9197. [PMID: 35654812 PMCID: PMC9163057 DOI: 10.1038/s41598-022-13036-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 05/19/2022] [Indexed: 11/09/2022] Open
Abstract
This study aimed to determine whether quantitative relaxometry using synthetic magnetic resonance imaging (SyMRI) could differentiate between two diffuse glioma groups with isocitrate dehydrogenase (IDH)-mutant tumors, achieving an increased sensitivity compared to the qualitative T2-fluid-attenuated inversion recovery (FLAIR) mismatch sign. Between May 2019 and May 2020, thirteen patients with IDH-mutant diffuse gliomas, including seven with astrocytomas and six with oligodendrogliomas, were evaluated. Five neuroradiologists independently evaluated the presence of the qualitative T2-FLAIR mismatch sign. Interrater agreement on the presence of the T2-FLAIR mismatch sign was calculated using the Fleiss kappa coefficient. SyMRI parameters (T1 and T2 relaxation times and proton density) were measured in the gliomas and compared by the Mann-Whitney U test. Receiver operating characteristic curve analysis was used to evaluate the diagnostic performance. The sensitivity, specificity, and kappa coefficient were 57.1%, 100%, and 0.60, respectively, for the qualitative T2-FLAIR mismatch sign. The two types of diffuse gliomas could be differentiated using a cutoff value of 178 ms for the T2 relaxation time parameter with 100% sensitivity, specificity, accuracy, and positive and negative predictive values, with an area under the curve (AUC) of 1.00. Quantitative relaxometry using SyMRI could differentiate astrocytomas from oligodendrogliomas, achieving an increased sensitivity and objectivity compared to the qualitative T2-FLAIR mismatch sign.
Collapse
Affiliation(s)
- Kazufumi Kikuchi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Osamu Togao
- Department of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Koji Yamashita
- National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Daichi Momosaka
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshitomo Kikuchi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daisuke Kuga
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuhiro Hata
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hidetaka Yamamoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toru Iwaki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akio Hiwatashi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kousei Ishigami
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
44
|
Felix M, Friedel D, Jayavelu AK, Filipski K, Reinhardt A, Warnken U, Stichel D, Schrimpf D, Korshunov A, Wang Y, Kessler T, Etminan N, Unterberg A, Herold-Mende C, Heikaus L, Sahm F, Wick W, Harter PN, von Deimling A, Reuss DE. HIP1R and vimentin immunohistochemistry predict 1p/19q status in IDH-mutant glioma. Neuro Oncol 2022; 24:2121-2132. [PMID: 35511748 PMCID: PMC9713528 DOI: 10.1093/neuonc/noac111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND IDH-mutant gliomas are separate based on the codeletion of the chromosomal arms 1p and 19q into oligodendrogliomas IDH-mutant 1p/19q-codeleted and astrocytomas IDH-mutant. While nuclear loss of ATRX expression excludes 1p/19q codeletion, its limited sensitivity prohibits to conclude on 1p/19q status in tumors with retained nuclear ATRX expression. METHODS Employing mass spectrometry based proteomic analysis in a discovery series containing 35 fresh frozen and 72 formalin fixed and paraffin embedded tumors with established IDH and 1p/19q status, potential biomarkers were discovered. Subsequent validation immunohistochemistry was conducted on two independent series (together 77 oligodendrogliomas IDH-mutant 1p/19q-codeleted and 92 astrocytomas IDH-mutant). RESULTS We detected highly specific protein patterns distinguishing oligodendroglioma and astrocytoma. In these patterns, high HIP1R and low vimentin levels were observed in oligodendroglioma while low HIP1R and high vimentin levels occurred in astrocytoma. Immunohistochemistry for HIP1R and vimentin expression in 35 cases from the FFPE discovery series confirmed these findings. Blinded evaluation of the validation cohorts predicted the 1p/19q status with a positive and negative predictive value as well as an accuracy of 100% in the first cohort and with a positive predictive value of 83%; negative predictive value of 100% and an accuracy of 92% in the second cohort. Nuclear ATRX loss as marker for astrocytoma increased the sensitivity to 96% and the specificity to 100%. CONCLUSIONS We demonstrate that immunohistochemistry for HIP1R, vimentin, and ATRX predict 1p/19q status with 100% specificity and 95% sensitivity and therefore, constitutes a simple and inexpensive approach to the classification of IDH-mutant glioma.
Collapse
Affiliation(s)
- Marius Felix
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Dennis Friedel
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Ashok Kumar Jayavelu
- Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center (DKFZ), Heidelberg, Germany,Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany,Hopp Children’s Cancer Center Heidelberg - KiTZ, Heidelberg, Germany,Molecular Medicine Partnership Unit, EMBL, Heidelberg, Germany
| | - Katharina Filipski
- Institute of Neurology, (Edinger Institute), University Hospital, Frankfurt Am Main, Germany,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Heidelberg, Germany,German Cancer Research Center (DKFZ), Heidelberg, Germany,University Cancer Center (UCT), Frankfurt, Germany
| | - Annekathrin Reinhardt
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Uwe Warnken
- Clinical Cooperation Unit Neurooncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Damian Stichel
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Daniel Schrimpf
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Andrey Korshunov
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Yueting Wang
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Tobias Kessler
- Clinical Cooperation Unit Neurooncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany,Department of Neurology and Neurooncology Program, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Nima Etminan
- Department of Neurosurgery, University Hospital Mannheim, University of Heidelberg
| | - Andreas Unterberg
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | | | | | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick N Harter
- Institute of Neurology, (Edinger Institute), University Hospital, Frankfurt Am Main, Germany,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Heidelberg, Germany,German Cancer Research Center (DKFZ), Heidelberg, Germany,Frankfurt Cancer Institute (FCI), Frankfurt Am Main, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - David E Reuss
- Corresponding Author: David E. Reuss, MD, Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany ()
| |
Collapse
|
45
|
Brat DJ, Aldape K, Bridge JA, Canoll P, Colman H, Hameed MR, Harris BT, Hattab EM, Huse JT, Jenkins RB, Lopez-Terrada DH, McDonald WC, Rodriguez FJ, Souter LH, Colasacco C, Thomas NE, Yount MH, van den Bent MJ, Perry A. Molecular Biomarker Testing for the Diagnosis of Diffuse Gliomas. Arch Pathol Lab Med 2022; 146:547-574. [PMID: 35175291 PMCID: PMC9311267 DOI: 10.5858/arpa.2021-0295-cp] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 11/06/2022]
Abstract
CONTEXT.— The diagnosis and clinical management of patients with diffuse gliomas (DGs) have evolved rapidly over the past decade with the emergence of molecular biomarkers that are used to classify, stratify risk, and predict treatment response for optimal clinical care. OBJECTIVE.— To develop evidence-based recommendations for informing molecular biomarker testing for pediatric and adult patients with DGs and provide guidance for appropriate laboratory test and biomarker selection for optimal diagnosis, risk stratification, and prediction. DESIGN.— The College of American Pathologists convened an expert panel to perform a systematic review of the literature and develop recommendations. A systematic review of literature was conducted to address the overarching question, "What ancillary tests are needed to classify DGs and sufficiently inform the clinical management of patients?" Recommendations were derived from quality of evidence, open comment feedback, and expert panel consensus. RESULTS.— Thirteen recommendations and 3 good practice statements were established to guide pathologists and treating physicians on the most appropriate methods and molecular biomarkers to include in laboratory testing to inform clinical management of patients with DGs. CONCLUSIONS.— Evidence-based incorporation of laboratory results from molecular biomarker testing into integrated diagnoses of DGs provides reproducible and clinically meaningful information for patient management.
Collapse
Affiliation(s)
- Daniel J Brat
- From the Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (Brat)
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland (Aldape)
| | - Julia A Bridge
- The Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska (Bridge)
- Cytogenetics, ProPath, Dallas, Texas (Bridge)
| | - Peter Canoll
- The Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York (Canoll)
| | - Howard Colman
- The Department of Neurosurgery and Huntsman Cancer Institute, University of Utah, Salt Lake City (Colman)
| | - Meera R Hameed
- The Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York (Hameed)
| | - Brent T Harris
- The Department of Neurology and Pathology, MedStar Georgetown University Hospital, Washington, DC (Harris)
| | - Eyas M Hattab
- The Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, Kentucky (Hattab)
| | - Jason T Huse
- The Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston (Huse)
| | - Robert B Jenkins
- The Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota (Jenkins)
| | - Dolores H Lopez-Terrada
- The Departments of Pathology and Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas (Lopez-Terrada)
| | - William C McDonald
- The Department of Pathology, Abbott Northwestern Hospital, Minneapolis, Minnesota (McDonald)
| | - Fausto J Rodriguez
- The Department of Pathology, The Johns Hopkins Hospital, Baltimore, Maryland (Rodriguez)
| | | | - Carol Colasacco
- Surveys, College of American Pathologists, Northfield, Illinois (Colasacco, Thomas)
| | - Nicole E Thomas
- Surveys, College of American Pathologists, Northfield, Illinois (Colasacco, Thomas)
| | | | - Martin J van den Bent
- The Brain Tumor Center at Erasmus MC Cancer Institute University Medical Center Rotterdam, Rotterdam, the Netherlands (van den Bent)
| | - Arie Perry
- The Departments of Pathology and Neurological Surgery, University of California San Francisco School of Medicine, San Francisco (Perry)
| |
Collapse
|
46
|
Shang J, Wang Y, Li Z, Jiang L, Bai Q, Zhang X, Xiao G, Zhang J. ATRX-dependent SVCT2 mediates macrophage infiltration in the glioblastoma xenograft model. J Neurophysiol 2022; 127:1309-1316. [PMID: 35417255 DOI: 10.1152/jn.00486.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alpha thalassemia/mental retardation syndrome X-linked (ATRX) mutation impairs DNA damage repair in glioblastoma (GBM), making these cells more susceptible to treatment, which may contribute to the survival advantage in GBM patients containing ATRX mutations. To better understand the role of ATRX in GBM, genes correlated with ATRX expression were screened in the Cancer Genome Atlas (702 cases) and Chinese Glioma Genome Atlas (325 cases) databases. Sodium-vitamin C cotransporter 2 (SVCT2) was the most positively correlated gene with ATRX expression. ATRX (about 1.99-fold) and SVCT2 (about 2.25-fold) were upregulated in GBM tissues from 40 patients compared to normal brain tissues from 23 subjects. ShSVCT2 transfection did not alter the in vitro viability of GL261 cells. At the same time, it could inhibit the proliferation of GL261 cells in the orthotopic transplantation model with diminished infiltrating macrophages (CD45highCD11b+), down-regulated chemokine (C-C motif) ligand 2 (Ccl2), Ccl4, C-X-C motif chemokine ligand 1 (Cxcl1), and Cxcl15 expression, and decreased p-IκBα and p-c-Jun expression. Effect of ShSVCT2 transfection could be reversed by overexpression of SVCT2. siRNA interference of ATRX-dependent SVCT2 signal with shSVCT2 could inhibit tumor cell proliferation in Glu261-LuNeo xenograft tumor model with more survival advantage, probably by the inhibited macrophage chemotaxis. These results indicate that ATRX-dependent SVCT2-mediated chemokine-induced macrophage infiltration is regulated by the NF-κB pathway, which could be considered as treatment targets.
Collapse
Affiliation(s)
- Jinxing Shang
- Department of Neurosurgery, grid.452270.6Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yana Wang
- Cangzhou Medical College, Cangzhou Higher Education District, Hebei Province, Cangzhou, Hebei, China
| | - Zhuangzhuang Li
- Department of Pharmacy, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Lijun Jiang
- Department of Neurosurgery, grid.452270.6Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Qingling Bai
- Department of Neurosurgery, grid.452270.6Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Xiaoling Zhang
- Department of Pathology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Guoxin Xiao
- Department of Neurosurgery, Cangxian Hospital, Cangzhou, Hebei, China
| | - Jinguo Zhang
- Department of Neurology, Mengcun County Hospital, Mengcun County, Cangzhou, Hebei, China
| |
Collapse
|
47
|
Huang Y, Gao X, Yang E, Yue K, Cao Y, Zhao B, Zhang H, Dai S, Zhang L, Luo P, Jiang X. Top-down stepwise refinement identifies coding and noncoding RNA-associated epigenetic regulatory maps in malignant glioma. J Cell Mol Med 2022; 26:2230-2250. [PMID: 35194922 PMCID: PMC8995455 DOI: 10.1111/jcmm.17244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/20/2021] [Accepted: 01/21/2022] [Indexed: 11/28/2022] Open
Abstract
With the emergence of the molecular era and retreat of the histology epoch in malignant glioma, it is becoming increasingly necessary to research diagnostic/prognostic/therapeutic biomarkers and their related regulatory mechanisms. While accumulating studies have investigated coding gene-associated biomarkers in malignant glioma, research on comprehensive coding and noncoding RNA-associated biomarkers is lacking. Furthermore, few studies have illustrated the cross-talk signalling pathways among these biomarkers and mechanisms in detail. Here, we identified DEGs and ceRNA networks in malignant glioma and then constructed Cox/Lasso regression models to further identify the most valuable genes through stepwise refinement. Top-down comprehensive integrated analysis, including functional enrichment, SNV, immune infiltration, transcription factor binding site, and molecular docking analyses, further revealed the regulatory maps among these genes. The results revealed a novel and accurate model (AUC of 0.91 and C-index of 0.84 in the whole malignant gliomas, AUC of 0.90 and C-index of 0.86 in LGG, and AUC of 0.75 and C-index of 0.69 in GBM) that includes twelve ncRNAs, 1 miRNA and 6 coding genes. Stepwise logical reasoning based on top-down comprehensive integrated analysis and references revealed cross-talk signalling pathways among these genes that were correlated with the circadian rhythm, tumour immune microenvironment and cellular senescence pathways. In conclusion, our work reveals a novel model where the newly identified biomarkers may contribute to a precise diagnosis/prognosis and subclassification of malignant glioma, and the identified cross-talk signalling pathways would help to illustrate the noncoding RNA-associated epigenetic regulatory mechanisms of glioma tumorigenesis and aid in targeted therapy.
Collapse
Affiliation(s)
- Yutao Huang
- Department of NeurosurgeryXijing HospitalFourth Military Medical UniversityXi’anChina
| | - Xiangyu Gao
- Department of NeurosurgeryXijing HospitalFourth Military Medical UniversityXi’anChina
- State Key Laboratory of Cancer BiologyFourth Military Medical UniversityXi’anChina
| | - Erwan Yang
- Department of NeurosurgeryXijing HospitalFourth Military Medical UniversityXi’anChina
| | - Kangyi Yue
- Department of NeurosurgeryXijing HospitalFourth Military Medical UniversityXi’anChina
- State Key Laboratory of Cancer BiologyFourth Military Medical UniversityXi’anChina
| | - Yuan Cao
- Department of NeurosurgeryXijing HospitalFourth Military Medical UniversityXi’anChina
| | - Boyan Zhao
- Department of NeurosurgeryXijing HospitalFourth Military Medical UniversityXi’anChina
| | - Haofuzi Zhang
- Department of NeurosurgeryXijing HospitalFourth Military Medical UniversityXi’anChina
| | - Shuhui Dai
- Department of NeurosurgeryXijing HospitalFourth Military Medical UniversityXi’anChina
| | - Lei Zhang
- Department of NeurosurgeryXijing HospitalFourth Military Medical UniversityXi’anChina
| | - Peng Luo
- Department of NeurosurgeryXijing HospitalFourth Military Medical UniversityXi’anChina
| | - Xiaofan Jiang
- Department of NeurosurgeryXijing HospitalFourth Military Medical UniversityXi’anChina
| |
Collapse
|
48
|
Wolter M, Felsberg J, Malzkorn B, Kaulich K, Reifenberger G. Droplet digital PCR-based analyses for robust, rapid, and sensitive molecular diagnostics of gliomas. Acta Neuropathol Commun 2022; 10:42. [PMID: 35361262 PMCID: PMC8973808 DOI: 10.1186/s40478-022-01335-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/20/2022] [Indexed: 11/10/2022] Open
Abstract
Classification of gliomas involves the combination of histological features with molecular biomarkers to establish an integrated histomolecular diagnosis. Here, we report on the application and validation of a set of molecular assays for glioma diagnostics based on digital PCR technology using the QX200™ Droplet Digital™ PCR (ddPCR) system. The investigated ddPCR-based assays enable the detection of diagnostically relevant glioma-associated mutations in the IDH1, IDH2, H3-3A, BRAF, and PRKCA genes, as well as in the TERT promoter. In addition, ddPCR-based assays assessing diagnostically relevant copy number alterations were studied, including 1p/19q codeletion, gain of chromosome 7 and loss of chromosome 10 (+ 7/-10), EGFR amplification, duplication of the BRAF locus, and CDKN2A homozygous deletion. Results obtained by ddPCR were validated by other methods, including immunohistochemistry, Sanger sequencing, pyrosequencing, microsatellite analyses for loss of heterozygosity, as well as real-time PCR- or microarray-based copy number assays. Particular strengths of the ddPCR approach are (1) its high analytical sensitivity allowing for reliable detection of mutations even with low mutant allele frequencies, (2) its quantitative determination of mutant allele frequencies and copy number changes, and (3) its rapid generation of results within a single day. Thus, in line with other recent studies our findings support ddPCR analysis as a valuable approach for molecular glioma diagnostics in a fast, quantitative and highly sensitive manner.
Collapse
|
49
|
Whitfield BT, Huse JT. Classification of adult-type diffuse gliomas: Impact of the World Health Organization 2021 update. Brain Pathol 2022; 32:e13062. [PMID: 35289001 PMCID: PMC9245936 DOI: 10.1111/bpa.13062] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/16/2022] [Indexed: 12/11/2022] Open
Abstract
Over the last decade, developments in molecular profiling have radically altered the diagnosis, classification, and management of numerous cancer types, with primary brain tumors being no exception. Although historically brain tumors have been classified based on their morphological characteristics, recent advances have allowed refinement of tumor classification based on molecular alterations. This shift toward molecular classification of primary brain tumors is reflected in the 2021 5th edition of the WHO classification of central nervous system tumors (WHO 2021). In this review, we will discuss the most recent updates to the classification of adult‐type diffuse gliomas, a group of highly infiltrative and largely incurable CNS malignancies. It is our hope continued that refinement of molecular criteria will improve diagnosis, prognostication, and eventually treatment of these devastating tumors.
Collapse
Affiliation(s)
- Benjamin T Whitfield
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jason T Huse
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
50
|
Barresi V, Mafficini A, Calicchia M, Piredda ML, Musumeci A, Ghimenton C, Scarpa A. Recurrent oligodendroglioma with changed 1p/19q status. Neuropathology 2022; 42:160-166. [PMID: 35144313 PMCID: PMC9546156 DOI: 10.1111/neup.12789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 11/28/2022]
Abstract
We report a case of oligodendroglioma that had consistent histopathological features as well as a distinct change in 1p/19q status in the second recurrence, after temozolomide chemotherapy and radiotherapy. The first tumor recurrence had oligodendroglial morphology, IDH1 R132H and TERT promoter mutations, and 1p/19q codeletion detected by fluorescent in situ hybridization (FISH). Copy number analysis, assessed by next‐generation sequencing, confirmed 1p/19q codeletion, and disclosed loss of heterozygosity (LOH) of chromosomes 4 and 9 and chromosome 11 gain. The second recurrence featured not only oligodendroglial morphology but also the appearance of admixed multinucleated giant cells or neoplastic cells having oval nuclei and mitoses and showing microvascular proliferation; it maintained IDH1 R132H and TERT promoter mutations, acquired TP53 mutation, and showed 19q LOH, but disomic 1p, detected by FISH. Copy number analysis depicted LOH of chromosomes 3p, 13, and 19q, 1p partial deletion (1p chr1p34.2‐p11), and gain of chromosomes 2p25.3‐p24.1, 8q12.2‐q24.3, and 11q13.3‐q25. B‐allele frequency analysis of polymorphic sites disclosed copy‐neutral LOH at 1p36.33‐p34.2, supporting the initial deletion of 1p, followed by reduplication of 1p36.33‐p34.2 alone. These findings suggest that the two tumor recurrences might have originated from an initial neoplastic clone, featuring 1p/19q codeletion and IDH1 and TERT promoter mutations, and have independently acquired other copy number alterations. The reduplication of chromosome 1p might be the result of temozolomide treatment, and gave rise to false negative 1p deletion detected by FISH. The possibility of 1p copy‐neutral LOH should be considered in recurrent oligodendrogliomas with altered 1p/19q status detected by FISH.
Collapse
Affiliation(s)
- Valeria Barresi
- Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, Verona, Italy
| | - Andrea Mafficini
- Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, Verona, Italy.,ARC-NET Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Martina Calicchia
- ARC-NET Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Maria Liliana Piredda
- Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, Verona, Italy
| | - Angelo Musumeci
- Department of Neurosciences, Unit of Neurosurgery, Hospital Trust of Verona, Verona, Italy
| | - Claudio Ghimenton
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, Verona, Italy.,ARC-NET Research Centre, University and Hospital Trust of Verona, Verona, Italy
| |
Collapse
|