1
|
Colloby SJ, McAleese KE, Walker L, Erskine D, Toledo JB, Donaghy PC, McKeith IG, Thomas AJ, Attems J, Taylor JP. Patterns of tau, amyloid and synuclein pathology in ageing, Alzheimer's disease and synucleinopathies. Brain 2025; 148:1562-1576. [PMID: 39531734 PMCID: PMC12073977 DOI: 10.1093/brain/awae372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/04/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) is neuropathologically defined by deposits of misfolded hyperphosphorylated tau (HP-tau) and amyloid-β. Lewy body (LB) dementia, which includes dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD), is characterized pathologically by α-synuclein aggregates. HP-tau and amyloid-β can also occur as co-pathologies in LB dementia, and a diagnosis of mixedAD/DLB can be made if present in sufficient quantities. We hypothesized that the spread of these abnormal proteins selectively affects vulnerable areas, resulting in pathologic regional covariance that differentially associates with pre-mortem clinical characteristics. Our aims were to map regional quantitative pathology (HP-tau, amyloid-β, α-synuclein) and investigate the spatial distributions from tissue microarray post-mortem samples across healthy aging, AD and LB dementia. The study involved 159 clinico-pathologically diagnosed human post-mortem brains (48 controls, 47 AD, 25 DLB, 20 mixedAD/DLB, 19 PDD). The burden of HP-tau, amyloid-β and α-synuclein was quantitatively assessed in cortical and subcortical areas. Principal components (PC) analysis was applied across all cases to determine the pattern nature of HP-tau, amyloid-β and α-synuclein. Further analyses explored the relationships of these pathological patterns with cognitive and symptom variables. Cortical (tauPC1) and temporo-limbic (tauPC2) patterns were observed for HP-tau. For amyloid-β, a cortical-subcortical pattern (amylPC1) was identified. For α-synuclein, four patterns emerged: 'posterior temporal-occipital' (synPC1), 'anterior temporal-frontal' (synPC2), 'parieto-cingulate-insula' (synPC3), and 'frontostriatal-amygdala' (synPC4). Distinct synPC scores were apparent among DLB, mixedAD/DLB and PDD, and may relate to different spreading patterns of α-synuclein pathology. In dementia, cognitive measures correlated with tauPC1,tauPC2 and amylPC1 pattern scores (P ≤ 0.02), whereas such variables did not relate to α-synuclein parameters in these or combined LB dementia cases. Mediation analysis then revealed that in the presence of amylPC1, tauPC1 had a direct effect on global cognition in dementia (n = 65, P = 0.04), while tauPC1 mediated the relationship between amylPC1 and cognition through the indirect pathway (amylPC1 → tauPC1 → global cognition) (P < 0.05). Last, in synucleinopathies, synPC1 and synPC4 pattern scores were associated with visual hallucinations and motor impairment, respectively (P = 0.02). In conclusion, distinct patterns of α-synuclein pathology were apparent in LB dementia, which could explain some of the disease heterogeneity and differing spreading patterns among these conditions. Visual hallucinations and motor severity were associated with specific α-synuclein topographies in LB dementia that may be important to the clinical phenotype and could, after necessary testing/validation, be integrated into semiquantitative routine pathological assessment.
Collapse
Affiliation(s)
- Sean J Colloby
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Kirsty E McAleese
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Lauren Walker
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Daniel Erskine
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Jon B Toledo
- Stanley H. Appel Department of Neurology, Nantz National Alzheimer Center, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Paul C Donaghy
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Ian G McKeith
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Alan J Thomas
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Johannes Attems
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - John-Paul Taylor
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| |
Collapse
|
2
|
Mak E, Reid RI, Przybelski SA, Fought AM, Lesnick TG, Schwarz CG, Senjem ML, Raghavan S, Vemuri P, Jack CR, Min HK, Jain MK, Miyagawa T, Forsberg LK, Fields JA, Savica R, Graff-Radford J, Jones DT, Botha H, St Louis EK, Knopman DS, Ramanan VK, Dickson DW, Graff-Radford NR, Day GS, Ferman TJ, Petersen RC, Lowe VJ, Boeve BF, O'Brien JT, Kantarci K. Cortical microstructural abnormalities in dementia with Lewy bodies and their associations with Alzheimer's disease copathologies. NPJ Parkinsons Dis 2025; 11:124. [PMID: 40355490 PMCID: PMC12069582 DOI: 10.1038/s41531-025-00944-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 03/18/2025] [Indexed: 05/14/2025] Open
Abstract
Dementia with Lewy bodies (DLB) frequently coexists with Alzheimer's disease pathology, yet the pattern of cortical microstructural injury and its relationship with amyloid, tau, and cerebrovascular pathologies remains unclear. We applied neurite orientation dispersion and density imaging (NODDI) to assess cortical microstructural integrity in 57 individuals within the DLB spectrum and 57 age- and sex-matched cognitively unimpaired controls by quantifying mean diffusivity (MD), tissue-weighted neurite density index (tNDI), orientation dispersion index (ODI), and free water fraction (FWF). Amyloid and tau levels were measured using PiB and Flortaucipir PET imaging. Compared to controls, DLB exhibited increased MD and FWF, reduced tNDI across multiple regions, and focal ODI reductions in the occipital cortex. Structural equation modeling revealed that APOE genotype influenced amyloid levels, which elevated tau, leading to microstructural injury. These findings highlight the role of AD pathology in DLB neurodegeneration, advocating for multi-target therapeutic approaches addressing both AD and DLB-specific pathologies.
Collapse
Affiliation(s)
- Elijah Mak
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.
| | - Robert I Reid
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Scott A Przybelski
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Angela M Fought
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Timothy G Lesnick
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Hoon Ki Min
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Manoj K Jain
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Toji Miyagawa
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Julie A Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Erik K St Louis
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
- Center for Sleep Medicine, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | - Dennis W Dickson
- Laboratory of Medicine and Pathology, Mayo Clinic in Florida, Jacksonville, FL, USA
| | | | - Gregory S Day
- Department of Neurology, Mayo Clinic in Florida, Jacksonville, FL, USA
| | - Tanis J Ferman
- Department of Psychiatry and Psychology, Mayo Clinic in Florida, Jacksonville, FL, USA
| | - Ronald C Petersen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
3
|
Kim Y, Andreasson T, Vishupad N, Benegal A, Pizzo D, Hansen L, Hiniker A, Coughlin D. Reliability and modeling of digital histological measurements in Alzheimer's disease neuropathologic change and Lewy body disease. J Neuropathol Exp Neurol 2025:nlaf047. [PMID: 40272949 DOI: 10.1093/jnen/nlaf047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025] Open
Abstract
Digital histology offers a more objective, continuous definition of neuropathological severity than traditional staging systems, but its reliability remains underexplored. We calculated regional percentage areas occupied by phosphorylated tau (p-Tau, AT8), amyloid-β (Aβ, NAB228), and phosphorylated α-synuclein (p-αSyn, 81A) pathology in 24 autopsied cases with varying degrees of Alzheimer disease neuropathological change and Lewy body disease (LBD) using manual and automated immunostaining methods to investigate variability across protocols. We then compared natural log-transformed percent area occupied values (ln%AO) to blinded ordinal severity scores, Braak stages, Thal phases, and McKeith LBD stages. p-Tau ln%AO from methodologically similar runs had the highest correlations (R2 = 0.91-0.95, β = 0.95-0.97 for manual and automated methods, respectively); p-αSyn ln%AO from disparate immunostaining methods had the lowest (R2 = 0.16-0.34 β = 0.40-0.59). p-Tau and Aβ ln%AO increased regionally with higher Braak and Thal stages (p-Tau: z = 2.06 P = .04. Aβ: z = 3.70 P < .001). Regional p-αSyn ln%AO increased from limbic to neocortical stages (z = 5.86 P < .001); amygdala-predominant type LBD cases peaked in the amygdala and dropped in other limbic regions. These findings show the potential to quantify differences in p-Tau, Aβ, and p-αSyn pathologies using digital histological methods in single-center studies.
Collapse
Affiliation(s)
- Yongya Kim
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States
| | - Thea Andreasson
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States
| | - Namitha Vishupad
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States
| | - Avani Benegal
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States
| | - Donald Pizzo
- Department of Pathology, University of California San Diego, La Jolla, CA, United States
| | - Lawrence Hansen
- Department of Pathology, University of California San Diego, La Jolla, CA, United States
| | - Annie Hiniker
- Department of Pathology, University of Southern California, Los Angeles, CA, United States
| | - David Coughlin
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
4
|
Darricau M, Kulifaj V, Arotcarena ML, Li Q, Katsinelos T, McEwan WA, Xilouri M, Dehay B, Bezard E, Planche V. Additive effect of distant Lewy bodies and tau seeds injections on nigral degeneration in macaques. NPJ Parkinsons Dis 2025; 11:75. [PMID: 40221462 PMCID: PMC11993647 DOI: 10.1038/s41531-025-00938-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/05/2025] [Indexed: 04/14/2025] Open
Abstract
The influence of Lewy body (LB) and tau co-pathologies is increasingly acknowledged as putatively affecting neurodegeneration and clinical phenotypes. Here, we injected rhesus macaques with LB fractions or/and tau seeds derived from patients brains into distinct brain areas connected to the mesencephalon. Compared to control macaques, we observed increased mesencephalic staining of pathological α-synuclein and tau, as well as nigrostriatal dopaminergic neuronal loss, with a cumulative effect of co-pathology.
Collapse
Affiliation(s)
| | - Valentine Kulifaj
- Université de Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France
- University Clermont-Auvergne, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | | | - Qin Li
- Motac Beijing services Ltd, Beijing, China
| | - Taxiarchis Katsinelos
- Department of Clinical Neurosciences, UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - William A McEwan
- Department of Clinical Neurosciences, UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Maria Xilouri
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Benjamin Dehay
- Université de Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France
| | - Erwan Bezard
- Université de Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France
- Motac Neuroscience Ltd, Bordeaux, France
| | - Vincent Planche
- Université de Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France.
- CHU de Bordeaux, Centre Mémoire Ressources Recherches, Service de Neurologie des Maladies Neurodégénératives, Pôle de Neurosciences Cliniques, Bordeaux, France.
| |
Collapse
|
5
|
Schumacher J, Teipel S, Storch A. Association of Alzheimer's and Lewy body disease pathology with basal forebrain volume and cognitive impairment. Alzheimers Res Ther 2025; 17:28. [PMID: 39865328 PMCID: PMC11771035 DOI: 10.1186/s13195-025-01678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/17/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND Degeneration of the basal forebrain cholinergic system is a hallmark feature shared by Alzheimer's disease (AD) and Lewy body disease (LBD) whereas hippocampus atrophy is more specifically related to AD. We aimed to investigate the relationship between basal forebrain and hippocampus atrophy, cognitive decline, and neuropathology in a large autopsy sample. METHODS Data were obtained from the National Alzheimer's Coordinating Center (NACC). Basal forebrain and hippocampus volumes were extracted using an established automated MRI volumetry approach. Associations of regional volumes with pathological markers (Braak stage, CERAD score, and McKeith criteria for LB pathology) and cognitive performance were assessed using Bayesian statistical methods. RESULTS We included people with autopsy-confirmed pure AD (N = 248), pure LBD (N = 22), and mixed AD/LBD (N = 185). Posterior basal forebrain atrophy was most severe in mixed AD/LB pathology compared to pure AD (Bayes factor against the null hypothesis BF10 = 16.2) or pure LBD (BF10 = 4.5). In contrast, hippocampal atrophy was primarily associated with AD pathology, independent of LB pathology (pure AD vs. pure LBD: BF10 = 166, pure AD vs. mixed AD/LBD: BF10 = 0.11, pure LBD vs. mixed AD/LBD: BF10 = 350). Cognitive performance was more impaired in AD pathology groups, with Braak stage being the strongest predictor. Hippocampal volume partially mediated this relationship between tau pathology and cognitive impairment, while basal forebrain volume had a limited role in mediating the relationship between pathological burden and cognitive outcomes. CONCLUSION In a heterogeneous autopsy sample, AD and LB pathology both contribute to cholinergic basal forebrain degeneration whereas hippocampus atrophy is more specifically related to AD pathology. Cognitive deficits are primarily associated with tau pathology which is partly mediated by hippocampus, but not basal forebrain atrophy.
Collapse
Affiliation(s)
- Julia Schumacher
- Department of Neurology, University Medical Center Rostock, 18147, Rostock, Germany.
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock-Greifswald, 18147, Rostock, Germany.
| | - Stefan Teipel
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock-Greifswald, 18147, Rostock, Germany
- Department of Psychosomatic Medicine, University Medical Center Rostock, 18147, Rostock, Germany
| | - Alexander Storch
- Department of Neurology, University Medical Center Rostock, 18147, Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock-Greifswald, 18147, Rostock, Germany
| |
Collapse
|
6
|
Gabriel V, Bousiges O, Mondino M, Cretin B, Philippi N, Muller C, Anthony P, Demuynck C, de Sousa PL, Botzung A, Sanna L, Chabran E, Blanc F. Aβ42 biomarker linked to insula, striatum, thalamus and claustrum in dementia with Lewy bodies. GeroScience 2025:10.1007/s11357-025-01513-z. [PMID: 39821801 DOI: 10.1007/s11357-025-01513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025] Open
Abstract
The differential mechanisms between proteinopathies and neurodegeneration in Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) remain unclear. To address this issue, we conducted a voxel-based morphometry and cerebrospinal fluid biomarker (α-synuclein, Aβ42, t-Tau and p-Tau181) level correlation study in patients with DLB, AD and mixed cases (AD + DLB). Cerebrospinal fluid samples obtained by lumbar puncture and whole-brain T1-weighted images were collected in the AlphaLewyMA cohort. Within the cohort, 65 DLB patients, 18 AD patients, 24 AD + DLB patients and 16 neurological control subjects (NC) were clinically diagnosed. Correlation analyses were performed between cerebrospinal fluid biomarker levels and gray matter volumes using a voxel-based morphometry approach. A mediation analysis was performed to explore the role of gray matter volumes in the relationship between Aβ42 levels and clinical severity (MMSE scores). We observed a significant positive correlation between gray matter volumes and cerebrospinal fluid Aβ42 levels in the insula, the striatal regions, the right thalamus, and the claustrum in DLB patients (pFDR < 0.05). Mediation analysis revealed that gray matter volumes significantly mediated the relationship between Aβ42 levels and MMSE scores in DLB patients. We found no significant correlation with gray matter volumes for α-synuclein, p-Tau181 or t-Tau in DLB patients (pFDR < 0.05). We found no significant correlations in the AD, AD + DLB and NC groups for any of the biomarkers (pFDR < 0.05). The specific correlation between a reduced cerebrospinal fluid Aβ42 level and lower gray matter volumes in insula, striatum, thalamus, and claustrum in DLB patients suggests a prominent role for amyloidopathy in promoting brain atrophy in key regions of the disease.
Collapse
Affiliation(s)
- Vincent Gabriel
- ICube Laboratory UMR-7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, Strasbourg, France.
| | - Olivier Bousiges
- ICube Laboratory UMR-7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, Strasbourg, France
- Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, Strasbourg, France
| | - Mary Mondino
- ICube Laboratory UMR-7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, Strasbourg, France
- Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, Strasbourg, France
| | - Benjamin Cretin
- ICube Laboratory UMR-7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, Strasbourg, France
- CM2R (Centre de Mémoire Ressources Et Recherche), Geriatric Day Hospital and Neuropsychological Unit, Geriatrics Department and Neurology Service, University Hospital of Strasbourg, Strasbourg, France
| | - Nathalie Philippi
- ICube Laboratory UMR-7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, Strasbourg, France
- CM2R (Centre de Mémoire Ressources Et Recherche), Geriatric Day Hospital and Neuropsychological Unit, Geriatrics Department and Neurology Service, University Hospital of Strasbourg, Strasbourg, France
| | - Candice Muller
- CM2R (Centre de Mémoire Ressources Et Recherche), Geriatric Day Hospital and Neuropsychological Unit, Geriatrics Department and Neurology Service, University Hospital of Strasbourg, Strasbourg, France
| | - Pierre Anthony
- CM2R (Centre de Mémoire Ressources Et Recherche), Geriatric Day Hospital and Neuropsychological Unit, Geriatrics Department and Neurology Service, University Hospital of Strasbourg, Strasbourg, France
- CM2R, Geriatric Day Hospital, Geriatrics Division, Civil Hospitals of Colmar, Colmar, France
| | - Catherine Demuynck
- CM2R (Centre de Mémoire Ressources Et Recherche), Geriatric Day Hospital and Neuropsychological Unit, Geriatrics Department and Neurology Service, University Hospital of Strasbourg, Strasbourg, France
| | - Paulo Loureiro de Sousa
- ICube Laboratory UMR-7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, Strasbourg, France
| | - Anne Botzung
- ICube Laboratory UMR-7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, Strasbourg, France
- CM2R (Centre de Mémoire Ressources Et Recherche), Geriatric Day Hospital and Neuropsychological Unit, Geriatrics Department and Neurology Service, University Hospital of Strasbourg, Strasbourg, France
| | - Léa Sanna
- CM2R (Centre de Mémoire Ressources Et Recherche), Geriatric Day Hospital and Neuropsychological Unit, Geriatrics Department and Neurology Service, University Hospital of Strasbourg, Strasbourg, France
| | - Eléna Chabran
- ICube Laboratory UMR-7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, Strasbourg, France
| | - Frédéric Blanc
- ICube Laboratory UMR-7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, Strasbourg, France
- CM2R (Centre de Mémoire Ressources Et Recherche), Geriatric Day Hospital and Neuropsychological Unit, Geriatrics Department and Neurology Service, University Hospital of Strasbourg, Strasbourg, France
| |
Collapse
|
7
|
Tang G, Lu JY, Li XY, Yao RX, Yang YJ, Jiao FY, Chen MJ, Liang XN, Ju ZZ, Ge JJ, Zhao YX, Shen B, Wu P, Sun YM, Wu JJ, Yen TC, Zuo C, Wang J, Zhao QH, Zhang HW, Liu FT. 18F-Florzolotau PET Imaging Unveils Tau Pathology in Dementia with Lewy Bodies. Mov Disord 2025; 40:108-120. [PMID: 39555939 DOI: 10.1002/mds.30055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Dementia with Lewy bodies (DLB) commonly exhibits a complex neuropathology, sharing characteristics with Alzheimer's disease (AD), including tau aggregates. However, studies using the 18F-AV-1451 tau tracer have shown inconsistent findings regarding both the extent and topographical distribution of tau pathology in DLB. OBJECTIVES Our aim was to elucidate the topographical patterns of tau deposition in DLB and to investigate the in vivo pathological distinction between DLB and AD in virtue of the 18F-Florzolotau positron emission tomography (PET) imaging. METHODS This cross-sectional study enrolled patients with DLB (n = 24), AD (n = 43), and cognitively healthy controls (n = 18). Clinical assessments and 18F-Florzolotau PET imaging were performed. 18F-Florzolotau binding was quantitatively assessed on PET images using standardized uptake value ratios and voxel-wise analysis. RESULTS 18F-Florzolotau PET imaging revealed widespread tau deposition across various cortical regions in DLB, uncovering heterogeneous topographical patterns. Among patients, 54.17% showed patterns similar to AD, whereas 16.67% exhibited distinct patterns. Compared to AD, DLB exhibited a unique in vivo neuropathological profile, characterized by a lower tau protein burden, heterogeneous topographical distributions, and a specific role of the medial temporal lobe in tau pathology. CONCLUSIONS 18F-Florzolotau PET imaging elucidated tau pathology patterns in DLB, providing valuable insights for future in vivo pathological differentiation and potential disease-modifying therapies. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Gan Tang
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jia-Ying Lu
- Department of Nuclear Medicine and PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin-Yi Li
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Rui-Xin Yao
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu-Jie Yang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Fang-Yang Jiao
- Department of Nuclear Medicine and PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ming-Jia Chen
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiao-Niu Liang
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Neurology, Fudan University, Shanghai, China
| | - Zi-Zhao Ju
- Department of Nuclear Medicine and PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing-Jie Ge
- Department of Nuclear Medicine and PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi-Xin Zhao
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Bo Shen
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ping Wu
- Department of Nuclear Medicine and PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi-Min Sun
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian-Jun Wu
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | | | - Chuantao Zuo
- Department of Nuclear Medicine and PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qian-Hua Zhao
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Neurology, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Hui-Wei Zhang
- Department of Nuclear Medicine and PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Feng-Tao Liu
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Barba L, Abu-Rumeileh S, Barthel H, Massa F, Foschi M, Bellomo G, Gaetani L, Thal DR, Parnetti L, Otto M. Clinical and diagnostic implications of Alzheimer's disease copathology in Lewy body disease. Brain 2024; 147:3325-3343. [PMID: 38991041 DOI: 10.1093/brain/awae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/03/2024] [Accepted: 06/02/2024] [Indexed: 07/13/2024] Open
Abstract
Concomitant Alzheimer's disease (AD) pathology is a frequent event in the context of Lewy body disease (LBD), occurring in approximately half of all cases. Evidence shows that LBD patients with AD copathology show an accelerated disease course, a greater risk of cognitive decline and an overall poorer prognosis. However, LBD-AD cases may show heterogeneous motor and non-motor phenotypes with a higher risk of dementia and, consequently, be not rarely misdiagnosed. In this review, we summarize the current understanding of LBD-AD by discussing the synergistic effects of AD neuropathological changes and Lewy pathology and their clinical relevance. Furthermore, we provide an extensive overview of neuroimaging and fluid biomarkers under assessment for use in LBD-AD and their possible diagnostic and prognostic values. AD pathology can be predicted in vivo by means of CSF, MRI and PET markers, whereas the most promising technique to date for identifying Lewy pathology in different biological tissues is the α-synuclein seed amplification assay. Pathological imaging and CSF AD biomarkers are associated with a higher likelihood of cognitive decline in LBD but do not always mirror the neuropathological severity as in pure AD. Implementing the use of blood-based AD biomarkers might allow faster screening of LBD patients for AD copathology, thus improving the overall diagnostic sensitivity for LBD-AD. Finally, we discuss the literature on novel candidate biomarkers being exploited in LBD-AD to investigate other aspects of neurodegeneration, such as neuroaxonal injury, glial activation and synaptic dysfunction. The thorough characterization of AD copathology in LBD should be taken into account when considering differential diagnoses of dementia syndromes, to allow prognostic evaluation on an individual level, and to guide symptomatic and disease-modifying therapies.
Collapse
Affiliation(s)
- Lorenzo Barba
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle 06120, Germany
| | - Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle 06120, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig 04103, Germany
| | - Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa 16132, Italy
| | - Matteo Foschi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila 67100, Italy
- Department of Neuroscience, Neurology Unit, S. Maria delle Croci Hospital of Ravenna, AUSL Romagna, Ravenna 48121, Italy
| | - Giovanni Bellomo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia 06129, Italy
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia 06129, Italy
| | - Dietmar R Thal
- Department of Imaging and Pathology, Laboratory for Neuropathology, Leuven Brain Institute, KU Leuven, Leuven 3001, Belgium
- Department of Pathology, UZ Leuven, Leuven 3000, Belgium
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia 06129, Italy
| | - Markus Otto
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle 06120, Germany
| |
Collapse
|
9
|
Denning AE, Ittyerah R, Levorse LM, Sadeghpour N, Athalye C, Chung E, Ravikumar S, Dong M, Duong MT, Li Y, Ilesanmi A, Sreepada LP, Sabatini P, Lowe M, Bahena A, Zablah J, Spencer BE, Watanabe R, Kim B, Sørensen MH, Khandelwal P, Brown C, Hrybouski S, Xie SX, de Flores R, Robinson JL, Schuck T, Ohm DT, Arezoumandan S, Porta S, Detre JA, Insausti R, Wisse LEM, Das SR, Irwin DJ, Lee EB, Wolk DA, Yushkevich PA. Association of quantitative histopathology measurements with antemortem medial temporal lobe cortical thickness in the Alzheimer's disease continuum. Acta Neuropathol 2024; 148:37. [PMID: 39227502 PMCID: PMC11371872 DOI: 10.1007/s00401-024-02789-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/07/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
The medial temporal lobe (MTL) is a hotspot for neuropathology, and measurements of MTL atrophy are often used as a biomarker for cognitive decline associated with neurodegenerative disease. Due to the aggregation of multiple proteinopathies in this region, the specific relationship of MTL atrophy to distinct neuropathologies is not well understood. Here, we develop two quantitative algorithms using deep learning to measure phosphorylated tau (p-tau) and TDP-43 (pTDP-43) pathology, which are both known to accumulate in the MTL and are associated with MTL neurodegeneration. We focus on these pathologies in the context of Alzheimer's disease (AD) and limbic predominant age-related TDP-43 encephalopathy (LATE) and apply our deep learning algorithms to distinct histology sections, on which MTL subregions were digitally annotated. We demonstrate that both quantitative pathology measures show high agreement with expert visual ratings of pathology and discriminate well between pathology stages. In 140 cases with antemortem MR imaging, we compare the association of semi-quantitative and quantitative postmortem measures of these pathologies in the hippocampus with in vivo structural measures of the MTL and its subregions. We find widespread associations of p-tau pathology with MTL subregional structural measures, whereas pTDP-43 pathology had more limited associations with the hippocampus and entorhinal cortex. Quantitative measurements of p-tau pathology resulted in a significantly better model of antemortem structural measures than semi-quantitative ratings and showed strong associations with cortical thickness and volume. By providing a more granular measure of pathology, the quantitative p-tau measures also showed a significant negative association with structure in a severe AD subgroup where semi-quantitative ratings displayed a ceiling effect. Our findings demonstrate the advantages of using quantitative neuropathology to understand the relationship of pathology to structure, particularly for p-tau, and motivate the use of quantitative pathology measurements in future studies.
Collapse
Affiliation(s)
- Amanda E Denning
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Ranjit Ittyerah
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lisa M Levorse
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Chinmayee Athalye
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Eunice Chung
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sadhana Ravikumar
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Mengjin Dong
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Tran Duong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Yue Li
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ademola Ilesanmi
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lasya P Sreepada
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Philip Sabatini
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - MaKayla Lowe
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Alejandra Bahena
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jamila Zablah
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Barbara E Spencer
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryohei Watanabe
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, Institute On Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - Boram Kim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, Institute On Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - Maja Højvang Sørensen
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, Institute On Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - Pulkit Khandelwal
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher Brown
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Sharon X Xie
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Robin de Flores
- UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, INSERM, Caen-Normandie University, GIP Cyceron, Caen, France
| | - John L Robinson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, Institute On Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - Theresa Schuck
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, Institute On Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel T Ohm
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sanaz Arezoumandan
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sílvia Porta
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, Institute On Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - John A Detre
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ricardo Insausti
- Human Neuroanatomy Lab, University of Castilla La Mancha, Albacete, Spain
| | - Laura E M Wisse
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Sandhitsu R Das
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - David J Irwin
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, Institute On Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul A Yushkevich
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
Monzio Compagnoni G, Appollonio I, Ferrarese C. The role of 123-I-MIBG cardiac scintigraphy in the differential diagnosis between dementia with Lewy bodies and Alzheimer's disease. Neurol Sci 2024; 45:3599-3609. [PMID: 38517586 DOI: 10.1007/s10072-024-07476-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
Although detailed diagnostic guidelines are available, differentiating dementia with Lewy bodies from Alzheimer's disease is often difficult. 123-I-MIBG cardiac scintigraphy is one of the tools which have been proposed for the diagnostic procedure. The present review is aimed at evaluating the available literature about this topic. Studies assessing the use of this technique to differentiate between the two diseases have been examined and reported. Overall, despite a certain study-to-study variability, the available literature suggests that 123-I-MIBG cardiac scintigraphy is an effective tool in differentiating between the two diseases, with high sensitivity and specificity values. Although the large-scale application of this technique is limited by possible interactions with specific medications and comorbidities, the reported studies are supportive for the usefulness of this technique in clinical practice.
Collapse
Affiliation(s)
| | - Ildebrando Appollonio
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Neurology Unit, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Monza, Italy
| | - Carlo Ferrarese
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Neurology Unit, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
11
|
Barba L, Bellomo G, Oeckl P, Chiasserini D, Gaetani L, Torrigiani EG, Paoletti FP, Steinacker P, Abu-Rumeileh S, Parnetti L, Otto M. CSF neurosecretory proteins VGF and neuroserpin in patients with Alzheimer's and Lewy body diseases. J Neurol Sci 2024; 462:123059. [PMID: 38850771 DOI: 10.1016/j.jns.2024.123059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND VGF and neuroserpin are neurosecretory proteins involved in the pathophysiology of neurodegenerative diseases. We aimed to evaluate their cerebrospinal fluid (CSF) concentrations in patients with Alzheimer's disease (AD) and Lewy body disease (LBD). METHODS We measured CSF VGF [AQEE] peptide and neuroserpin levels in 108 LBD patients, 76 AD patients and 37 controls, and tested their associations with clinical scores and CSF AD markers. RESULTS We found decreased CSF levels of VGF [AQEE] in patients with LBD and dementia compared to controls (p = 0.016) and patients with AD-dementia (p = 0.011), but with significant influence of age and sex distribution. Moreover, we observed, on the one hand, a significant associations between lower VGF [AQEE] and neuroserpin levels and poorer cognitive performance (i.e., lower Mini-Mental State Examination scores). On the other hand, higher levels of CSF tau proteins, especially pTau181, were significantly associated with higher concentrations of VGF [AQEE] and neuroserpin. Indeed, LBD patients with AD-like CSF profiles, especially T+ profiles, had higher levels of VGF [AQEE] and neuroserpin compared to controls and LBD/T- cases. DISCUSSION CSF VGF [AQEE] and neuroserpin may show a complex relationship with cognitive decline when the levels are reduced, and with AD pathology when levels are increased. They may represent novel markers of neurosecretory impairment in neurodegenerative disorders.
Collapse
Affiliation(s)
- Lorenzo Barba
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120 Halle (Saale), Germany
| | - Giovanni Bellomo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1/8, 06129 Perugia, Italy
| | - Patrick Oeckl
- Department of Neurology, Ulm University, Helmholzstrasse 8/1, 89081 Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE e.V.), Helmholzstrasse 8/1, 89081 Ulm, Germany
| | - Davide Chiasserini
- Section of Biochemistry, Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1/8, 06129 Perugia, Italy
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1/8, 06129 Perugia, Italy
| | - Edoardo Guido Torrigiani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1/8, 06129 Perugia, Italy
| | - Federico Paolini Paoletti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1/8, 06129 Perugia, Italy
| | - Petra Steinacker
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120 Halle (Saale), Germany
| | - Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120 Halle (Saale), Germany
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1/8, 06129 Perugia, Italy
| | - Markus Otto
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120 Halle (Saale), Germany.
| |
Collapse
|
12
|
Vrillon A, Bousiges O, Götze K, Demuynck C, Muller C, Ravier A, Schorr B, Philippi N, Hourregue C, Cognat E, Dumurgier J, Lilamand M, Cretin B, Blanc F, Paquet C. Plasma biomarkers of amyloid, tau, axonal, and neuroinflammation pathologies in dementia with Lewy bodies. Alzheimers Res Ther 2024; 16:146. [PMID: 38961441 PMCID: PMC11221164 DOI: 10.1186/s13195-024-01502-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Increasing evidence supports the use of plasma biomarkers of amyloid, tau, neurodegeneration, and neuroinflammation for diagnosis of dementia. However, their performance for positive and differential diagnosis of dementia with Lewy bodies (DLB) in clinical settings is still uncertain. METHODS We conducted a retrospective biomarker study in two tertiary memory centers, Paris Lariboisière and CM2RR Strasbourg, France, enrolling patients with DLB (n = 104), Alzheimer's disease (AD, n = 76), and neurological controls (NC, n = 27). Measured biomarkers included plasma Aβ40/Aβ42 ratio, p-tau181, NfL, and GFAP using SIMOA and plasma YKL-40 and sTREM2 using ELISA. DLB patients with available CSF analysis (n = 90) were stratified according to their CSF Aβ profile. RESULTS DLB patients displayed modified plasma Aβ ratio, p-tau181, and GFAP levels compared with NC and modified plasma Aβ ratio, p-tau181, GFAP, NfL, and sTREM2 levels compared with AD patients. Plasma p-tau181 best differentiated DLB from AD patients (ROC analysis, area under the curve [AUC] = 0.80) and NC (AUC = 0.78), and combining biomarkers did not improve diagnosis performance. Plasma p-tau181 was the best standalone biomarker to differentiate amyloid-positive from amyloid-negative DLB cases (AUC = 0.75) and was associated with cognitive status in the DLB group. Combining plasma Aβ ratio, p-tau181 and NfL increased performance to identify amyloid copathology (AUC = 0.79). Principal component analysis identified different segregation patterns of biomarkers in the DLB and AD groups. CONCLUSIONS Amyloid, tau, neurodegeneration and neuroinflammation plasma biomarkers are modified in DLB, albeit with moderate diagnosis performance. Plasma p-tau181 can contribute to identify Aβ copathology in DLB.
Collapse
Affiliation(s)
- Agathe Vrillon
- AP-HP Nord, Cognitive Neurology Center Hôpital Lariboisière-Fernand Widal, Université Paris Cité, 200 rue du Faubourg Saint-Denis, Paris, 75010, France.
- Université Paris Cité, INSERM, UMRS 1144, Paris, France.
- University of California San Francisco, San Francisco, USA.
| | - Olivier Bousiges
- Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, Strasbourg, France
- University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS Strasbourg, Strasbourg, France
| | - Karl Götze
- Université Paris Cité, INSERM, UMRS 1144, Paris, France
| | - Catherine Demuynck
- CM2R (Memory Resource and Research Centre), Service of Gerontology Mobile-Neuro-Psy-Research, Geriatrics Department, University Hospital of Strasbourg, Strasbourg, France
| | - Candice Muller
- CM2R (Memory Resource and Research Centre), Service of Gerontology Mobile-Neuro-Psy-Research, Geriatrics Department, University Hospital of Strasbourg, Strasbourg, France
| | - Alix Ravier
- CM2R (Memory Resource and Research Centre), Service of Gerontology Mobile-Neuro-Psy-Research, Geriatrics Department, University Hospital of Strasbourg, Strasbourg, France
| | - Benoît Schorr
- CM2R (Memory Resource and Research Centre), Service of Gerontology Mobile-Neuro-Psy-Research, Geriatrics Department, University Hospital of Strasbourg, Strasbourg, France
| | - Nathalie Philippi
- University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS Strasbourg, Strasbourg, France
- CM2R (Memory Resource and Research Centre), Service of Gerontology Mobile-Neuro-Psy-Research, Geriatrics Department, University Hospital of Strasbourg, Strasbourg, France
- Neuropsychology unit, Service of Neurology Strasbourg, University Hospital of Strasbourg, Strasbourg, France
| | - Claire Hourregue
- AP-HP Nord, Cognitive Neurology Center Hôpital Lariboisière-Fernand Widal, Université Paris Cité, 200 rue du Faubourg Saint-Denis, Paris, 75010, France
| | - Emmanuel Cognat
- AP-HP Nord, Cognitive Neurology Center Hôpital Lariboisière-Fernand Widal, Université Paris Cité, 200 rue du Faubourg Saint-Denis, Paris, 75010, France
- Université Paris Cité, INSERM, UMRS 1144, Paris, France
| | - Julien Dumurgier
- AP-HP Nord, Cognitive Neurology Center Hôpital Lariboisière-Fernand Widal, Université Paris Cité, 200 rue du Faubourg Saint-Denis, Paris, 75010, France
| | - Matthieu Lilamand
- AP-HP Nord, Cognitive Neurology Center Hôpital Lariboisière-Fernand Widal, Université Paris Cité, 200 rue du Faubourg Saint-Denis, Paris, 75010, France
| | - Benjamin Cretin
- University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS Strasbourg, Strasbourg, France
- CM2R (Memory Resource and Research Centre), Service of Gerontology Mobile-Neuro-Psy-Research, Geriatrics Department, University Hospital of Strasbourg, Strasbourg, France
- Neuropsychology unit, Service of Neurology Strasbourg, University Hospital of Strasbourg, Strasbourg, France
| | - Frédéric Blanc
- University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS Strasbourg, Strasbourg, France
- CM2R (Memory Resource and Research Centre), Service of Gerontology Mobile-Neuro-Psy-Research, Geriatrics Department, University Hospital of Strasbourg, Strasbourg, France
- Neuropsychology unit, Service of Neurology Strasbourg, University Hospital of Strasbourg, Strasbourg, France
| | - Claire Paquet
- AP-HP Nord, Cognitive Neurology Center Hôpital Lariboisière-Fernand Widal, Université Paris Cité, 200 rue du Faubourg Saint-Denis, Paris, 75010, France
- Université Paris Cité, INSERM, UMRS 1144, Paris, France
| |
Collapse
|
13
|
Wetering JV, Geut H, Bol JJ, Galis Y, Timmermans E, Twisk JWR, Hepp DH, Morella ML, Pihlstrom L, Lemstra AW, Rozemuller AJM, Jonkman LE, van de Berg WDJ. Neuroinflammation is associated with Alzheimer's disease co-pathology in dementia with Lewy bodies. Acta Neuropathol Commun 2024; 12:73. [PMID: 38715119 PMCID: PMC11075309 DOI: 10.1186/s40478-024-01786-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Neuroinflammation and Alzheimer's disease (AD) co-pathology may contribute to disease progression and severity in dementia with Lewy bodies (DLB). This study aims to clarify whether a different pattern of neuroinflammation, such as alteration in microglial and astroglial morphology and distribution, is present in DLB cases with and without AD co-pathology. METHODS The morphology and load (% area of immunopositivity) of total (Iba1) and reactive microglia (CD68 and HLA-DR), reactive astrocytes (GFAP) and proteinopathies of alpha-synuclein (KM51/pser129), amyloid-beta (6 F/3D) and p-tau (AT8) were assessed in a cohort of mixed DLB + AD (n = 35), pure DLB (n = 15), pure AD (n = 16) and control (n = 11) donors in limbic and neocortical brain regions using immunostaining, quantitative image analysis and confocal microscopy. Regional and group differences were estimated using a linear mixed model analysis. RESULTS Morphologically, reactive and amoeboid microglia were common in mixed DLB + AD, while homeostatic microglia with a small soma and thin processes were observed in pure DLB cases. A higher density of swollen astrocytes was observed in pure AD cases, but not in mixed DLB + AD or pure DLB cases. Mixed DLB + AD had higher CD68-loads in the amygdala and parahippocampal gyrus than pure DLB cases, but did not differ in astrocytic loads. Pure AD showed higher Iba1-loads in the CA1 and CA2, higher CD68-loads in the CA2 and subiculum, and a higher astrocytic load in the CA1-4 and subiculum than mixed DLB + AD cases. In mixed DLB + AD cases, microglial load associated strongly with amyloid-beta (Iba1, CD68 and HLA-DR), and p-tau (CD68 and HLA-DR), and minimally with alpha-synuclein load (CD68). In addition, the highest microglial activity was found in the amygdala and CA2, and astroglial load in the CA4. Confocal microscopy demonstrated co-localization of large amoeboid microglia with neuritic and classic-cored plaques of amyloid-beta and p-tau in mixed DLB + AD cases. CONCLUSIONS In conclusion, microglial activation in DLB was largely associated with AD co-pathology, while astrocytic response in DLB was not. In addition, microglial activity was high in limbic regions, with prevalent AD pathology. Our study provides novel insights into the molecular neuropathology of DLB, highlighting the importance of microglial activation in mixed DLB + AD.
Collapse
Affiliation(s)
- Janna van Wetering
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Hanne Geut
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - John J Bol
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
| | - Yvon Galis
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
| | - Evelien Timmermans
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
| | - Jos W R Twisk
- Department of Epidemiology and Biostatistics, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Dagmar H Hepp
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Martino L Morella
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Lasse Pihlstrom
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Afina W Lemstra
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Neurology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, De Boelelaan 1117, The Netherlands
- Alzheimer Center, Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Annemieke J M Rozemuller
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Laura E Jonkman
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands.
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Mohanty R, Ferreira D, Westman E. Multi-pathological contributions toward atrophy patterns in the Alzheimer's disease continuum. Front Neurosci 2024; 18:1355695. [PMID: 38655107 PMCID: PMC11036869 DOI: 10.3389/fnins.2024.1355695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/07/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Heterogeneity in downstream atrophy in Alzheimer's disease (AD) is predominantly investigated in relation to pathological hallmarks (Aβ, tau) and co-pathologies (cerebrovascular burden) independently. However, the proportional contribution of each pathology in determining atrophy pattern remains unclear. We assessed heterogeneity in atrophy using two recently conceptualized dimensions: typicality (typical AD atrophy at the center and deviant atypical atrophy on either extreme including limbic predominant to hippocampal sparing patterns) and severity (overall neurodegeneration spanning minimal atrophy to diffuse typical AD atrophy) in relation to Aβ, tau, and cerebrovascular burden. Methods We included 149 Aβ + individuals on the AD continuum (cognitively normal, prodromal AD, AD dementia) and 163 Aβ- cognitively normal individuals from the ADNI. We modeled heterogeneity in MRI-based atrophy with continuous-scales of typicality (ratio of hippocampus to cortical volume) and severity (total gray matter volume). Partial correlation models investigated the association of typicality/severity with (a) Aβ (global Aβ PET centiloid), tau (global tau PET SUVR), cerebrovascular (total white matter hypointensity volume) burden (b) four cognitive domains (memory, executive function, language, visuospatial composites). Using multiple regression, we assessed the association of each pathological burden and typicality/severity with cognition. Results (a) In the AD continuum, typicality (r = -0.31, p < 0.001) and severity (r = -0.37, p < 0.001) were associated with tau burden after controlling for Aβ, cerebrovascular burden and age. Findings imply greater tau pathology in limbic predominant atrophy and diffuse atrophy. (b) Typicality was associated with memory (r = 0.49, p < 0.001) and language scores (r = 0.19, p = 0.02). Severity was associated with memory (r = 0.26, p < 0.001), executive function (r = 0.24, p = 0.003) and language scores (r = 0.29, p < 0.001). Findings imply better cognitive performance in hippocampal sparing and minimal atrophy patterns. Beyond typicality/severity, tau burden but not Aβ and cerebrovascular burden explained cognition. Conclusion In the AD continuum, atrophy-based severity was more strongly associated with tau burden than typicality after accounting for Aβ and cerebrovascular burden. Cognitive performance in memory, executive function and language domains was explained by typicality and/or severity and additionally tau pathology. Typicality and severity may differentially reflect burden arising from tau pathology but not Aβ or cerebrovascular pathologies which need to be accounted for when investigating AD heterogeneity.
Collapse
Affiliation(s)
- Rosaleena Mohanty
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Karolinska Institutet, Huddinge, Sweden
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Karolinska Institutet, Huddinge, Sweden
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas, Spain
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Karolinska Institutet, Huddinge, Sweden
- Department of Neuroimaging, Center for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| |
Collapse
|
15
|
Mak E, Reid RI, Przybelski SA, Lesnick TG, Schwarz CG, Senjem ML, Raghavan S, Vemuri P, Jack CR, Min HK, Jain MK, Miyagawa T, Forsberg LK, Fields JA, Savica R, Graff-Radford J, Jones DT, Botha H, St Louis EK, Knopman DS, Ramanan VK, Dickson DW, Graff-Radford NR, Ferman TJ, Petersen RC, Lowe VJ, Boeve BF, O'Brien JT, Kantarci K. Influences of amyloid-β and tau on white matter neurite alterations in dementia with Lewy bodies. NPJ Parkinsons Dis 2024; 10:76. [PMID: 38570511 PMCID: PMC10991290 DOI: 10.1038/s41531-024-00684-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
Dementia with Lewy bodies (DLB) is a neurodegenerative condition often co-occurring with Alzheimer's disease (AD) pathology. Characterizing white matter tissue microstructure using Neurite Orientation Dispersion and Density Imaging (NODDI) may help elucidate the biological underpinnings of white matter injury in individuals with DLB. In this study, diffusion tensor imaging (DTI) and NODDI metrics were compared in 45 patients within the dementia with Lewy bodies spectrum (mild cognitive impairment with Lewy bodies (n = 13) and probable dementia with Lewy bodies (n = 32)) against 45 matched controls using conditional logistic models. We evaluated the associations of tau and amyloid-β with DTI and NODDI parameters and examined the correlations of AD-related white matter injury with Clinical Dementia Rating (CDR). Structural equation models (SEM) explored relationships among age, APOE ε4, amyloid-β, tau, and white matter injury. The DLB spectrum group exhibited widespread white matter abnormalities, including reduced fractional anisotropy, increased mean diffusivity, and decreased neurite density index. Tau was significantly associated with limbic and temporal white matter injury, which was, in turn, associated with worse CDR. SEM revealed that amyloid-β exerted indirect effects on white matter injury through tau. We observed widespread disruptions in white matter tracts in DLB that were not attributed to AD pathologies, likely due to α-synuclein-related injury. However, a fraction of the white matter injury could be attributed to AD pathology. Our findings underscore the impact of AD pathology on white matter integrity in DLB and highlight the utility of NODDI in elucidating the biological basis of white matter injury in DLB.
Collapse
Affiliation(s)
- Elijah Mak
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Robert I Reid
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Scott A Przybelski
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Timothy G Lesnick
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Hoon Ki Min
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Manoj K Jain
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Toji Miyagawa
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Julie A Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Erik K St Louis
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
- Center for Sleep Medicine, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | - Dennis W Dickson
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Tanis J Ferman
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Ronald C Petersen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
16
|
Walker L, Simpson H, Thomas AJ, Attems J. Prevalence, distribution, and severity of cerebral amyloid angiopathy differ between Lewy body diseases and Alzheimer's disease. Acta Neuropathol Commun 2024; 12:28. [PMID: 38360761 PMCID: PMC10870546 DOI: 10.1186/s40478-023-01714-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 02/17/2024] Open
Abstract
Dementia with Lewy bodies (DLB), Parkinson's disease dementia (PDD), and Parkinson's disease (PD) collectively known as Lewy body diseases (LBDs) are neuropathologically characterised by α-synuclein deposits (Lewy bodies and Lewy neurites). However, LBDs also exhibit pathology associated with Alzheimer's disease (AD) (i.e. hyperphosphorylated tau and amyloid β (Aβ). Aβ can be deposited in the walls of blood vessels in the brains of individuals with AD, termed cerebral amyloid angiopathy (CAA). The aim of this study was to investigate the type and distribution of CAA in DLB, PDD, and PD and determine if this differs from AD. CAA type, severity, and topographical distribution was assessed in 94 AD, 30 DLB, 17 PDD, and 11 PD cases, and APOE genotype evaluated in a subset of cases where available. 96.3% AD cases, 70% DLB cases and 82.4% PDD cases exhibited CAA (type 1 or type 2). However only 45.5% PD cases had CAA. Type 1 CAA accounted for 37.2% of AD cases, 10% of DLB cases, and 5.9% of PDD cases, and was not observed in PD cases. There was a hierarchical topographical distribution in regions affected by CAA where AD and DLB displayed the same distribution pattern that differed from PDD and PD. APOE ε4 was associated with severity of CAA in AD cases. Topographical patterns and severity of CAA in DLB more closely resembled AD rather than PDD, and as type 1 CAA is associated with clinical dementia in AD, further investigations are warranted into whether the increased presence of type 1 CAA in DLB compared to PDD are related to the onset of cognitive symptoms and is a distinguishing factor between LBDs. Possible alignment of the the topographical distribution of CAA and microbleeds in DLB warrants further investigation. CAA in DLB more closely resembles AD rather than PDD or PD, and should be taken into consideration when stratifying patients for clinical trials or designing disease modifying therapies.
Collapse
Affiliation(s)
- Lauren Walker
- Translational and Clinical Research Institute, Newcastle University, Edwardson building, Campus for Ageing and Vitality, Newcastle-upon-Tyne, NE4 5PL, UK.
| | - Harry Simpson
- Translational and Clinical Research Institute, Newcastle University, Edwardson building, Campus for Ageing and Vitality, Newcastle-upon-Tyne, NE4 5PL, UK
| | - Alan J Thomas
- Translational and Clinical Research Institute, Newcastle University, Edwardson building, Campus for Ageing and Vitality, Newcastle-upon-Tyne, NE4 5PL, UK
| | - Johannes Attems
- Translational and Clinical Research Institute, Newcastle University, Edwardson building, Campus for Ageing and Vitality, Newcastle-upon-Tyne, NE4 5PL, UK
| |
Collapse
|
17
|
van der Gaag BL, Deshayes NAC, Breve JJP, Bol JGJM, Jonker AJ, Hoozemans JJM, Courade JP, van de Berg WDJ. Distinct tau and alpha-synuclein molecular signatures in Alzheimer's disease with and without Lewy bodies and Parkinson's disease with dementia. Acta Neuropathol 2024; 147:14. [PMID: 38198008 PMCID: PMC10781859 DOI: 10.1007/s00401-023-02657-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 01/11/2024]
Abstract
Alpha-synuclein (aSyn) pathology is present in approximately 50% of Alzheimer's disease (AD) cases at autopsy and might impact the age-of-onset and disease progression in AD. Here, we aimed to determine whether tau and aSyn profiles differ between AD cases with Lewy bodies (AD-LB), pure AD and Parkinson's disease with dementia (PDD) cases using epitope-, post-translational modification- (PTM) and isoform-specific tau and aSyn antibody panels spanning from the N- to C-terminus. We included the middle temporal gyrus (MTG) and amygdala (AMY) of clinically diagnosed and pathologically confirmed cases and performed dot blotting, western blotting and immunohistochemistry combined with quantitative and morphological analyses. All investigated phospho-tau (pTau) species, except pT181, were upregulated in AD-LB and AD cases compared to PDD and control cases, but no significant differences were observed between AD-LB and AD subjects. In addition, tau antibodies targeting the proline-rich regions and C-terminus showed preferential binding to AD-LB and AD brain homogenates. Antibodies targeting C-terminal aSyn epitopes and pS129 aSyn showed stronger binding to AD-LB and PDD cases compared to AD and control cases. Two pTau species (pS198 and pS396) were specifically detected in the soluble protein fractions of AD-LB and AD subjects, indicative of early involvement of these PTMs in the multimerization process of tau. Other phospho-variants for both tau (pT212/S214, pT231 and pS422) and aSyn (pS129) were only detected in the insoluble protein fraction of AD-LB/AD and AD-LB/PDD cases, respectively. aSyn load was higher in the AMY of AD-LB cases compared to PDD cases, suggesting aggravated aSyn pathology under the presence of AD pathology, while tau load was similar between AD-LB and AD cases. Co-localization of pTau and aSyn could be observed within astrocytes of AD-LB cases within the MTG. These findings highlight a unique pathological signature for AD-LB cases compared to pure AD and PDD cases.
Collapse
Affiliation(s)
- Bram L van der Gaag
- Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, The Netherlands
| | - Natasja A C Deshayes
- Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - John J P Breve
- Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - John G J M Bol
- Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Allert J Jonker
- Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Jeroen J M Hoozemans
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | | | - Wilma D J van de Berg
- Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Walker L, Attems J. Prevalence of Concomitant Pathologies in Parkinson's Disease: Implications for Prognosis, Diagnosis, and Insights into Common Pathogenic Mechanisms. JOURNAL OF PARKINSON'S DISEASE 2024; 14:35-52. [PMID: 38143370 PMCID: PMC10836576 DOI: 10.3233/jpd-230154] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/11/2023] [Indexed: 12/26/2023]
Abstract
Pathologies characteristic of Alzheimer's disease (i.e., hyperphosphorylated tau and amyloid-β (Aβ) plaques), cardiovascular disease, and limbic predominant TDP-43 encephalopathy (LATE) often co-exist in patients with Parkinson's disease (PD), in addition to Lewy body pathology (α-synuclein). Numerous studies point to a putative synergistic relationship between hyperphosphorylation tau, Aβ, cardiovascular lesions, and TDP-43 with α-synuclein, which may alter the stereotypical pattern of pathological progression and accelerate cognitive decline. Here we discuss the prevalence and relationships between common concomitant pathologies observed in PD. In addition, we highlight shared genetic risk factors and developing biomarkers that may provide better diagnostic accuracy for patients with PD that have co-existing pathologies. The tremendous heterogeneity observed across the PD spectrum is most likely caused by the complex interplay between pathogenic, genetic, and environmental factors, and increasing our understanding of how these relate to idiopathic PD will drive research into finding accurate diagnostic tools and disease modifying therapies.
Collapse
Affiliation(s)
- Lauren Walker
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Johannes Attems
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
| |
Collapse
|
19
|
de Miranda AS, Macedo DS, Rocha NP, Teixeira AL. Targeting the Renin-Angiotensin System (RAS) for Neuropsychiatric Disorders. Curr Neuropharmacol 2024; 22:107-122. [PMID: 36173067 PMCID: PMC10716884 DOI: 10.2174/1570159x20666220927093815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/03/2022] [Accepted: 08/14/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Neuropsychiatric disorders, such as mood disorders, schizophrenia, and Alzheimer's disease (AD) and related dementias, are associated to significant morbidity and mortality worldwide. The pathophysiological mechanisms of neuropsychiatric disorders remain to be fully elucidated, which has hampered the development of effective therapies. The Renin Angiotensin System (RAS) is classically viewed as a key regulator of cardiovascular and renal homeostasis. The discovery that RAS components are expressed in the brain pointed out a potential role for this system in central nervous system (CNS) pathologies. The understanding of RAS involvement in the pathogenesis of neuropsychiatric disorders may contribute to identifying novel therapeutic targets. AIMS We aim to report current experimental and clinical evidence on the role of RAS in physiology and pathophysiology of mood disorders, schizophrenia, AD and related dementias. We also aim to discuss bottlenecks and future perspectives that can foster the development of new related therapeutic strategies. CONCLUSION The available evidence supports positive therapeutic effects for neuropsychiatric disorders with the inhibition/antagonism of the ACE/Ang II/AT1 receptor axis or the activation of the ACE2/Ang-(1-7)/Mas receptor axis. Most of this evidence comes from pre-clinical studies and clinical studies lag much behind, hampering a potential translation into clinical practice.
Collapse
Affiliation(s)
- Aline Silva de Miranda
- Interdisciplinary Laboratory of Medical Investigation (LIIM), Faculty of Medicine, UFMG, Belo Horizonte, MG, Brazil
- Department of Morphology, Laboratory of Neurobiology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Danielle S Macedo
- Department of Physiology and Pharmacology, Neuropharmacology Laboratory, Drug Research, and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Natalia P Rocha
- Department of Neurology, The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, McGovern Medical School, University of Texas Health Science Center at Houston, TX, USA
| | - Antonio L Teixeira
- Department of Psychiatry and Behavioral Sciences, Neuropsychiatry Program, McGovern Medical School, University of Texas Health Science Center at Houston, TX, USA
- Faculdade Santa Casa BH, Belo Horizonte, Brasil
| |
Collapse
|
20
|
Lee YG, Jeon S, Kang SW, Ye BS. Effects of amyloid beta and dopaminergic depletion on perfusion and clinical symptoms. Alzheimers Dement 2023; 19:5719-5729. [PMID: 37422287 DOI: 10.1002/alz.13379] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/23/2023] [Accepted: 06/07/2023] [Indexed: 07/10/2023]
Abstract
INTRODUCTION Although mixed pathologies are common in Alzheimer's disease (AD) and dementia with Lewy bodies (DLB), the effects of amyloid beta and dopaminergic depletion on brain perfusion and clinical symptoms have not been elucidated. METHODS In 99 cognitive impairment patients due to AD and/or DLB and 32 controls, 18F-florbetaben (FBB) and dual-phase dopamine transporter (DAT) positron emission tomography (PET) were performed to measure the FBB standardized uptake value ratio (SUVR), striatal DAT uptakes, and brain perfusion. RESULTS Higher FBB-SUVR and lower ventral striatal DAT uptake were intercorrelated and, respectively, associated with left entorhinal/temporo-parietal-centered hypoperfusion and vermis/hippocampal-centered hyperperfusion, whereas regional perfusion mediated clinical symptoms and cognition. DISCUSSION Amyloid beta deposition and striatal dopaminergic depletion contribute to regional perfusion changes, clinical symptoms, and cognition in the spectrum of normal aging and cognitive impairment due to AD and/or LBD. HIGHLIGHTS Amyloid beta (Aβ) deposition was associated with ventral striatal dopaminergic depletion. Aβ deposition and dopaminergic depletion correlated with perfusion. Aβ deposition correlated with hypoperfusion centered in the left entorhinal cortex. Dopaminergic depletion correlated with hyperperfusion centered in the vermis. Perfusion mediated the Aβ deposition/dopaminergic depletion's effects on cognition.
Collapse
Affiliation(s)
- Young-Gun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
- Department of Neurology, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, South Korea
| | - Seun Jeon
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
- Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
- Metabolism-Dementia Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Woo Kang
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
- Metabolism-Dementia Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
21
|
Devi G. A how-to guide for a precision medicine approach to the diagnosis and treatment of Alzheimer's disease. Front Aging Neurosci 2023; 15:1213968. [PMID: 37662550 PMCID: PMC10469885 DOI: 10.3389/fnagi.2023.1213968] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
Article purpose The clinical approach to Alzheimer's disease (AD) is challenging, particularly in high-functioning individuals. Accurate diagnosis is crucial, especially given the significant side effects, including brain hemorrhage, of newer monoclonal antibodies approved for treating earlier stages of Alzheimer's. Although early treatment is more effective, early diagnosis is also more difficult. Several clinical mimickers of AD exist either separately, or in conjunction with AD pathology, adding to the diagnostic complexity. To illustrate the clinical decision-making process, this study includes de-identified cases and reviews of the underlying etiology and pathology of Alzheimer's and available therapies to exemplify diagnostic and treatment subtleties. Problem The clinical presentation of Alzheimer's is complex and varied. Multiple other primary brain pathologies present with clinical phenotypes that can be difficult to distinguish from AD. Furthermore, Alzheimer's rarely exists in isolation, as almost all patients also show evidence of other primary brain pathologies, including Lewy body disease and argyrophilic grain disease. The phenotype and progression of AD can vary based on the brain regions affected by pathology, the coexistence and severity of other brain pathologies, the presence and severity of systemic comorbidities such as cardiac disease, the common co-occurrence with psychiatric diagnoses, and genetic risk factors. Additionally, symptoms and progression are influenced by an individual's brain reserve and cognitive reserve, as well as the timing of the diagnosis, which depends on the demographics of both the patient and the diagnosing physician, as well as the availability of biomarkers. Methods The optimal clinical and biomarker strategy for accurately diagnosing AD, common neuropathologic co-morbidities and mimickers, and available medication and non-medication-based treatments are discussed. Real-life examples of cognitive loss illustrate the diagnostic and treatment decision-making process as well as illustrative treatment responses. Implications AD is best considered a syndromic disorder, influenced by a multitude of patient and environmental characteristics. Additionally, AD existing alone is a unicorn, as there are nearly always coexisting other brain pathologies. Accurate diagnosis with biomarkers is essential. Treatment response is affected by the variables involved, and the effective treatment of Alzheimer's disease, as well as its prevention, requires an individualized, precision medicine strategy.
Collapse
Affiliation(s)
- Gayatri Devi
- Neurology and Psychiatry, Zucker School of Medicine, Hempstead, NY, United States
- Neurology and Psychiatry, Lenox Hill Hospital, New York City, NY, United States
- Park Avenue Neurology, New York City, NY, United States
| |
Collapse
|
22
|
Diaz-Galvan P, Przybelski SA, Lesnick TG, Schwarz CG, Senjem ML, Gunter JL, Jack CR, Min HKP, Jain M, Miyagawa T, Forsberg LK, Fields JA, Savica R, Graff-Radford J, Jones DT, Botha H, St Louis EK, Knopman DS, Ramanan VK, Ross O, Graff-Radford N, Day GS, Dickson DW, Ferman TJ, Petersen RC, Lowe VJ, Boeve BF, Kantarci K. β-Amyloid Load on PET Along the Continuum of Dementia With Lewy Bodies. Neurology 2023; 101:e178-e188. [PMID: 37202168 PMCID: PMC10351554 DOI: 10.1212/wnl.0000000000207393] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/23/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND AND OBJECTIVES β-Amyloid (Aβ) plaques can co-occur with Lewy-related pathology in patients with dementia with Lewy bodies (DLB), but Aβ load at prodromal stages of DLB still needs to be elucidated. We investigated Aβ load on PET throughout the DLB continuum, from an early prodromal stage of isolated REM sleep behavior disorder (iRBD) to a stage of mild cognitive impairment with Lewy bodies (MCI-LB), and finally DLB. METHODS We performed a cross-sectional study in patients with a diagnosis of iRBD, MCI-LB, or DLB from the Mayo Clinic Alzheimer Disease Research Center. Aβ levels were measured by Pittsburgh compound B (PiB) PET, and global cortical standardized uptake value ratio (SUVR) was calculated. Global cortical PiB SUVR values from each clinical group were compared with each other and with those of cognitively unimpaired (CU) individuals (n = 100) balanced on age and sex using analysis of covariance. We used multiple linear regression testing for interaction to study the influences of sex and APOE ε4 status on PiB SUVR along the DLB continuum. RESULTS Of the 162 patients, 16 had iRBD, 64 had MCI-LB, and 82 had DLB. Compared with CU individuals, global cortical PiB SUVR was higher in those with DLB (p < 0.001) and MCI-LB (p = 0.012). The DLB group included the highest proportion of Aβ-positive patients (60%), followed by MCI-LB (41%), iRBD (25%), and finally CU (19%). Global cortical PiB SUVR was higher in APOE ε4 carriers compared with that in APOE ε4 noncarriers in MCI-LB (p < 0.001) and DLB groups (p = 0.049). Women had higher PiB SUVR with older age compared with men across the DLB continuum (β estimate = 0.014, p = 0.02). DISCUSSION In this cross-sectional study, levels of Aβ load was higher further along the DLB continuum. Whereas Aβ levels were comparable with those in CU individuals in iRBD, a significant elevation in Aβ levels was observed in the predementia stage of MCI-LB and in DLB. Specifically, APOE ε4 carriers had higher Aβ levels than APOE ε4 noncarriers, and women tended to have higher Aβ levels than men as they got older. These findings have important implications in targeting patients within the DLB continuum for clinical trials of disease-modifying therapies.
Collapse
Affiliation(s)
- Patricia Diaz-Galvan
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Scott A Przybelski
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Timothy G Lesnick
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Christopher G Schwarz
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Matthew L Senjem
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Jeffrey L Gunter
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Clifford R Jack
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Hoon-Ki Paul Min
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Manoj Jain
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Toji Miyagawa
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Leah K Forsberg
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Julie A Fields
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Rodolfo Savica
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Jonathan Graff-Radford
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - David T Jones
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Hugo Botha
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Erik K St Louis
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - David S Knopman
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Vijay K Ramanan
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Owen Ross
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Neill Graff-Radford
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Gregory S Day
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Dennis W Dickson
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Tanis J Ferman
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Ronald C Petersen
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Val J Lowe
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Brad F Boeve
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL
| | - Kejal Kantarci
- From the Department of Radiology (P.D.-G., C.G.S., M.L.S., J.L.G., C.R.J., H.-K.P.M., V.J.L., K.K.), Department of Quantitative Health Sciences (S.A.P., T.G.L., R.C.P.), and Department of Information Technology (M.L.S.), Mayo Clinic, Rochester, MN; Department of Radiology (M.J.), Mayo Clinic, Jacksonville, FL; Department of Neurology (T.M., L.K.F., R.S., J.G.-R., D.T.J., H.B., E.K.S.L., D.S.K., V.K.R., R.C.P., B.F.B.), Department of Psychiatry and Psychology (J.A.F., E.K.S.L.), and Center for Sleep Medicine (E.K.S.L.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN; Mayo Clinic Health System Southwest Wisconsin (E.K.S.L.), La Crosse; Department of Neuroscience (O.R.), Department of Neurology (N.G.-R., G.S.D.), Laboratory of Medicine and Pathology (D.W.D.), and Department of Psychiatry and Psychology (T.J.F.), Mayo Clinic, Jacksonville, FL.
| |
Collapse
|
23
|
Hok‐A‐Hin YS, Bolsewig K, Ruiters DN, Lleó A, Alcolea D, Lemstra AW, van der Flier WM, Teunissen CE, del Campo M. Thimet oligopeptidase as a potential CSF biomarker for Alzheimer's disease: A cross-platform validation study. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12456. [PMID: 37502019 PMCID: PMC10369371 DOI: 10.1002/dad2.12456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/29/2023]
Abstract
INTRODUCTION Our previous antibody-based cerebrospinal fluid (CSF) proteomics study showed that Thimet oligopeptidase (THOP1), an amyloid beta (Aβ) neuropeptidase, was increased in mild cognitive impairment with amyloid pathology (MCI-Aβ+) and Alzheimer's disease (AD) dementia compared with controls and dementia with Lewy bodies (DLB), highlighting the potential of CSF THOP1 as an early specific biomarker for AD. We aimed to develop THOP1 immunoassays for large-scale analysis and validate our proteomics findings in two independent cohorts. METHODS We developed in-house CSF THOP1 immunoassays on automated Ella and Simoa platforms. The performance of the different assays were compared using Passing-Bablok regression analysis in a subset of CSF samples from the discovery cohort (n = 72). Clinical validation was performed in two independent cohorts (cohort 1: n = 200; cohort 2: n = 165) using the Ella platform. RESULTS THOP1 concentrations moderately correlated between proteomics analysis and our novel assays (Rho > 0.580). In both validation cohorts, CSF THOP1 was increased in MCI-Aβ+ (>1.3-fold) and AD (>1.2-fold) compared with controls; and between MCI-Aβ+ and DLB (>1.2-fold). Higher THOP1 concentrations were detected in AD compared with DLB only when both cohorts were analyzed together. In both cohorts, THOP1 correlated with CSF total tau (t-tau), phosphorylated tau (p-tau), and Aβ40 (Rho > 0.540) but not Aβ42. DISCUSSION Validation of our proteomics findings underpins the potential of CSF THOP1 as an early specific biomarker associated with AD pathology. The use of antibody-based platforms in both the discovery and validation phases facilitated the translation of proteomics findings, providing an additional workflow that may accelerate the development of biofluid-based biomarkers.
Collapse
Affiliation(s)
- Yanaika S. Hok‐A‐Hin
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam NeuroscienceVU University Medical Center, Amsterdam UMCAmsterdamThe Netherlands
| | - Katharina Bolsewig
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam NeuroscienceVU University Medical Center, Amsterdam UMCAmsterdamThe Netherlands
| | - Daimy N. Ruiters
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam NeuroscienceVU University Medical Center, Amsterdam UMCAmsterdamThe Netherlands
| | - Alberto Lleó
- Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau ‐ Hospital de Sant PauUniversitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant PauBarcelonaSpain
| | - Daniel Alcolea
- Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau ‐ Hospital de Sant PauUniversitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant PauBarcelonaSpain
| | - Afina W. Lemstra
- Alzheimer Center Amsterdam, Department of NeurologyAmsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMCAmsterdamThe Netherlands
| | - Wiesje M. van der Flier
- Alzheimer Center Amsterdam, Department of NeurologyAmsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMCAmsterdamThe Netherlands
- Department of Epidemiology and Data ScienceVU University Medical CentersAmsterdamThe Netherlands
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam NeuroscienceVU University Medical Center, Amsterdam UMCAmsterdamThe Netherlands
| | - Marta del Campo
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam NeuroscienceVU University Medical Center, Amsterdam UMCAmsterdamThe Netherlands
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de FarmaciaUniversidad San Pablo‐CEU, CEU UniversitiesMadridSpain
- Bareclonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
| |
Collapse
|
24
|
Ma Y, Farny NG. Connecting the dots: Neuronal senescence, stress granules, and neurodegeneration. Gene 2023; 871:147437. [PMID: 37084987 PMCID: PMC10205695 DOI: 10.1016/j.gene.2023.147437] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/09/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Cellular senescence increases with aging. While senescence is associated with an exit of the cell cycle, there is ample evidence that post-mitotic cells including neurons can undergo senescence as the brain ages, and that senescence likely contributes significantly to the progression of neurodegenerative diseases (ND) such as Alzheimer's Disease (AD) and Amyotrophic Lateral Sclerosis (ALS). Stress granules (SGs) are stress-induced cytoplasmic biomolecular condensates of RNA and proteins, which have been linked to the development of AD and ALS. The SG seeding hypothesis of NDs proposes that chronic stress in aging neurons results in static SGs that progress into pathological aggregates Alterations in SG dynamics have also been linked to senescence, though studies that link SGs and senescence in the context of NDs and the aging brain have not yet been performed. In this Review, we summarize the literature on senescence, and explore the contribution of senescence to the aging brain. We describe senescence phenotypes in aging neurons and glia, and their links to neuroinflammation and the development of AD and ALS. We further examine the relationships of SGs to senescence and to ND. We propose a new hypothesis that neuronal senescence may contribute to the mechanism of SG seeding in ND by altering SG dynamics in aged cells, thereby providing additional aggregation opportunities within aged neurons.
Collapse
Affiliation(s)
- Yizhe Ma
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Natalie G Farny
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA.
| |
Collapse
|
25
|
Jellinger KA. Morphological characteristics differentiate dementia with Lewy bodies from Parkinson disease with and without dementia. J Neural Transm (Vienna) 2023:10.1007/s00702-023-02660-3. [PMID: 37306790 DOI: 10.1007/s00702-023-02660-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/01/2023] [Indexed: 06/13/2023]
Abstract
Dementia with Lewy bodies (DLB) and Parkinson disease (PD) with and without dementia are entities of a spectrum of Lewy body diseases. About 26.3% of all PD patients develop dementia increasing up to 83%. Parkinson disease-dementia (PDD) and DLB share many clinical and morphological features that separate them from non-demented PD (PDND). Clinically distinguished by the temporal sequence of motor and cognitive symptoms, the pathology of PDD and DLB includes variable combinations of Lewy body (LB) and Alzheimer (AD) lesions, both being more severe in DLB, but much less frequent and less severe in PDND. The objective of this study was to investigate the morphological differences between these three groups. 290 patients with pathologically confirmed PD were reviewed. 190 of them had clinical dementia; 110 met the neuropathological criteria of PDD and 80 of DLB. The major demographic and clinical data were obtained from medical records. Neuropathology included semiquantitative assessment of LB and AD pathologies including cerebral amyloid angiopathy (CAA). PDD patients were significantly older than PDND and DLB ones (83.9 vs 77.9 years, p < 0.05); the age of DLB patients was between them (80.0 years), while the disease duration was shortest in DLB. Brain weight was lowest in DLB, which showed higher Braak LB scores (mean 5.2 vs 4.2) and highest Braak tau stages (mean 5.2 vs 4.4 and 2.3, respectively). Thal Aβ phases were also highest in DLB (mean 4.1 vs 3.0 and 1.8, respectively). Major findings were frequency and degree of CAA, being highest in DLB (95% vs 50% and 24%, with scores 2.9 vs 0.7 and 0.3, respectively), whereas other small vessel lesions showed no significant differences. Striatal Aβ deposits also differentiated DLB from the other groups. This and other studies of larger cohorts of PD patients indicate that the association of CAA and cortical tau-but less-LB pathologies are associated with more severe cognitive decline and worse prognosis that distinguish DLB from PDD and PDND. The particular impact of both CAA and tau pathology supports the concept of a pathogenic continuum ranging from PDND to DLB + AD within the spectrum of age-related synucleinopathies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
26
|
Okuzumi A, Hatano T, Matsumoto G, Nojiri S, Ueno SI, Imamichi-Tatano Y, Kimura H, Kakuta S, Kondo A, Fukuhara T, Li Y, Funayama M, Saiki S, Taniguchi D, Tsunemi T, McIntyre D, Gérardy JJ, Mittelbronn M, Kruger R, Uchiyama Y, Nukina N, Hattori N. Propagative α-synuclein seeds as serum biomarkers for synucleinopathies. Nat Med 2023; 29:1448-1455. [PMID: 37248302 PMCID: PMC10287557 DOI: 10.1038/s41591-023-02358-9] [Citation(s) in RCA: 146] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 04/21/2023] [Indexed: 05/31/2023]
Abstract
Abnormal α-synuclein aggregation is a key pathological feature of a group of neurodegenerative diseases known as synucleinopathies, which include Parkinson's disease (PD), dementia with Lewy bodies and multiple system atrophy (MSA). The pathogenic β-sheet seed conformation of α-synuclein is found in various tissues, suggesting potential as a biomarker, but few studies have been able to reliably detect these seeds in serum samples. In this study, we developed a modified assay system, called immunoprecipitation-based real-time quaking-induced conversion (IP/RT-QuIC), which enables the detection of pathogenic α-synuclein seeds in the serum of individuals with synucleinopathies. In our internal first and second cohorts, IP/RT-QuIC showed high diagnostic performance for differentiating PD versus controls (area under the curve (AUC): 0.96 (95% confidence interval (CI) 0.95-0.99)/AUC: 0.93 (95% CI 0.84-1.00)) and MSA versus controls (AUC: 0.64 (95% CI 0.49-0.79)/AUC: 0.73 (95% CI 0.49-0.98)). IP/RT-QuIC also showed high diagnostic performance in differentiating individuals with PD (AUC: 0.86 (95% CI 0.74-0.99)) and MSA (AUC: 0.80 (95% CI 0.65-0.97)) from controls in a blinded external cohort. Notably, amplified seeds maintained disease-specific properties, allowing the differentiation of samples from individuals with PD versus MSA. In summary, here we present a novel platform that may allow the detection of individuals with synucleinopathies using serum samples.
Collapse
Affiliation(s)
- Ayami Okuzumi
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Taku Hatano
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Gen Matsumoto
- Department of Histology and Cell Biology, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Shuko Nojiri
- Medical Technology Innovation Center, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Shin-Ichi Ueno
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | | | - Haruka Kimura
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Soichiro Kakuta
- Laboratory of Morphology and Image Analysis, Biomedical Research Core Facilities, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Akihide Kondo
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Takeshi Fukuhara
- Neurodegenerative Disorders Collaboration Laboratory, RIKEN Center for Brain Science, Saitama, Japan
| | - Yuanzhe Li
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Manabu Funayama
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Shinji Saiki
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Department of Neurology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Daisuke Taniguchi
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Taiji Tsunemi
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Deborah McIntyre
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Jean-Jacques Gérardy
- Luxembourg National Center of Pathology (NCP), Laboratoire National de Santé (LNS); Department of Cancer Research (DOCR), Luxembourg Institute of Health (LIH); Luxembourg Centre of Neuropathology (LCNP), Luxembourg Centre for Systems Biomedicine (LCSB), Faculty of Science, Technology and Medicine (FSTM) and Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Michel Mittelbronn
- Luxembourg National Center of Pathology (NCP), Laboratoire National de Santé (LNS); Department of Cancer Research (DOCR), Luxembourg Institute of Health (LIH); Luxembourg Centre of Neuropathology (LCNP), Luxembourg Centre for Systems Biomedicine (LCSB), Faculty of Science, Technology and Medicine (FSTM) and Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rejko Kruger
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Centre Hospitalier de Luxembourg (CHL); Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Strassen, Luxembourg
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Nobuyuki Nukina
- Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan.
- Neurodegenerative Disorders Collaboration Laboratory, RIKEN Center for Brain Science, Saitama, Japan.
| |
Collapse
|
27
|
Avelar-Pereira B, Belloy ME, O'Hara R, Hosseini SMH. Decoding the heterogeneity of Alzheimer's disease diagnosis and progression using multilayer networks. Mol Psychiatry 2023; 28:2423-2432. [PMID: 36539525 PMCID: PMC10279806 DOI: 10.1038/s41380-022-01886-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/19/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial and heterogeneous disorder, which makes early detection a challenge. Studies have attempted to combine biomarkers to improve AD detection and predict progression. However, most of the existing work reports results in parallel or compares normalized findings but does not analyze data simultaneously. We tested a multi-dimensional network framework, applied to 490 subjects (cognitively normal [CN] = 147; mild cognitive impairment [MCI] = 287; AD = 56) from ADNI, to create a single model capable of capturing the heterogeneity and progression of AD. First, we constructed subject similarity networks for structural magnetic resonance imaging, amyloid-β positron emission tomography, cerebrospinal fluid, cognition, and genetics data and then applied multilayer community detection to find groups with shared similarities across modalities. Individuals were also followed-up longitudinally, with AD subjects having, on average, 4.5 years of follow-up. Our findings show that multilayer community detection allows for accurate identification of present and future AD (≈90%) and is also able to identify cases that were misdiagnosed clinically. From all MCI participants who developed AD or reverted to CN, the multilayer model correctly identified 90.8% and 88.5% of cases respectively. We observed similar subtypes across the full sample and when examining multimodal data from subjects with no AD pathology (i.e., amyloid negative). Finally, these results were also validated using an independent testing set. In summary, the multilayer framework is successful in detecting AD and provides unique insight into the heterogeneity of the disease by identifying subtypes that share similar multidisciplinary profiles of neurological, cognitive, pathological, and genetics information.
Collapse
Affiliation(s)
- Bárbara Avelar-Pereira
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, 94304, USA.
| | - Michael E Belloy
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, 94304, USA
| | - Ruth O'Hara
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, 94304, USA
| | - S M Hadi Hosseini
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, 94304, USA.
| |
Collapse
|
28
|
Hok-A-Hin YS, Del Campo M, Boiten WA, Stoops E, Vanhooren M, Lemstra AW, van der Flier WM, Teunissen CE. Neuroinflammatory CSF biomarkers MIF, sTREM1, and sTREM2 show dynamic expression profiles in Alzheimer's disease. J Neuroinflammation 2023; 20:107. [PMID: 37147668 PMCID: PMC10163795 DOI: 10.1186/s12974-023-02796-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND There is a need for novel fluid biomarkers tracking neuroinflammatory responses in Alzheimer's disease (AD). Our recent cerebrospinal fluid (CSF) proteomics study revealed that migration inhibitory factor (MIF) and soluble triggering receptor expressed on myeloid cells 1 (sTREM1) increased along the AD continuum. We aimed to assess the potential use of these proteins, in addition to sTREM2, as CSF biomarkers to monitor inflammatory processes in AD. METHODS We included cognitively unimpaired controls (n = 67, 63 ± 9 years, 24% females, all amyloid negative), patients with mild cognitive impairment (MCI; n = 92, 65 ± 7 years, 47% females, 65% amyloid positive), AD (n = 38, 67 ± 6 years, 8% females, all amyloid positive), and DLB (n = 50, 67 ± 6 years, 5% females, 54% amyloid positive). MIF, sTREM1, and sTREM2 levels were measured by validated immunoassays. Differences in protein levels between groups were tested with analysis of covariance (corrected for age and sex). Spearman correlation analysis was performed to evaluate the association between these neuroinflammatory markers with AD-CSF biomarkers (Aβ42, tTau, pTau) and mini-mental state examination (MMSE) scores. RESULTS MIF levels were increased in MCI (p < 0.01), AD (p < 0.05), and DLB (p > 0.05) compared to controls. Levels of sTREM1 were specifically increased in AD compared to controls (p < 0.01), MCI (p < 0.05), and DLB patients (p > 0.05), while sTREM2 levels were increased specifically in MCI compared to all other groups (all p < 0.001). Neuroinflammatory proteins were highly correlated with CSF pTau levels (MIF: all groups; sTREM1: MCI, AD and DLB; sTREM2: controls, MCI and DLB). Correlations with MMSE scores were observed in specific clinical groups (MIF in controls, sTREM1 in AD, and sTREM2 in DLB). CONCLUSION Inflammatory-related proteins show diverse expression profiles along different AD stages, with increased protein levels in the MCI stage (MIF and sTREM2) and AD stage (MIF and sTREM1). The associations of these inflammatory markers primarily with CSF pTau levels indicate an intertwined relationship between tau pathology and inflammation. These neuroinflammatory markers might be useful in clinical trials to capture dynamics in inflammatory responses or monitor drug-target engagement of inflammatory modulators.
Collapse
Affiliation(s)
- Yanaika S Hok-A-Hin
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Marta Del Campo
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Walter A Boiten
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | | | | | - Afina W Lemstra
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Epidemiology and Data Science, VU University Medical Centers, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Fisher DW, Tulloch J, Yu CE, Tsuang D. A Preliminary Comparison of the Methylome and Transcriptome from the Prefrontal Cortex Across Alzheimer’s Disease and Lewy Body Dementia. J Alzheimers Dis Rep 2023; 7:279-297. [PMID: 37220618 PMCID: PMC10200238 DOI: 10.3233/adr220114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/23/2023] [Indexed: 03/15/2023] Open
Abstract
Background: Pathological amyloid-β and α-synuclein are associated with a spectrum of related dementias, ranging from Alzheimer’s disease (AD), dementia with Lewy bodies (DLB), to Parkinson disease dementia (PDD). While these diseases share clinical and pathological features, they also have unique patterns of pathology. However, epigenetic factors that contribute to these pathological differences remain unknown. Objective: In this preliminary study, we explore differences in DNA methylation and transcription in five neuropathologically defined groups: cognitively unimpaired controls, AD, pure DLB, DLB with concomitant AD (DLBAD), and PDD. Methods: We employed an Illumina Infinium 850k array and RNA-seq to quantify these differences in DNA methylation and transcription, respectively. We then used Weighted Gene Co-Network Expression Analysis (WGCNA) to determine transcriptional modules and correlated these with DNA methylation. Results: We found that PDD was transcriptionally unique and correlated with an unexpected hypomethylation pattern compared to the other dementias and controls. Surprisingly, differences between PDD and DLB were especially notable with 197 differentially methylated regions. WGCNA yielded numerous modules associated with controls and the four dementias: one module was associated with transcriptional differences between controls and all the dementias as well as having significant overlap with differentially methylated probes. Functional enrichment demonstrated that this module was associated with responses to oxidative stress. Conclusion: Future work that extends these joint DNA methylation and transcription analyses will be critical to better understanding of differences that contribute to varying clinical presentation across dementias.
Collapse
Affiliation(s)
- Daniel W. Fisher
- Department of Psychiatry and Behavioral Sciences, University of Washington Medical Center, Seattle, WA, USA
| | - Jessica Tulloch
- Geriatric Research, Education, and Clinical Center, Veteran’s Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington Medical Center, Seattle, WA, USA
| | - Chang-En Yu
- Geriatric Research, Education, and Clinical Center, Veteran’s Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington Medical Center, Seattle, WA, USA
| | - Debby Tsuang
- Geriatric Research, Education, and Clinical Center, Veteran’s Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington Medical Center, Seattle, WA, USA
| |
Collapse
|
30
|
Chu Y, Hirst WD, Kordower JH. Mixed pathology as a rule, not exception: Time to reconsider disease nosology. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:57-71. [PMID: 36796948 DOI: 10.1016/b978-0-323-85538-9.00012-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Parkinson's disease is a progressive neurodegenerative disorder that is associated with motor and nonmotor symptoms. Accumulation of misfolded α-synuclein is considered a key pathological feature during disease initiation and progression. While clearly deemed a synucleinopathy, the development of amyloid-β plaques, tau-containing neurofibrillary tangles, and even TDP-43 protein inclusions occur within the nigrostriatal system and in other brain regions. In addition, inflammatory responses, manifested by glial reactivity, T-cell infiltration, and increased expression of inflammatory cytokines, plus other toxic mediators derived from activated glial cells, are currently recognized as prominent drivers of Parkinson's disease pathology. However, copathologies have increasingly been recognized as the rule (>90%) and not the exception, with Parkinson's disease cases on average exhibiting three different copathologies. While microinfarcts, atherosclerosis, arteriolosclerosis, and cerebral amyloid angiopathy may have an impact on disease progression, α-synuclein, amyloid-β, and TDP-43 pathology do not seem to contribute to progression.
Collapse
Affiliation(s)
- Yaping Chu
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, United States
| | - Warren D Hirst
- Neurodegenerative Diseases Research Unit, Biogen, Boston, MA, United States
| | - Jeffrey H Kordower
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, United States.
| |
Collapse
|
31
|
Chiu SY, Wyman-Chick KA, Ferman TJ, Bayram E, Holden SK, Choudhury P, Armstrong MJ. Sex differences in dementia with Lewy bodies: Focused review of available evidence and future directions. Parkinsonism Relat Disord 2023; 107:105285. [PMID: 36682958 PMCID: PMC10024862 DOI: 10.1016/j.parkreldis.2023.105285] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/07/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
In this review, we summarize the current knowledge on sex differences in dementia with Lewy bodies (DLB) relating to epidemiology, clinical features, neuropathology, biomarkers, disease progression, and caregiving. While many studies show a higher DLB prevalence in men, this finding is inconsistent and varies by study approach. Visual hallucinations may be more common and occur earlier in women with DLB, whereas REM sleep behavior disorder may be more common and occur earlier in men. Several studies report a higher frequency of parkinsonism in men with DLB, while the frequency of fluctuations appears similar between sexes. Women tend to be older, have greater cognitive impairment at their initial visit, and are delayed in meeting DLB criteria compared to men. Women are also more likely to have Lewy body disease with co-existing AD-related pathology than so-called "pure" Lewy body disease, while men may present with either. Research is mixed regarding the impact of sex on DLB progression. Biomarker and treatment research assessing for sex differences is lacking. Women provide the majority of caregiving in DLB but how this affects the caregiving experience is uncertain. Gaining a better understanding of sex differences will be instrumental in aiding future development of sex-specific strategies in DLB for early diagnosis, care, and drug development.
Collapse
Affiliation(s)
- Shannon Y Chiu
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA; Norman Fixel Institute for Neurologic Diseases, University of Florida, Gainesville, FL, USA.
| | - Kathryn A Wyman-Chick
- Center for Memory and Aging, Department of Neurology, HealthPartners, Saint Paul, MN, USA
| | - Tanis J Ferman
- Department of Psychiatry & Psychology, Mayo Clinic, Jacksonville, FL, USA
| | - Ece Bayram
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Samantha K Holden
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Parichita Choudhury
- Cleo Roberts Center, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Melissa J Armstrong
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA; Norman Fixel Institute for Neurologic Diseases, University of Florida, Gainesville, FL, USA
| |
Collapse
|
32
|
Pyun JM, Youn YC, Park YH, Kim S. Integration of amyloid-β oligomerization tendency as a plasma biomarker in Alzheimer's disease diagnosis. Front Neurol 2023; 13:1028448. [PMID: 36733444 PMCID: PMC9886866 DOI: 10.3389/fneur.2022.1028448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
Introduction There has been significant development in blood-based biomarkers targeting amyloidopathy of Alzheimer's disease (AD). However, the guidelines for integrating such biomarkers into AD diagnosis are still inadequate. Multimer Detection System-Oligomeric Amyloid-β (MDS-OAβ) as a plasma biomarker detecting oligomerization tendency is available in the clinical practice. Main text We suggest how to interpret the results of plasma biomarker for amyloidopathy using MDS-OAβ with neuropsychological test, brain magnetic resonance imaging (MRI), and amyloid PET for AD diagnosis. Combination of each test result differentiates various stages of AD, other neurodegenerative diseases, or cognitive impairment due to the causes other than neurodegeneration. Discussion A systematic interpretation strategy could support accurate diagnosis and staging of AD. Moreover, comprehensive use of biomarkers that target amyloidopathy such as amyloid PET on brain amyloid plaque and MDS-OAβ on amyloid-β oligomerization tendency can complement to gain advanced insights on amyloid-β dynamics in AD.
Collapse
Affiliation(s)
- Jung-Min Pyun
- Department of Neurology, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Republic of Korea
| | - Young Chul Youn
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Young Ho Park
- Department of Neurology, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea,*Correspondence: SangYun Kim ✉
| |
Collapse
|
33
|
Zhang J, Jin J, Su D, Feng T, Zhao H. Tau-PET imaging in Parkinson's disease: a systematic review and meta-analysis. Front Neurol 2023; 14:1145939. [PMID: 37181568 PMCID: PMC10174250 DOI: 10.3389/fneur.2023.1145939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/30/2023] [Indexed: 05/16/2023] Open
Abstract
Background Pathological tau accumulates in the cerebral cortex of Parkinson's disease (PD), resulting in cognitive deterioration. Positron emission tomography (PET) can be used for in vivo imaging of tau protein. Therefore, we conducted a systematic review and meta-analysis of tau protein burden in PD cognitive impairment (PDCI), PD dementia (PDD), and other neurodegenerative diseases and explored the potential of the tau PET tracer as a biomarker for the diagnosis of PDCI. Methods PubMed, Embase, the Cochrane Library, and Web of Science databases were systematically searched for studies published till 1 June 2022 that used PET imaging to detect tau burden in the brains of PD patients. Standardized mean differences (SMDs) of tau tracer uptake were calculated using random effects models. Subgroup analysis based on the type of tau tracers, meta-regression, and sensitivity analysis was conducted. Results A total of 15 eligible studies were included in the meta-analysis. PDCI patients (n = 109) had a significantly higher tau tracer uptake in the inferior temporal lobe than healthy controls (HCs) (n = 237) and had a higher tau tracer uptake in the entorhinal region than PD with normal cognition (PDNC) patients (n = 61). Compared with progressive supranuclear palsy (PSP) patients (n = 215), PD patients (n = 178) had decreased tau tracer uptake in the midbrain, subthalamic nucleus, globus pallidus, cerebellar deep white matter, thalamus, striatum, substantia nigra, dentate nucleus, red nucleus, putamen, and frontal lobe. Tau tracer uptake values of PD patients (n = 178) were lower than those of patients with Alzheimer's disease (AD) (n = 122) in the frontal lobe and occipital lobe and lower than those in patients with dementia with Lewy bodies (DLB) (n = 55) in the occipital lobe and infratemporal lobe. Conclusion In vivo imaging studies with PET could reveal region-specific binding patterns of the tau tracer in PD patients and help in the differential diagnosis of PD from other neurodegenerative diseases. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/.
Collapse
Affiliation(s)
- Junjiao Zhang
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianing Jin
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dongning Su
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Feng
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- *Correspondence: Tao Feng
| | - Huiqing Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Huiqing Zhao
| |
Collapse
|
34
|
Andrade EIN, Manxhari C, Smith KM. Pausing before verb production is associated with mild cognitive impairment in Parkinson's disease. Front Hum Neurosci 2023; 17:1102024. [PMID: 37113321 PMCID: PMC10126398 DOI: 10.3389/fnhum.2023.1102024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Background Cognitive dysfunction and communication impairment are common and disabling symptoms in Parkinson's Disease (PD). Action verb deficits occur in PD, but it remains unclear if these impairments are related to motor system dysfunction and/or cognitive decline. The objective of our study was to evaluate relative contributions of cognitive and motor dysfunction to action verb production in naturalistic speech of patients with PD. We proposed that pausing before action-related language is associated with cognitive dysfunction and may serve as a marker of mild cognitive impairment in PD. Method Participants with PD (n = 92) were asked to describe the Cookie Theft picture. Speech files were transcribed, segmented into utterances, and verbs classified as action or non-action (auxiliary). We measured silent pauses before verbs and before utterances containing verbs of different classes. Cognitive assessment included Montreal Cognitive Assessment (MoCA) and neuropsychological tests to categorize PD participants as normal cognition (PD-NC) or mild cognitive impairment (PD-MCI) based on Movement Disorders Society (MDS) Task Force Tier II criteria. Motor symptoms were assessed using MDS-UPDRS. We performed Wilcoxon rank sum tests to identify differences in pausing between PD-NC and PD-MCI. Logistic regression models using PD-MCI as dependent variables were used to evaluate the association between pause variables and cognitive status. Results Participants with PD-MCI demonstrated more pausing before and within utterances compared to PD-NC, and the duration of these pauses were correlated with MoCA but not motor severity (MDS-UPDRS). Logistic regression models demonstrated that pauses before action utterances were associated with PD-MCI status, whereas pauses before non-action utterances were not significantly associated with cognitive diagnosis. Conclusion We characterized pausing patterns in spontaneous speech in PD-MCI, including analysis of pause location with respect to verb class. We identified associations between cognitive status and pausing before utterances containing action verbs. Evaluation of verb-related pauses may be developed into a potentially powerful speech marker tool to detect early cognitive decline in PD and better understand linguistic dysfunction in PD.
Collapse
Affiliation(s)
| | - Christina Manxhari
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Kara M. Smith
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, United States
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, United States
- *Correspondence: Kara M. Smith,
| |
Collapse
|
35
|
Coughlin DG, Hiniker A, Peterson C, Kim Y, Arezoumandan S, Giannini L, Pizzo D, Weintraub D, Siderowf A, Litvan I, Rissman RA, Galasko D, Hansen L, Trojanowski JQ, Lee E, Grossman M, Irwin D. Digital Histological Study of Neocortical Grey and White Matter Tau Burden Across Tauopathies. J Neuropathol Exp Neurol 2022; 81:953-964. [PMID: 36269086 PMCID: PMC9677241 DOI: 10.1093/jnen/nlac094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
3R/4R-tau species are found in Alzheimer disease (AD) and ∼50% of Lewy body dementias at autopsy (LBD+tau); 4R-tau accumulations are found in progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). Digital image analysis techniques can elucidate patterns of tau pathology more precisely than traditional methods but repeatability across centers is unclear. We calculated regional percentage areas occupied by tau pathological inclusions from the middle frontal cortex (MFC), superior temporal cortex (STC), and angular gyrus (ANG) from cases from the University of Pennsylvania and the University of California San Diego with AD, LBD+tau, PSP, or CBD (n = 150) using QuPath. In both cohorts, AD and LBD+tau had the highest grey and white matter tau burden in the STC (p ≤ 0.04). White matter tau burden was relatively higher in 4R-tauopathies than 3R/4R-tauopathies (p < 0.003). Grey and white matter tau were correlated in all diseases (R2=0.43-0.79, p < 0.04) with the greatest increase of white matter per unit grey matter tau observed in PSP (p < 0.02 both cohorts). Grey matter tau negatively correlated with MMSE in AD and LBD+tau (r = -4.4 to -5.4, p ≤ 0.02). These data demonstrate the feasibility of cross-institutional digital histology studies that generate finely grained measurements of pathology which can be used to support biomarker development and models of disease progression.
Collapse
Affiliation(s)
- David G Coughlin
- From the Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Annie Hiniker
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Claire Peterson
- Digital Neuropathology Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yongya Kim
- From the Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Sanaz Arezoumandan
- Digital Neuropathology Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lucia Giannini
- Digital Neuropathology Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurology, Erasmus University Medical Center, Alzheimer Center, Rotterdam, The Netherlands
| | - Donald Pizzo
- Center for Advanced Laboratory Medicine, University of California San Diego, La Jolla, California, USA
| | - Daniel Weintraub
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew Siderowf
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Irene Litvan
- From the Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Robert A Rissman
- From the Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Douglas Galasko
- From the Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Lawrence Hansen
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Irwin
- Digital Neuropathology Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
36
|
Edelmann MR. Radiolabelling small and biomolecules for tracking and monitoring. RSC Adv 2022; 12:32383-32400. [PMID: 36425706 PMCID: PMC9650631 DOI: 10.1039/d2ra06236d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
Abstract
Radiolabelling small molecules with beta-emitters has been intensively explored in the last decades and novel concepts for the introduction of radionuclides continue to be reported regularly. New catalysts that induce carbon/hydrogen activation are able to incorporate isotopes such as deuterium or tritium into small molecules. However, these established labelling approaches have limited applicability for nucleic acid-based drugs, therapeutic antibodies, or peptides, which are typical of the molecules now being investigated as novel therapeutic modalities. These target molecules are usually larger (significantly >1 kDa), mostly multiply charged, and often poorly soluble in organic solvents. However, in preclinical research they often require radiolabelling in order to track and monitor drug candidates in metabolism, biotransformation, or pharmacokinetic studies. Currently, the most established approach to introduce a tritium atom into an oligonucleotide is based on a multistep synthesis, which leads to a low specific activity with a high level of waste and high costs. The most common way of tritiating peptides is using appropriate precursors. The conjugation of a radiolabelled prosthetic compound to a functional group within a protein sequence is a commonly applied way to introduce a radionuclide or a fluorescent tag into large molecules. This review highlights the state-of-the-art in different radiolabelling approaches for oligonucleotides, peptides, and proteins, as well as a critical assessment of the impact of the label on the properties of the modified molecules. Furthermore, applications of radiolabelled antibodies in biodistribution studies of immune complexes and imaging of brain targets are reported.
Collapse
Affiliation(s)
- Martin R Edelmann
- Department of Pharmacy and Pharmacology, University of Bath Bath BA2 7AY UK
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Therapeutic Modalities, Small Molecule Research, Isotope Synthesis, F. Hoffmann-La Roche Ltd CH-4070 Basel Switzerland
| |
Collapse
|
37
|
Implication of EEG theta/alpha and theta/beta ratio in Alzheimer's and Lewy body disease. Sci Rep 2022; 12:18706. [PMID: 36333386 PMCID: PMC9636216 DOI: 10.1038/s41598-022-21951-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
We evaluated the patterns of quantitative electroencephalography (EEG) in patients with Alzheimer's disease (AD), Lewy body disease (LBD), and mixed disease. Sixteen patients with AD, 38 with LBD, 20 with mixed disease, and 17 control participants were recruited and underwent EEG. The theta/alpha ratio and theta/beta ratio were measured. The relationship of the log-transformed theta/alpha ratio (TAR) and theta/beta ratio (TBR) with the disease group, the presence of AD and LBD, and clinical symptoms were evaluated. Participants in the LBD and mixed disease groups had higher TBR in all lobes except for occipital lobe than those in the control group. The presence of LBD was independently associated with higher TBR in all lobes and higher central and parietal TAR, while the presence of AD was not. Among cognitively impaired patients, higher TAR was associated with the language, memory, and visuospatial dysfunction, while higher TBR was associated with the memory and frontal/executive dysfunction. Increased TBR in all lobar regions and temporal TAR were associated with the hallucinations, while cognitive fluctuations and the severity of Parkinsonism were not. Increased TBR could be a biomarker for LBD, independent of AD, while the presence of mixed disease could be reflected as increased TAR.
Collapse
|
38
|
Baiardi S, Quadalti C, Mammana A, Dellavalle S, Zenesini C, Sambati L, Pantieri R, Polischi B, Romano L, Suffritti M, Bentivenga GM, Randi V, Stanzani-Maserati M, Capellari S, Parchi P. Diagnostic value of plasma p-tau181, NfL, and GFAP in a clinical setting cohort of prevalent neurodegenerative dementias. Alzheimers Res Ther 2022; 14:153. [PMID: 36221099 PMCID: PMC9555092 DOI: 10.1186/s13195-022-01093-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
Background Increasing evidence supports the use of plasma biomarkers of neurodegeneration and neuroinflammation to screen and diagnose patients with dementia. However, confirmatory studies are required to demonstrate their usefulness in the clinical setting. Methods We evaluated plasma and cerebrospinal fluid (CSF) samples from consecutive patients with frontotemporal dementia (FTD) (n = 59), progressive supranuclear palsy (PSP) (n = 31), corticobasal syndrome (CBS) (n = 29), dementia with Lewy bodies (DLB) (n = 49), Alzheimer disease (AD) (n = 97), and suspected non-AD physiopathology (n = 51), as well as plasma samples from 60 healthy controls (HC). We measured neurofilament light chain (NfL), phospho-tau181 (p-tau181), and glial fibrillary acid protein (GFAP) using Simoa (all plasma biomarkers and CSF GFAP), CLEIA (CSF p-tau181), and ELISA (CSF NfL) assays. Additionally, we stratified patients according to the A/T/N classification scheme and the CSF α-synuclein real-time quaking-induced conversion assay (RT-QuIC) results. Results We found good correlations between CSF and plasma biomarkers for NfL (rho = 0.668, p < 0.001) and p-tau181 (rho = 0.619, p < 0.001). Plasma NfL was significantly higher in disease groups than in HC and showed a greater increase in FTD than in AD [44.9 (28.1–68.6) vs. 21.9 (17.0–27.9) pg/ml, p < 0.001]. Conversely, plasma p-tau181 and GFAP levels were significantly higher in AD than in FTD [3.2 (2.4–4.3) vs. 1.1 (0.7–1.6) pg/ml, p < 0.001; 404.7 (279.7–503.0) vs. 198.2 (143.9–316.8) pg/ml, p < 0.001]. GFAP also allowed discriminating disease groups from HC. In the distinction between FTD and AD, plasma p-tau181 showed better accuracy (AUC 0.964) than NfL (AUC 0.791) and GFAP (AUC 0.818). In DLB and CBS, CSF amyloid positive (A+) subjects had higher plasma p-tau181 and GFAP levels than A− individuals. CSF RT-QuIC showed positive α-synuclein seeding activity in 96% DLB and 15% AD patients with no differences in plasma biomarker levels in those stratified by RT-QuIC result. Conclusions In a single-center clinical cohort, we confirm the high diagnostic value of plasma p-tau181 for distinguishing FTD from AD and plasma NfL for discriminating degenerative dementias from HC. Plasma GFAP alone differentiates AD from FTD and neurodegenerative dementias from HC but with lower accuracy than p-tau181 and NfL. In CBS and DLB, plasma p-tau181 and GFAP levels are significantly influenced by beta-amyloid pathology. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-01093-6.
Collapse
Affiliation(s)
- Simone Baiardi
- grid.6292.f0000 0004 1757 1758Department of Experimental, Diagnostic and Specialty Medicine (DIMES) University of Bologna, Bologna, Italy ,grid.492077.fIRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 1/8, 40139 Bologna, Italy
| | - Corinne Quadalti
- grid.492077.fIRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 1/8, 40139 Bologna, Italy
| | - Angela Mammana
- grid.6292.f0000 0004 1757 1758Department of Experimental, Diagnostic and Specialty Medicine (DIMES) University of Bologna, Bologna, Italy ,grid.492077.fIRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 1/8, 40139 Bologna, Italy
| | - Sofia Dellavalle
- grid.492077.fIRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 1/8, 40139 Bologna, Italy
| | - Corrado Zenesini
- grid.492077.fIRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 1/8, 40139 Bologna, Italy
| | - Luisa Sambati
- grid.492077.fIRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 1/8, 40139 Bologna, Italy
| | - Roberta Pantieri
- grid.492077.fIRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 1/8, 40139 Bologna, Italy
| | - Barbara Polischi
- grid.492077.fIRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 1/8, 40139 Bologna, Italy
| | - Luciano Romano
- grid.6292.f0000 0004 1757 1758Department of Biomedical and Neuromotor Sciences University of Bologna (DIBINEM), Bologna, Italy
| | - Matteo Suffritti
- grid.6292.f0000 0004 1757 1758Department of Biomedical and Neuromotor Sciences University of Bologna (DIBINEM), Bologna, Italy
| | - Giuseppe Mario Bentivenga
- grid.6292.f0000 0004 1757 1758Department of Biomedical and Neuromotor Sciences University of Bologna (DIBINEM), Bologna, Italy
| | - Vanda Randi
- Emilia-Romagna Regional Blood Bank, Immunohematology and Transfusion Medicine Service, Bologna Metropolitan Area, Bologna, Italy
| | | | - Sabina Capellari
- grid.492077.fIRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 1/8, 40139 Bologna, Italy ,grid.6292.f0000 0004 1757 1758Department of Biomedical and Neuromotor Sciences University of Bologna (DIBINEM), Bologna, Italy
| | - Piero Parchi
- grid.492077.fIRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 1/8, 40139 Bologna, Italy ,grid.6292.f0000 0004 1757 1758Department of Biomedical and Neuromotor Sciences University of Bologna (DIBINEM), Bologna, Italy
| |
Collapse
|
39
|
Tábuas-Pereira M, Guerreiro R, Kun-Rodrigues C, Almeida MR, Brás J, Santana I. Whole-exome sequencing reveals PSEN1 and ATP7B combined variants as a possible cause of early-onset Lewy body dementia: a case study of genotype-phenotype correlation. Neurogenetics 2022; 23:279-283. [PMID: 36114914 PMCID: PMC9669161 DOI: 10.1007/s10048-022-00699-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
Abstract
Dementia with Lewy bodies is a neurodegenerative disease, sharing features with Parkinson's and Alzheimer's diseases. We report a case of a patient dementia with Lewy bodies carrying combined PSEN1 and ATP7B mutations. A man developed dementia with Lewy bodies starting at the age of 60 years. CSF biomarkers were of Alzheimer's disease and DaTSCAN was abnormal. Whole-exome sequencing revealed a heterozygous p.Ile408Thr PSEN1 variant and a homozygous p.Arg616Trp ATP7B variant. This case reinstates the need of considering ATP7B mutations when evaluating a patient with parkinsonism and supports p.Ile408Thr as a pathogenic PSEN1 variant.
Collapse
Affiliation(s)
- Miguel Tábuas-Pereira
- Neurology Department, Centro Hospitalar E Universitário de Coimbra, Praceta Prof. Mota Pinto, 3000-045, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
- Centro Académico Clínico de Coimbra, University of Coimbra, Coimbra, Portugal.
| | - Rita Guerreiro
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Célia Kun-Rodrigues
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Maria Rosário Almeida
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - José Brás
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Isabel Santana
- Neurology Department, Centro Hospitalar E Universitário de Coimbra, Praceta Prof. Mota Pinto, 3000-045, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Centro Académico Clínico de Coimbra, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
40
|
Xu C, Zhao L, Dong C. A Review of Application of Aβ42/40 Ratio in Diagnosis and Prognosis of Alzheimer’s Disease. J Alzheimers Dis 2022; 90:495-512. [DOI: 10.3233/jad-220673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The number of patients with Alzheimer’s disease (AD) and non-Alzheimer’s disease (non-AD) has drastically increased over recent decades. The amyloid cascade hypothesis attributes a vital role to amyloid-β protein (Aβ) in the pathogenesis of AD. As the main pathological hallmark of AD, amyloid plaques consist of merely the 42 and 40 amino acid variants of Aβ (Aβ 42 and Aβ 40). The cerebrospinal fluid (CSF) biomarker Aβ 42/40 has been extensively investigated and eventually integrated into important diagnostic tools to support the clinical diagnosis of AD. With the development of highly sensitive assays and technologies, blood-based Aβ 42/40, which was obtained using a minimally invasive and cost-effective method, has been proven to be abnormal in synchrony with CSF biomarker values. This paper presents the recent progress of the CSF Aβ 42/40 ratio and plasma Aβ 42/40 for AD as well as their potential clinical application as diagnostic markers or screening tools for dementia.
Collapse
Affiliation(s)
- Chang Xu
- Department of Neurology, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Li Zhao
- Department of Neurology, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Chunbo Dong
- Department of Neurology, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
41
|
Mattioli P, Pardini M, Girtler N, Brugnolo A, Orso B, Andrea D, Calizzano F, Mancini R, Massa F, Michele T, Bauckneht M, Morbelli S, Sambuceti G, Flavio N, Arnaldi D. Cognitive and Brain Metabolism Profiles of Mild Cognitive Impairment in Prodromal Alpha-Synucleinopathy. J Alzheimers Dis 2022; 90:433-444. [DOI: 10.3233/jad-220653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Mild cognitive impairment (MCI) is a heterogeneous condition. Idiopathic REM sleep behavior disorder (iRBD) can be associated with MCI (MCI-RBD). Objective: To investigate neuropsychological and brain metabolism features of patients with MCI-RBD by comparison with matched MCI-AD patients. To explore their predictive value toward conversion to a full-blown neurodegenerative disease. Methods: Seventeen MCI-RBD patients (73.6±6.5 years) were enrolled. Thirty-four patients with MCI-AD were matched for age (74.8±4.4 years), Mini-Mental State Exam score and education with a case-control criterion. All patients underwent a neuropsychological assessment and brain 18F-FDG-PET. Images were compared between groups to identify hypometabolic volumes of interest (MCI-RBD-VOI and MCI-AD-VOI). The dependency of whole-brain scaled metabolism levels in MCI-RBD-VOI and MCI-AD-VOI on neuropsychological test scores was explored with linear regression analyses in both groups, adjusting for age and education. Survival analysis was performed to investigate VOIs phenoconversion prediction power. Results: MCI-RBD group scored lower in executive functions and higher in verbal memory compared to MCI-AD group. Also, compared with MCI-AD, MCI-RBD group showed relative hypometabolism in a posterior brain area including cuneus, precuneus, and occipital regions while the inverse comparison revealed relative hypometabolism in the hippocampus/parahippocampal areas in MCI-AD group. MCI-RBD-VOI metabolism directly correlated with executive functions in MCI-RBD (p = 0.04). MCI-AD-VOI metabolism directly correlated with verbal memory in MCI-AD (p = 0.001). MCI-RBD-VOI metabolism predicted (p = 0.03) phenoconversion to an alpha-synucleinopathy. MCI-AD-VOI metabolism showed a trend (p = 0.07) in predicting phenoconversion to dementia. Conclusion: MCI-RBD and MCI-AD showed distinct neuropsychological and brain metabolism profiles, that may be helpful for both diagnosis and prognosis purposes.
Collapse
Affiliation(s)
- Pietro Mattioli
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | - Matteo Pardini
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Nicola Girtler
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- Clinical Psychology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Andrea Brugnolo
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- Clinical Psychology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Beatrice Orso
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | - Donniaquio Andrea
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | | | - Raffaele Mancini
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | - Federico Massa
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | - Terzaghi Michele
- Unit of Sleep Medicine and Epilepsy, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Matteo Bauckneht
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Nuclear Medicine Unit, Dept. of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Silvia Morbelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Nuclear Medicine Unit, Dept. of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Gianmario Sambuceti
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Nuclear Medicine Unit, Dept. of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Nobili Flavio
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Dario Arnaldi
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
42
|
Iba M, McDevitt RA, Kim C, Roy R, Sarantopoulou D, Tommer E, Siegars B, Sallin M, Kwon S, Sen JM, Sen R, Masliah E. Aging exacerbates the brain inflammatory micro-environment contributing to α-synuclein pathology and functional deficits in a mouse model of DLB/PD. Mol Neurodegener 2022; 17:60. [PMID: 36064424 PMCID: PMC9447339 DOI: 10.1186/s13024-022-00564-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/19/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Although ɑ-synuclein (ɑ-syn) spreading in age-related neurodegenerative diseases such as Parkinson's disease (PD) and Dementia with Lewy bodies (DLB) has been extensively investigated, the role of aging in the manifestation of disease remains unclear. METHODS We explored the role of aging and inflammation in the pathogenesis of synucleinopathies in a mouse model of DLB/PD initiated by intrastriatal injection of ɑ-syn preformed fibrils (pff). RESULTS We found that aged mice showed more extensive accumulation of ɑ-syn in selected brain regions and behavioral deficits that were associated with greater infiltration of T cells and microgliosis. Microglial inflammatory gene expression induced by ɑ-syn-pff injection in young mice had hallmarks of aged microglia, indicating that enhanced age-associated pathologies may result from inflammatory synergy between aging and the effects of ɑ-syn aggregation. Based on the transcriptomics analysis projected from Ingenuity Pathway Analysis, we found a network that included colony stimulating factor 2 (CSF2), LPS related genes, TNFɑ and poly rl:rC-RNA as common regulators. CONCLUSIONS We propose that aging related inflammation (eg: CSF2) influences outcomes of pathological spreading of ɑ-syn and suggest that targeting neuro-immune responses might be important in developing treatments for DLB/PD.
Collapse
Affiliation(s)
- Michiyo Iba
- Laboratory of Neurogenetics, Molecular Neuropathology Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ross A McDevitt
- Mouse Phenotyping Unit, Comparative Medicine Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Changyoun Kim
- Laboratory of Neurogenetics, Molecular Neuropathology Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Roshni Roy
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Dimitra Sarantopoulou
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Ella Tommer
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Byron Siegars
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Michelle Sallin
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Somin Kwon
- Laboratory of Neurogenetics, Molecular Neuropathology Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jyoti Misra Sen
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
- Immunology Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21224, USA
| | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
- Immunology Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21224, USA
| | - Eliezer Masliah
- Laboratory of Neurogenetics, Molecular Neuropathology Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.
- Division of Neuroscience, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20814, USA.
| |
Collapse
|
43
|
Chiu PY, Hou PN, Hung GU, Hsieh TC, Chan PK, Kao CH. Real-World Testing of a Machine Learning-Derived Visual Scale for Tc99m TRODAT-1 for Diagnosing Lewy Body Disease: Comparison with a Traditional Approach Using Semiquantification. J Pers Med 2022; 12:1369. [PMID: 36143154 PMCID: PMC9505116 DOI: 10.3390/jpm12091369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Objectives: Abnormal dopamine transporter (DAT) uptake is an important biomarker for diagnosing Lewy body disease (LBD), including Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). We evaluated a machine learning-derived visual scale (ML-VS) for Tc99m TRODAT-1 from one center and compared it with the striatal/background ratio (SBR) using semiquantification for diagnosing LBD in two other centers. Patients and Methods: This was a retrospective analysis of data from a history-based computerized dementia diagnostic system. MT-VS and SBR among normal controls (NCs) and patients with PD, PD with dementia (PDD), DLB, or Alzheimer’s disease (AD) were compared. Results: We included 715 individuals, including 122 NCs, 286 patients with PD, 40 with AD, 179 with DLB, and 88 with PDD. Compared with NCs, patients with PD exhibited a significantly higher prevalence of abnormal DAT uptake using all methods. Compared with the AD group, PDD and DLB groups exhibited a significantly higher prevalence of abnormal DAT uptake using all methods. The distribution of ML-VS was significantly different between PD and NC, DLB and AD, and PDD and AD groups (all p < 0.001). The correlation coefficient of ML-VS/SBR in all participants was 0.679. Conclusions: The ML-VS designed in one center is useful for differentiating PD from NC, DLB from AD, and PDD from AD in other centers. Its correlation with traditional approaches using different scanning machines is also acceptable. Future studies should develop models using data pools from multiple centers for increasing diagnostic accuracy.
Collapse
Affiliation(s)
- Pai-Yi Chiu
- Department of Neurology, Show Chwan Memorial Hospital, Changhua 50008, Taiwan
- Department of Applied Mathematics, Tunghai University, Taichung 40704, Taiwan
| | - Po-Nien Hou
- Department of Nuclear Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua 50544, Taiwan
| | - Guang-Uei Hung
- Department of Nuclear Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua 50544, Taiwan
| | - Te-Chun Hsieh
- Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung 40402, Taiwan
- Department of Biomedical Imaging and Radiological Science, Elite Campus, China Medical University, Taichung 40402, Taiwan
| | - Pak-Ki Chan
- Center of Augmented Intelligence in Healthcare, China Medical University Hospital, Taichung 40402, Taiwan
| | - Chia-Hung Kao
- Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung 40402, Taiwan
- Center of Augmented Intelligence in Healthcare, China Medical University Hospital, Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, Elite Campus, School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
44
|
Bluhm A, Schrempel S, Schilling S, von Hörsten S, Schulze A, Roßner S, Hartlage-Rübsamen M. Immunohistochemical Demonstration of the pGlu79 α-Synuclein Fragment in Alzheimer’s Disease and Its Tg2576 Mouse Model. Biomolecules 2022; 12:biom12071006. [PMID: 35883562 PMCID: PMC9312983 DOI: 10.3390/biom12071006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
The deposition of β-amyloid peptides and of α-synuclein proteins is a neuropathological hallmark in the brains of Alzheimer’s disease (AD) and Parkinson’s disease (PD) subjects, respectively. However, there is accumulative evidence that both proteins are not exclusive for their clinical entity but instead co-exist and interact with each other. Here, we investigated the presence of a newly identified, pyroglutamate79-modified α-synuclein variant (pGlu79-aSyn)—along with the enzyme matrix metalloproteinase-3 (MMP-3) and glutaminyl cyclase (QC) implicated in its formation—in AD and in the transgenic Tg2576 AD mouse model. In the human brain, pGlu79-aSyn was detected in cortical pyramidal neurons, with more distinct labeling in AD compared to control brain tissue. Using immunohistochemical double and triple labelings and confocal laser scanning microscopy, we demonstrate an association of pGlu79-aSyn, MMP-3 and QC with β-amyloid plaques. In addition, pGlu79-aSyn and QC were present in amyloid plaque-associated reactive astrocytes that were also immunoreactive for the chaperone heat shock protein 27 (HSP27). Our data are consistent for the transgenic mouse model and the human clinical condition. We conclude that pGlu79-aSyn can be generated extracellularly or within reactive astrocytes, accumulates in proximity to β-amyloid plaques and induces an astrocytic protein unfolding mechanism involving HSP27.
Collapse
Affiliation(s)
- Alexandra Bluhm
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (A.B.); (Sa.S.); (M.H.-R.)
| | - Sarah Schrempel
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (A.B.); (Sa.S.); (M.H.-R.)
| | - Stephan Schilling
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, 06120 Halle (Saale), Germany; (S.S.); (A.S.)
- Faculty of Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, 06366 Köthen, Germany
| | - Stephan von Hörsten
- Department for Experimental Therapy, University Clinics Erlangen and Preclinical Experimental Center, University of Erlangen-Nuremberg, 91054 Erlangen, Germany;
| | - Anja Schulze
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, 06120 Halle (Saale), Germany; (S.S.); (A.S.)
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (A.B.); (Sa.S.); (M.H.-R.)
- Correspondence: ; Tel.: +49-341-9725758
| | - Maike Hartlage-Rübsamen
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (A.B.); (Sa.S.); (M.H.-R.)
| |
Collapse
|
45
|
Cheng GWY, Mok KKS, Yeung SHS, Kofler J, Herrup K, Tse KH. Apolipoprotein E ε4 Mediates Myelin Breakdown by Targeting Oligodendrocytes in Sporadic Alzheimer Disease. J Neuropathol Exp Neurol 2022; 81:717-730. [PMID: 35779013 DOI: 10.1093/jnen/nlac054] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
White matter degradation in the frontal lobe is one of the earliest detectable changes in aging and Alzheimer disease. The ε4 allele of apolipoprotein E (APOE4) is strongly associated with such myelin pathology but the underlying cellular mechanisms remain obscure. We hypothesized that, as a lipid transporter, APOE4 directly triggers pathology in the cholesterol-rich myelin sheath independent of AD pathology. To test this, we performed immunohistochemistry on brain tissues from healthy controls, sporadic, and familial Alzheimer disease subjects. While myelin basic protein expression was largely unchanged, in frontal cortex the number of oligodendrocytes (OLs) was significantly reduced in APOE4 brains independent of their Braak stage or NIA-RI criteria. This high vulnerability of OLs was confirmed in humanized APOE3 or APOE4 transgenic mice. A gradual decline of OL numbers was found in the aging brain without associated neuronal loss. Importantly, the application of lipidated human APOE4, but not APOE3, proteins significantly reduced the formation of myelinating OL in primary cell culture derived from Apoe-knockout mice, especially in cholesterol-depleted conditions. Our findings suggest that the disruption of myelination in APOE4 carriers may represent a direct OL pathology, rather than an indirect consequence of amyloid plaque formation or neuronal loss.
Collapse
Affiliation(s)
- Gerald Wai-Yeung Cheng
- From the Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| | - Kingston King-Shi Mok
- From the Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| | - Sunny Hoi-Sang Yeung
- From the Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| | - Julia Kofler
- Division of Neuropathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Karl Herrup
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kai-Hei Tse
- From the Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| |
Collapse
|
46
|
Jellinger KA. Are there morphological differences between Parkinson's disease-dementia and dementia with Lewy bodies? Parkinsonism Relat Disord 2022; 100:24-32. [PMID: 35691178 DOI: 10.1016/j.parkreldis.2022.05.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/21/2022] [Accepted: 05/30/2022] [Indexed: 12/17/2022]
Abstract
Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB) are two major neurocognitive disorders in the spectrum of Lewy body diseases that overlap in many clinical and neuropathological features, although they show several differences. Clinically distinguished mainly based on the duration of parkinsonism prior to development of dementia, their morphology is characterized by a variable combination of Lewy body (LB) and Alzheimer's disease (AD) pathologies, the latter usually being more frequent and severe in DLB. OBJECTIVE The aims of the study were to investigate essential neuropathological differences between PDD and DLB in a larger cohort of autopsy cases. METHODS 110 PDD autopsy cases were compared with 78 DLB cases. The major demographic, clinical (duration of illness, final MMSE) and neuropathological data were assessed retrospectively. Neuropathological studies used standardized methods and immunohistochemistry for phospho-tau, β-amyloid (Aß) and α-synuclein, with semiquantitative assessment of the major histological lesions. RESULTS PDD patients were significantly older at death than DLB ones (mean 83.9 vs. 79.8 years), with a significantly longer disease duration (mean 9.2 vs. 6.7 years). Braak LB scores and particularly neuritic Braak stages were significantly higher in the DLB group (mean 5.1and 5.1 vs. 4.2 and 4.4, respectively), as were Thal Aβ phases (mean 4.1 vs. 3.0). Diffuse striatal Aβ plaques were considerable in 55% and moderate in 45% of DLB cases, but were extremely rare in PDD. The most significant differences concerned the frequency and degree of cerebral amyloid angiopathy (CAA), being significantly higher in DLB (98.7 vs. 50%, and mean degree of 2.9 vs. 0.72, respectively). Worse prognosis in DLB than in PDD was linked to both increased Braak neuritic stages and more severe CAA. INTERPRETATION These and other recent studies imply the association of CAA, more severe concomitant AD pathology, and striatal Aβ load with cognitive decline and more rapid disease process that distinguishes DLB from PDD, while the influence of other cerebrovascular diseases or co-pathologies in both disorders was not specifically examined. The importance of both CAA and tau pathology in DLB and much less in PDD supports the concept of a pathogenetic continuum from Parkinson's disease (PD) - > PDD - > DLB - > DLB + AD and subtypes of AD with LB pathology within the spectrum of age-related proteinopathies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Vienna, Austria, Alberichgasse 5/13, A-1150, Vienna, Austria.
| |
Collapse
|
47
|
Bayram E, Coughlin DG, Litvan I. Sex Differences for Clinical Correlates of Alzheimer's Pathology in People with Lewy Body Pathology. Mov Disord 2022; 37:1505-1515. [PMID: 35531707 PMCID: PMC9308759 DOI: 10.1002/mds.29044] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Lewy body (LB) dementias have limited clinical diagnostic accuracy because of frequent copathologies contributing to clinical heterogeneity. Although sex differences in clinical prevalence and frequency of pure LB pathology were shown, differences for clinicopathological correlations are less known. OBJECTIVE The aim of this study was to determine sex differences for clinical associations of Alzheimer's disease (AD) copathology in those with LB pathology. METHODS Data were from National Alzheimer's Coordinating Center for 223 women and 468 men with limbic or neocortical LB, separated into two groups as those with high likelihood and low/intermediate likelihood for LB clinical phenotype based on pathology. Clinical associations of sex and interaction of sex and pathology for the clinical phenotype were analyzed. RESULTS More severe AD copathology was associated with worse cognitive decline and lower likelihood of LB disease clinical phenotype. Women with more severe AD copathology and tau had worse cognitive decline and higher likelihood of AD clinical phenotype than men. Men with more severe AD copathology had lower likelihood of LB clinical phenotype than women. Interaction of sex and pathology was more pronounced in those aged between 70 and 80 years. CONCLUSIONS AD copathology reduces the likelihood of LB clinical phenotype for both women and men; however, men may be at higher risk for LB disease underdiagnosis and women at higher risk for dementia. The use of both LB and AD biomarkers, even when LB or AD pathology is not clinically expected, is necessary for the accurate clinical diagnosis of both LB diseases and AD. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ece Bayram
- Parkinson and Other Movement Disorders Center, Department of Neurosciences, University of California San Diego
| | - David G. Coughlin
- Parkinson and Other Movement Disorders Center, Department of Neurosciences, University of California San Diego
| | - Irene Litvan
- Parkinson and Other Movement Disorders Center, Department of Neurosciences, University of California San Diego
| |
Collapse
|
48
|
Ingram M, Colloby SJ, Firbank MJ, Lloyd JJ, O'Brien JT, Taylor JP. Spatial covariance analysis of FDG-PET and HMPAO-SPECT for the differential diagnosis of dementia with Lewy bodies and Alzheimer's disease. Psychiatry Res Neuroimaging 2022; 322:111460. [PMID: 35247828 DOI: 10.1016/j.pscychresns.2022.111460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/13/2022] [Indexed: 10/19/2022]
Abstract
We investigated diagnostic characteristics of spatial covariance analysis (SCA) of FDG-PET and HMPAO-SPECT scans in the differential diagnosis of dementia with Lewy bodies (DLB) and Alzheimer's disease (AD), in comparison with visual ratings and region of interest (ROI) analysis. Sixty-seven patients (DLB 29, AD 38) had both HMPAO-SPECT and FDG-PET scans. Spatial covariance patterns were used to separate AD and DLB in an initial derivation group (DLB n=15, AD n=19), before being forward applied to an independent group (DLB n=14, AD n=19). Visual ratings were by consensus, with ROI analysis utilising medial occipital/medial temporal uptake ratios. SCA of HMPAO-SPECT performed poorly (AUC 0.59±0.10), whilst SCA of FDG-PET (AUC 0.83±0.07) was significantly better. For FDG-PET, SCA showed similar diagnostic performance to ROI analysis (AUC 0.84±0.08) and visual rating (AUC 0.82±0.08). In contrast to ROI analysis, there was little concordance between SCA and visual ratings of FDG-PET scans. We conclude that SCA of FDG-PET outperforms that of HMPAO-SPECT. SCA of FDG-PET also performed similarly to the other analytical approaches, despite the limitations of a relatively small SCA derivation group. Compared to visual rating, SCA of FDG-PET relies on different sources of group variance to separate DLB from AD.
Collapse
Affiliation(s)
- Matthew Ingram
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, United Kingdom.
| | - Sean J Colloby
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Michael J Firbank
- Institute of Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Jim J Lloyd
- Institute of Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - John-Paul Taylor
- Institute of Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| |
Collapse
|
49
|
Zehravi M, Kabir J, Akter R, Malik S, Ashraf GM, Tagde P, Ramproshad S, Mondal B, Rahman MH, Mohan AG, Cavalu S. A Prospective Viewpoint on Neurological Diseases and Their Biomarkers. Molecules 2022; 27:molecules27113516. [PMID: 35684455 PMCID: PMC9182418 DOI: 10.3390/molecules27113516] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are disorders that affect both the central and peripheral nervous systems. To name a few causes, NDDs can be caused by ischemia, oxidative and endoplasmic reticulum (ER) cell stress, inflammation, abnormal protein deposition in neural tissue, autoimmune-mediated neuron loss, and viral or prion infections. These conditions include Alzheimer's disease (AD), Lewy body dementia (LBD), and Parkinson's disease (PD). The formation of β-sheet-rich aggregates of intra- or extracellular proteins in the CNS hallmarks all neurodegenerative proteinopathies. In systemic lupus erythematosus (SLE), numerous organs, including the central nervous system (CNS), are affected. However, the inflammatory process is linked to several neurodegenerative pathways that are linked to depression because of NDDs. Pro-inflammatory signals activated by aging may increase vulnerability to neuropsychiatric disorders. Viruses may increase macrophages and CCR5+ T cells within the CNS during dementia formation and progression. Unlike medical symptoms, which are just signs of a patient's health as expressed and perceived, biomarkers are reproducible and quantitative. Therefore, this current review will highlight and summarize the neurological disorders and their biomarkers.
Collapse
Affiliation(s)
- Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Alkharj 11942, Saudi Arabia
- Correspondence: (M.Z.); (M.H.R.); (S.C.)
| | - Janisa Kabir
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China;
| | - Rokeya Akter
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Gangwon-do, Wonju 26426, Korea;
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand 834001, India;
| | - Ghulam Md. Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Priti Tagde
- Amity Institute of Pharmacy, Amity University, Noida 201301, India;
| | - Sarker Ramproshad
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh; (S.R.); (B.M.)
| | - Banani Mondal
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh; (S.R.); (B.M.)
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Gangwon-do, Wonju 26426, Korea;
- Correspondence: (M.Z.); (M.H.R.); (S.C.)
| | - Aurel George Mohan
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania;
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania;
- Correspondence: (M.Z.); (M.H.R.); (S.C.)
| |
Collapse
|
50
|
The Role of Tau beyond Alzheimer’s Disease: A Narrative Review. Biomedicines 2022; 10:biomedicines10040760. [PMID: 35453510 PMCID: PMC9026415 DOI: 10.3390/biomedicines10040760] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Nowadays, there is a need for reliable fluid biomarkers to improve differential diagnosis, prognosis, and the prediction of treatment response, particularly in the management of neurogenerative diseases that display an extreme variability in clinical phenotypes. In recent years, Tau protein has been progressively recognized as a valuable neuronal biomarker in several neurological conditions, not only Alzheimer’s disease (AD). Cerebrospinal fluid and serum Tau have been extensively investigated in several neurodegenerative disorders, from classically defined proteinopathy, e.g., amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Parkinson’s disease (PD), but also in inflammatory conditions such as multiple sclerosis (MS), as a marker of axonal damage. In MS, total Tau (t-Tau) may represent, along with other proteins, a marker with diagnostic and prognostic value. In ALS, t-Tau and, mainly, the phosphorylated-Tau/t-Tau ratio alone or integrated with transactive DNA binding protein of ~43 kDa (TDP-43), may represent a tool for both diagnosis and differential diagnosis of other motoneuron diseases or tauopathies. Evidence indicated the crucial role of the Tau protein in the pathogenesis of PD and other parkinsonian disorders. This narrative review summarizes current knowledge regarding non-AD neurodegenerative diseases and the Tau protein.
Collapse
|