1
|
An Z, Jiang A, Chen J. Toward understanding the role of genomic repeat elements in neurodegenerative diseases. Neural Regen Res 2025; 20:646-659. [PMID: 38886931 PMCID: PMC11433896 DOI: 10.4103/nrr.nrr-d-23-01568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Accepted: 03/02/2024] [Indexed: 06/20/2024] Open
Abstract
Neurodegenerative diseases cause great medical and economic burdens for both patients and society; however, the complex molecular mechanisms thereof are not yet well understood. With the development of high-coverage sequencing technology, researchers have started to notice that genomic repeat regions, previously neglected in search of disease culprits, are active contributors to multiple neurodegenerative diseases. In this review, we describe the association between repeat element variants and multiple degenerative diseases through genome-wide association studies and targeted sequencing. We discuss the identification of disease-relevant repeat element variants, further powered by the advancement of long-read sequencing technologies and their related tools, and summarize recent findings in the molecular mechanisms of repeat element variants in brain degeneration, such as those causing transcriptional silencing or RNA-mediated gain of toxic function. Furthermore, we describe how in silico predictions using innovative computational models, such as deep learning language models, could enhance and accelerate our understanding of the functional impact of repeat element variants. Finally, we discuss future directions to advance current findings for a better understanding of neurodegenerative diseases and the clinical applications of genomic repeat elements.
Collapse
Affiliation(s)
- Zhengyu An
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Aidi Jiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jingqi Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| |
Collapse
|
2
|
Lescouzères L, Patten SA. Promising animal models for amyotrophic lateral sclerosis drug discovery: a comprehensive update. Expert Opin Drug Discov 2024; 19:1213-1233. [PMID: 39115327 DOI: 10.1080/17460441.2024.2387791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/30/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. Several animal models have been generated to understand ALS pathogenesis. They have provided valuable insight into disease mechanisms and the development of therapeutic strategies. AREAS COVERED In this review, the authors provide a concise overview of simple genetic model organisms, including C. elegans, Drosophila, zebrafish, and mouse genetic models that have been generated to study ALS. They emphasize the benefits of each model and their application in translational research for discovering new chemicals, gene therapy approaches, and antibody-based strategies for treating ALS. EXPERT OPINION Significant progress is being made in identifying new therapeutic targets for ALS. This progress is being enabled by promising animal models of the disease using increasingly effective genetic and pharmacological strategies. There are still challenges to be overcome in order to achieve improved success rates for translating drugs from animal models to clinics for treating ALS. Several promising future directions include the establishment of novel preclinical protocol standards, as well as the combination of animal models with human induced pluripotent stem cells (iPSCs).
Collapse
Affiliation(s)
- Léa Lescouzères
- INRS - Centre Armand Frappier Santé Biotechnologie, Laval, QC, Canada
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Shunmoogum A Patten
- INRS - Centre Armand Frappier Santé Biotechnologie, Laval, QC, Canada
- Departement de Neurosciences, Université de Montréal, Montreal, Canada
| |
Collapse
|
3
|
Wang H, Zeng R. Aberrant protein aggregation in amyotrophic lateral sclerosis. J Neurol 2024; 271:4826-4851. [PMID: 38869826 DOI: 10.1007/s00415-024-12485-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease. As its pathological mechanisms are not well understood, there are no efficient therapeutics for it at present. While it is highly heterogenous both etiologically and clinically, it has a common salient hallmark, i.e., aberrant protein aggregation (APA). The upstream pathogenesis and the downstream effects of APA in ALS are sophisticated and the investigation of this pathology would be of consequence for understanding ALS. In this paper, the pathomechanism of APA in ALS and the candidate treatment strategies for it are discussed.
Collapse
Affiliation(s)
- Huaixiu Wang
- Department Neurology, Shanxi Provincial Peoples Hospital: Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China.
- Beijing Ai-Si-Kang Medical Technology Co. Ltd., No. 18 11th St Economical & Technological Development Zone, Beijing, 100176, China.
| | - Rong Zeng
- Department Neurology, Shanxi Provincial Peoples Hospital: Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China
| |
Collapse
|
4
|
Al-Turki TM, Mantri V, Willcox S, Mills CA, Herring LE, Cho SJ, Lee H, Meyer C, Anton ES, Griffith JD. The valine-arginine dipeptide repeat protein encoded by mammalian telomeric RNA appears highly expressed in mitosis and may repress global translation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604971. [PMID: 39211251 PMCID: PMC11360934 DOI: 10.1101/2024.07.24.604971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Translation of mammalian telomeric G-rich RNA via the Repeat Associated non-AUG translation mechanism can produce two dipeptide repeat proteins: repeating valine-arginine (VR) and repeating glycine-leucine (GL). Their potentially toxic nature suggests that one or both must play a needed role in the cell. Using light microscopy combined with antibody staining we discovered that cultured human cells stain brightly for VR during mitosis with VR staining co-localizing with ribosomes. In vitro , VR protein represses translation in a firefly luciferase assay. Affinity purification combined with mass spectrometry identified ribosomal proteins as the major class of VR interacting proteins. Extension to mouse embryonic cerebral cortical development showed strong staining in the ventricular zone where high mitotic index neural progenitor cells proliferate and in the cortical plate where new neurons settle. These observations point to VR playing a key role in mitosis very possibly depressing global translation, a role mediated by the telomere. Teaser The telomeric valine-arginine dipeptide repeat protein is highly expressed in mitotic cells in culture and in mouse embryonic neural tissue.
Collapse
|
5
|
Halim DO, Krishnan G, Hass EP, Lee S, Verma M, Almeida S, Gu Y, Kwon DY, Fazzio TG, Gao FB. The exocyst subunit EXOC2 regulates the toxicity of expanded GGGGCC repeats in C9ORF72-ALS/FTD. Cell Rep 2024; 43:114375. [PMID: 38935506 PMCID: PMC11299523 DOI: 10.1016/j.celrep.2024.114375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 04/26/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
GGGGCC (G4C2) repeat expansion in C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). How this genetic mutation leads to neurodegeneration remains largely unknown. Using CRISPR-Cas9 technology, we deleted EXOC2, which encodes an essential exocyst subunit, in induced pluripotent stem cells (iPSCs) derived from C9ORF72-ALS/FTD patients. These cells are viable owing to the presence of truncated EXOC2, suggesting that exocyst function is partially maintained. Several disease-relevant cellular phenotypes in C9ORF72 iPSC-derived motor neurons are rescued due to, surprisingly, the decreased levels of dipeptide repeat (DPR) proteins and expanded G4C2 repeats-containing RNA. The treatment of fully differentiated C9ORF72 neurons with EXOC2 antisense oligonucleotides also decreases expanded G4C2 repeats-containing RNA and partially rescued disease phenotypes. These results indicate that EXOC2 directly or indirectly regulates the level of G4C2 repeats-containing RNA, making it a potential therapeutic target in C9ORF72-ALS/FTD.
Collapse
Affiliation(s)
- Dilara O Halim
- Frontotemporal Dementia Research Center, RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Gopinath Krishnan
- Frontotemporal Dementia Research Center, RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Evan P Hass
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Soojin Lee
- Frontotemporal Dementia Research Center, RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Mamta Verma
- Frontotemporal Dementia Research Center, RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sandra Almeida
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Yuanzheng Gu
- Neuromuscular & Muscle Disorders, Biogen, Cambridge, MA 02142, USA
| | - Deborah Y Kwon
- Neuromuscular & Muscle Disorders, Biogen, Cambridge, MA 02142, USA
| | - Thomas G Fazzio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Fen-Biao Gao
- Frontotemporal Dementia Research Center, RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
6
|
Amin A, Perera ND, Tomas D, Cuic B, Radwan M, Hatters DM, Turner BJ, Shabanpoor F. Systemic administration of a novel Beclin 1-derived peptide significantly upregulates autophagy in the spinal motor neurons of autophagy reporter mice. Int J Pharm 2024; 659:124198. [PMID: 38816263 DOI: 10.1016/j.ijpharm.2024.124198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/09/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024]
Abstract
Autophagy, an intracellular degradation system, plays a vital role in protecting cells by clearing damaged organelles, pathogens, and protein aggregates. Autophagy upregulation through pharmacological interventions has gained significant attention as a potential therapeutic avenue for proteinopathies. Here, we report the development of an autophagy-inducing peptide (BCN4) derived from the Beclin 1 protein, the master regulator of autophagy. To deliver the BCN4 into cells and the central nervous system (CNS), it was conjugated to our previously developed cell and blood-brain barrier-penetrating peptide (CPP). CPP-BCN4 significantly upregulated autophagy and reduced protein aggregates in motor neuron (MN)-like cells. Moreover, its systemic administration in a reporter mouse model of autophagy resulted in a significant increase in autophagy activity in the spinal MNs. Therefore, this novel autophagy-inducing peptide with a demonstrated ability to upregulate autophagy in the CNS has significant potential for the treatment of various neurodegenerative diseases with protein aggregates as a characteristic feature.
Collapse
Affiliation(s)
- Azin Amin
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, VIC, Australia
| | - Nirma D Perera
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, VIC, Australia
| | - Doris Tomas
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, VIC, Australia
| | - Brittany Cuic
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, VIC, Australia
| | - Mona Radwan
- Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Parkville 3010, VIC, Australia
| | - Danny M Hatters
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville 3010, VIC, Australia
| | - Bradley J Turner
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, VIC, Australia
| | - Fazel Shabanpoor
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, VIC, Australia; School of Chemistry, University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
7
|
Feng Y, Xu Z, Jin H, Chen Y, Fu C, Zhang Y, Yin Y, Wang H, Cheng W. Metformin ameliorates mitochondrial damage induced by C9orf72 poly(GR) via upregulating AKT phosphorylation. J Cell Biochem 2024; 125:e30526. [PMID: 38229533 DOI: 10.1002/jcb.30526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/25/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are devastating neurodegenerative diseases with no effective cure. GGGGCC repeat expansion in C9orf72 is the most common genetic cause of both ALS and FTD. A key pathological feature of C9orf72 related ALS/FTD is the presence of abnormal dipeptide repeat proteins translated from GGGGCC repeat expansion, including poly Glycine-Arginine (GR). In this study, we observed that (GR)50 conferred significant mitochondria damage and cytotoxicity. Metformin, the most widely used clinical drug, successfully relieved (GR)50 induced mitochondrial damage and inhibited (GR)50 related cytotoxicity. Further research revealed metformin effectively restored mitochondrial function by upregulating AKT phosphorylation in (GR)50 expressed cells. Taken together, our results indicated restoring mitochondrial function with metformin may be a rational therapeutic strategy to reduce poly(GR) toxicity in C9orf72 ALS/FTD patients.
Collapse
Affiliation(s)
- Yiyuan Feng
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Radiology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Zhongyun Xu
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Radiology, Shanghai East Hospital Affiliated to Tongji University, Shanghai, China
| | - Hongfu Jin
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenglai Fu
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zhang
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yafu Yin
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Cheng
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Smeele PH, Cesare G, Vaccari T. ALS' Perfect Storm: C9orf72-Associated Toxic Dipeptide Repeats as Potential Multipotent Disruptors of Protein Homeostasis. Cells 2024; 13:178. [PMID: 38247869 PMCID: PMC10813877 DOI: 10.3390/cells13020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Protein homeostasis is essential for neuron longevity, requiring a balanced regulation between protein synthesis and degradation. The clearance of misfolded and aggregated proteins, mediated by autophagy and the ubiquitin-proteasome systems, maintains protein homeostasis in neurons, which are post-mitotic and thus cannot use cell division to diminish the burden of misfolded proteins. When protein clearance pathways are overwhelmed or otherwise disrupted, the accumulation of misfolded or aggregated proteins can lead to the activation of ER stress and the formation of stress granules, which predominantly attempt to restore the homeostasis by suppressing global protein translation. Alterations in these processes have been widely reported among studies investigating the toxic function of dipeptide repeats (DPRs) produced by G4C2 expansion in the C9orf72 gene of patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). In this review, we outline the modalities of DPR-induced disruptions in protein homeostasis observed in a wide range of models of C9orf72-linked ALS/FTD. We also discuss the relative importance of each DPR for toxicity, possible synergies between DPRs, and discuss the possible functional relevance of DPR aggregation to disease pathogenesis. Finally, we highlight the interdependencies of the observed effects and reflect on the importance of feedback and feedforward mechanisms in their contribution to disease progression. A better understanding of DPR-associated disease pathogenesis discussed in this review might shed light on disease vulnerabilities that may be amenable with therapeutic interventions.
Collapse
Affiliation(s)
| | | | - Thomas Vaccari
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
9
|
Malnar Črnigoj M, Čerček U, Yin X, Ho MT, Repic Lampret B, Neumann M, Hermann A, Rouleau G, Suter B, Mayr M, Rogelj B. Phenylalanine-tRNA aminoacylation is compromised by ALS/FTD-associated C9orf72 C4G2 repeat RNA. Nat Commun 2023; 14:5764. [PMID: 37717009 PMCID: PMC10505166 DOI: 10.1038/s41467-023-41511-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
The expanded hexanucleotide GGGGCC repeat mutation in the C9orf72 gene is the main genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Under one disease mechanism, sense and antisense transcripts of the repeat are predicted to bind various RNA-binding proteins, compromise their function and cause cytotoxicity. Here we identify phenylalanine-tRNA synthetase (FARS) subunit alpha (FARSA) as the main interactor of the CCCCGG antisense repeat RNA in cytosol. The aminoacylation of tRNAPhe by FARS is inhibited by antisense RNA, leading to decreased levels of charged tRNAPhe. Remarkably, this is associated with global reduction of phenylalanine incorporation in the proteome and decrease in expression of phenylalanine-rich proteins in cellular models and patient tissues. In conclusion, this study reveals functional inhibition of FARSA in the presence of antisense RNA repeats. Compromised aminoacylation of tRNA could lead to impairments in protein synthesis and further contribute to C9orf72 mutation-associated pathology.
Collapse
Affiliation(s)
- Mirjana Malnar Črnigoj
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
- Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Urša Čerček
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
- Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Xiaoke Yin
- King's BHF Centre, King's College London, London, SE5 9NU, UK
| | - Manh Tin Ho
- Institute of Cell Biology, University of Bern, Bern, 3012, Switzerland
| | - Barbka Repic Lampret
- Clinical Institute of Special Laboratory Diagnostics, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, 1000, Slovenia
| | - Manuela Neumann
- Molecular Neuropathology of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Tübingen, 72076, Germany
- Department of Neuropathology, University Hospital of Tübingen, Tübingen, 72076, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology and Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147, Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Rostock/Greifswald, 18147, Rostock, Germany
| | - Guy Rouleau
- Department of Human Genetics, McGill University, Montréal, QC, H3A 0G4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, H3A 0G4, Canada
| | - Beat Suter
- Institute of Cell Biology, University of Bern, Bern, 3012, Switzerland
| | - Manuel Mayr
- King's BHF Centre, King's College London, London, SE5 9NU, UK
| | - Boris Rogelj
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, 1000, Slovenia.
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, 1000, Slovenia.
| |
Collapse
|
10
|
Morón-Oset J, Fischer LK, Carcolé M, Giblin A, Zhang P, Isaacs AM, Grönke S, Partridge L. Toxicity of C9orf72-associated dipeptide repeat peptides is modified by commonly used protein tags. Life Sci Alliance 2023; 6:e202201739. [PMID: 37308278 PMCID: PMC10262077 DOI: 10.26508/lsa.202201739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/14/2023] Open
Abstract
Hexanucleotide repeat expansions in the C9orf72 gene are the most prevalent genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Transcripts of the expansions are translated into toxic dipeptide repeat (DPR) proteins. Most preclinical studies in cell and animal models have used protein-tagged polyDPR constructs to investigate DPR toxicity but the effects of tags on DPR toxicity have not been systematically explored. Here, we used Drosophila to assess the influence of protein tags on DPR toxicity. Tagging of 36 but not 100 arginine-rich DPRs with mCherry increased toxicity, whereas adding mCherry or GFP to GA100 completely abolished toxicity. FLAG tagging also reduced GA100 toxicity but less than the longer fluorescent tags. Expression of untagged but not GFP- or mCherry-tagged GA100 caused DNA damage and increased p62 levels. Fluorescent tags also affected GA100 stability and degradation. In summary, protein tags affect DPR toxicity in a tag- and DPR-dependent manner, and GA toxicity might be underestimated in studies using tagged GA proteins. Thus, including untagged DPRs as controls is important when assessing DPR toxicity in preclinical models.
Collapse
Affiliation(s)
| | | | - Mireia Carcolé
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, UCL Queen Square Institute of Neurology, London, UK
| | - Ashling Giblin
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, UCL Queen Square Institute of Neurology, London, UK
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, UK
| | - Pingze Zhang
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Adrian M Isaacs
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, UCL Queen Square Institute of Neurology, London, UK
| | | | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, UK
| |
Collapse
|
11
|
Bhattacharya MRC. A nerve-wracking buzz: lessons from Drosophila models of peripheral neuropathy and axon degeneration. Front Aging Neurosci 2023; 15:1166146. [PMID: 37614471 PMCID: PMC10442544 DOI: 10.3389/fnagi.2023.1166146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023] Open
Abstract
The degeneration of axons and their terminals occurs following traumatic, toxic, or genetically-induced insults. Common molecular mechanisms unite these disparate triggers to execute a conserved nerve degeneration cascade. In this review, we will discuss how models of peripheral nerve injury and neuropathy in Drosophila have led the way in advancing molecular understanding of axon degeneration and nerve injury pathways. Both neuron-intrinsic as well as glial responses to injury will be highlighted. Finally, we will offer perspective on what additional questions should be answered to advance these discoveries toward clinical interventions for patients with neuropathy.
Collapse
|
12
|
Lee S, Jun YW, Linares GR, Butler B, Yuva-Adyemir Y, Moore J, Krishnan G, Ruiz-Juarez B, Santana M, Pons M, Silverman N, Weng Z, Ichida JK, Gao FB. Downregulation of Hsp90 and the antimicrobial peptide Mtk suppresses poly(GR)-induced neurotoxicity in C9ORF72-ALS/FTD. Neuron 2023; 111:1381-1390.e6. [PMID: 36931278 PMCID: PMC10264157 DOI: 10.1016/j.neuron.2023.02.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/22/2023] [Accepted: 02/16/2023] [Indexed: 03/18/2023]
Abstract
GGGGCC repeat expansion in the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Repeat RNAs can be translated into dipeptide repeat proteins, including poly(GR), whose mechanisms of action remain largely unknown. In an RNA-seq analysis of poly(GR) toxicity in Drosophila, we found that several antimicrobial peptide genes, such as metchnikowin (Mtk), and heat shock protein (Hsp) genes are activated. Mtk knockdown in the fly eye or in all neurons suppresses poly(GR) neurotoxicity. These findings suggest a cell-autonomous role of Mtk in neurodegeneration. Hsp90 knockdown partially rescues both poly(GR) toxicity in flies and neurodegeneration in C9ORF72 motor neurons derived from induced pluripotent stem cells (iPSCs). Topoisomerase II (TopoII) regulates poly(GR)-induced upregulation of Hsp90 and Mtk. TopoII knockdown also suppresses poly(GR) toxicity in Drosophila and improves survival of C9ORF72 iPSC-derived motor neurons. These results suggest potential novel therapeutic targets for C9ORF72-ALS/FTD.
Collapse
Affiliation(s)
- Soojin Lee
- Department of Neurology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Yong-Woo Jun
- Department of Neurology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Gabriel R Linares
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Brandon Butler
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Yeliz Yuva-Adyemir
- Department of Neurology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Jill Moore
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Gopinath Krishnan
- Department of Neurology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Bryan Ruiz-Juarez
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Manuel Santana
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Marine Pons
- Department of Neurology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Neal Silverman
- Division of Infectious Diseases and Immunology, Department of Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Justin K Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Fen-Biao Gao
- Department of Neurology, UMass Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
13
|
Parameswaran J, Zhang N, Braems E, Tilahun K, Pant DC, Yin K, Asress S, Heeren K, Banerjee A, Davis E, Schwartz SL, Conn GL, Bassell GJ, Van Den Bosch L, Jiang J. Antisense, but not sense, repeat expanded RNAs activate PKR/eIF2α-dependent ISR in C9ORF72 FTD/ALS. eLife 2023; 12:e85902. [PMID: 37073950 PMCID: PMC10188109 DOI: 10.7554/elife.85902] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/18/2023] [Indexed: 04/20/2023] Open
Abstract
GGGGCC (G4C2) hexanucleotide repeat expansion in the C9ORF72 gene is the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). The repeat is bidirectionally transcribed and confers gain of toxicity. However, the underlying toxic species is debated, and it is not clear whether antisense CCCCGG (C4G2) repeat expanded RNAs contribute to disease pathogenesis. Our study shows that C9ORF72 antisense C4G2 repeat expanded RNAs trigger the activation of the PKR/eIF2α-dependent integrated stress response independent of dipeptide repeat proteins that are produced through repeat-associated non-AUG-initiated translation, leading to global translation inhibition and stress granule formation. Reducing PKR levels with either siRNA or morpholinos mitigates integrated stress response and toxicity caused by the antisense C4G2 RNAs in cell lines, primary neurons, and zebrafish. Increased phosphorylation of PKR/eIF2α is also observed in the frontal cortex of C9ORF72 FTD/ALS patients. Finally, only antisense C4G2, but not sense G4C2, repeat expanded RNAs robustly activate the PKR/eIF2α pathway and induce aberrant stress granule formation. These results provide a mechanism by which antisense C4G2 repeat expanded RNAs elicit neuronal toxicity in FTD/ALS caused by C9ORF72 repeat expansions.
Collapse
Affiliation(s)
| | - Nancy Zhang
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | - Elke Braems
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute, KU LeuvenLeuvenBelgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus GasthuisbergLeuvenBelgium
| | | | - Devesh C Pant
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | - Keena Yin
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | - Seneshaw Asress
- Department of Neurology, Emory UniversityAtlantaUnited States
| | - Kara Heeren
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute, KU LeuvenLeuvenBelgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus GasthuisbergLeuvenBelgium
| | - Anwesha Banerjee
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | - Emma Davis
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | | | - Graeme L Conn
- Department of Biochemistry, Emory UniversityAtlantaUnited States
| | - Gary J Bassell
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute, KU LeuvenLeuvenBelgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus GasthuisbergLeuvenBelgium
| | - Jie Jiang
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| |
Collapse
|
14
|
Al-Turki TM, Griffith JD. Mammalian telomeric RNA (TERRA) can be translated to produce valine-arginine and glycine-leucine dipeptide repeat proteins. Proc Natl Acad Sci U S A 2023; 120:e2221529120. [PMID: 36812212 PMCID: PMC9992779 DOI: 10.1073/pnas.2221529120] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/25/2023] [Indexed: 02/24/2023] Open
Abstract
Mammalian telomeres consist of (TTAGGG)n repeats. Transcription of the C-rich strand generates a G-rich RNA, termed TERRA, containing G-quadruplex structures. Recent discoveries in several human nucleotide expansion diseases revealed that RNA transcripts containing long runs of 3 or 6 nt repeats which can form strong secondary structures can be translated in multiple frames to generate homopeptide or dipeptide repeat proteins, and multiple studies have shown them to be toxic in cells. We noted that the translation of TERRA would generate two dipeptide repeat proteins: highly charged repeating valine-arginine (VR)n and hydrophobic repeating glycine-leucine (GL)n. Here, we synthesized these two dipeptide proteins and raised polyclonal antibodies to VR. The VR dipeptide repeat protein binds nucleic acids and localizes strongly to replication forks in DNA. Both VR and GL form long 8-nm filaments with amyloid properties. Using labeled antibodies to VR and laser scanning confocal microscopy, threefold to fourfold more VR was observed in the nuclei of cell lines containing elevated TERRA as contrasted to a primary fibroblast line. Induction of telomere dysfunction via knockdown of TRF2 led to higher amounts of VR, and alteration of TERRA levels using a locked nucleic acid (LNA) GapmeR led to large nuclear VR aggregates. These observations suggest that telomeres, in particular in cells undergoing telomere dysfunction, may express two dipeptide repeat proteins with potentially strong biological properties.
Collapse
Affiliation(s)
- Taghreed M. Al-Turki
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599-7295
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599-7295
| | - Jack D. Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599-7295
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599-7295
| |
Collapse
|
15
|
Meijboom KE, Abdallah A, Fordham NP, Nagase H, Rodriguez T, Kraus C, Gendron TF, Krishnan G, Esanov R, Andrade NS, Rybin MJ, Ramic M, Stephens ZD, Edraki A, Blackwood MT, Kahriman A, Henninger N, Kocher JPA, Benatar M, Brodsky MH, Petrucelli L, Gao FB, Sontheimer EJ, Brown RH, Zeier Z, Mueller C. CRISPR/Cas9-mediated excision of ALS/FTD-causing hexanucleotide repeat expansion in C9ORF72 rescues major disease mechanisms in vivo and in vitro. Nat Commun 2022; 13:6286. [PMID: 36271076 PMCID: PMC9587249 DOI: 10.1038/s41467-022-33332-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/13/2022] [Indexed: 12/25/2022] Open
Abstract
A GGGGCC24+ hexanucleotide repeat expansion (HRE) in the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), fatal neurodegenerative diseases with no cure or approved treatments that substantially slow disease progression or extend survival. Mechanistic underpinnings of neuronal death include C9ORF72 haploinsufficiency, sequestration of RNA-binding proteins in the nucleus, and production of dipeptide repeat proteins. Here, we used an adeno-associated viral vector system to deliver CRISPR/Cas9 gene-editing machineries to effectuate the removal of the HRE from the C9ORF72 genomic locus. We demonstrate successful excision of the HRE in primary cortical neurons and brains of three mouse models containing the expansion (500-600 repeats) as well as in patient-derived iPSC motor neurons and brain organoids (450 repeats). This resulted in a reduction of RNA foci, poly-dipeptides and haploinsufficiency, major hallmarks of C9-ALS/FTD, making this a promising therapeutic approach to these diseases.
Collapse
Affiliation(s)
- Katharina E. Meijboom
- grid.168645.80000 0001 0742 0364Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605 USA ,grid.168645.80000 0001 0742 0364Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Abbas Abdallah
- grid.168645.80000 0001 0742 0364Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Nicholas P. Fordham
- grid.168645.80000 0001 0742 0364Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Hiroko Nagase
- grid.168645.80000 0001 0742 0364Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Tomás Rodriguez
- grid.168645.80000 0001 0742 0364RNA Therapeutics Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Carolyn Kraus
- grid.168645.80000 0001 0742 0364RNA Therapeutics Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Tania F. Gendron
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Gopinath Krishnan
- grid.168645.80000 0001 0742 0364Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Rustam Esanov
- grid.26790.3a0000 0004 1936 8606Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Nadja S. Andrade
- grid.26790.3a0000 0004 1936 8606Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Matthew J. Rybin
- grid.26790.3a0000 0004 1936 8606Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Melina Ramic
- grid.26790.3a0000 0004 1936 8606Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Zachary D. Stephens
- grid.66875.3a0000 0004 0459 167XDepartment of Quantitative Health Sciences. Mayo Clinic, Rochester, MN 55905 USA
| | - Alireza Edraki
- grid.168645.80000 0001 0742 0364RNA Therapeutics Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Meghan T. Blackwood
- grid.168645.80000 0001 0742 0364Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Aydan Kahriman
- grid.168645.80000 0001 0742 0364Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Nils Henninger
- grid.168645.80000 0001 0742 0364Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Jean-Pierre A. Kocher
- grid.66875.3a0000 0004 0459 167XDepartment of Quantitative Health Sciences. Mayo Clinic, Rochester, MN 55905 USA
| | - Michael Benatar
- grid.26790.3a0000 0004 1936 8606Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Michael H. Brodsky
- grid.168645.80000 0001 0742 0364Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Leonard Petrucelli
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Fen-Biao Gao
- grid.168645.80000 0001 0742 0364Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Erik J. Sontheimer
- grid.168645.80000 0001 0742 0364RNA Therapeutics Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Robert H. Brown
- grid.168645.80000 0001 0742 0364Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Zane Zeier
- Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Christian Mueller
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
16
|
Kaliszewska A, Allison J, Col TT, Shaw C, Arias N. Elucidating the Role of Cerebellar Synaptic Dysfunction in C9orf72-ALS/FTD - a Systematic Review and Meta-Analysis. CEREBELLUM (LONDON, ENGLAND) 2022; 21:681-714. [PMID: 34491551 PMCID: PMC9325807 DOI: 10.1007/s12311-021-01320-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 12/28/2022]
Abstract
A hexanucleotide repeat expansion in the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) with synaptic dysfunction identified as an early pathological hallmark. Although TDP-43 pathology and overt neurodegeneration are largely absent from the cerebellum, the pathological hallmarks of RNA foci and dipeptide repeat protein (DPR) inclusions are most abundant. Here, we present a systematic literature search in the databases of PubMed, Scopus, Embase, Web of Science and Science Direct up until March 5, 2021, which yielded 19,515 publications. Following the exclusion criteria, 72 articles were included having referred to C9orf72, synapses and the cerebellum. Meta-analyses were conducted on studies which reported experimental and control groups with means and standard deviations extracted from figures using the online tool PlotDigitizer. This revealed dendritic defects (P = 0.03), reduced C9orf72 in human patients (P = 0.005) and DPR-related neuronal loss (P = 0.0006) but no neuromuscular junction abnormalities (P = 0.29) or cerebellar neuronal loss (P = 0.23). Our results suggest that dendritic arborisation defects, synaptic gene dysregulation and altered synaptic neurotransmission may drive cerebellar synaptic dysfunction in C9-ALS/FTD. In this review, we discuss how the chronological appearance of the different pathological hallmarks alters synaptic integrity which may have profound implications for disease progression. We conclude that a reduction in C9orf72 protein levels combined with the accumulation of RNA foci and DPRs act synergistically to drive C9 synaptopathy in the cerebellum of C9-ALS/FTD patients.
Collapse
Affiliation(s)
- Aleksandra Kaliszewska
- UK Dementia Research Institute At King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic & Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe road, Camberwell, SE59RX, London, UK
| | - Joseph Allison
- UK Dementia Research Institute At King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic & Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe road, Camberwell, SE59RX, London, UK
| | - Tarik-Tarkan Col
- UK Dementia Research Institute At King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic & Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe road, Camberwell, SE59RX, London, UK
| | - Christopher Shaw
- UK Dementia Research Institute At King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic & Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe road, Camberwell, SE59RX, London, UK
- Centre for Brain Research, University of Auckland, 85 Grafton Road, Auckland, 1023, New Zealand
| | - Natalia Arias
- UK Dementia Research Institute At King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic & Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe road, Camberwell, SE59RX, London, UK.
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Plaza Feijoo s/n, 33003, Oviedo, Spain.
| |
Collapse
|
17
|
Loveland AB, Svidritskiy E, Susorov D, Lee S, Park A, Zvornicanin S, Demo G, Gao FB, Korostelev AA. Ribosome inhibition by C9ORF72-ALS/FTD-associated poly-PR and poly-GR proteins revealed by cryo-EM. Nat Commun 2022; 13:2776. [PMID: 35589706 PMCID: PMC9120013 DOI: 10.1038/s41467-022-30418-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 04/29/2022] [Indexed: 12/15/2022] Open
Abstract
Toxic dipeptide-repeat (DPR) proteins are produced from expanded G4C2 repeats in the C9ORF72 gene, the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Two DPR proteins, poly-PR and poly-GR, repress cellular translation but the molecular mechanism remains unknown. Here we show that poly-PR and poly-GR of ≥20 repeats inhibit the ribosome's peptidyl-transferase activity at nanomolar concentrations, comparable to specific translation inhibitors. High-resolution cryogenic electron microscopy (cryo-EM) reveals that poly-PR and poly-GR block the polypeptide tunnel of the ribosome, extending into the peptidyl-transferase center (PTC). Consistent with these findings, the macrolide erythromycin, which binds in the tunnel, competes with poly-PR and restores peptidyl-transferase activity. Our results demonstrate that strong and specific binding of poly-PR and poly-GR in the ribosomal tunnel blocks translation, revealing the structural basis of their toxicity in C9ORF72-ALS/FTD.
Collapse
Affiliation(s)
- Anna B Loveland
- RNA Therapeutics Institute, UMass Chan Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Egor Svidritskiy
- RNA Therapeutics Institute, UMass Chan Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Denis Susorov
- RNA Therapeutics Institute, UMass Chan Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Soojin Lee
- Department of Neurology, UMass Chan Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Alexander Park
- RNA Therapeutics Institute, UMass Chan Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Sarah Zvornicanin
- RNA Therapeutics Institute, UMass Chan Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Gabriel Demo
- RNA Therapeutics Institute, UMass Chan Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Fen-Biao Gao
- Department of Neurology, UMass Chan Medical School, 368 Plantation Street, Worcester, MA, 01605, USA.
| | - Andrei A Korostelev
- RNA Therapeutics Institute, UMass Chan Medical School, 368 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
18
|
Licata NV, Cristofani R, Salomonsson S, Wilson KM, Kempthorne L, Vaizoglu D, D’Agostino VG, Pollini D, Loffredo R, Pancher M, Adami V, Bellosta P, Ratti A, Viero G, Quattrone A, Isaacs AM, Poletti A, Provenzani A. C9orf72 ALS/FTD dipeptide repeat protein levels are reduced by small molecules that inhibit PKA or enhance protein degradation. EMBO J 2022; 41:e105026. [PMID: 34791698 PMCID: PMC8724771 DOI: 10.15252/embj.2020105026] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/21/2021] [Accepted: 10/12/2021] [Indexed: 11/09/2022] Open
Abstract
Intronic GGGGCC (G4C2) hexanucleotide repeat expansion within the human C9orf72 gene represents the most common cause of familial forms of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9ALS/FTD). Repeat-associated non-AUG (RAN) translation of repeat-containing C9orf72 RNA results in the production of neurotoxic dipeptide-repeat proteins (DPRs). Here, we developed a high-throughput drug screen for the identification of positive and negative modulators of DPR levels. We found that HSP90 inhibitor geldanamycin and aldosterone antagonist spironolactone reduced DPR levels by promoting protein degradation via the proteasome and autophagy pathways respectively. Surprisingly, cAMP-elevating compounds boosting protein kinase A (PKA) activity increased DPR levels. Inhibition of PKA activity, by both pharmacological and genetic approaches, reduced DPR levels in cells and rescued pathological phenotypes in a Drosophila model of C9ALS/FTD. Moreover, knockdown of PKA-catalytic subunits correlated with reduced translation efficiency of DPRs, while the PKA inhibitor H89 reduced endogenous DPR levels in C9ALS/FTD patient-derived iPSC motor neurons. Together, our results suggest new and druggable pathways modulating DPR levels in C9ALS/FTD.
Collapse
Affiliation(s)
- Nausicaa V Licata
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanItaly
| | - Sally Salomonsson
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLUCL Queen Square Institute of NeurologyLondonUK
| | - Katherine M Wilson
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLUCL Queen Square Institute of NeurologyLondonUK
| | - Liam Kempthorne
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLUCL Queen Square Institute of NeurologyLondonUK
| | - Deniz Vaizoglu
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLUCL Queen Square Institute of NeurologyLondonUK
| | - Vito G D’Agostino
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| | - Daniele Pollini
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| | - Rosa Loffredo
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| | - Michael Pancher
- HTS Core Facility, Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| | - Valentina Adami
- HTS Core Facility, Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| | - Paola Bellosta
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
- Department of MedicineNYU at Grossman School of MedicineNYUSA
| | - Antonia Ratti
- Department of NeurologyStroke Unit and Laboratory of NeuroscienceIstituto Auxologico Italiano, IRCCSMilanItaly
- Dipartimento di Biotecnologie Mediche e Medicina TraslazionaleUniversità degli Studi di MilanoMilanItaly
| | | | - Alessandro Quattrone
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| | - Adrian M Isaacs
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLUCL Queen Square Institute of NeurologyLondonUK
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanItaly
| | - Alessandro Provenzani
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| |
Collapse
|
19
|
Anoar S, Woodling NS, Niccoli T. Mitochondria Dysfunction in Frontotemporal Dementia/Amyotrophic Lateral Sclerosis: Lessons From Drosophila Models. Front Neurosci 2021; 15:786076. [PMID: 34899176 PMCID: PMC8652125 DOI: 10.3389/fnins.2021.786076] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are neurodegenerative disorders characterized by declining motor and cognitive functions. Even though these diseases present with distinct sets of symptoms, FTD and ALS are two extremes of the same disease spectrum, as they show considerable overlap in genetic, clinical and neuropathological features. Among these overlapping features, mitochondrial dysfunction is associated with both FTD and ALS. Recent studies have shown that cells derived from patients' induced pluripotent stem cells (iPSC)s display mitochondrial abnormalities, and similar abnormalities have been observed in a number of animal disease models. Drosophila models have been widely used to study FTD and ALS because of their rapid generation time and extensive set of genetic tools. A wide array of fly models have been developed to elucidate the molecular mechanisms of toxicity for mutations associated with FTD/ALS. Fly models have been often instrumental in understanding the role of disease associated mutations in mitochondria biology. In this review, we discuss how mutations associated with FTD/ALS disrupt mitochondrial function, and we review how the use of Drosophila models has been pivotal to our current knowledge in this field.
Collapse
Affiliation(s)
- Sharifah Anoar
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Nathaniel S Woodling
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Teresa Niccoli
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| |
Collapse
|
20
|
Krishnarjuna B, Ivanova MI, Ramamoorthy A. Aggregation and the Intrinsic Structural Disorder of Dipeptide Repeat Peptides of C9orf72-Related Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Characterized by NMR. J Phys Chem B 2021; 125:12446-12456. [PMID: 34751579 DOI: 10.1021/acs.jpcb.1c08149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dipeptide repeats (DPRs) are known to play important roles in C9ORF72-related amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Studies on DPRs have reported on the kinetics of aggregation, toxicity, and low-resolution morphology of the aggregates of these peptides. While the dipeptide hexa-repeats of Gly-Pro [(GP)6] have been shown to be nonaggregating, Gly-Ala [(GA)6] and Gly-Arg [(GR)6] exhibited the formation of neurotoxic aggregates. However, structural studies of these DPRs have been elusive. In this study, we explored the feasibility of a high-resolution monitoring of a real-time aggregation of these peptides in a solution by using NMR experiments. Although (GP)6 is disordered and nonaggregating, the existence of cis and trans conformations was observed from NMR spectra. It was remarkable that the (GR)6 exhibited the formation of multiple conformations, whereas the hydrophobic and low-soluble (GA)6 aggregated fast in a temperature-dependent manner. These results demonstrate the feasibility of monitoring the minor conformational changes from highly disordered peptides, aggregation kinetics, and the formation of small molecular weight aggregates by solution NMR experiments. The ability to detect cis and trans local isomerizations in (GP)6 is noteworthy and could be valuable to study intrinsically disordered proteins/peptides by NMR. The early detection of minor conformational changes could be valuable in better understanding the mechanistic insights into the formation of toxic intermediates and the development of approaches to inhibit them and, potentially, aid in the development of compounds to treat the devastating C9ORF72-related ALS and FTD diseases.
Collapse
Affiliation(s)
| | - Magdalena I Ivanova
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109 United States
| | | |
Collapse
|
21
|
Riemslagh FW, Verhagen RFM, van der Toorn EC, Smits DJ, Quint WH, van der Linde HC, van Ham TJ, Willemsen R. Reduction of oxidative stress suppresses poly-GR-mediated toxicity in zebrafish embryos. Dis Model Mech 2021; 14:272601. [PMID: 34693978 PMCID: PMC8649169 DOI: 10.1242/dmm.049092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 10/13/2021] [Indexed: 12/17/2022] Open
Abstract
The hexanucleotide (G4C2)-repeat expansion in the C9ORF72 gene is the most common pathogenic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). This repeat expansion can be translated into dipeptide repeat proteins (DPRs), and distribution of the poly-GR DPR correlates with neurodegeneration in postmortem C9FTD/ALS brains. Here, we assessed poly-GR toxicity in zebrafish embryos, using an annexin A5-based fluorescent transgenic line (secA5) that allows for detection and quantification of apoptosis in vivo. Microinjection of RNA encoding poly-GR into fertilized oocytes evoked apoptosis in the brain and abnormal motor neuron morphology in the trunk of 1-4-days postfertilization embryos. Poly-GR can be specifically detected in protein homogenates from injected zebrafish and in the frontal cortexes of C9FTD/ALS cases. Poly-GR expression further elevated MitoSOX levels in zebrafish embryos, indicating oxidative stress. Inhibition of reactive oxygen species using Trolox showed full suppression of poly-GR toxicity. Our study indicates that poly-GR can exert its toxicity via oxidative stress. This zebrafish model can be used to find suppressors of poly-GR toxicity and identify its molecular targets underlying neurodegeneration observed in C9FTD/ALS. Summary: Toxicity of C9ALS/FTD poly-GR in zebrafish embryos is suppressed by Trolox, and poly-GR can be detected and quantified in zebrafish model protein homogenates, and in the frontal cortex of C9FTD/ALS cases.
Collapse
Affiliation(s)
- Fréderike W Riemslagh
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
| | - Rob F M Verhagen
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
| | - Esmay C van der Toorn
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
| | - Daphne J Smits
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
| | - Wim H Quint
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
| | - Herma C van der Linde
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
| | - Tjakko J van Ham
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|
22
|
Sharpe JL, Harper NS, Garner DR, West RJH. Modeling C9orf72-Related Frontotemporal Dementia and Amyotrophic Lateral Sclerosis in Drosophila. Front Cell Neurosci 2021; 15:770937. [PMID: 34744635 PMCID: PMC8566814 DOI: 10.3389/fncel.2021.770937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/27/2021] [Indexed: 12/28/2022] Open
Abstract
An intronic hexanucleotide (GGGGCC) expansion in the C9orf72 gene is the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). In the decade following its discovery, much progress has been made in enhancing our understanding of how it precipitates disease. Both loss of function caused by reduced C9orf72 transcript levels, and gain of function mechanisms, triggered by the production of repetitive sense and antisense RNA and dipeptide repeat proteins, are thought to contribute to the toxicity. Drosophila models, with their unrivaled genetic tractability and short lifespan, have played a key role in developing our understanding of C9orf72-related FTD/ALS. There is no C9orf72 homolog in fly, and although this precludes investigations into loss of function toxicity, it is useful for elucidating mechanisms underpinning gain of function toxicity. To date there are a range of Drosophila C9orf72 models, encompassing different aspects of gain of function toxicity. In addition to pure repeat transgenes, which produce both repeat RNA and dipeptide repeat proteins (DPRs), RNA only models and DPR models have been generated to unpick the individual contributions of RNA and each dipeptide repeat protein to C9orf72 toxicity. In this review, we discuss how Drosophila models have shaped our understanding of C9orf72 gain of function toxicity, and address opportunities to utilize these models for further research.
Collapse
Affiliation(s)
- Joanne L. Sharpe
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Nikki S. Harper
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Duncan R. Garner
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, The University of Sheffield, Sheffield, United Kingdom
| | - Ryan J. H. West
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
23
|
Jang HJ, Le MUT, Park JH, Chung CG, Shon JG, Lee GS, Moon JH, Lee SB, Choi JS, Lee TG, Yoon S. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging of Phospholipid Changes in a Drosophila Model of Early Amyotrophic Lateral Sclerosis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2536-2545. [PMID: 34448582 DOI: 10.1021/jasms.1c00167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a degenerative disease caused by motor neuron damage in the central nervous system, and it is difficult to diagnose early. Drosophila melanogaster is widely used to investigate disease mechanisms and discover biomarkers because it is easy to induce disease in Drosophila through genetic engineering. We performed matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to investigate changes in phospholipid distribution in the brain tissue of an ALS-induced Drosophila model. Fly brain tissues of several hundred micrometers or less were sampled using a fly collar to obtain reproducible tissue sections of similar sizes. MSI of brain tissues of Drosophila cultured for 1 or 10 days showed that the distribution of phospholipids, including phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidic acid (PA), phosphatidylserine (PS), and phosphatidylinositol (PI), was significantly different between the control group and the ALS group. In addition, the lipid profile according to phospholipids differed as the culture time increased from 1 to 10 days. These results suggest that disease indicators based on lipid metabolites can be discovered by performing MALDI-MSI on very small brain tissue samples from the Drosophila disease model to ultimately assess the phospholipid changes that occur in early-stage ALS.
Collapse
Affiliation(s)
- Hyun Jun Jang
- Bio-imaging Team, Safety Measurement Institute, Korea Research Institute of Standard and Science (KRISS), Daejeon 34113, Republic of Korea
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Minh Uyen Thi Le
- Bio-imaging Team, Safety Measurement Institute, Korea Research Institute of Standard and Science (KRISS), Daejeon 34113, Republic of Korea
- Department of Nano Science, University of Science and Technology (UST), Daejeon 34113, South Korea
| | - Jeong Hyang Park
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Chang Geon Chung
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Jin Gyeong Shon
- Bio-imaging Team, Safety Measurement Institute, Korea Research Institute of Standard and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Ga Seul Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jeong Hee Moon
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sung Bae Lee
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Joon Sig Choi
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tae Geol Lee
- Bio-imaging Team, Safety Measurement Institute, Korea Research Institute of Standard and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Sohee Yoon
- Bio-imaging Team, Safety Measurement Institute, Korea Research Institute of Standard and Science (KRISS), Daejeon 34113, Republic of Korea
| |
Collapse
|
24
|
Lampasona A, Almeida S, Gao FB. Translation of the poly(GR) frame in C9ORF72-ALS/FTD is regulated by cis-elements involved in alternative splicing. Neurobiol Aging 2021; 105:327-332. [PMID: 34157654 PMCID: PMC8338774 DOI: 10.1016/j.neurobiolaging.2021.04.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 12/31/2022]
Abstract
GGGGCC (G4C2) repeat expansion in the first intron of C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia, two devastating age-dependent neurodegenerative disorders. Both sense and antisense repeat RNAs can be translated into 5 different dipeptide repeat proteins, such as poly(GR), which is toxic in various cellular and animal models. However, it remains unknown how poly(GR) is synthesized in patient neurons. Using a reporter construct containing 70 G4C2 repeats flanked by human intronic and exonic sequences, we show that translation of the poly(GR) frame does not depend on repeats or the CUG start codon in the poly(GA) frame, suggesting poly(GR) is not produced after ribosomal frameshifting in the poly(GA) frame. However, deletion analysis suggests that translation of the poly(GR) frame depends on the length of the intronic sequence 5' adjacent to G4C2 repeats. Moreover, several 5´ cis elements that are predicted to be involved in alternative splicing regulates poly(GR) synthesis. These results suggest that translation of repeat RNAs in the poly(GR) frame is regulated by multiple cis elements, likely through RNA secondary structures and/or associated RNA binding proteins.
Collapse
Affiliation(s)
- Alexa Lampasona
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sandra Almeida
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
25
|
Liguori F, Amadio S, Volonté C. Fly for ALS: Drosophila modeling on the route to amyotrophic lateral sclerosis modifiers. Cell Mol Life Sci 2021; 78:6143-6160. [PMID: 34322715 PMCID: PMC11072332 DOI: 10.1007/s00018-021-03905-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare, devastating disease, causing movement impairment, respiratory failure and ultimate death. A plethora of genetic, cellular and molecular mechanisms are involved in ALS signature, although the initiating causes and progressive pathological events are far from being understood. Drosophila research has produced seminal discoveries for more than a century and has been successfully used in the past 25 years to untangle the process of ALS pathogenesis, and recognize potential markers and novel strategies for therapeutic solutions. This review will provide an updated view of several ALS modifiers validated in C9ORF72, SOD1, FUS, TDP-43 and Ataxin-2 Drosophila models. We will discuss basic and preclinical findings, illustrating recent developments and novel breakthroughs, also depicting unsettled challenges and limitations in the Drosophila-ALS field. We intend to stimulate a renewed debate on Drosophila as a screening route to identify more successful disease modifiers and neuroprotective agents.
Collapse
Affiliation(s)
- Francesco Liguori
- Preclinical Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143, Rome, Italy
| | - Susanna Amadio
- Preclinical Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143, Rome, Italy
| | - Cinzia Volonté
- Preclinical Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143, Rome, Italy.
- Institute for Systems Analysis and Computer Science "A. Ruberti", National Research Council (IASI-CNR), Via dei Taurini 19, 00185, Rome, Italy.
| |
Collapse
|
26
|
Malik I, Kelley CP, Wang ET, Todd PK. Molecular mechanisms underlying nucleotide repeat expansion disorders. Nat Rev Mol Cell Biol 2021; 22:589-607. [PMID: 34140671 PMCID: PMC9612635 DOI: 10.1038/s41580-021-00382-6] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 02/05/2023]
Abstract
The human genome contains over one million short tandem repeats. Expansion of a subset of these repeat tracts underlies over fifty human disorders, including common genetic causes of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (C9orf72), polyglutamine-associated ataxias and Huntington disease, myotonic dystrophy, and intellectual disability disorders such as Fragile X syndrome. In this Review, we discuss the four major mechanisms by which expansion of short tandem repeats causes disease: loss of function through transcription repression, RNA-mediated gain of function through gelation and sequestration of RNA-binding proteins, gain of function of canonically translated repeat-harbouring proteins, and repeat-associated non-AUG translation of toxic repeat peptides. Somatic repeat instability amplifies these mechanisms and influences both disease age of onset and tissue specificity of pathogenic features. We focus on the crosstalk between these disease mechanisms, and argue that they often synergize to drive pathogenesis. We also discuss the emerging native functions of repeat elements and how their dynamics might contribute to disease at a larger scale than currently appreciated. Lastly, we propose that lynchpins tying these disease mechanisms and native functions together offer promising therapeutic targets with potential shared applications across this class of human disorders.
Collapse
Affiliation(s)
- Indranil Malik
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Chase P Kelley
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
- Genetics and Genomics Graduate Program, University of Florida, Gainesville, FL, USA
| | - Eric T Wang
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, Genetics Institute, University of Florida, Gainesville, FL, USA.
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|
27
|
Semmelink MFW, Steen A, Veenhoff LM. Measuring and Interpreting Nuclear Transport in Neurodegenerative Disease-The Example of C9orf72 ALS. Int J Mol Sci 2021; 22:9217. [PMID: 34502125 PMCID: PMC8431710 DOI: 10.3390/ijms22179217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022] Open
Abstract
Transport from and into the nucleus is essential to all eukaryotic life and occurs through the nuclear pore complex (NPC). There are a multitude of data supporting a role for nuclear transport in neurodegenerative diseases, but actual transport assays in disease models have provided diverse outcomes. In this review, we summarize how nuclear transport works, which transport assays are available, and what matters complicate the interpretation of their results. Taking a specific type of ALS caused by mutations in C9orf72 as an example, we illustrate these complications, and discuss how the current data do not firmly answer whether the kinetics of nucleocytoplasmic transport are altered. Answering this open question has far-reaching implications, because a positive answer would imply that widespread mislocalization of proteins occurs, far beyond the reported mislocalization of transport reporters, and specific proteins such as FUS, or TDP43, and thus presents a challenge for future research.
Collapse
Affiliation(s)
| | | | - Liesbeth M. Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (M.F.W.S.); (A.S.)
| |
Collapse
|
28
|
Kok JR, Palminha NM, Dos Santos Souza C, El-Khamisy SF, Ferraiuolo L. DNA damage as a mechanism of neurodegeneration in ALS and a contributor to astrocyte toxicity. Cell Mol Life Sci 2021; 78:5707-5729. [PMID: 34173837 PMCID: PMC8316199 DOI: 10.1007/s00018-021-03872-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/27/2021] [Accepted: 06/05/2021] [Indexed: 12/11/2022]
Abstract
Increasing evidence supports the involvement of DNA damage in several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Elevated levels of DNA damage are consistently observed in both sporadic and familial forms of ALS and may also play a role in Western Pacific ALS, which is thought to have an environmental cause. The cause of DNA damage in ALS remains unclear but likely differs between genetic subgroups. Repeat expansion in the C9ORF72 gene is the most common genetic cause of familial ALS and responsible for about 10% of sporadic cases. These genetic mutations are known to cause R-loops, thus increasing genomic instability and DNA damage, and generate dipeptide repeat proteins, which have been shown to lead to DNA damage and impairment of the DNA damage response. Similarly, several genes associated with ALS including TARDBP, FUS, NEK1, SQSTM1 and SETX are known to play a role in DNA repair and the DNA damage response, and thus may contribute to neuronal death via these pathways. Another consistent feature present in both sporadic and familial ALS is the ability of astrocytes to induce motor neuron death, although the factors causing this toxicity remain largely unknown. In this review, we summarise the evidence for DNA damage playing a causative or secondary role in the pathogenesis of ALS as well as discuss the possible mechanisms involved in different genetic subtypes with particular focus on the role of astrocytes initiating or perpetuating DNA damage in neurons.
Collapse
Affiliation(s)
- Jannigje Rachel Kok
- University of Sheffield, Sheffield Institute for Translational Neuroscience (SITraN), Sheffield, UK
| | - Nelma M Palminha
- Department of Molecular Biology and Biotechnology, The Healthy Lifespan Institute, Sheffield, UK
- The Institute of Neuroscience, University of Sheffield, Sheffield, UK
| | - Cleide Dos Santos Souza
- University of Sheffield, Sheffield Institute for Translational Neuroscience (SITraN), Sheffield, UK
| | - Sherif F El-Khamisy
- Department of Molecular Biology and Biotechnology, The Healthy Lifespan Institute, Sheffield, UK.
- The Institute of Neuroscience, University of Sheffield, Sheffield, UK.
- The Institute of Cancer Therapeutics, West Yorkshire, UK.
| | - Laura Ferraiuolo
- University of Sheffield, Sheffield Institute for Translational Neuroscience (SITraN), Sheffield, UK.
- The Institute of Neuroscience, University of Sheffield, Sheffield, UK.
| |
Collapse
|
29
|
Fumagalli L, Young FL, Boeynaems S, De Decker M, Mehta AR, Swijsen A, Fazal R, Guo W, Moisse M, Beckers J, Dedeene L, Selvaraj BT, Vandoorne T, Madan V, van Blitterswijk M, Raitcheva D, McCampbell A, Poesen K, Gitler AD, Koch P, Vanden Berghe P, Thal DR, Verfaillie C, Chandran S, Van Den Bosch L, Bullock SL, Van Damme P. C9orf72-derived arginine-containing dipeptide repeats associate with axonal transport machinery and impede microtubule-based motility. SCIENCE ADVANCES 2021; 7:eabg3013. [PMID: 33837088 PMCID: PMC8034861 DOI: 10.1126/sciadv.abg3013] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/23/2021] [Indexed: 05/07/2023]
Abstract
A hexanucleotide repeat expansion in the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). How this mutation leads to these neurodegenerative diseases remains unclear. Here, we show using patient stem cell-derived motor neurons that the repeat expansion impairs microtubule-based transport, a process critical for neuronal survival. Cargo transport defects are recapitulated by treating neurons from healthy individuals with proline-arginine and glycine-arginine dipeptide repeats (DPRs) produced from the repeat expansion. Both arginine-rich DPRs similarly inhibit axonal trafficking in adult Drosophila neurons in vivo. Physical interaction studies demonstrate that arginine-rich DPRs associate with motor complexes and the unstructured tubulin tails of microtubules. Single-molecule imaging reveals that microtubule-bound arginine-rich DPRs directly impede translocation of purified dynein and kinesin-1 motor complexes. Collectively, our study implicates inhibitory interactions of arginine-rich DPRs with axonal transport machinery in C9orf72-associated ALS/FTD and thereby points to potential therapeutic strategies.
Collapse
Affiliation(s)
- Laura Fumagalli
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Florence L Young
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Steven Boeynaems
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Mathias De Decker
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Arpan R Mehta
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- The Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
- The Euan MacDonald Centre, University of Edinburgh, Edinburgh, UK
| | - Ann Swijsen
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Raheem Fazal
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Wenting Guo
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
- KU Leuven-University of Leuven, Department of Development and Regeneration, Stem Cell Institute, Leuven, Belgium
| | - Matthieu Moisse
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Jimmy Beckers
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Lieselot Dedeene
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
- KU Leuven-University of Leuven, Department of Neurosciences, Laboratory for Molecular Neurobiomarker Research and Leuven Brain Institute (LBI), Leuven, Belgium
- KU Leuven-University of Leuven, Department of Imaging and Pathology, Laboratory for Neuropathology and Leuven Brain Institute (LBI), Leuven, Belgium
- Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Bhuvaneish T Selvaraj
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- The Euan MacDonald Centre, University of Edinburgh, Edinburgh, UK
| | - Tijs Vandoorne
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Vanesa Madan
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | - Koen Poesen
- KU Leuven-University of Leuven, Department of Neurosciences, Laboratory for Molecular Neurobiomarker Research and Leuven Brain Institute (LBI), Leuven, Belgium
- Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Philipp Koch
- Hector Institute for Translational Brain Research, Central Institute of Mental Health, University of Heidelberg, Heidelberg, Germany
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Pieter Vanden Berghe
- KU Leuven-University of Leuven, Translational Research Centre for Gastrointestinal Disorders, Leuven, Belgium
| | - Dietmar Rudolf Thal
- KU Leuven-University of Leuven, Department of Imaging and Pathology, Laboratory for Neuropathology and Leuven Brain Institute (LBI), Leuven, Belgium
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Catherine Verfaillie
- KU Leuven-University of Leuven, Department of Development and Regeneration, Stem Cell Institute, Leuven, Belgium
| | - Siddharthan Chandran
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- The Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
- The Euan MacDonald Centre, University of Edinburgh, Edinburgh, UK
- Centre for Brain Development and Repair, inStem, Bangalore, India
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Ludo Van Den Bosch
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Simon L Bullock
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Philip Van Damme
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium.
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
30
|
Gill AL, Premasiri AS, Vieira FG. Hypothesis and Theory: Roles of Arginine Methylation in C9orf72-Mediated ALS and FTD. Front Cell Neurosci 2021; 15:633668. [PMID: 33833668 PMCID: PMC8021787 DOI: 10.3389/fncel.2021.633668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Hexanucleotide repeat expansion (G4C2n) mutations in the gene C9ORF72 account for approximately 30% of familial cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), as well as approximately 7% of sporadic cases of ALS. G4C2n mutations are known to result in the production of five species of dipeptide repeat proteins (DRPs) through non-canonical translation processes. Arginine-enriched dipeptide repeat proteins, glycine-arginine (polyGR), and proline-arginine (polyPR) have been demonstrated to be cytotoxic and deleterious in multiple experimental systems. Recently, we and others have implicated methylation of polyGR/polyPR arginine residues in disease processes related to G4C2n mutation-mediated neurodegeneration. We previously reported that inhibition of asymmetric dimethylation (ADMe) of arginine residues is protective in cell-based models of polyGR/polyPR cytotoxicity. These results are consistent with the idea that PRMT-mediated arginine methylation in the context of polyGR/polyPR exposure is harmful. However, it remains unclear why. Here we discuss the influence of arginine methylation on diverse cellular processes including liquid-liquid phase separation, chromatin remodeling, transcription, RNA processing, and RNA-binding protein localization, and we consider how methylation of polyGR/polyPR may disrupt processes essential for normal cellular function and survival.
Collapse
Affiliation(s)
- Anna L Gill
- ALS Therapy Development Institute, Cambridge, MA, United States
| | | | | |
Collapse
|
31
|
Schmitz A, Pinheiro Marques J, Oertig I, Maharjan N, Saxena S. Emerging Perspectives on Dipeptide Repeat Proteins in C9ORF72 ALS/FTD. Front Cell Neurosci 2021; 15:637548. [PMID: 33679328 PMCID: PMC7930069 DOI: 10.3389/fncel.2021.637548] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
The most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is a hexanucleotide expansion in the chromosome 9 open reading frame 72 gene (C9ORF72). This hexanucleotide expansion consists of GGGGCC (G4C2) repeats that have been implicated to lead to three main modes of disease pathology: loss of function of the C9ORF72 protein, the generation of RNA foci, and the production of dipeptide repeat proteins (DPRs) through repeat-associated non-AUG (RAN) translation. Five different DPRs are currently known to be formed: glycine-alanine (GA) and glycine-arginine (GR) from the sense strand, proline-alanine (PA), and proline-arginine (PR) from the antisense strand, and glycine-proline (GP) from both strands. The exact contribution of each DPR to disease pathology is currently under intense scrutiny and is still poorly understood. However, recent advances in both neuropathological and cellular studies have provided us with clues enabling us to better understand the effect of individual DPRs on disease pathogenesis. In this review, we compile the current knowledge of specific DPR involvement on disease development and highlight recent advances, such as the impact of arginine-rich DPRs on nucleolar protein quality control, the correlation of poly-GR with neurodegeneration, and the possible involvement of chimeric DPR species. Further, we discuss recent findings regarding the mechanisms of RAN translation, its modulators, and other promising therapeutic options.
Collapse
Affiliation(s)
- Alexander Schmitz
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - João Pinheiro Marques
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Irina Oertig
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Niran Maharjan
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Smita Saxena
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
32
|
Aladesuyi Arogundade O, Nguyen S, Leung R, Wainio D, Rodriguez M, Ravits J. Nucleolar stress in C9orf72 and sporadic ALS spinal motor neurons precedes TDP-43 mislocalization. Acta Neuropathol Commun 2021; 9:26. [PMID: 33588953 PMCID: PMC7885352 DOI: 10.1186/s40478-021-01125-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 01/30/2021] [Indexed: 12/11/2022] Open
Abstract
Nucleolar stress has been implicated in the pathology and disease pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) from repeat expansions of GGGGCC in C9orf72 (C9-ALS/FTLD) but not in sporadic ALS (SALS). Previously we reported that antisense RNA transcripts are unique in C9-ALS because of their nucleolar localization in spinal motor neurons and correlation with TDP-43 mislocalization, the hallmark proteinopathy of ALS and FTLD. Here we report our further studies of 11 SALS, 11 C9-ALS and 11 control spinal cords. We find that nucleolar stress manifests specifically as shrinkage in nucleoli of C9-ALS spinal motor neurons. Nucleolar size reduction is greatest in similarly sized alpha motor neurons from C9-ALS cases and results are not skewed by the number of surviving neurons from each ALS spinal cord. Surprisingly, nucleolar shrinkage occurs before main pathological hallmarks-TDP-43 mislocalization or antisense RNA foci-appear and this suggest that nucleolar stress can precede pathology in C9-ALS, findings previously identified in C9-FTLD using sense RNA foci and dipeptide repeat proteins as pathological markers. Importantly, these observations are also seen in SALS motor neurons and thus nucleolar stress appears to be a significant and probably upstream problem in sporadic disease.
Collapse
Affiliation(s)
| | - Sandra Nguyen
- University of California, San Diego, La Jolla, CA, USA
| | - Ringo Leung
- University of California, San Diego, La Jolla, CA, USA
| | | | | | - John Ravits
- University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
33
|
Kaur T, Raju M, Alshareedah I, Davis RB, Potoyan DA, Banerjee PR. Sequence-encoded and composition-dependent protein-RNA interactions control multiphasic condensate morphologies. Nat Commun 2021; 12:872. [PMID: 33558506 PMCID: PMC7870978 DOI: 10.1038/s41467-021-21089-4] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 01/11/2021] [Indexed: 01/30/2023] Open
Abstract
Multivalent protein-protein and protein-RNA interactions are the drivers of biological phase separation. Biomolecular condensates typically contain a dense network of multiple proteins and RNAs, and their competing molecular interactions play key roles in regulating the condensate composition and structure. Employing a ternary system comprising of a prion-like polypeptide (PLP), arginine-rich polypeptide (RRP), and RNA, we show that competition between the PLP and RNA for a single shared partner, the RRP, leads to RNA-induced demixing of PLP-RRP condensates into stable coexisting phases-homotypic PLP condensates and heterotypic RRP-RNA condensates. The morphology of these biphasic condensates (non-engulfing/ partial engulfing/ complete engulfing) is determined by the RNA-to-RRP stoichiometry and the hierarchy of intermolecular interactions, providing a glimpse of the broad range of multiphasic patterns that are accessible to these condensates. Our findings provide a minimal set of physical rules that govern the composition and spatial organization of multicomponent and multiphasic biomolecular condensates.
Collapse
Affiliation(s)
- Taranpreet Kaur
- Department of Physics, University at Buffalo, Buffalo, NY, USA
| | | | | | - Richoo B Davis
- Department of Physics, University at Buffalo, Buffalo, NY, USA
| | - Davit A Potoyan
- Department of Chemistry, Iowa State University, Ames, IA, USA.
| | | |
Collapse
|
34
|
Ghasemi M, Keyhanian K, Douthwright C. Glial Cell Dysfunction in C9orf72-Related Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Cells 2021; 10:cells10020249. [PMID: 33525344 PMCID: PMC7912327 DOI: 10.3390/cells10020249] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
Since the discovery of the chromosome 9 open reading frame 72 (C9orf72) repeat expansion mutation in 2011 as the most common genetic abnormality in amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig's disease) and frontotemporal dementia (FTD), progress in understanding the signaling pathways related to this mutation can only be described as intriguing. Two major theories have been suggested-(i) loss of function or haploinsufficiency and (ii) toxic gain of function from either C9orf72 repeat RNA or dipeptide repeat proteins (DPRs) generated from repeat-associated non-ATG (RAN) translation. Each theory has provided various signaling pathways that potentially participate in the disease progression. Dysregulation of the immune system, particularly glial cell dysfunction (mainly microglia and astrocytes), is demonstrated to play a pivotal role in both loss and gain of function theories of C9orf72 pathogenesis. In this review, we discuss the pathogenic roles of glial cells in C9orf72 ALS/FTD as evidenced by pre-clinical and clinical studies showing the presence of gliosis in C9orf72 ALS/FTD, pathologic hallmarks in glial cells, including TAR DNA-binding protein 43 (TDP-43) and p62 aggregates, and toxicity of C9orf72 glial cells. A better understanding of these pathways can provide new insights into the development of therapies targeting glial cell abnormalities in C9orf72 ALS/FTD.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Correspondence: ; Tel.: +1-774-441-7726; Fax: +1-508-856-4485
| | | | | |
Collapse
|
35
|
Layalle S, They L, Ourghani S, Raoul C, Soustelle L. Amyotrophic Lateral Sclerosis Genes in Drosophila melanogaster. Int J Mol Sci 2021; 22:ijms22020904. [PMID: 33477509 PMCID: PMC7831090 DOI: 10.3390/ijms22020904] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating adult-onset neurodegenerative disease characterized by the progressive degeneration of upper and lower motoneurons. Most ALS cases are sporadic but approximately 10% of ALS cases are due to inherited mutations in identified genes. ALS-causing mutations were identified in over 30 genes with superoxide dismutase-1 (SOD1), chromosome 9 open reading frame 72 (C9orf72), fused in sarcoma (FUS), and TAR DNA-binding protein (TARDBP, encoding TDP-43) being the most frequent. In the last few decades, Drosophila melanogaster emerged as a versatile model for studying neurodegenerative diseases, including ALS. In this review, we describe the different Drosophila ALS models that have been successfully used to decipher the cellular and molecular pathways associated with SOD1, C9orf72, FUS, and TDP-43. The study of the known fruit fly orthologs of these ALS-related genes yielded significant insights into cellular mechanisms and physiological functions. Moreover, genetic screening in tissue-specific gain-of-function mutants that mimic ALS-associated phenotypes identified disease-modifying genes. Here, we propose a comprehensive review on the Drosophila research focused on four ALS-linked genes that has revealed novel pathogenic mechanisms and identified potential therapeutic targets for future therapy.
Collapse
Affiliation(s)
- Sophie Layalle
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Laetitia They
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Sarah Ourghani
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Cédric Raoul
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
- Laboratory of Neurobiology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence: (C.R.); (L.S.)
| | - Laurent Soustelle
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
- Correspondence: (C.R.); (L.S.)
| |
Collapse
|
36
|
Riemslagh FW, van der Toorn EC, Verhagen RFM, Maas A, Bosman LWJ, Hukema RK, Willemsen R. Inducible expression of human C9ORF72 36x G 4C 2 hexanucleotide repeats is sufficient to cause RAN translation and rapid muscular atrophy in mice. Dis Model Mech 2021; 14:dmm.044842. [PMID: 33431483 PMCID: PMC7903916 DOI: 10.1242/dmm.044842] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 12/17/2020] [Indexed: 12/29/2022] Open
Abstract
The hexanucleotide G4C2 repeat expansion in the first intron of the C9ORF72 gene explains the majority of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) cases. Numerous studies have indicated the toxicity of dipeptide repeats (DPRs) which are produced via repeat-associated non-AUG (RAN) translation from the repeat expansion and accumulate in the brain of C9FTD/ALS patients. Mouse models expressing the human C9ORF72 repeat and/or DPRs show variable pathological, functional, and behavioral characteristics of FTD and ALS. Here, we report a new Tet-on inducible mouse model that expresses 36x pure G4C2 repeats with 100bp upstream and downstream human flanking regions. Brain specific expression causes the formation of sporadic sense DPRs aggregates upon 6 months dox induction but no apparent neurodegeneration. Expression in the rest of the body evokes abundant sense DPRs in multiple organs, leading to weight loss, neuromuscular junction disruption, myopathy, and a locomotor phenotype within the time frame of four weeks. We did not observe any RNA foci or pTDP-43 pathology. Accumulation of DPRs and the myopathy phenotype could be prevented when 36x G4C2 repeat expression was stopped after 1 week. After 2 weeks of expression, the phenotype could not be reversed, even though DPR levels were reduced. In conclusion, expression of 36x pure G4C2 repeats including 100bp human flanking regions is sufficient for RAN translation of sense DPRs and evokes a functional locomotor phenotype. Our inducible mouse model suggests early diagnosis and treatment are important for C9FTD/ALS patients.
Collapse
Affiliation(s)
- F W Riemslagh
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - E C van der Toorn
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - R F M Verhagen
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - A Maas
- Department of Cell Biology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - L W J Bosman
- Department of Neuroscience, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - R K Hukema
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - R Willemsen
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
37
|
Gagliardi D, Costamagna G, Taiana M, Andreoli L, Biella F, Bersani M, Bresolin N, Comi GP, Corti S. Insights into disease mechanisms and potential therapeutics for C9orf72-related amyotrophic lateral sclerosis/frontotemporal dementia. Ageing Res Rev 2020; 64:101172. [PMID: 32971256 DOI: 10.1016/j.arr.2020.101172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
In 2011, a hexanucleotide repeat expansion (HRE) in the noncoding region of C9orf72 was associated with the most frequent genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). The main pathogenic mechanisms in C9-ALS/FTD are haploinsufficiency of the C9orf72 protein and gain of function toxicity from bidirectionally-transcribed repeat-containing RNAs and dipeptide repeat proteins (DPRs) resulting from non-canonical RNA translation. Additionally, abnormalities in different downstream cellular mechanisms, such as nucleocytoplasmic transport and autophagy, play a role in pathogenesis. Substantial research efforts using in vitro and in vivo models have provided valuable insights into the contribution of each mechanism in disease pathogenesis. However, conflicting evidence exists, and a unifying theory still lacks. Here, we provide an overview of the recently published literature on clinical, neuropathological and molecular features of C9-ALS/FTD. We highlight the supposed neuronal role of C9orf72 and the HRE pathogenic cascade, mainly focusing on the contribution of RNA foci and DPRs to neurodegeneration and discussing the several downstream mechanisms. We summarize the emerging biochemical and neuroimaging biomarkers, as well as the potential therapeutic approaches. Despite promising results, a specific disease-modifying treatment is still not available to date and greater insights into disease mechanisms may help in this direction.
Collapse
Affiliation(s)
- Delia Gagliardi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Gianluca Costamagna
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Michela Taiana
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Luca Andreoli
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Fabio Biella
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Margherita Bersani
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Nereo Bresolin
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy; Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Giacomo Pietro Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy; Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy; Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
38
|
Lessons learned from CHMP2B, implications for frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis 2020; 147:105144. [PMID: 33144171 DOI: 10.1016/j.nbd.2020.105144] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS) are two neurodegenerative diseases with clinical, genetic and pathological overlap. As such, they are commonly regarded as a single spectrum disorder, with pure FTD and pure ALS representing distinct ends of a continuum. Dysfunctional endo-lysosomal and autophagic trafficking, leading to impaired proteostasis is common across the FTD-ALS spectrum. These pathways are, in part, mediated by CHMP2B, a protein that coordinates membrane scission events as a core component of the ESCRT machinery. Here we review how ALS and FTD disease causing mutations in CHMP2B have greatly contributed to our understanding of how endosomal-lysosomal and autophagic dysfunction contribute to neurodegeneration, and how in vitro and in vivo models have helped elucidate novel candidates for potential therapeutic intervention with implications across the FTD-ALS spectrum.
Collapse
|
39
|
Quality-control mechanisms targeting translationally stalled and C-terminally extended poly(GR) associated with ALS/FTD. Proc Natl Acad Sci U S A 2020; 117:25104-25115. [PMID: 32958650 DOI: 10.1073/pnas.2005506117] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Maintaining the fidelity of nascent peptide chain (NP) synthesis is essential for proteome integrity and cellular health. Ribosome-associated quality control (RQC) serves to resolve stalled translation, during which untemplated Ala/Thr residues are added C terminally to stalled peptide, as shown during C-terminal Ala and Thr addition (CAT-tailing) in yeast. The mechanism and biological effects of CAT-tailing-like activity in metazoans remain unclear. Here we show that CAT-tailing-like modification of poly(GR), a dipeptide repeat derived from amyotrophic lateral sclerosis with frontotemporal dementia (ALS/FTD)-associated GGGGCC (G4C2) repeat expansion in C9ORF72, contributes to disease. We find that poly(GR) can act as a mitochondria-targeting signal, causing some poly(GR) to be cotranslationally imported into mitochondria. However, poly(GR) translation on mitochondrial surface is frequently stalled, triggering RQC and CAT-tailing-like C-terminal extension (CTE). CTE promotes poly(GR) stabilization, aggregation, and toxicity. Our genetic studies in Drosophila uncovered an important role of the mitochondrial protease YME1L in clearing poly(GR), revealing mitochondria as major sites of poly(GR) metabolism. Moreover, the mitochondria-associated noncanonical Notch signaling pathway impinges on the RQC machinery to restrain poly(GR) accumulation, at least in part through the AKT/VCP axis. The conserved actions of YME1L and noncanonical Notch signaling in animal models and patient cells support their fundamental involvement in ALS/FTD.
Collapse
|
40
|
Hao Z, Wang R, Ren H, Wang G. Role of the C9ORF72 Gene in the Pathogenesis of Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Neurosci Bull 2020; 36:1057-1070. [PMID: 32860626 DOI: 10.1007/s12264-020-00567-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022] Open
Abstract
Since the discovery of the C9ORF72 gene in 2011, great advances have been achieved in its genetics and in identifying its role in disease models and pathological mechanisms; it is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). ALS patients with C9ORF72 expansion show heterogeneous symptoms. Those who are C9ORF72 expansion carriers have shorter survival after disease onset than non-C9ORF72 expansion patients. Pathological and clinical features of C9ORF72 patients have been well mimicked via several models, including induced pluripotent stem cell-derived neurons and transgenic mice that were embedded with bacterial artificial chromosome construct and that overexpressing dipeptide repeat proteins. The mechanisms implicated in C9ORF72 pathology include DNA damage, changes of RNA metabolism, alteration of phase separation, and impairment of nucleocytoplasmic transport, which may underlie C9ORF72 expansion-related ALS/FTD and provide insight into non-C9ORF72 expansion-related ALS, FTD, and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Zongbing Hao
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Rui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Haigang Ren
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
41
|
Solomon DA, Mitchell JC, Salcher-Konrad MT, Vance CA, Mizielinska S. Review: Modelling the pathology and behaviour of frontotemporal dementia. Neuropathol Appl Neurobiol 2020; 45:58-80. [PMID: 30582188 DOI: 10.1111/nan.12536] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/16/2018] [Indexed: 12/11/2022]
Abstract
Frontotemporal dementia (FTD) encompasses a collection of clinically and pathologically diverse neurological disorders. Clinical features of behavioural and language dysfunction are associated with neurodegeneration, predominantly of frontal and temporal cortices. Over the past decade, there have been significant advances in the understanding of the genetic aetiology and neuropathology of FTD which have led to the creation of various disease models to investigate the molecular pathways that contribute to disease pathogenesis. The generation of in vivo models of FTD involves either targeting genes with known disease-causative mutations such as GRN and C9orf72 or genes encoding proteins that form the inclusions that characterize the disease pathologically, such as TDP-43 and FUS. This review provides a comprehensive summary of the different in vivo model systems used to understand pathomechanisms in FTD, with a focus on disease models which reproduce aspects of the wide-ranging behavioural phenotypes seen in people with FTD. We discuss the emerging disease pathways that have emerged from these in vivo models and how this has shaped our understanding of disease mechanisms underpinning FTD. We also discuss the challenges of modelling the complex clinical symptoms shown by people with FTD, the confounding overlap with features of motor neuron disease, and the drive to make models more disease-relevant. In summary, in vivo models can replicate many pathological and behavioural aspects of clinical FTD, but robust and thorough investigations utilizing shared features and variability between disease models will improve the disease-relevance of findings and thus better inform therapeutic development.
Collapse
Affiliation(s)
- D A Solomon
- UK Dementia Research Institute, King's College London, London, Camberwell, UK.,Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| | - J C Mitchell
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| | - M-T Salcher-Konrad
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| | - C A Vance
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| | - S Mizielinska
- UK Dementia Research Institute, King's College London, London, Camberwell, UK.,Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| |
Collapse
|
42
|
He F, Flores BN, Krans A, Frazer M, Natla S, Niraula S, Adefioye O, Barmada SJ, Todd PK. The carboxyl termini of RAN translated GGGGCC nucleotide repeat expansions modulate toxicity in models of ALS/FTD. Acta Neuropathol Commun 2020; 8:122. [PMID: 32753055 PMCID: PMC7401224 DOI: 10.1186/s40478-020-01002-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
An intronic hexanucleotide repeat expansion in C9ORF72 causes familial and sporadic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). This repeat is thought to elicit toxicity through RNA mediated protein sequestration and repeat-associated non-AUG (RAN) translation of dipeptide repeat proteins (DPRs). We generated a series of transgenic Drosophila models expressing GGGGCC (G4C2) repeats either inside of an artificial intron within a GFP reporter or within the 5' untranslated region (UTR) of GFP placed in different downstream reading frames. Expression of 484 intronic repeats elicited minimal alterations in eye morphology, viability, longevity, or larval crawling but did trigger RNA foci formation, consistent with prior reports. In contrast, insertion of repeats into the 5' UTR elicited differential toxicity that was dependent on the reading frame of GFP relative to the repeat. Greater toxicity correlated with a short and unstructured carboxyl terminus (C-terminus) in the glycine-arginine (GR) RAN protein reading frame. This change in C-terminal sequence triggered nuclear accumulation of all three RAN DPRs. A similar differential toxicity and dependence on the GR C-terminus was observed when repeats were expressed in rodent neurons. The presence of the native C-termini across all three reading frames was partly protective. Taken together, these findings suggest that C-terminal sequences outside of the repeat region may alter the behavior and toxicity of dipeptide repeat proteins derived from GGGGCC repeats.
Collapse
|
43
|
Li S, Wu Z, Li Y, Tantray I, De Stefani D, Mattarei A, Krishnan G, Gao FB, Vogel H, Lu B. Altered MICOS Morphology and Mitochondrial Ion Homeostasis Contribute to Poly(GR) Toxicity Associated with C9-ALS/FTD. Cell Rep 2020; 32:107989. [PMID: 32755582 PMCID: PMC7433775 DOI: 10.1016/j.celrep.2020.107989] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/20/2020] [Accepted: 07/14/2020] [Indexed: 12/31/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) manifests pathological changes in motor neurons and various other cell types. Compared to motor neurons, the contribution of the other cell types to the ALS phenotypes is understudied. G4C2 repeat expansion in C9ORF72 is the most common genetic cause of ALS along with frontotemporal dementia (C9-ALS/FTD), with increasing evidence supporting repeat-encoded poly(GR) in disease pathogenesis. Here, we show in Drosophila muscle that poly(GR) enters mitochondria and interacts with components of the Mitochondrial Contact Site and Cristae Organizing System (MICOS), altering MICOS dynamics and intra-subunit interactions. This impairs mitochondrial inner membrane structure, ion homeostasis, mitochondrial metabolism, and muscle integrity. Similar mitochondrial defects are observed in patient fibroblasts. Genetic manipulation of MICOS components or pharmacological restoration of ion homeostasis with nigericin effectively rescue the mitochondrial pathology and disease phenotypes in both systems. These results implicate MICOS-regulated ion homeostasis in C9-ALS pathogenesis and suggest potential new therapeutic strategies.
Collapse
Affiliation(s)
- Shuangxi Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA,These authors contributed equally
| | - Zhihao Wu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA,These authors contributed equally,Present address: Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas TX 75275, USA
| | - Yu Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ishaq Tantray
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Diego De Stefani
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - Gopinath Krishnan
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA,Lead Contact,Correspondence:
| |
Collapse
|
44
|
Salazar JL, Yang SA, Yamamoto S. Post-Developmental Roles of Notch Signaling in the Nervous System. Biomolecules 2020; 10:biom10070985. [PMID: 32630239 PMCID: PMC7408554 DOI: 10.3390/biom10070985] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022] Open
Abstract
Since its discovery in Drosophila, the Notch signaling pathway has been studied in numerous developmental contexts in diverse multicellular organisms. The role of Notch signaling in nervous system development has been extensively investigated by numerous scientists, partially because many of the core Notch signaling components were initially identified through their dramatic ‘neurogenic’ phenotype of developing fruit fly embryos. Components of the Notch signaling pathway continue to be expressed in mature neurons and glia cells, which is suggestive of a role in the post-developmental nervous system. The Notch pathway has been, so far, implicated in learning and memory, social behavior, addiction, and other complex behaviors using genetic model organisms including Drosophila and mice. Additionally, Notch signaling has been shown to play a modulatory role in several neurodegenerative disease model animals and in mediating neural toxicity of several environmental factors. In this paper, we summarize the knowledge pertaining to the post-developmental roles of Notch signaling in the nervous system with a focus on discoveries made using the fruit fly as a model system as well as relevant studies in C elegans, mouse, rat, and cellular models. Since components of this pathway have been implicated in the pathogenesis of numerous psychiatric and neurodegenerative disorders in human, understanding the role of Notch signaling in the mature brain using model organisms will likely provide novel insights into the mechanisms underlying these diseases.
Collapse
Affiliation(s)
- Jose L. Salazar
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.L.S.); (S.-A.Y.)
| | - Sheng-An Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.L.S.); (S.-A.Y.)
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.L.S.); (S.-A.Y.)
- Department of Neuroscience, BCM, Houston, TX 77030, USA
- Program in Developmental Biology, BCM, Houston, TX 77030, USA
- Development, Disease Models & Therapeutics Graduate Program, BCM, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-832-824-8119
| |
Collapse
|
45
|
McEachin ZT, Gendron TF, Raj N, García-Murias M, Banerjee A, Purcell RH, Ward PJ, Todd TW, Merritt-Garza ME, Jansen-West K, Hales CM, García-Sobrino T, Quintáns B, Holler CJ, Taylor G, San Millán B, Teijeira S, Yamashita T, Ohkubo R, Boulis NM, Xu C, Wen Z, Streichenberger N, Fogel BL, Kukar T, Abe K, Dickson DW, Arias M, Glass JD, Jiang J, Tansey MG, Sobrido MJ, Petrucelli L, Rossoll W, Bassell GJ. Chimeric Peptide Species Contribute to Divergent Dipeptide Repeat Pathology in c9ALS/FTD and SCA36. Neuron 2020; 107:292-305.e6. [PMID: 32375063 PMCID: PMC8138626 DOI: 10.1016/j.neuron.2020.04.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/11/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022]
Abstract
GGGGCC hexanucleotide repeat expansions (HREs) in C9orf72 cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) and lead to the production of aggregating dipeptide repeat proteins (DPRs) via repeat associated non-AUG (RAN) translation. Here, we show the similar intronic GGCCTG HREs that causes spinocerebellar ataxia type 36 (SCA36) is also translated into DPRs, including poly(GP) and poly(PR). We demonstrate that poly(GP) is more abundant in SCA36 compared to c9ALS/FTD patient tissue due to canonical AUG-mediated translation from intron-retained GGCCTG repeat RNAs. However, the frequency of the antisense RAN translation product poly(PR) is comparable between c9ALS/FTD and SCA36 patient samples. Interestingly, in SCA36 patient tissue, poly(GP) exists as a soluble species, and no TDP-43 pathology is present. We show that aggregate-prone chimeric DPR (cDPR) species underlie the divergent DPR pathology between c9ALS/FTD and SCA36. These findings reveal key differences in translation, solubility, and protein aggregation of DPRs between c9ALS/FTD and SCA36.
Collapse
Affiliation(s)
- Zachary T McEachin
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; Laboratory for Translational Cell Biology, Emory University, Atlanta, GA 30322, USA; Wallace H. Coulter Graduate Program in Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA.
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Nisha Raj
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; Laboratory for Translational Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - María García-Murias
- Centro de Investigación Biomédica en red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain; Neurogenetics Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario, SERGAS, Santiago de Compostela, Spain
| | - Anwesha Banerjee
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Ryan H Purcell
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; Laboratory for Translational Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Patricia J Ward
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Tiffany W Todd
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Karen Jansen-West
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Chadwick M Hales
- Department of Neurology, Emory University, Atlanta, GA 30322, USA
| | - Tania García-Sobrino
- Department of Neurology, Hospital Clínico Universitario, SERGAS, Santiago de Compostela, Spain
| | - Beatriz Quintáns
- Centro de Investigación Biomédica en red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain; Neurogenetics Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario, SERGAS, Santiago de Compostela, Spain
| | - Christopher J Holler
- Department of Pharmacology & Chemical Biology, Emory University, Atlanta, GA 30322, USA
| | - Georgia Taylor
- Department of Pharmacology & Chemical Biology, Emory University, Atlanta, GA 30322, USA
| | - Beatriz San Millán
- Rare Diseases and Pediatric Medicine Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain; Pathology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Susana Teijeira
- Rare Diseases and Pediatric Medicine Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain; Pathology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Toru Yamashita
- Department of Neurology, Okayama University, Okayama, Japan
| | - Ryuichi Ohkubo
- Department of Neurology, Fujimoto General Hospital, Miyazaki, Japan
| | - Nicholas M Boulis
- Department of Neurosurgery, Emory University, Atlanta, GA 30322, USA
| | - Chongchong Xu
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA 30322, USA
| | - Zhexing Wen
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; Laboratory for Translational Cell Biology, Emory University, Atlanta, GA 30322, USA; Department of Neurology, Emory University, Atlanta, GA 30322, USA; Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA 30322, USA
| | - Nathalie Streichenberger
- Hospices Civils de Lyon, Lyon, France; Université Claude Bernard Lyon, Lyon, France; Institut NeuroMyogène CNRS UMR 5310
| | | | - Brent L Fogel
- Department of Neurology & Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Thomas Kukar
- Department of Neurology, Emory University, Atlanta, GA 30322, USA; Department of Pharmacology & Chemical Biology, Emory University, Atlanta, GA 30322, USA
| | - Koji Abe
- Department of Neurology, Okayama University, Okayama, Japan
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Manuel Arias
- Neurogenetics Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario, SERGAS, Santiago de Compostela, Spain; Department of Neurology, Hospital Clínico Universitario, SERGAS, Santiago de Compostela, Spain
| | - Jonathan D Glass
- Department of Neurology, Emory University, Atlanta, GA 30322, USA
| | - Jie Jiang
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Malú G Tansey
- Department of Neuroscience, University of Florida, Gainesville, FL 32607, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32607, USA; Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32607, USA
| | - María-Jesús Sobrido
- Centro de Investigación Biomédica en red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain; Neurogenetics Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario, SERGAS, Santiago de Compostela, Spain
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Wilfried Rossoll
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; Laboratory for Translational Cell Biology, Emory University, Atlanta, GA 30322, USA; Wallace H. Coulter Graduate Program in Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA; Department of Neurology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
46
|
Primary Neurons and Differentiated NSC-34 Cells Are More Susceptible to Arginine-Rich ALS Dipeptide Repeat Protein-Associated Toxicity than Non-Differentiated NSC-34 and CHO Cells. Int J Mol Sci 2019; 20:ijms20246238. [PMID: 31835664 PMCID: PMC6941034 DOI: 10.3390/ijms20246238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/02/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022] Open
Abstract
A repeat expansion mutation in the C9orf72 gene is the most common known genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). In this study, using multiple cell-based assay systems, we reveal both increased dipeptide repeat protein (DRP) toxicity in primary neurons and in differentiated neuronal cell lines. Using flow cytometry and confocal laser scanning microscopy of cells treated with fluorescein isothiocyanate (FITC)-labeled DRPs, we confirm that poly-glycine-arginine (GR) and poly-proline-arginine (PR) DRPs entered cells more readily than poly-glycine-proline (GP) and poly-proline-alanine (PA) DRPs. Our findings suggest that the toxicity of C9-DRPs may be influenced by properties associated with differentiated and aging motor neurons. Further, our findings provide sensitive cell-based assay systems to test phenotypic rescue ability of potential interventions.
Collapse
|
47
|
Nguyen L, Montrasio F, Pattamatta A, Tusi SK, Bardhi O, Meyer KD, Hayes L, Nakamura K, Banez-Coronel M, Coyne A, Guo S, Laboissonniere LA, Gu Y, Narayanan S, Smith B, Nitsch RM, Kankel MW, Rushe M, Rothstein J, Zu T, Grimm J, Ranum LPW. Antibody Therapy Targeting RAN Proteins Rescues C9 ALS/FTD Phenotypes in C9orf72 Mouse Model. Neuron 2019; 105:645-662.e11. [PMID: 31831332 DOI: 10.1016/j.neuron.2019.11.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/10/2019] [Accepted: 11/05/2019] [Indexed: 10/25/2022]
Abstract
The intronic C9orf72 G4C2 expansion, the most common genetic cause of ALS and FTD, produces sense- and antisense-expansion RNAs and six dipeptide repeat-associated, non-ATG (RAN) proteins, but their roles in disease are unclear. We generated high-affinity human antibodies targeting GA or GP RAN proteins. These antibodies cross the blood-brain barrier and co-localize with intracellular RAN aggregates in C9-ALS/FTD BAC mice. In cells, α-GA1 interacts with TRIM21, and α-GA1 treatment reduced GA levels, increased GA turnover, and decreased RAN toxicity and co-aggregation of proteasome and autophagy proteins to GA aggregates. In C9-BAC mice, α-GA1 reduced GA as well as GP and GR proteins, improved behavioral deficits, decreased neuroinflammation and neurodegeneration, and increased survival. Glycosylation of the Fc region of α-GA1 is important for cell entry and efficacy. These data demonstrate that RAN proteins drive C9-ALS/FTD in C9-BAC transgenic mice and establish a novel therapeutic approach for C9orf72 ALS/FTD and other RAN-protein diseases.
Collapse
Affiliation(s)
- Lien Nguyen
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | | | - Amrutha Pattamatta
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Solaleh Khoramian Tusi
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Olgert Bardhi
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Kevin D Meyer
- Neurimmune AG, 8952 Schlieren, Switzerland; Institute for Regenerative Medicine-IREM, University of Zurich, 8952 Schlieren, Switzerland
| | - Lindsey Hayes
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Katsuya Nakamura
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Monica Banez-Coronel
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Alyssa Coyne
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Shu Guo
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Lauren A Laboissonniere
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Yuanzheng Gu
- Neuromuscular and Movement Disorders, Biogen, Cambridge, MA 02142, USA
| | | | - Benjamin Smith
- Neuromuscular and Movement Disorders, Biogen, Cambridge, MA 02142, USA
| | - Roger M Nitsch
- Neurimmune AG, 8952 Schlieren, Switzerland; Institute for Regenerative Medicine-IREM, University of Zurich, 8952 Schlieren, Switzerland
| | - Mark W Kankel
- Neuromuscular and Movement Disorders, Biogen, Cambridge, MA 02142, USA
| | - Mia Rushe
- Neuromuscular and Movement Disorders, Biogen, Cambridge, MA 02142, USA
| | - Jeffrey Rothstein
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Tao Zu
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Jan Grimm
- Neurimmune AG, 8952 Schlieren, Switzerland
| | - Laura P W Ranum
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
48
|
Casci I, Krishnamurthy K, Kour S, Tripathy V, Ramesh N, Anderson EN, Marrone L, Grant RA, Oliver S, Gochenaur L, Patel K, Sterneckert J, Gleixner AM, Donnelly CJ, Ruepp MD, Sini AM, Zuccaro E, Pennuto M, Pasinelli P, Pandey UB. Muscleblind acts as a modifier of FUS toxicity by modulating stress granule dynamics and SMN localization. Nat Commun 2019; 10:5583. [PMID: 31811140 PMCID: PMC6898697 DOI: 10.1038/s41467-019-13383-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/05/2019] [Indexed: 12/12/2022] Open
Abstract
Mutations in fused in sarcoma (FUS) lead to amyotrophic lateral sclerosis (ALS) with varying ages of onset, progression and severity. This suggests that unknown genetic factors contribute to disease pathogenesis. Here we show the identification of muscleblind as a novel modifier of FUS-mediated neurodegeneration in vivo. Muscleblind regulates cytoplasmic mislocalization of mutant FUS and subsequent accumulation in stress granules, dendritic morphology and toxicity in mammalian neuronal and human iPSC-derived neurons. Interestingly, genetic modulation of endogenous muscleblind was sufficient to restore survival motor neuron (SMN) protein localization in neurons expressing pathogenic mutations in FUS, suggesting a potential mode of suppression of FUS toxicity. Upregulation of SMN suppressed FUS toxicity in Drosophila and primary cortical neurons, indicating a link between FUS and SMN. Our data provide in vivo evidence that muscleblind is a dominant modifier of FUS-mediated neurodegeneration by regulating FUS-mediated ALS pathogenesis.
Collapse
Affiliation(s)
- Ian Casci
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Karthik Krishnamurthy
- Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Jefferson University, Philadelphia, PA, USA
| | - Sukhleen Kour
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Vadreenath Tripathy
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstr. 105, 01307, Dresden, Germany
| | - Nandini Ramesh
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Eric N Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Lara Marrone
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstr. 105, 01307, Dresden, Germany
| | - Rogan A Grant
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Stacie Oliver
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Lauren Gochenaur
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Krishani Patel
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jared Sterneckert
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstr. 105, 01307, Dresden, Germany
| | - Amanda M Gleixner
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Live Like Lou Center for ALS Research, Brain Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christopher J Donnelly
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Live Like Lou Center for ALS Research, Brain Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marc-David Ruepp
- UK Dementia Research Institute at King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9NU, UK
| | - Antonella M Sini
- Department of Biomedical Sciences (DBS), University of Padova, Padova, Italy
| | - Emanuela Zuccaro
- Department of Biomedical Sciences (DBS), University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Maria Pennuto
- Department of Biomedical Sciences (DBS), University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Piera Pasinelli
- Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Jefferson University, Philadelphia, PA, USA
| | - Udai Bhan Pandey
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA.
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
49
|
Yuva-Aydemir Y, Almeida S, Krishnan G, Gendron TF, Gao FB. Transcription elongation factor AFF2/FMR2 regulates expression of expanded GGGGCC repeat-containing C9ORF72 allele in ALS/FTD. Nat Commun 2019; 10:5466. [PMID: 31784536 PMCID: PMC6884579 DOI: 10.1038/s41467-019-13477-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 11/11/2019] [Indexed: 12/18/2022] Open
Abstract
Expanded GGGGCC (G4C2) repeats in C9ORF72 cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). How RNAs containing expanded G4C2 repeats are transcribed in human neurons is largely unknown. Here we describe a Drosophila model in which poly(GR) expression in adult neurons causes axonal and locomotor defects and premature death without apparent TDP-43 pathology. In an unbiased genetic screen, partial loss of Lilliputian (Lilli) activity strongly suppresses poly(GR) toxicity by specifically downregulating the transcription of GC-rich sequences in Drosophila. Knockout of AFF2/FMR2 (one of four mammalian homologues of Lilli) with CRISPR-Cas9 decreases the expression of the mutant C9ORF72 allele containing expanded G4C2 repeats and the levels of repeat RNA foci and dipeptide repeat proteins in cortical neurons derived from induced pluripotent stem cells of C9ORF72 patients, resulting in rescue of axonal degeneration and TDP-43 pathology. Thus, AFF2/FMR2 regulates the transcription and toxicity of expanded G4C2 repeats in human C9ORF72-ALS/FTD neurons.
Collapse
Affiliation(s)
- Yeliz Yuva-Aydemir
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Sandra Almeida
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| | - Gopinath Krishnan
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
50
|
Jiang J, Ravits J. Pathogenic Mechanisms and Therapy Development for C9orf72 Amyotrophic Lateral Sclerosis/Frontotemporal Dementia. Neurotherapeutics 2019; 16:1115-1132. [PMID: 31667754 PMCID: PMC6985338 DOI: 10.1007/s13311-019-00797-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In 2011, a hexanucleotide repeat expansion in the first intron of the C9orf72 gene was identified as the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The proposed disease mechanisms include loss of C9orf72 function and gain of toxicity from the bidirectionally transcribed repeat-containing RNAs. Over the last few years, substantial progress has been made to determine the contribution of loss and gain of function in disease pathogenesis. The extensive body of molecular, cellular, animal, and human neuropathological studies is conflicted, but the predominance of evidence favors gain of toxicity as the main pathogenic mechanism for C9orf72 repeat expansions. Alterations in several downstream cellular functions, such as nucleocytoplasmic transport and autophagy, are implicated. Exciting progress has also been made in therapy development targeting this mutation, such as by antisense oligonucleotide therapies targeting sense transcripts and small molecules targeting nucleocytoplasmic transport, and these are now in phase 1 clinical trials.
Collapse
Affiliation(s)
- Jie Jiang
- Department of Cell Biology, Emory University, Atlanta, GA, 30322, USA.
| | - John Ravits
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|