1
|
Vorhees NW, Groenwold SL, Williams MT, Putt LS, Sanchez-Gama N, Stalions GA, Taylor GM, Van Dort HE, Calvo-Ochoa E. Olfactory Dysfunction in a Novel Model of Prodromal Parkinson's Disease in Adult Zebrafish. Int J Mol Sci 2025; 26:4474. [PMID: 40429620 PMCID: PMC12111043 DOI: 10.3390/ijms26104474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 05/02/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025] Open
Abstract
Olfactory dysfunction is a clinical marker of prodromal Parkinson's disease (PD), yet the underlying mechanisms remain unclear. To explore this relationship, we developed a zebrafish model that recapitulates the olfactory impairment observed in prodromal PD without affecting motor function. We used zebrafish due to their olfactory system's similarity to mammals and their unique nervous system regenerative capacity. By injecting 6-hydroxydopamine (6-OHDA) into the dorsal telencephalic ventricle, we observed a significant loss of dopaminergic (DA) periglomerular neurons in the olfactory bulb (OB) and retrograde degeneration of olfactory sensory neurons (OSNs) in the olfactory epithelium (OE). These alterations impaired olfactory responses to cadaverine, an aversive odorant, while responses to alanine remained intact. 6-OHDA also triggered robust neuroinflammatory responses. By 7 days post-injection, dopaminergic synapses in the OB were remodeled, OSNs in the OE appeared recovered, and neuroinflammation subsided, leading to full recovery of olfactory responses to cadaverine. These findings highlight the remarkable neuroplasticity of zebrafish and suggest that this model of olfactory dysfunction associated with dopaminergic loss could provide valuable insights into some features of early PD pathology. Understanding the interplay between dopaminergic loss and olfactory dysfunction in a highly regenerative vertebrate may inform therapeutic strategies for individuals suffering from olfactory loss.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Erika Calvo-Ochoa
- Biology Department and Neuroscience Program, Hope College, Holland, MI 49423, USA
| |
Collapse
|
2
|
Huang YT, Yang TJ, Liu KC, Chen MC, Chan PYS, Chen JC. Intranasal α-Synuclein induces progressive behavioral impairments in mice. Behav Brain Res 2025; 485:115517. [PMID: 40024483 DOI: 10.1016/j.bbr.2025.115517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/23/2024] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
α-Synuclein (α-Syn) is implicated in the progression of Parkinson's disease, yet the disease's etiology remains unclear. This study aims to explore how α-Syn affects olfactory, motor, mood and cognitive functions if it initiates from the olfactory bulb. Mice were administered intranasal human AAV-α-Syn and subsequently evaluated for olfactory, motor, mood, and cognitive functions. Immunofluorescence was performed to assess dopaminergic neuronal damage. Results shown that olfactory dysfunction was evident as AAV-α-Syn-treated mice took longer to find buried pellets compared to controls at 3, 9, and 12 months post-instillation. Motor activity remained normal at 6 months but significantly declined at 9 months. Reduced tyrosine hydroxylase expression but increased amount of human α-Syn were observed in the substantia nigra at end of behavioral measurements. AAV-α-Syn mice showed reduced sucrose intake and decreased time in the center zone of the open field at 9 months. Cognitive deficits were observed in recognition function and social memory at 6 and 9 months, with impaired working memory at 12 months. Thus, intranasal AAV-α-Syn instillation in mice leads to progressive olfactory, motor, anxiety, depression-like, and cognitive dysfunctions, reflecting α-Syn pathology propagation.
Collapse
Affiliation(s)
- Yu-Ting Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tzu-Jung Yang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kou-Chen Liu
- Department of Electronic Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Min-Chi Chen
- Department of Public Health and Biostatistics Consulting Center, Chang Gung University, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Pei-Ying S Chan
- Department of Occupational Therapy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Jin-Chung Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
3
|
Abraham JN, Rawat D, Srikanth P, Sunny LP, Abraham NM. Alpha-synuclein pathology and Parkinson's disease-related olfactory dysfunctions: an update on preclinical models and therapeutic approaches. Mamm Genome 2025:10.1007/s00335-025-10128-w. [PMID: 40293510 DOI: 10.1007/s00335-025-10128-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/03/2025] [Indexed: 04/30/2025]
Abstract
Olfactory dysfunction (OD) is considered one of the early signs of Parkinson's disease (PD), affecting over 90% of PD patients. OD often appears several years before the onset of motor symptoms and is therefore considered an early biomarker of PD. Recent studies have shown that COVID-19 infection might lead to worsening of symptoms and acceleration of disease progression in neurodegenerative disorders, where OD is a common symptom to both. Hence, it is essential to accurately monitor olfactory fitness in clinical settings using any of the currently available olfactory function tests. Even after a quarter of a century of the discovery of α-synuclein (α-syn) pathogenesis in PD, many aspects related to the α-syn pathogenesis in OD remain unknown. Currently, there is no definitive cure for PD; the disease management options include dopaminergic medications, deep brain stimulations, stem cells, and immunotherapy. Generating reliable PD animal models is critical for understanding the molecular pathways and neural circuits affected by disease conditions. This might contribute to the development and validation of new therapeutic approaches. This review discusses the known mechanisms of α-syn aggregated forms causing neuronal death, the recent developments in the PD preclinical models with ODs, and the treatment strategies employed.
Collapse
Affiliation(s)
- Jancy Nixon Abraham
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India.
- Department of Life Sciences, Centre of Excellence in Epigenetics, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh, 201314, India.
| | - Devesh Rawat
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India
| | - Priyadharshini Srikanth
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India
| | - Lisni P Sunny
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India
| | - Nixon M Abraham
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India.
| |
Collapse
|
4
|
Opendak M, Meyer H, Callaghan BL, Abramson L, John SR, Bath K, Lee F, Tottenham N, Sullivan R. Understanding the development of a functional brain circuit: reward processing as an illustration. Transl Psychiatry 2025; 15:53. [PMID: 39962048 PMCID: PMC11832941 DOI: 10.1038/s41398-025-03280-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 01/13/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
Aberrant reward processing is common in psychiatric disorders that begin during development. However, our understanding of the early reward system is limited, due to few studies assessing reward engagement across development. Moreover, the interpretation of these findings is based primarily on our understanding of the adult reward system. Here, we argue that approaches to early reward processing must be re-framed within the context of developmental transitions. This alternate perspective takes into account unique, age-specific brain network functions that promote adaptive behaviors as environmental demands change from infancy through childhood. We survey the literature on developing reward systems and ask the following critical questions: (1) how are rewarding stimuli defined for infants and children? (2) do adult-defined neural reward circuits also support early reward behavior? and (3) how can early circuit perturbation impact infant and adult circuit function? Altogether, we argue that this developmental niche-centered framework is needed for conceptually and theoretically approaching developmental research questions, including but also extending beyond the scope of reward. Finally, this framework can help us understand how disturbance in developmental processes may ultimately manifest as pathology.
Collapse
Affiliation(s)
- Maya Opendak
- Kennedy Krieger Institute, Baltimore, MD, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Baltimore, MD, USA.
| | - Heidi Meyer
- Boston University Department of Psychological and Brain Sciences, Boston, MA, USA
| | | | - Lior Abramson
- Department of Psychology, Columbia University in the City of New York, New York, NY, USA
- Tel Aviv University, Tel Aviv, Israel
| | - Shanah Rachel John
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kevin Bath
- New York State Psychiatric Institute, New York, NY, USA
- Columbia University Irving Medical College, New York, NY, USA
| | - Francis Lee
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA
| | - Nim Tottenham
- Department of Psychology, Columbia University in the City of New York, New York, NY, USA
| | - Regina Sullivan
- Department of Child & Adolescent Psychiatry, NYU Grossman School of Health, New York, NY, USA
| |
Collapse
|
5
|
Kim YK, Jo D, Choi S, Song J. High-fat diet triggers transcriptomic changes in the olfactory bulb. Heliyon 2025; 11:e42196. [PMID: 39927144 PMCID: PMC11804815 DOI: 10.1016/j.heliyon.2025.e42196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 02/11/2025] Open
Abstract
Metabolic imbalance contributes to cognitive impairment, anxiety, depressive behavior, and impaired olfactory perception. Recent studies have focused on olfactory dysfunction in patients with obesity and diabetes accompanied by cognitive dysfunction, considering that the synaptic signal from the olfactory bulb is directly transmitted to memory consolidation-related brain regions. This study investigated transcriptomic changes in the olfactory bulb in high-fat diet (HFD)-fed mice compared to that in normal-diet-fed mice. We sampled olfactory bulbs from HFD-fed mice, performed RNA sequencing, and measured mRNA levels in olfactory bulb tissue. Additionally, we assessed plasma cytokine levels in HFD-fed mice. We found differences in the expression of protein-coding and non-coding RNAs involved in insulin, lipid metabolism, neurogenesis, serotonin, dopamine, and gamma-aminobutyric acid-related signaling in the olfactory bulb of HFD-fed mice compared to control mice. Thus, our findings suggest potential therapeutic targets for treating olfactory dysfunction and related neural disorders in individuals with metabolic syndrome.
Collapse
Affiliation(s)
- Young-Kook Kim
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun, 58128, Republic of Korea
- Department of Biochemistry, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Danbi Jo
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun, 58128, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Seoyoon Choi
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun, 58128, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Juhyun Song
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun, 58128, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| |
Collapse
|
6
|
Gao V, Crawford CV, Burré J. The Gut-Brain Axis in Parkinson's Disease. Cold Spring Harb Perspect Med 2025; 15:a041618. [PMID: 38772708 PMCID: PMC11694753 DOI: 10.1101/cshperspect.a041618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Parkinson's disease (PD) involves both the central nervous system (CNS) and enteric nervous system (ENS), and their interaction is important for understanding both the clinical manifestations of the disease and the underlying disease pathophysiology. Although the neuroanatomical distribution of pathology strongly suggests that the ENS is involved in disease pathophysiology, there are significant gaps in knowledge about the underlying mechanisms. In this article, we review the clinical presentation and management of gastrointestinal dysfunction in PD. In addition, we discuss the current understanding of disease pathophysiology in the gut, including controversies about early involvement of the gut in disease pathogenesis. We also review current knowledge about gut α-synuclein and the microbiome, discuss experimental models of PD-linked gastrointestinal pathophysiology, and highlight areas for further research. Finally, we discuss opportunities to use the gut-brain axis for the development of biomarkers and disease-modifying treatments.
Collapse
Affiliation(s)
- Virginia Gao
- Appel Institute for Alzheimer's Disease Research and Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021, USA
- Parkinson's Disease and Movement Disorders Institute, Department of Neurology, Weill Cornell Medicine, New York, New York 10065, USA
- Division of Movement Disorders, The Neurological Institute of New York, Columbia University Irving Medical Center, New York, New York 10033, USA
| | - Carl V Crawford
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, New York 10065, USA
| | - Jacqueline Burré
- Appel Institute for Alzheimer's Disease Research and Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021, USA
| |
Collapse
|
7
|
Chen YN, Kostka JK. Beyond anosmia: olfactory dysfunction as a common denominator in neurodegenerative and neurodevelopmental disorders. Front Neurosci 2024; 18:1502779. [PMID: 39539496 PMCID: PMC11557544 DOI: 10.3389/fnins.2024.1502779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Olfactory dysfunction has emerged as a hallmark feature shared among several neurological conditions, including both neurodevelopmental and neurodegenerative disorders. While diseases of both categories have been extensively studied for decades, their association with olfaction has only recently gained attention. Olfactory deficits often manifest already during prodromal stages of these diseases, yet it remains unclear whether common pathophysiological changes along olfactory pathways cause such impairments. Here we probe into the intricate relationship between olfactory dysfunction and neurodegenerative and neurodevelopmental disorders, shedding light on their commonalities and underlying mechanisms. We begin by providing a brief overview of the olfactory circuit and its connections to higher-associated brain areas. Additionally, we discuss olfactory deficits in these disorders, focusing on potential common mechanisms that may contribute to olfactory dysfunction across both types of disorders. We further debate whether olfactory deficits contribute to the disease propagation or are simply an epiphenomenon. We conclude by emphasizing the significance of olfactory function as a potential pre-clinical diagnostic tool to identify individuals with neurological disorders that offers the opportunity for preventive intervention before other symptoms manifest.
Collapse
Affiliation(s)
- Yu-Nan Chen
- Institute of Developmental Neuroscience, Center of Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna Katharina Kostka
- Institute of Developmental Neuroscience, Center of Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
8
|
Pedrão LFAT, Medeiros POS, Leandro EC, Falquetto B. Parkinson's disease models and death signaling: what do we know until now? Front Neuroanat 2024; 18:1419108. [PMID: 39533977 PMCID: PMC11555652 DOI: 10.3389/fnana.2024.1419108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/04/2024] [Indexed: 11/16/2024] Open
Abstract
Parkinson's disease (PD) is the second neurodegenerative disorder most prevalent in the world, characterized by the loss of dopaminergic neurons in the Substantia Nigra (SN). It is well known for its motor and non-motor symptoms including bradykinesia, resting tremor, psychiatric, cardiorespiratory, and other dysfunctions. Pathological apoptosis contributes to a wide variety of diseases including PD. Various insults and/or cellular phenotypes have been shown to trigger distinct signaling events leading to cell death in neurons affected by PD. The intrinsic or mitochondrial pathway, inflammatory or oxidative stress-induced extrinsic pathways are the main events associated with apoptosis in PD-related neuronal loss. Although SN is the main brain area studied so far, other brain nuclei are also affected by the disease leading to non-classical motor symptoms as well as non-motor symptoms. Among these, the respiratory symptoms are often overlooked, yet they can cause discomfort and may contribute to patients shortened lifespan after disease diagnosis. While animal and in vitro models are frequently used to investigate the mechanisms involved in the pathogenesis of PD in both the SN and other brain regions, these models provide only a limited understanding of the disease's actual progression. This review offers a comprehensive overview of some of the most studied forms of cell death, including recent research on potential treatment targets for these pathways. It highlights key findings and milestones in the field, shedding light on the potential role of understanding cell death in the prevention and treatment of the PD. Therefore, unraveling the connection between these pathways and the notable pathological mechanisms observed during PD progression could enhance our comprehension of the disease's origin and provide valuable insights into potential molecular targets for the developing therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Barbara Falquetto
- Department of Pharmacology, Instituto de Ciências Biomédica, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
9
|
Stark R. The olfactory bulb: A neuroendocrine spotlight on feeding and metabolism. J Neuroendocrinol 2024; 36:e13382. [PMID: 38468186 DOI: 10.1111/jne.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/13/2024]
Abstract
Olfaction is the most ancient sense and is needed for food-seeking, danger protection, mating and survival. It is often the first sensory modality to perceive changes in the external environment, before sight, taste or sound. Odour molecules activate olfactory sensory neurons that reside on the olfactory epithelium in the nasal cavity, which transmits this odour-specific information to the olfactory bulb (OB), where it is relayed to higher brain regions involved in olfactory perception and behaviour. Besides odour processing, recent studies suggest that the OB extends its function into the regulation of food intake and energy balance. Furthermore, numerous hormone receptors associated with appetite and metabolism are expressed within the OB, suggesting a neuroendocrine role outside the hypothalamus. Olfactory cues are important to promote food preparatory behaviours and consumption, such as enhancing appetite and salivation. In addition, altered metabolism or energy state (fasting, satiety and overnutrition) can change olfactory processing and perception. Similarly, various animal models and human pathologies indicate a strong link between olfactory impairment and metabolic dysfunction. Therefore, understanding the nature of this reciprocal relationship is critical to understand how olfactory or metabolic disorders arise. This present review elaborates on the connection between olfaction, feeding behaviour and metabolism and will shed light on the neuroendocrine role of the OB as an interface between the external and internal environments. Elucidating the specific mechanisms by which olfactory signals are integrated and translated into metabolic responses holds promise for the development of targeted therapeutic strategies and interventions aimed at modulating appetite and promoting metabolic health.
Collapse
Affiliation(s)
- Romana Stark
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
10
|
Li H, Qian J, Wang Y, Wang J, Mi X, Qu L, Song N, Xie J. Potential convergence of olfactory dysfunction in Parkinson's disease and COVID-19: The role of neuroinflammation. Ageing Res Rev 2024; 97:102288. [PMID: 38580172 DOI: 10.1016/j.arr.2024.102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder that affects 7-10 million individuals worldwide. A common early symptom of PD is olfactory dysfunction (OD), and more than 90% of PD patients suffer from OD. Recent studies have highlighted a high incidence of OD in patients with SARS-CoV-2 infection. This review investigates the potential convergence of OD in PD and COVID-19, particularly focusing on the mechanisms by which neuroinflammation contributes to OD and neurological events. Starting from our fundamental understanding of the olfactory bulb, we summarize the clinical features of OD and pathological features of the olfactory bulb from clinical cases and autopsy reports in PD patients. We then examine SARS-CoV-2-induced olfactory bulb neuropathology and OD and emphasize the SARS-CoV-2-induced neuroinflammatory cascades potentially leading to PD manifestations. By activating microglia and astrocytes, as well as facilitating the aggregation of α-synuclein, SARS-CoV-2 could contribute to the onset or exacerbation of PD. We also discuss the possible contributions of NF-κB, the NLRP3 inflammasome, and the JAK/STAT, p38 MAPK, TLR4, IL-6/JAK2/STAT3 and cGAS-STING signaling pathways. Although olfactory dysfunction in patients with COVID-19 may be reversible, it is challenging to restore OD in patients with PD. With the emergence of new SARS-CoV-2 variants and the recurrence of infections, we call for continued attention to the intersection between PD and SARS-CoV-2 infection, especially from the perspective of OD.
Collapse
Affiliation(s)
- Hui Li
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Junliang Qian
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Youcui Wang
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Juan Wang
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Xiaoqing Mi
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Le Qu
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Ning Song
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China.
| | - Junxia Xie
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China.
| |
Collapse
|
11
|
Pandey S, Bapat V, Abraham JN, Abraham NM. Long COVID: From olfactory dysfunctions to viral Parkinsonism. World J Otorhinolaryngol Head Neck Surg 2024; 10:137-147. [PMID: 38855289 PMCID: PMC11156689 DOI: 10.1002/wjo2.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/20/2024] [Accepted: 03/08/2024] [Indexed: 06/11/2024] Open
Abstract
Neurological and psychiatric complications continue to be a public health concern in long coronavirus disease 2019 (COVID-19). This varies from olfactory dysfunctions such as parosmia to cognitive and emotional challenges. Historically, the surge of neurological disorders followed the viral pandemics, for example, the emergence of Encephalitis Lethargica after the outbreak of Spanish Influenza. During and after COVID-19 infection, the problems associated with the sense of smell and the reports of affected olfactory and limbic brain areas are leading to a growing concern about the similarity with the symptoms and the pattern of degeneration observed at the onset of Parkinson's disease and Alzheimer's disease. These reports reveal the essentiality of long-term studies of olfactory and cognitive functions in the post-COVID era and the experiments using animal models to dissect the neural basis of these complications. In this manuscript, we summarize the research reporting the potential correlation between neurological disorders and viral pandemic outbreaks with a historical perspective. Further, we discuss the studies providing evidence of neurodegeneration due to severe acute respiratory syndrome coronavirus 2 infection by focusing on viral Parkinsonism.
Collapse
Affiliation(s)
- Sanyukta Pandey
- Department of Biology, Laboratory of Neural Circuits and Behaviour (LNCB)Indian Institute of Science Education and Research (IISER)PuneMaharashtraIndia
| | - Vibha Bapat
- Department of Biology, Laboratory of Neural Circuits and Behaviour (LNCB)Indian Institute of Science Education and Research (IISER)PuneMaharashtraIndia
| | - Jancy Nixon Abraham
- Department of Biology, Laboratory of Neural Circuits and Behaviour (LNCB)Indian Institute of Science Education and Research (IISER)PuneMaharashtraIndia
- Department of Life Sciences, Centre of Excellence in EpigeneticsShiv Nadar Institution of EminenceGautam Buddha NagarUttar PradeshIndia
| | - Nixon M. Abraham
- Department of Biology, Laboratory of Neural Circuits and Behaviour (LNCB)Indian Institute of Science Education and Research (IISER)PuneMaharashtraIndia
| |
Collapse
|
12
|
Sánchez-Yépez J, Acevedo-Huergo T, Mendoza-Trejo MS, Corona R, Hernández-Plata I, Viñuela-Berni V, Giordano M, Rodríguez VM. Early and transitory hypoactivity and olfactory alterations after chronic atrazine exposure in female Sprague-Dawley rats. Neurotoxicology 2024; 101:68-81. [PMID: 38340903 DOI: 10.1016/j.neuro.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Several studies have shown that chronic exposure to the herbicide atrazine (ATR) causes alterations in locomotor activity and markers of the dopaminergic systems of male rats. However, few studies have evaluated the sex-dependent effects of atrazine exposure. The aim of the present study was to evaluate whether chronic ATR exposure causes alterations in behavioral performance and dopaminergic systems of female rats. At weaning, two groups of rats were exposed to 1 or 10 mg ATR/kg body weight daily thorough the food, while the control group received food without ATR for 14 months. Spontaneous locomotor activity was evaluated monthly for 12 months, while anxiety, egocentric and spatial memory, motor coordination, and olfactory function tasks were evaluated between 13 and 14 months of ATR exposure. Tyrosine hydroxylase (TH) and monoamine content in brain tissue were assessed at the end of ATR treatment. Female rats treated with 1 or 10 mg ATR showed vertical hypoactivity compared to the control group only in the first month of ATR exposure. Impairments in olfactory functions were found due to ATR exposure. Nevertheless, no alterations in anxiety, spatial and egocentric memory, or motor coordination tasks were observed, while the levels of TH and dopamine and its metabolites in brain tissue were similar among groups. These results suggest that female rats could present greater sensitivity to the neurotoxic effects of ATR on spontaneous locomotor activity in the early stages of development. However, they are unaffected by chronic ATR exposure later in life compared to male rats. More studies are necessary to unravel the sex-related differences observed after chronic ATR exposure.
Collapse
Affiliation(s)
- Jonathan Sánchez-Yépez
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Triana Acevedo-Huergo
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Maria Soledad Mendoza-Trejo
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Rebeca Corona
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Isela Hernández-Plata
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Verónica Viñuela-Berni
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Magda Giordano
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Verónica M Rodríguez
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.
| |
Collapse
|
13
|
Lyons-Warren AM, Tantry EK, Moss EH, Kochukov MY, Belfort BDW, Ortiz-Guzman J, Freyberg Z, Arenkiel BR. Co-transmitting interneurons in the mouse olfactory bulb regulate olfactory detection and discrimination. Cell Rep 2023; 42:113471. [PMID: 37980561 PMCID: PMC10872518 DOI: 10.1016/j.celrep.2023.113471] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/21/2023] Open
Abstract
Co-transmission of multiple neurotransmitters from a single neuron increases the complexity of signaling information within defined neuronal circuits. Superficial short-axon cells in the olfactory bulb release both dopamine and γ-aminobutyric acid (GABA), yet the specific targets of these neurotransmitters and their respective roles in olfaction have remained unknown. Here, we implement intersectional genetics in mice to selectively block GABA or dopamine release from superficial short-axon cells to identify their distinct cellular targets, impact on circuit function, and behavioral contribution of each neurotransmitter toward olfactory behaviors. We provide functional and anatomical evidence for divergent superficial short-axon cell signaling onto downstream neurons to shape patterns of mitral cell firing that contribute to olfactory-related behaviors.
Collapse
Affiliation(s)
- Ariel M Lyons-Warren
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Houston, TX 77030, USA
| | - Evelyne K Tantry
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Houston, TX 77030, USA
| | - Elizabeth H Moss
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Houston, TX 77030, USA
| | - Mikhail Y Kochukov
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Houston, TX 77030, USA
| | - Benjamin D W Belfort
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Joshua Ortiz-Guzman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Houston, TX 77030, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Houston, TX 77030, USA.
| |
Collapse
|
14
|
Fidelis EM, Savall ASP, Mello JD, Quines CB, Comis-Neto AA, Sampaio TB, Denardin CC, de Ávila DS, Rosa SG, Pinton S. Purple pitanga extract (Eugenia uniflora) attenuates oxidative stress induced by MPTP. Metab Brain Dis 2023; 38:2615-2625. [PMID: 37921949 DOI: 10.1007/s11011-023-01318-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2023]
Abstract
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been widely used due to its specific and reproducible neurotoxic effect on the nigrostriatal system, being considered a convenient model of dopaminergic neurodegeneration to study interventions therapeutics. The purple pitanga (Eugenia uniflora) is a polyphenol-rich fruit with antioxidant and antidepressant properties, among others. Therefore, this study investigated the effect of purple pitanga extract (PPE) on acute early oxidative stress induced by intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in rats. Male Wistar rats were pre-treated orally with PPE (1000 mg/kg) or vehicle. After 24 h, MPTP (0.1 mg/10µL/nostril) or vehicle was administered bilaterally into the animal's nostrils, and 6 h later, the olfactory bulb (OB), striatum (ST), and substantia nigra (SN) were collected to evaluate the oxidative stress parameters. Our findings revealed that OB and SN were the most affected areas after 6 h of MPTP infusion; an early increase in reactive oxygen species (ROS) levels was observed, while pretreatment with a single dose of PPE prevented this increment. No differences in thiobarbituric acid reactive species (TBARS) and 3-nitrotyrosine (3-NT) formation were observed, although 4-hydroxy-2-nonenal (4-HNE) levels increased, which is the most toxic form of lipid peroxidation, in the MPTP group. The PPE pretreatment could prevent this increase by increasing the NPSH levels previously decreased by MPTP. Furthermore, PPE prevents the Na+/K + ATPase strongly inhibited by MPTP, showing the neuroprotective capacity of the PPE by inhibiting the MPTP-generated oxidation. Thus, we demonstrated for the first time the antioxidant and neuroprotective effects of PPE against the early MPTP neurotoxicity.
Collapse
Affiliation(s)
| | - Anne Suely P Savall
- Federal University of Pampa - Campus Uruguaiana, Uruguaiana, CEP 97500-970, RS, Brazil
| | - Jhuly Dornelles Mello
- Federal University of Pampa - Campus Uruguaiana, Uruguaiana, CEP 97500-970, RS, Brazil
| | - Caroline Brandão Quines
- Federal University of Pampa - Campus Uruguaiana, Uruguaiana, CEP 97500-970, RS, Brazil
- Regional University of the Northwest of the State of Rio Grande do Sul - Campus Ijuí, Ijuí, CEP 98700-000, RS, Brazil
| | | | | | | | - Daiana Silva de Ávila
- Federal University of Pampa - Campus Uruguaiana, Uruguaiana, CEP 97500-970, RS, Brazil
| | - Suzan Gonçalves Rosa
- Federal University of Pampa - Campus Uruguaiana, Uruguaiana, CEP 97500-970, RS, Brazil
| | - Simone Pinton
- Federal University of Pampa - Campus Uruguaiana, Uruguaiana, CEP 97500-970, RS, Brazil.
- Universidade Federal do Pampa - Campus Uruguaiana, Uruguaiana, CEP 97500-970, RS, Brazil.
| |
Collapse
|
15
|
Tresse E, Marturia-Navarro J, Sew WQG, Cisquella-Serra M, Jaberi E, Riera-Ponsati L, Fauerby N, Hu E, Kretz O, Aznar S, Issazadeh-Navikas S. Mitochondrial DNA damage triggers spread of Parkinson's disease-like pathology. Mol Psychiatry 2023; 28:4902-4914. [PMID: 37779111 PMCID: PMC10914608 DOI: 10.1038/s41380-023-02251-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023]
Abstract
In the field of neurodegenerative diseases, especially sporadic Parkinson's disease (sPD) with dementia (sPDD), the question of how the disease starts and spreads in the brain remains central. While prion-like proteins have been designated as a culprit, recent studies suggest the involvement of additional factors. We found that oxidative stress, damaged DNA binding, cytosolic DNA sensing, and Toll-Like Receptor (TLR)4/9 activation pathways are strongly associated with the sPDD transcriptome, which has dysregulated type I Interferon (IFN) signaling. In sPD patients, we confirmed deletions of mitochondrial (mt)DNA in the medial frontal gyrus, suggesting a potential role of damaged mtDNA in the disease pathophysiology. To explore its contribution to pathology, we used spontaneous models of sPDD caused by deletion of type I IFN signaling (Ifnb-/-/Ifnar-/- mice). We found that the lack of neuronal IFNβ/IFNAR leads to oxidization, mutation, and deletion in mtDNA, which is subsequently released outside the neurons. Injecting damaged mtDNA into mouse brain induced PDD-like behavioral symptoms, including neuropsychiatric, motor, and cognitive impairments. Furthermore, it caused neurodegeneration in brain regions distant from the injection site, suggesting that damaged mtDNA triggers spread of PDD characteristics in an "infectious-like" manner. We also discovered that the mechanism through which damaged mtDNA causes pathology in healthy neurons is independent of Cyclic GMP-AMP synthase and IFNβ/IFNAR, but rather involves the dual activation of TLR9/4 pathways, resulting in increased oxidative stress and neuronal cell death, respectively. Our proteomic analysis of extracellular vesicles containing damaged mtDNA identified the TLR4 activator, Ribosomal Protein S3 as a key protein involved in recognizing and extruding damaged mtDNA. These findings might shed light on new molecular pathways through which damaged mtDNA initiates and spreads PD-like disease, potentially opening new avenues for therapeutic interventions or disease monitoring.
Collapse
Affiliation(s)
- Emilie Tresse
- Neuroinflammation Unit, Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Biocentre, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Joana Marturia-Navarro
- Neuroinflammation Unit, Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Biocentre, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Wei Qi Guinevere Sew
- Neuroinflammation Unit, Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Biocentre, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Marina Cisquella-Serra
- Neuroinflammation Unit, Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Biocentre, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Elham Jaberi
- Neuroinflammation Unit, Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Biocentre, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Lluis Riera-Ponsati
- Neuroinflammation Unit, Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Biocentre, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Natasha Fauerby
- Neuroinflammation Unit, Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Biocentre, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Erling Hu
- Neuroinflammation Unit, Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Biocentre, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Oliver Kretz
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susana Aznar
- Centre for Neuroscience and Stereology, University Hospital Bispebjerg-Frederiksberg, 2400, Copenhagen, Denmark
| | - Shohreh Issazadeh-Navikas
- Neuroinflammation Unit, Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Biocentre, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
16
|
Brand G, Bontempi C, Jacquot L. Impact of deep brain stimulation (DBS) on olfaction in Parkinson's disease: Clinical features and functional hypotheses. Rev Neurol (Paris) 2023; 179:947-954. [PMID: 37301657 DOI: 10.1016/j.neurol.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/17/2022] [Accepted: 12/22/2022] [Indexed: 06/12/2023]
Abstract
Deep brain stimulation (DBS) is a surgical therapy typically applied in Parkinson's disease (PD). The efficacity of DBS on the control of motor symptoms in PD is well grounded while the efficacity on non-motor symptoms is more controversial, especially on olfactory disorders (ODs). The present review shows that DBS does not improve hyposmia but can affect positively identification/discrimination scores in PD. The functional hypotheses suggest complex mechanisms in terms of cerebral connectivity and neurogenesis process which could act indirectly on the olfactory bulb and olfactory pathways related to specific cognitive olfactory tasks. The functional hypotheses also suggest complex mechanisms of cholinergic neurotransmitter interactions involved in these pathways. Finally, the impact of DBS on general cognitive functions in PD could also be beneficial to identification/discrimination tasks in PD.
Collapse
Affiliation(s)
- G Brand
- Neuroscience Laboratory, University of Franche-Comte, Besançon, France.
| | - C Bontempi
- Neuroscience Laboratory, University of Franche-Comte, Besançon, France
| | - L Jacquot
- Neuroscience Laboratory, University of Franche-Comte, Besançon, France
| |
Collapse
|
17
|
Yuan Y, Ma X, Mi X, Qu L, Liang M, Li M, Wang Y, Song N, Xie J. Dopaminergic neurodegeneration in the substantia nigra is associated with olfactory dysfunction in mice models of Parkinson's disease. Cell Death Discov 2023; 9:388. [PMID: 37865662 PMCID: PMC10590405 DOI: 10.1038/s41420-023-01684-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/03/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023] Open
Abstract
Olfactory dysfunction represents a prodromal stage in Parkinson's disease (PD). However, the mechanisms underlying hyposmia are not specified yet. In this study, we first observed an early olfactory dysfunction in mice with intragastric rotenone administration, consistent with dopaminergic neurons loss and α-synuclein pathology in the olfactory bulb. However, a much severer olfactory dysfunction was observed without severer pathology in olfactory bulb when the loss of dopaminergic neurons in the substantia nigra occurred. Then, we established the mice models by intrastriatal α-synuclein preformed fibrils injection and demonstrated the performance in the olfactory discrimination test was correlated to the loss of dopaminergic neurons in the substantia nigra, without any changes in the olfactory bulb analyzed by RNA-sequence. In mice with intranasal ferric ammonium citrate administration, we observed olfactory dysfunction when dopaminergic neurodegeneration in substantia nigra occurred and was restored when dopaminergic neurons were rescued. Finally we demonstrated that chemogenetic inhibition of dopaminergic neurons in the substantia nigra was sufficient to cause hyposmia and motor incoordination. Taken together, this study shows a direct relationship between nigral dopaminergic neurodegeneration and olfactory dysfunction in PD models and put forward the understandings that olfactory dysfunction represents the early stage of neurodegeneration in PD progression.
Collapse
Affiliation(s)
- Yu Yuan
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
- Lingang Laboratory, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xizhen Ma
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Xiaoqing Mi
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Le Qu
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Meiyu Liang
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Mengyu Li
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Youcui Wang
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Ning Song
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
| | - Junxia Xie
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
18
|
Colombel N, Ferreira G, Sullivan RM, Coureaud G. Dynamic developmental changes in neurotransmitters supporting infant attachment learning. Neurosci Biobehav Rev 2023; 151:105249. [PMID: 37257712 PMCID: PMC10754360 DOI: 10.1016/j.neubiorev.2023.105249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/15/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
Infant survival relies on rapid identification, remembering and behavioral responsiveness to caregivers' sensory cues. While neural circuits supporting infant attachment learning have largely remained elusive in children, use of invasive techniques has uncovered some of its features in rodents. During a 10-day sensitive period from birth, newborn rodents associate maternal odors with maternal pleasant or noxious thermo-tactile stimulation, which gives rise to a preference and approach behavior towards these odors, and blockade of avoidance learning. Here we review the neural circuitry supporting this neonatal odor learning, unique compared to adults, focusing specifically on the early roles of neurotransmitters such as glutamate, GABA (Gamma-AminoButyric Acid), serotonin, dopamine and norepinephrine, in the olfactory bulb, the anterior piriform cortex and amygdala. The review highlights the importance of deepening our knowledge of age-specific infant brain neurotransmitters and behavioral functioning that can be translated to improve the well-being of children during typical development and aid in treatment during atypical development in childhood clinical practice, and the care during rearing of domestic animals.
Collapse
Affiliation(s)
- Nina Colombel
- Ecole Normale Supérieure de Lyon, Lyon 1 Claude Bernard University, Lyon, France
| | - Guillaume Ferreira
- FoodCircus group, NutriNeuro Lab, INRAE 1286, Bordeaux University, Bordeaux, France
| | - Regina M Sullivan
- Emotional Brain Institute, The Nathan Kline Institute, Orangeburg, NY, USA; Child and Adolescent Psychiatry, New York University Langone Medical Center, New York, USA
| | - Gérard Coureaud
- Sensory NeuroEthology Group, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, Lyon 1 University, Jean-Monnet University, Bron, France.
| |
Collapse
|
19
|
Borghammer P. The brain-first vs. body-first model of Parkinson's disease with comparison to alternative models. J Neural Transm (Vienna) 2023; 130:737-753. [PMID: 37062013 DOI: 10.1007/s00702-023-02633-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/03/2023] [Indexed: 04/17/2023]
Abstract
The ultimate origin of Lewy body disorders, including Parkinson's disease (PD) and Dementia with Lewy bodies (DLB), is still incompletely understood. Although a large number of pathogenic mechanisms have been implicated, accumulating evidence support that aggregation and neuron-to-neuron propagation of alpha-synuclein may be the core feature of these disorders. The synuclein, origin, and connectome (SOC) disease model of Lewy body disorders was recently introduced. This model is based on the hypothesis that in the majority of patients, the first alpha-synuclein pathology arises in single location and spreads from there. The most common origin sites are the enteric nervous system and the olfactory system. The SOC model predicts that gut-first pathology leads to a clinical body-first subtype characterized by prodromal autonomic symptoms and REM sleep behavior disorder. In contrast, olfactory-first pathology leads to a brain-first subtype with fewer non-motor symptoms before diagnosis. The SOC model further predicts that body-first patients are older, more commonly develop symmetric dopaminergic degeneration, and are at increased risk of dementia-compared to brain-first patients. In this review, the SOC model is explained and compared to alternative models of the pathogenesis of Lewy body disorders, including the Braak staging system, and the Unified Staging System for Lewy Body Disorders. Postmortem evidence from brain banks and clinical imaging data of dopaminergic and cardiac sympathetic loss is reviewed. It is concluded that these datasets seem to be more compatible with the SOC model than with those alternative disease models of Lewy body disorders.
Collapse
Affiliation(s)
- Per Borghammer
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J220, 8200, Aarhus, Denmark.
| |
Collapse
|
20
|
Borghammer P, Just MK, Horsager J, Skjærbæk C, Raunio A, Kok EH, Savola S, Murayama S, Saito Y, Myllykangas L, Van Den Berge N. A postmortem study suggests a revision of the dual-hit hypothesis of Parkinson's disease. NPJ Parkinsons Dis 2022; 8:166. [PMID: 36450732 PMCID: PMC9712280 DOI: 10.1038/s41531-022-00436-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
The dual-hit hypothesis of Parkinson's disease (PD) originally postulated that a neurotropic pathogen leads to formation of α-synuclein pathology in the olfactory bulb (OB) and dorsal motor nucleus of the vagus (DMV) and then invades the brain from these two entry points. Little work has been conducted to validate an important underlying premise for the dual-hit hypothesis, namely that the initial Lewy pathology does arise simultaneously in the OB and the enteric nervous system (ENS) plexuses and DMV at the earliest disease stage. We conducted a focused re-analysis of two postmortem datasets, which included large numbers of mild Lewy body disease (LBD) cases. We found that cases with α-synuclein pathology restricted to the peripheral autonomic nervous system and/or lower brainstem (early body-first LBD cases) very rarely had any OB pathology, suggesting that Lewy pathology commonly arises in the ENS without concomitant involvement of the OB. In contrast, cases with mild amygdala-predominant Lewy pathology (early brain-first LBD cases) nearly always showed OB pathology. This is compatible with the first pathology being triggered in the OB or amygdala followed by secondary spreading to connected structures, but without early involvement of the ENS or lower brainstem. These observations support that the pathologic process starts in either the olfactory bulb or the ENS, but rarely in the olfactory bulb and gut simultaneously. More studies on neuropathological datasets are warranted to reproduce these findings. The agreement between the revised single-hit hypothesis and the recently proposed brain-first vs. body-first model of LBD is discussed.
Collapse
Affiliation(s)
- Per Borghammer
- grid.154185.c0000 0004 0512 597XDepartment of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mie Kristine Just
- grid.154185.c0000 0004 0512 597XDepartment of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jacob Horsager
- grid.154185.c0000 0004 0512 597XDepartment of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Casper Skjærbæk
- grid.154185.c0000 0004 0512 597XDepartment of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anna Raunio
- grid.7737.40000 0004 0410 2071Department of Pathology, University of Helsinki, and HUS Diagnostic Center, University Hospital, Helsinki, Finland
| | - Eloise H. Kok
- grid.7737.40000 0004 0410 2071Department of Pathology, University of Helsinki, and HUS Diagnostic Center, University Hospital, Helsinki, Finland
| | - Sara Savola
- grid.7737.40000 0004 0410 2071Department of Pathology, University of Helsinki, and HUS Diagnostic Center, University Hospital, Helsinki, Finland
| | - Shigeo Murayama
- grid.136593.b0000 0004 0373 3971Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Osaka, Japan ,grid.417092.9Brain Bank for Aging Research, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Yuko Saito
- grid.417092.9Brain Bank for Aging Research, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Liisa Myllykangas
- grid.7737.40000 0004 0410 2071Department of Pathology, University of Helsinki, and HUS Diagnostic Center, University Hospital, Helsinki, Finland
| | - Nathalie Van Den Berge
- grid.154185.c0000 0004 0512 597XDepartment of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
21
|
Hirai A, Yamazaki R, Kobayashi A, Kimura T, Nomiyama K, Shimma S, Nakayama SMM, Ishizuka M, Ikenaka Y. Detection of Changes in Monoamine Neurotransmitters by the Neonicotinoid Pesticide Imidacloprid Using Mass Spectrometry. TOXICS 2022; 10:696. [PMID: 36422903 PMCID: PMC9695199 DOI: 10.3390/toxics10110696] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Monoamine neurotransmitters (MAs), including dopamine (DA) and serotonin (5-HT), regulate brain functions such as behavior, memory, and learning. Neonicotinoids are pesticides that are being used more frequently. Neonicotinoid exposure has been observed to produce neurological symptoms, such as altered spontaneous movements and anxiety-like behaviors, which are suspected to be caused by altered MA levels. However, current neurotoxicity tests are not sufficiently sensitive enough to make these determinations. In this study, we performed some behavior tests, and derivatization reagents to improve the ionization efficiency, which was applied to liquid chromatography mass spectrometry (LC-MS/MS) to reveal the effect of neonicotinoid administration on MAs in the brain. We orally administered the neonicotinoid imidacloprid (0, 10, and 50 mg/kg body weight) to C57BL/6NCrSlc mice. In the behavior tests, a decrease in activity was observed. The LC-MS/MS quantification of MAs in various brain regions showed a decrease in some MA levels in the olfactory bulb and the striatum. These results showed, for the first time, that even a low dose of imidacloprid could alter MA levels in various parts of the brain.
Collapse
Affiliation(s)
- Anri Hirai
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Ryo Yamazaki
- Laboratory of Comparative Pathology, Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Atsushi Kobayashi
- Laboratory of Comparative Pathology, Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Takashi Kimura
- Laboratory of Comparative Pathology, Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies, Ehime University, Matsuyama 790-8577, Japan
| | - Shuichi Shimma
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Shouta M. M. Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Japan
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman Street, Potchefstroom 2531, South Africa
| |
Collapse
|
22
|
Oxidative Stress and Mitochondrial Complex I Dysfunction Correlate with Neurodegeneration in an α-Synucleinopathy Animal Model. Int J Mol Sci 2022; 23:ijms231911394. [PMID: 36232716 PMCID: PMC9570254 DOI: 10.3390/ijms231911394] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
The α-synucleinopathies constitute a subset of neurodegenerative disorders, of which Parkinson’s disease (PD) is the most common worldwide, characterized by the accumulation of misfolded α-synuclein in the cytoplasm of neurons, which spreads in a prion-like manner to anatomically interconnected brain areas. However, it is not clear how α-synucleinopathy triggers neurodegeneration. We recently developed a rat model through a single intranigral administration of the neurotoxic β-sitosterol β-D-glucoside (BSSG), which produces α-synucleinopathy. In this model, we aimed to evaluate the temporal pattern of levels in oxidative and nitrosative stress and mitochondrial complex I (CI) dysfunction and how these biochemical parameters are associated with neurodegeneration in different brain areas with α-synucleinopathy (Substantia nigra pars compacta, the striatum, in the hippocampus and the olfactory bulb, where α-syn aggregation spreads). Interestingly, an increase in oxidative stress and mitochondrial CI dysfunction accompanied neurodegeneration in those brain regions. Furthermore, in silico analysis suggests a high-affinity binding site for BSSG with peroxisome proliferator-activated receptors (PPAR) alpha (PPAR-α) and gamma (PPAR-γ). These findings will contribute to elucidating the pathophysiological mechanisms associated with α-synucleinopathies and lead to the identification of new early biomarkers and therapeutic targets.
Collapse
|
23
|
Mysiris DS, Vavougios GD, Karamichali E, Papoutsopoulou S, Stavrou VT, Papayianni E, Boutlas S, Mavridis T, Foka P, Zarogiannis SG, Gourgoulianis K, Xiromerisiou G. Post-COVID-19 Parkinsonism and Parkinson's Disease Pathogenesis: The Exosomal Cargo Hypothesis. Int J Mol Sci 2022; 23:9739. [PMID: 36077138 PMCID: PMC9456372 DOI: 10.3390/ijms23179739] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease after Alzheimer's disease, globally. Dopaminergic neuron degeneration in substantia nigra pars compacta and aggregation of misfolded alpha-synuclein are the PD hallmarks, accompanied by motor and non-motor symptoms. Several viruses have been linked to the appearance of a post-infection parkinsonian phenotype. Coronavirus disease 2019 (COVID-19), caused by emerging severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, has evolved from a novel pneumonia to a multifaceted syndrome with multiple clinical manifestations, among which neurological sequalae appear insidious and potentially long-lasting. Exosomes are extracellular nanovesicles bearing a complex cargo of active biomolecules and playing crucial roles in intercellular communication under pathophysiological conditions. Exosomes constitute a reliable route for misfolded protein transmission, contributing to PD pathogenesis and diagnosis. Herein, we summarize recent evidence suggesting that SARS-CoV-2 infection shares numerous clinical manifestations and inflammatory and molecular pathways with PD. We carry on hypothesizing that these similarities may be reflected in exosomal cargo modulated by the virus in correlation with disease severity. Travelling from the periphery to the brain, SARS-CoV-2-related exosomal cargo contains SARS-CoV-2 RNA, viral proteins, inflammatory mediators, and modified host proteins that could operate as promoters of neurodegenerative and neuroinflammatory cascades, potentially leading to a future parkinsonism and PD development.
Collapse
Affiliation(s)
| | - George D. Vavougios
- Department of Neurology, Faculty of Medicine, University of Cyprus, Lefkosia 1678, Cyprus
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Eirini Karamichali
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Stamatia Papoutsopoulou
- Department of Biochemistry and Biotechnology, Faculty of Life Sciences, University of Thessaly, Mezourlo, 41500 Larissa, Greece
| | - Vasileios T. Stavrou
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Eirini Papayianni
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Stylianos Boutlas
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Theodoros Mavridis
- 1st Neurology Department, Eginition Hospital, Medical School, National & Kapodistrian University of Athens, 11528 Athens, Greece
| | - Pelagia Foka
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Sotirios G. Zarogiannis
- Department of Physiology, Faculty of Medicine, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Konstantinos Gourgoulianis
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Georgia Xiromerisiou
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|
24
|
Chen M, Liu J, Luo H, Duan C, Gao G, Yang H. Increase in membrane surface expression and phosphorylation of TRPC3 related to olfactory dysfunction in α-synuclein transgenic mice. J Cell Mol Med 2022; 26:5008-5020. [PMID: 36029194 PMCID: PMC9549507 DOI: 10.1111/jcmm.17524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/28/2022] Open
Abstract
Olfactory impairment is an initial non-motor symptom of Parkinson's disease that causes the deposition of aggregated α-synuclein (α-syn) in olfactory neurons. Transient receptor potential canonical (TRPC) channels are a diverse group of non-selective Ca2+ entry channels involved in the progression or pathogenesis of PD via Ca2+ homeostatic regulation. However, the relationship between TRPC and α-syn pathology in an olfactory system remains unclear. To address this issue, we assessed the olfactory function in α-syn transgenic mice. In contrast with control mice, the transgenic mice exhibited impaired olfaction, TRPC3 activation and apoptotic neuronal cell death in the olfactory system. Similar results were observed in primary cultures of olfactory neurons, that is TRPC3 activation, increasing intracellular Ca2+ concentration and apoptotic cell death in the α-syn-overexpressed neurons. These changes were significantly attenuated by TRPC3 knockdown. Therefore, our findings suggest that TRPC3 activation and calcium dyshomeostasis play a key role in α-syn-induced olfactory dysfunction in mice.
Collapse
Affiliation(s)
- Min Chen
- Department of Neurobiology School of Basic Medical Sciences, Key Laboratory of Neural Regeneration and Repair, Center for Parkinson's Disease, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,Guangxi Neurological Disease Clinical Research Center, Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jia Liu
- Department of Neurobiology School of Basic Medical Sciences, Key Laboratory of Neural Regeneration and Repair, Center for Parkinson's Disease, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Hanjiang Luo
- Guangxi Neurological Disease Clinical Research Center, Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Chunli Duan
- Department of Neurobiology School of Basic Medical Sciences, Key Laboratory of Neural Regeneration and Repair, Center for Parkinson's Disease, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Ge Gao
- Department of Neurobiology School of Basic Medical Sciences, Key Laboratory of Neural Regeneration and Repair, Center for Parkinson's Disease, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Hui Yang
- Department of Neurobiology School of Basic Medical Sciences, Key Laboratory of Neural Regeneration and Repair, Center for Parkinson's Disease, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
25
|
Kay LM. COVID-19 and olfactory dysfunction: a looming wave of dementia? J Neurophysiol 2022; 128:436-444. [PMID: 35894511 PMCID: PMC9377782 DOI: 10.1152/jn.00255.2022] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
Olfactory dysfunction is a hallmark symptom of COVID-19 disease resulting from the SARS-CoV-2 virus. The cause of the sudden and usually temporary anosmia that most people suffer from COVID-19 is likely entirely peripheral-inflammation and other damage caused by the virus in the sensory epithelium inside the upper recesses of the nasal cavity can damage or prevent chemicals from properly activating the olfactory sensory neurons. However, persistent olfactory dysfunction from COVID-19, in the form of hyposmia and parosmia (decreased or altered smell) may affect as many as 15 million people worldwide. This epidemic of olfactory dysfunction is thus a continuing public health concern. Mounting evidence suggests that the SARS-CoV-2 virus itself or inflammation from the immune response in the nasal sensory epithelium may invade the olfactory bulb, likely via non-neuronal transmission. COVID-19-related long-term olfactory dysfunction and early damage to olfactory and limbic brain regions suggest a pattern of degeneration similar to that seen in early stages of Alzheimer's disease, Parkinson's disease, and Lewy body dementia. Thus, long-term olfactory dysfunction coupled with cognitive and emotional disturbance from COVID-19 may be the first signs of delayed onset dementia from neurodegeneration. Few treatments are known to be effective to prevent further degeneration, but the first line of defense against degeneration may be olfactory and environmental enrichment. There is a pressing need for more research on treatments for olfactory dysfunction and longitudinal studies including cognitive and olfactory function from patients who have recovered from even mild COVID-19.NEW & NOTEWORTHY More than 15 million people worldwide experience persistent COVID-19 olfactory dysfunction, possibly caused by olfactory bulb damage. SARS-CoV-2 can cause inflammation and viral invasion of the olfactory bulb, initiating a cascade of degeneration similar to Alzheimer's disease and Lewy body disease. People who have had even mild cases of COVID-19 show signs of degeneration in cortical areas connected with the olfactory system. These data suggest a wave of post-COVID dementia in the coming decades.
Collapse
Affiliation(s)
- Leslie M Kay
- Institute for Mind and Biology, Department of Psychology, The University of Chicago, Chicago, Illinois
| |
Collapse
|
26
|
Käufer C, Schreiber CS, Hartke AS, Denden I, Stanelle-Bertram S, Beck S, Kouassi NM, Beythien G, Becker K, Schreiner T, Schaumburg B, Beineke A, Baumgärtner W, Gabriel G, Richter F. Microgliosis and neuronal proteinopathy in brain persist beyond viral clearance in SARS-CoV-2 hamster model. EBioMedicine 2022; 79:103999. [PMID: 35439679 PMCID: PMC9013202 DOI: 10.1016/j.ebiom.2022.103999] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Neurological symptoms such as cognitive decline and depression contribute substantially to post-COVID-19 syndrome, defined as lasting symptoms several weeks after initial SARS-CoV-2 infection. The pathogenesis is still elusive, which hampers appropriate treatment. Neuroinflammatory responses and neurodegenerative processes may occur in absence of overt neuroinvasion. METHODS Here we determined whether intranasal SARS-CoV-2 infection in male and female syrian golden hamsters results in persistent brain pathology. Brains 3 (symptomatic) or 14 days (viral clearance) post infection versus mock (n = 10 each) were immunohistochemically analyzed for viral protein, neuroinflammatory response and accumulation of tau, hyperphosphorylated tau and alpha-synuclein protein. FINDINGS Viral protein in the nasal cavity led to pronounced microglia activation in the olfactory bulb beyond viral clearance. Cortical but not hippocampal neurons accumulated hyperphosphorylated tau and alpha-synuclein, in the absence of overt inflammation and neurodegeneration. Importantly, not all brain regions were affected, which is in line with selective vulnerability. INTERPRETATION Thus, despite the absence of virus in brain, neurons develop signatures of proteinopathies that may contribute to progressive neuronal dysfunction. Further in depth analysis of this important mechanism is required. FUNDING Federal Ministry of Health (BMG; ZMV I 1-2520COR501), Federal Ministry of Education and Research (BMBF 01KI1723G), Ministry of Science and Culture of Lower Saxony in Germany (14 - 76103-184 CORONA-15/20), German Research Foundation (DFG; 398066876/GRK 2485/1), Luxemburgish National Research Fund (FNR, Project Reference: 15686728, EU SC1-PHE-CORONAVIRUS-2020 MANCO, no > 101003651).
Collapse
Affiliation(s)
- Christopher Käufer
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Cara S Schreiber
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Anna-Sophia Hartke
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Ivo Denden
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | | | - Sebastian Beck
- Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | - Georg Beythien
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Kathrin Becker
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Tom Schreiner
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | | | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Gülsah Gabriel
- Leibniz Institute for Experimental Virology, Hamburg, Germany; Institute for Virology, University for Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Franziska Richter
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
27
|
Alberts T, Antipova V, Holzmann C, Hawlitschka A, Schmitt O, Kurth J, Stenzel J, Lindner T, Krause BJ, Wree A, Witt M. Olfactory Bulb D 2/D 3 Receptor Availability after Intrastriatal Botulinum Neurotoxin-A Injection in a Unilateral 6-OHDA Rat Model of Parkinson's Disease. Toxins (Basel) 2022; 14:94. [PMID: 35202123 PMCID: PMC8879205 DOI: 10.3390/toxins14020094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
Olfactory deficits occur as early non-motor symptoms of idiopathic Parkinson's disease (PD) in humans. The first central relay of the olfactory pathway, the olfactory bulb (OB), depends, among other things, on an intact, functional crosstalk between dopaminergic interneurons and dopamine receptors (D2/D3R). In rats, hemiparkinsonism (hemi-PD) can be induced by unilateral injection of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle (MFB), disrupting dopaminergic neurons of the substantia nigra pars compacta (SNpc). In a previous study, we showed that subsequent injection of botulinum neurotoxin-A (BoNT-A) into the striatum can reverse most of the pathological motor symptoms and normalize the D2/D3R availability. To determine whether this rat model is suitable to explain olfactory deficits that occur in humans with PD, we examined the availability of D2/D3R by longitudinal [18F]fallypride-PET/CT, the density of tyrosine hydroxylase immunoreactivity in the OB, olfactory performance by an orienting odor identification test adapted for rats, and a connectome analysis. PET/CT and immunohistochemical data remained largely unchanged after 6-OHDA lesion in experimental animals, suggesting that outcomes of the 6-OHDA hemi-PD rat model do not completely explain olfactory deficits in humans. However, after subsequent ipsilateral BoNT-A injection into the striatum, a significant 8.5% increase of the D2/D3R availability in the ipsilateral OB and concomitant improvement of olfactory performance were detectable. Based on tract-tracing meta-analysis, we speculate that this may be due to indirect connections between the striatum and the OB.
Collapse
Affiliation(s)
- Teresa Alberts
- Department of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Veronica Antipova
- Department of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Macroscopic and Clinical Anatomy, Medical University of Graz, A-8010 Graz, Austria
| | - Carsten Holzmann
- Department of Medical Genetics, Rostock University Medical Center, D-18057 Rostock, Germany
- Center of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany
| | | | - Oliver Schmitt
- Department of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Jens Kurth
- Department of Nuclear Medicine, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Jan Stenzel
- Core Facility Small Animal Imaging, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Tobias Lindner
- Core Facility Small Animal Imaging, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Bernd J Krause
- Center of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany
- Department of Nuclear Medicine, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Andreas Wree
- Department of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany
- Center of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany
| | - Martin Witt
- Department of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany
- Center of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany
| |
Collapse
|
28
|
Marin C, Fuentes M, Alobid I, Tubita V, Rojas-Lechuga MJ, Mullol J. Olfactory Bulb Excitotoxicity as a Gap-Filling Mechanism Underlying the Link Between Traumatic Brain Injury-Induced Secondary Neuronal Degeneration and Parkinson's Disease-Like Pathology. Neurochem Res 2022; 47:1025-1036. [PMID: 35067829 DOI: 10.1007/s11064-021-03503-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 10/19/2022]
Abstract
There is increasing preclinical and clinical data supporting a potential association between Traumatic Brain Injury (TBI) and Parkinson's disease (PD). It has been suggested that the glutamate-induced excitotoxicity underlying TBI secondary neuronal degeneration (SND) might be associated with further development of PD. Interestingly, an accumulation of extracellular glutamate and olfactory dysfunction are both sharing pathological conditions in TBI and PD. The possible involvement of glutamate excitotoxicity in olfactory dysfunction has been recently described, however, the role of olfactory bulbs (OB) glutamate excitotoxicity as a possible mechanism involved in the association between TBI and PD-related neurodegeneration has not been investigated yet. We examined the number of nigral dopaminergic neurons (TH +), nigral α-synuclein expression, the striatal dopamine transporter (DAT) expression, and motor performance after bilateral OB N-Methyl-D-Aspartate (NMDA)-induced excitotoxic lesions in rodents. Bulbar NMDA administration induced a decrease in the number of correct choices in the discrimination tests one week after lesions (p < 0.01) and a significant decrease in the number of nigral DAergic neurons (p < 0.01) associated with an increase in α-synuclein expression (p < 0.01). No significant striatal changes in DAT expression or motor alterations were observed. Our results show an association between TBI-induced SND and PD-related neurodegeneration suggesting that the OB excitotoxicity occurring in TBI SND may be a filling gap mechanism underlying the link between TBI and PD-like pathology.
Collapse
Affiliation(s)
- Concepció Marin
- INGENIO, IRCE, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), IDIBAPS-CELLEX, Department 2B, Rosselló 149-153, 08036, Barcelona, Catalonia, Spain. .,Centre for Biomedical Investigation in Respiratory Diseases (CIBERES), Barcelona, Spain.
| | - Mireya Fuentes
- INGENIO, IRCE, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), IDIBAPS-CELLEX, Department 2B, Rosselló 149-153, 08036, Barcelona, Catalonia, Spain.,Centre for Biomedical Investigation in Respiratory Diseases (CIBERES), Barcelona, Spain
| | - Isam Alobid
- INGENIO, IRCE, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), IDIBAPS-CELLEX, Department 2B, Rosselló 149-153, 08036, Barcelona, Catalonia, Spain.,Centre for Biomedical Investigation in Respiratory Diseases (CIBERES), Barcelona, Spain.,Rhinology Unit and Smell Clinic, ENT Department, Hospital Clinic, Villarroel 170, 08036, Barcelona, Catalonia, Spain
| | - Valeria Tubita
- INGENIO, IRCE, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), IDIBAPS-CELLEX, Department 2B, Rosselló 149-153, 08036, Barcelona, Catalonia, Spain.,Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - María Jesús Rojas-Lechuga
- INGENIO, IRCE, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), IDIBAPS-CELLEX, Department 2B, Rosselló 149-153, 08036, Barcelona, Catalonia, Spain.,Centre for Biomedical Investigation in Respiratory Diseases (CIBERES), Barcelona, Spain.,Rhinology Unit and Smell Clinic, ENT Department, Hospital Clinic, Villarroel 170, 08036, Barcelona, Catalonia, Spain
| | - Joaquim Mullol
- INGENIO, IRCE, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), IDIBAPS-CELLEX, Department 2B, Rosselló 149-153, 08036, Barcelona, Catalonia, Spain. .,Centre for Biomedical Investigation in Respiratory Diseases (CIBERES), Barcelona, Spain. .,Rhinology Unit and Smell Clinic, ENT Department, Hospital Clinic, Villarroel 170, 08036, Barcelona, Catalonia, Spain.
| |
Collapse
|
29
|
Horsager J, Knudsen K, Sommerauer M. Clinical and imaging evidence of brain-first and body-first Parkinson's disease. Neurobiol Dis 2022; 164:105626. [PMID: 35031485 DOI: 10.1016/j.nbd.2022.105626] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/17/2022] Open
Abstract
Braak's hypothesis has been extremely influential over the last two decades. However, neuropathological and clinical evidence suggest that the model does not conform to all patients with Parkinson's disease (PD). To resolve this controversy, a new model was recently proposed; in brain-first PD, the initial α-synuclein pathology arise inside the central nervous system, likely rostral to the substantia nigra pars compacta, and spread via interconnected structures - eventually affecting the autonomic nervous system; in body-first PD, the initial pathological α-synuclein originates in the enteric nervous system with subsequent caudo-rostral propagation to the autonomic and central nervous system. By using REM-sleep behavior disorder (RBD) as a clinical identifier to distinguish between body-first PD (RBD-positive at motor symptom onset) and brain-first PD (RBD-negative at motor symptom onset), we explored the literature to evaluate clinical and imaging differences between these proposed subtypes. Body-first PD patients display: 1) a larger burden of autonomic symptoms - in particular orthostatic hypotension and constipation, 2) more frequent pathological α-synuclein in peripheral tissues, 3) more brainstem and autonomic nervous system involvement in imaging studies, 4) more symmetric striatal dopaminergic loss and motor symptoms, and 5) slightly more olfactory dysfunction. In contrast, only minor cortical metabolic alterations emerge before motor symptoms in body-first. Brain-first PD is characterized by the opposite clinical and imaging patterns. Patients with pathological LRRK2 genetic variants mostly resemble a brain-first PD profile whereas patients with GBA variants typically conform to a body-first profile. SNCA-variant carriers are equally distributed between both subtypes. Overall, the literature indicates that body-first and brain-first PD might be two distinguishable entities on some clinical and imaging markers.
Collapse
Affiliation(s)
- Jacob Horsager
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark.
| | - Karoline Knudsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Sommerauer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Neurology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Köln, Germany; Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
30
|
Faour M, Magnan C, Gurden H, Martin C. Olfaction in the context of obesity and diabetes: Insights from animal models to humans. Neuropharmacology 2021; 206:108923. [PMID: 34919903 DOI: 10.1016/j.neuropharm.2021.108923] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022]
Abstract
The olfactory system is at the crossroad between sensory processing and metabolic sensing. In addition to being the center of detection and identification of food odors, it is a sensor for most of the hormones and nutrients responsible for feeding behavior regulation. The consequences of modifications in body homeostasis, nutrient overload and alteration of this brain network in the pathological condition of food-induced obesity and type 2 diabetes are still not elucidated. The aim of this review was first to use both humans and animal studies to report on the current knowledge of the consequences of obesity and type 2 diabetes on odorant threshold and olfactory perception including identification discrimination and memory. We then discuss how olfactory processing can be modified by an alteration of the metabolic homeostasis of the organism and available elements on pharmacological treatments that regulate olfaction. We focus on data within the olfactory system but also on the interactions between the olfactory system and other brain networks impacted by metabolic diseases.
Collapse
Affiliation(s)
- Maya Faour
- Université de Paris, BFA, UMR 8251, CNRS, F-75013, Paris, France
| | | | - Hirac Gurden
- Université de Paris, BFA, UMR 8251, CNRS, F-75013, Paris, France
| | - Claire Martin
- Université de Paris, BFA, UMR 8251, CNRS, F-75013, Paris, France.
| |
Collapse
|
31
|
Chen F, Liu W, Liu P, Wang Z, Zhou Y, Liu X, Li A. α-Synuclein aggregation in the olfactory bulb induces olfactory deficits by perturbing granule cells and granular-mitral synaptic transmission. NPJ Parkinsons Dis 2021; 7:114. [PMID: 34903719 PMCID: PMC8668919 DOI: 10.1038/s41531-021-00259-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 11/21/2021] [Indexed: 11/10/2022] Open
Abstract
Olfactory dysfunction is an early pre-motor symptom of Parkinson's disease (PD) but the neural mechanisms underlying this dysfunction remain largely unknown. Aggregation of α-synuclein is observed in the olfactory bulb (OB) during the early stages of PD, indicating a relationship between α-synuclein pathology and hyposmia. Here we investigate whether and how α-synuclein aggregates modulate neural activity in the OB at the single-cell and synaptic levels. We induced α-synuclein aggregation specifically in the OB via overexpression of double-mutant human α-synuclein by an adeno-associated viral (AAV) vector. We found that α-synuclein aggregation in the OB decreased the ability of mice to detect odors and to perceive attractive odors. The spontaneous activity and odor-evoked firing rates of single mitral/tufted cells (M/Ts) were increased by α-synuclein aggregates with the amplitude of odor-evoked high-gamma oscillations increased. Furthermore, the decreased activity in granule cells (GCs) and impaired inhibitory synaptic function were responsible for the observed hyperactivity of M/Ts induced by α-synuclein aggregates. These results provide direct evidences of the role of α-synuclein aggregates on PD-related olfactory dysfunction and reveal the neural circuit mechanisms by which olfaction is modulated by α-synuclein pathology.
Collapse
Affiliation(s)
- Fengjiao Chen
- grid.417303.20000 0000 9927 0537Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Wei Liu
- grid.417303.20000 0000 9927 0537Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Penglai Liu
- grid.417303.20000 0000 9927 0537Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Zhen Wang
- grid.417303.20000 0000 9927 0537School of Life Science, Xuzhou Medical University, Xuzhou, China
| | - You Zhou
- grid.417303.20000 0000 9927 0537School of Life Science, Xuzhou Medical University, Xuzhou, China
| | - Xingyu Liu
- grid.417303.20000 0000 9927 0537School of Life Science, Xuzhou Medical University, Xuzhou, China
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
32
|
Liu P, Qin D, Lv H, Fan W, Zhou F, Gao Z, Tao Z, Xu Y. Activation of Dopamine D2 Receptor Alleviates Neuroinflammation in a Mouse Model of Allergic Rhinitis With Olfactory Dysfunction. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2021; 13:882-895. [PMID: 34734506 PMCID: PMC8569020 DOI: 10.4168/aair.2021.13.6.882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/03/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Allergic rhinitis (AR) is a common otolaryngology disease and one of the clinical causes of olfactory dysfunction (OD). The olfactory bulb serves as a transfer station for olfactory information transmission, and alleviating its neuroinflammation may be expected to improve AR-induced OD. Recent studies have suggested that the dopamine D2 receptor acts as a key target in regulating immune functions and neuroinflammatory reaction. However, the effect of dopamine D2 receptor on AR-induced neuroinflammation is still unknown. METHODS An AR mouse model with OD induced by ovalbumin were constructed. The buried food pellet test was to evaluate the olfactory function of the mice. Immunofluorescence staining, hematoxylin and eosin staining, enzyme-linked immunosorbent assay and western blotting were also used to investigate the molecular mechanisms underlying the anti-inflammatory effects of the dopamine D2 receptor in AR-induced OD. RESULTS We found that AR-induced OD has a relationship with inflammatory responses in the olfactory bulb. Nasal administration of quinpirole (Quin, a dopamine D2 receptor agonist, 3 mg/kg) improved olfactory function in mice, inhibited the expression of toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signalings and the levels of tumor necrosis factor-α, interleukin (IL)-1β and IL-6 in the olfactory bulb. In vitro, Quin (20 μmol/L) inhibited the release of TLR4/NF-κB signalings-dependent inflammatory cytokines in cultured microglia. CONCLUSIONS Activation of the dopamine D2 receptor inhibits the release of inflammatory cytokines through TLR4/NF-κB signaling in the olfactory bulb microglia, and protects olfactory function.
Collapse
Affiliation(s)
- Peiqiang Liu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Danxue Qin
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao Lv
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenjun Fan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fangwei Zhou
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ziang Gao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zezhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
33
|
Fernandez-Parrilla MA, Reyes-Corona D, Flores-Martinez YM, Nadella R, Bannon MJ, Escobedo L, Maldonado-Berny M, Santoyo-Salazar J, Soto-Rojas LO, Luna-Herrera C, Ayala-Davila J, Gonzalez-Barrios JA, Flores G, Gutierrez-Castillo ME, Espadas-Alvarez AJ, Martínez-Dávila IA, Nava P, Martinez-Fong D. Cerebral dopamine neurotrophic factor transfection in dopamine neurons using neurotensin-polyplex nanoparticles reverses 6-hydroxydopamine-induced nigrostriatal neurodegeneration. Neural Regen Res 2021; 17:854-866. [PMID: 34472486 PMCID: PMC8530149 DOI: 10.4103/1673-5374.321001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Overexpression of neurotrophic factors in nigral dopamine neurons is a promising approach to reverse neurodegeneration of the nigrostriatal dopamine system, a hallmark in Parkinson's disease. The human cerebral dopamine neurotrophic factor (hCDNF) has recently emerged as a strong candidate for Parkinson's disease therapy. This study shows that hCDNF expression in dopamine neurons using the neurotensin-polyplex nanoparticle system reverses 6-hydroxydopamine-induced morphological, biochemical, and behavioral alterations. Three independent electron microscopy techniques showed that the neurotensin-polyplex nanoparticles containing the hCDNF gene, ranging in size from 20 to 150 nm, enabled the expression of a secretable hCDNF in vitro. Their injection in the substantia nigra compacta on day 21 after the 6-hydroxydopamine lesion resulted in detectable hCDNF in dopamine neurons, whose levels remained constant throughout the study in the substantia nigra compacta and striatum. Compared with the lesioned group, tyrosine hydroxylase-positive (TH+) nigral cell population and TH+ fiber density rose in the substantia nigra compacta and striatum after hCDNF transfection. An increase in βIII-tubulin and growth-associated protein 43 phospho-S41 (GAP43p) followed TH+ cell recovery, as well as dopamine and its catabolite levels. Partial reversal (80%) of drug-activated circling behavior and full recovery of spontaneous motor and non-motor behavior were achieved. Brain-derived neurotrophic factor recovery in dopamine neurons that also occurred suggests its participation in the neurotrophic effects. These findings support the potential of nanoparticle-mediated hCDNF gene delivery to develop a disease-modifying treatment against Parkinson's disease. The Institutional Animal Care and Use Committee of Centro de Investigación y de Estudios Avanzados approved our experimental procedures for animal use (authorization No. 162-15) on June 9, 2019.
Collapse
Affiliation(s)
- Manuel A Fernandez-Parrilla
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - David Reyes-Corona
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - Yazmin M Flores-Martinez
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, México
| | - Rasajna Nadella
- Department of Biosciences, IIIT-Srikakulam, Rajiv Gandhi University of Knowledge Technologies (RGUKT), Andhra Pradesh, India
| | - Michael J Bannon
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lourdes Escobedo
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - Minerva Maldonado-Berny
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - Jaime Santoyo-Salazar
- Departamento de Física, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - Luis O Soto-Rojas
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Edo. de México, México
| | - Claudia Luna-Herrera
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Ciudad de México, México
| | - Jose Ayala-Davila
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - Juan A Gonzalez-Barrios
- Laboratorio de Medicina Genómica, Hospital Regional "1° de Octubre", ISSSTE, Ciudad de México, México
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, México
| | - Maria E Gutierrez-Castillo
- Departamento de Biociencias e Ingeniería, Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo, Instituto Politécnico Nacional, Ciudad de México, México
| | - Armando J Espadas-Alvarez
- Departamento de Biociencias e Ingeniería, Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo, Instituto Politécnico Nacional, Ciudad de México, México
| | - Irma A Martínez-Dávila
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - Porfirio Nava
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - Daniel Martinez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias; Programa de Nanociencias y nanotecnología, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| |
Collapse
|
34
|
Li R, Lu Y, Zhang Q, Liu W, Yang R, Jiao J, Liu J, Gao G, Yang H. Piperine promotes autophagy flux by P2RX4 activation in SNCA/α-synuclein-induced Parkinson disease model. Autophagy 2021; 18:559-575. [PMID: 34092198 PMCID: PMC9037522 DOI: 10.1080/15548627.2021.1937897] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Olfactory dysfunction, one of the earliest non-motor symptoms of Parkinson disease (PD), is accompanied by abnormal deposition of SNCA/α-synuclein in the olfactory bulb (OB). The macroautophagy/autophagy-lysosome pathway (ALP) plays an important role in degrading pathological SNCA and modulating this pathway may be a promising treatment strategy. P2RX4 (purinergic receptor P2X, ligand-gated ion channel 4), a member of the purinergic receptor X family, is a key molecule regulating ALP. Piperine (PIP) is a Chinese medicine with anti-inflammatory and anti-oxidant effects. The present study investigated the neuroprotective effects of PIP on SNCA overexpression-induced PD cell and mouse models. We found that PIP oral administration (25, 50 and 100 mg/kg) for 6 weeks attenuated olfactory deficits and delayed motor deficits in Thy 1-SNCA transgenic mice overexpressing human SNCA. This was accompanied by a degradation of pathological SNCA in OB. In addition, PIP improved cell viability and promoted degradation of human SNCA in SK-N-SH cells. These protective effects were exerted via autophagy flux promotion by enhancing autophagosome-lysosome membrane fusion. Furthermore, tandem mass tag proteomics analyses showed that P2RX4 plays an important role in PIP treatment-induced activation of autophagy flux. These findings demonstrate that PIP exerts neuroprotective effects in PD models via promotion of autophagy flux and may be an effective agent for PD treatment. Abbreviations: 6-OHDA, 6-hydroxydopamine; ALP, autophagy-lysosome pathway; BafA1, bafilomycin A1; CoQ10, coenzyme Q10; DMSO: dimethyl sulfoxide; HPLC, high-performance liquid chromatography; IVE, ivermectin; LDH, lactate dehydrogenase; MAP1LC3/LC3-II, lipid-conjugated microtubule-associated protein 1 light chain 3; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; mRFP-GFP, tandem monomeric red fluorescent protein-green fluorescent protein; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; OB, olfactory bulb; P2RX4, purinergic receptor P2X, ligand-gated ion channel 4; PD, Parkinson disease; PBS: phosphate-buffered saline; PI: propidium iodide; PIP, piperine; PLG, piperlongumine; p-SNCA, SNCA phosphorylated at Ser129; Rap, rapamycin; RT-PCR: quantitative real-time PCR; SNARE, soluble N-ethylmaleimide-sensitive factor-attachment protein receptor; SNCA/α-synuclein, synuclein, alpha; STX17, syntaxin17; TG, transgenic; TH, tyrosine hydroxylase; UPS, ubiquitin-proteasome system; WT, wild-type
Collapse
Affiliation(s)
- Ruolin Li
- Department of Neurobiology School of Basic Medical Sciences, Capital Medical University, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing, China.,Department of Neurology, Affiliated Hospital of Jining Medical College, Jining, China
| | - Yongquan Lu
- Department of Neurobiology School of Basic Medical Sciences, Capital Medical University, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing, China
| | - Qidi Zhang
- Department of Neurobiology School of Basic Medical Sciences, Capital Medical University, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing, China
| | - Weijin Liu
- Department of Neurobiology School of Basic Medical Sciences, Capital Medical University, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing, China
| | - Runing Yang
- Department of Neurobiology School of Basic Medical Sciences, Capital Medical University, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing, China
| | - Jie Jiao
- Department of Neurobiology School of Basic Medical Sciences, Capital Medical University, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing, China
| | - Jia Liu
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Ge Gao
- Department of Neurobiology School of Basic Medical Sciences, Capital Medical University, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing, China
| | - Hui Yang
- Department of Neurobiology School of Basic Medical Sciences, Capital Medical University, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing, China
| |
Collapse
|
35
|
Kujawska M, Jourdes M, Witucki Ł, Karaźniewicz-Łada M, Szulc M, Górska A, Mikołajczak PŁ, Teissedre PL, Jodynis-Liebert J. Pomegranate Juice Ameliorates Dopamine Release and Behavioral Deficits in a Rat Model of Parkinson's Disease. Brain Sci 2021; 11:1127. [PMID: 34573149 PMCID: PMC8467386 DOI: 10.3390/brainsci11091127] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 12/15/2022] Open
Abstract
Pomegranate juice (PJ) is a rich source of ellagitannins (ETs), precursors of colonic metabolite urolithin A, which are believed to contribute to pomegranate's neuroprotective effect. While many experimental studies involving PJ's role in Alzheimer's disease and hypoxic-ischemic brain injury have been conducted, our knowledge of pomegranate's effects against Parkinson's disease (PD) is very limited. Previously, we have reported that PJ treatment improved postural stability, which correlated well with enhancement of neuronal survival, protection against oxidative damage, and α-synuclein aggregation. Since olfactory and motor deficits are typical symptoms of PD, in this study, we aimed to investigate the capability of PJ to protect against olfactory, motoric, and neurochemical alterations. To evaluate its efficiency, Wistar rats were given a combined treatment with ROT (1.3 mg/kg b.w./day, s.c.) and PJ (500 mg/kg/day, p.o.) for 35 days. After this, we assessed the olfactory discrimination index (DI) and vertical and horizontal activities as well as levels of dopamine and its main metabolite 3,4-Dihydroxyphenylacetic acid (DOPAC) in the dissected midbrain of animals. Our findings provide the first evidence that PJ treatment protects against ROT-induced DA depletion in the midbrain, which correlates well with improved olfactory function and vertical activity as well as with the presence of urolithin A in the brain.
Collapse
Affiliation(s)
- Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (A.G.); (J.J.-L.)
| | - Michael Jourdes
- Institut des Sciences de la Vigne et du Vin, Université de Bordeaux, EA 4577, Œnologie, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France; (M.J.); (P.-L.T.)
- Institut des Sciences de la Vigne et du Vin, INRA, USC 1366 INRA, IPB, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France
| | - Łukasz Witucki
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland;
| | - Marta Karaźniewicz-Łada
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Święcickiego 6, 60-781 Poznań, Poland;
| | - Michał Szulc
- Department of Pharmacology, Poznan University of Medical Sciences, Rokietnicka 5a, 60-806 Poznań, Poland; (M.S.); (P.Ł.M.)
| | - Agata Górska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (A.G.); (J.J.-L.)
| | - Przemysław Ł. Mikołajczak
- Department of Pharmacology, Poznan University of Medical Sciences, Rokietnicka 5a, 60-806 Poznań, Poland; (M.S.); (P.Ł.M.)
| | - Pierre-Louis Teissedre
- Institut des Sciences de la Vigne et du Vin, Université de Bordeaux, EA 4577, Œnologie, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France; (M.J.); (P.-L.T.)
- Institut des Sciences de la Vigne et du Vin, INRA, USC 1366 INRA, IPB, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France
| | - Jadwiga Jodynis-Liebert
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (A.G.); (J.J.-L.)
| |
Collapse
|
36
|
Bernal-Meléndez E, Callebert J, Bouillaud P, Persuy MA, Olivier B, Badonnel K, Chavatte-Palmer P, Baly C, Schroeder H. Dopaminergic and serotonergic changes in rabbit fetal brain upon repeated gestational exposure to diesel engine exhaust. Arch Toxicol 2021; 95:3085-3099. [PMID: 34189592 DOI: 10.1007/s00204-021-03110-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/17/2021] [Indexed: 11/29/2022]
Abstract
Limited studies in humans and in animal models have investigated the neurotoxic risks related to a gestational exposure to diesel exhaust particles (DEP) on the embryonic brain, especially those regarding monoaminergic systems linked to neurocognitive disorders. We previously showed that exposure to DEP alters monoaminergic neurotransmission in fetal olfactory bulbs and modifies tissue morphology along with behavioral consequences at birth in a rabbit model. Given the anatomical and functional connections between olfactory and central brain structures, we further characterized their impacts in brain regions associated with monoaminergic neurotransmission. At gestational day 28 (GD28), fetal rabbit brains were collected from dams exposed by nose-only to either a clean air or filtered DEP for 2 h/day, 5 days/week, from GD3 to GD27. HPLC dosage and histochemical analyses of the main monoaminergic systems, i.e., dopamine (DA), noradrenaline (NA), and serotonin (5-HT) and their metabolites were conducted in microdissected fetal brain regions. DEP exposure increased the level of DA and decreased the dopaminergic metabolites ratios in the prefrontal cortex (PFC), together with sex-specific alterations in the hippocampus (Hp). In addition, HVA level was increased in the temporal cortex (TCx). Serotonin and 5-HIAA levels were decreased in the fetal Hp. However, DEP exposure did not significantly modify NA levels, tyrosine hydroxylase, tryptophan hydroxylase or AChE enzymatic activity in fetal brain. Exposure to DEP during fetal life results in dopaminergic and serotonergic changes in critical brain regions that might lead to detrimental potential short-term neural disturbances as precursors of long-term neurocognitive consequences.
Collapse
Affiliation(s)
- Estefania Bernal-Meléndez
- NeuroBiologie de l'Olfaction, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,CALBINOTOX, EA7488, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Jacques Callebert
- Service de Biochimie et Biologie Moléculaire, Hôpital Lariboisière, Paris, France
| | | | - Marie-Annick Persuy
- NeuroBiologie de l'Olfaction, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Université Paris-Saclay, UVSQ, INRAE, INRAE, BREED UR1198, Bat. 230, Domaine de Vilvert, 78350, Jouy-en-Josas, France
| | - Benoit Olivier
- CALBINOTOX, EA7488, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Karine Badonnel
- NeuroBiologie de l'Olfaction, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Université Paris-Saclay, UVSQ, INRAE, INRAE, BREED UR1198, Bat. 230, Domaine de Vilvert, 78350, Jouy-en-Josas, France
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, INRAE, BREED UR1198, Bat. 230, Domaine de Vilvert, 78350, Jouy-en-Josas, France
| | - Christine Baly
- NeuroBiologie de l'Olfaction, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France. .,Université Paris-Saclay, UVSQ, INRAE, INRAE, BREED UR1198, Bat. 230, Domaine de Vilvert, 78350, Jouy-en-Josas, France.
| | - Henri Schroeder
- CALBINOTOX, EA7488, Université de Lorraine, Vandœuvre-lès-Nancy, France.
| |
Collapse
|
37
|
Agarwal K, Manza P, Leggio L, Livinski AA, Volkow ND, Joseph PV. Sensory cue reactivity: Sensitization in alcohol use disorder and obesity. Neurosci Biobehav Rev 2021; 124:326-357. [PMID: 33587959 DOI: 10.1016/j.neubiorev.2021.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 12/21/2022]
Abstract
Neuroimaging techniques to measure the function of the human brain such as electroencephalography (EEG), positron emission tomography (PET), and functional magnetic resonance imaging (fMRI), are powerful tools for understanding the underlying neural circuitry associated with alcohol use disorder (AUD) and obesity. The sensory (visual, taste and smell) paradigms used in neuroimaging studies represent an ideal platform to investigate the connection between the different neural circuits subserving the reward/executive control systems in these disorders, which may offer a translational mechanism for novel intervention predictions. Thus, the current review provides an integrated summary of the recent neuroimaging studies that have applied cue-reactivity paradigms and neuromodulation strategies to explore underlying alterations in neural circuitry as well in treatment strategies in AUD and obesity. Finally, we discuss literature on mechanisms associated with increased alcohol sensitivity post-bariatric surgery (BS) which offers guidance for future research to use sensory percepts in elucidating the relation of reward signaling in AUD development post-BS.
Collapse
Affiliation(s)
- Khushbu Agarwal
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA; National Institute of Nursing Research, Bethesda, MD, USA
| | - Peter Manza
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Lorenzo Leggio
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA; National Institute on Drug Abuse, Bethesda and Baltimore, MD, USA
| | | | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA; National Institute on Drug Abuse, Bethesda and Baltimore, MD, USA
| | - Paule Valery Joseph
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA; National Institute of Nursing Research, Bethesda, MD, USA.
| |
Collapse
|
38
|
Noseda ACD, Rodrigues LS, Targa ADS, Ilkiw JL, Fagotti J, Dos Santos PD, Cecon E, Markus RP, Solimena M, Jockers R, Lima MMS. MT 2 melatonin receptors expressed in the olfactory bulb modulate depressive-like behavior and olfaction in the 6-OHDA model of Parkinson's disease. Eur J Pharmacol 2021; 891:173722. [PMID: 33159932 DOI: 10.1016/j.ejphar.2020.173722] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 12/26/2022]
Abstract
Melatonin MT1 and MT2 receptors are expressed in the glomerular layer of the olfactory bulb (OB); however, the role of these receptors has not been evaluated until now. Considering the association of the OB with olfactory and depressive disorders in Parkinson's disease (PD), we sought to investigate the involvement of melatonin receptors in these non-motor disturbances in an intranigral 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD. We demonstrate the presence of functional melatonin receptors in dopaminergic neurons of the glomerular layer. Local administration of melatonin (MLT, 1 μg/μl), luzindole (LUZ, 5 μg/μl) or the MT2-selective receptor drug 4-P-PDOT (5 μg/μl) reversed the depressive-like behavior elicited by 6-OHDA. Sequential administration of 4-P-PDOT and MLT (5 μg/μl, 1 μg/μl) promoted additive antidepressant-like effects. In the evaluation of olfactory discrimination, LUZ induced an olfactory impairment when associated with the nigral lesion-induced impairment. Thus, our results suggest that melatonin MT2 receptors expressed in the glomerular layer are involved in depressive-like behaviors and in olfactory function associated with PD.
Collapse
Affiliation(s)
- Ana Carolina D Noseda
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil; Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Lais S Rodrigues
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil; Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Adriano D S Targa
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil; Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil; Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, IRBLleida, Lleida, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Jessica L Ilkiw
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Juliane Fagotti
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - Erika Cecon
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Regina P Markus
- Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | - Michele Solimena
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Ralf Jockers
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Marcelo M S Lima
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil; Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
39
|
Brunert D, Rothermel M. Extrinsic neuromodulation in the rodent olfactory bulb. Cell Tissue Res 2021; 383:507-524. [PMID: 33355709 PMCID: PMC7873007 DOI: 10.1007/s00441-020-03365-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
Evolutionarily, olfaction is one of the oldest senses and pivotal for an individual's health and survival. The olfactory bulb (OB), as the first olfactory relay station in the brain, is known to heavily process sensory information. To adapt to an animal's needs, OB activity can be influenced by many factors either from within (intrinsic neuromodulation) or outside (extrinsic neuromodulation) the OB which include neurotransmitters, neuromodulators, hormones, and neuropeptides. Extrinsic sources seem to be of special importance as the OB receives massive efferent input from numerous brain centers even outweighing the sensory input from the nose. Here, we review neuromodulatory processes in the rodent OB from such extrinsic sources. We will discuss extrinsic neuromodulation according to points of origin, receptors involved, affected circuits, and changes in behavior. In the end, we give a brief outlook on potential future directions in research on neuromodulation in the OB.
Collapse
Affiliation(s)
- Daniela Brunert
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, 52074, Aachen, Germany
| | - Markus Rothermel
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
40
|
New Insights into Immune-Mediated Mechanisms in Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21239302. [PMID: 33291304 PMCID: PMC7730912 DOI: 10.3390/ijms21239302] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
The immune system has been increasingly recognized as a major contributor in the pathogenesis of Parkinson’s disease (PD). The double-edged nature of the immune system poses a problem in harnessing immunomodulatory therapies to prevent and slow the progression of this debilitating disease. To tackle this conundrum, understanding the mechanisms underlying immune-mediated neuronal death will aid in the identification of neuroprotective strategies to preserve dopaminergic neurons. Specific innate and adaptive immune mediators may directly or indirectly induce dopaminergic neuronal death. Genetic factors, the gut-brain axis and the recent identification of PD-specific T cells may provide novel mechanistic insights on PD pathogenesis. Future studies to address the gaps in the identification of autoantibodies, variability in immunophenotyping studies and the contribution of gut dysbiosis to PD may eventually provide new therapeutic targets for PD.
Collapse
|
41
|
Korshunov KS, Blakemore LJ, Trombley PQ. Illuminating and Sniffing Out the Neuromodulatory Roles of Dopamine in the Retina and Olfactory Bulb. Front Cell Neurosci 2020; 14:275. [PMID: 33110404 PMCID: PMC7488387 DOI: 10.3389/fncel.2020.00275] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/04/2020] [Indexed: 01/28/2023] Open
Abstract
In the central nervous system, dopamine is well-known as the neuromodulator that is involved with regulating reward, addiction, motivation, and fine motor control. Yet, decades of findings are revealing another crucial function of dopamine: modulating sensory systems. Dopamine is endogenous to subsets of neurons in the retina and olfactory bulb (OB), where it sharpens sensory processing of visual and olfactory information. For example, dopamine modulation allows the neural circuity in the retina to transition from processing dim light to daylight and the neural circuity in the OB to regulate odor discrimination and detection. Dopamine accomplishes these tasks through numerous, complex mechanisms in both neural structures. In this review, we provide an overview of the established and emerging research on these mechanisms and describe similarities and differences in dopamine expression and modulation of synaptic transmission in the retinas and OBs of various vertebrate organisms. This includes discussion of dopamine neurons’ morphologies, potential identities, and biophysical properties along with their contributions to circadian rhythms and stimulus-driven synthesis, activation, and release of dopamine. As dysregulation of some of these mechanisms may occur in patients with Parkinson’s disease, these symptoms are also discussed. The exploration and comparison of these two separate dopamine populations shows just how remarkably similar the retina and OB are, even though they are functionally distinct. It also shows that the modulatory properties of dopamine neurons are just as important to vision and olfaction as they are to motor coordination and neuropsychiatric/neurodegenerative conditions, thus, we hope this review encourages further research to elucidate these mechanisms.
Collapse
Affiliation(s)
- Kirill S Korshunov
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Laura J Blakemore
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Paul Q Trombley
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
42
|
Niu H, Wang Q, Zhao W, Liu J, Wang D, Muhammad B, Liu X, Quan N, Zhang H, Zhang F, Wang Y, Li H, Yang R. IL-1β/IL-1R1 signaling induced by intranasal lipopolysaccharide infusion regulates alpha-Synuclein pathology in the olfactory bulb, substantia nigra and striatum. Brain Pathol 2020; 30:1102-1118. [PMID: 32678959 PMCID: PMC7754320 DOI: 10.1111/bpa.12886] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Olfactory dysfunction is one of the early symptoms seen in Parkinson's disease (PD). However, the mechanisms underlying olfactory pathology that impacts PD disease progression and post-mortem appearance of alpha-Synuclein (α-Syn) inclusions in and beyond olfactory bulb in PD remain unclear. It has been suggested that environmental toxins inhaled through the nose can induce inflammation in the olfactory bulb (OB), where Lewy body (LB) is the first to be found, and then, spread to related brain regions. We hypothesize that OB inflammation triggers local α-Syn pathology and promotes its spreading to cause PD. In this study, we evaluated this hypothesis by intranasal infusion of lipopolysaccharides (LPS) to induce OB inflammation in mice and examined cytokines expression and PD-like pathology. We found intranasal LPS-induced microglia activation, inflammatory cytokine expression and α-Syn overexpression and aggregation in the OB via interleukin-1β (IL-1β)/IL-1 receptor type I (IL-1R1) dependent signaling. In addition, an aberrant form of α-Syn, the phosphorylated serine 129 α-Syn (pS129 α-Syn), was found in the OB, substantia nigra (SN) and striatum 6 weeks after the LPS treatment. Moreover, 6 weeks after the LPS treatment, mice showed reduced SN tyrosine hydroxylase, decreased striatal dopaminergic metabolites and PD-like behaviors. These changes were blunted in IL-1R1 deficient mice. Further studies found the LPS treatment inhibited IL-1R1-dependent autophagy in the OB. These results suggest that IL-1β/IL-1R1 signaling in OB play a vital role in the induction and propagation of aberrant α-Syn, which may ultimately trigger PD pathology.
Collapse
Affiliation(s)
- Haichen Niu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou, 221004, China.,Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Qian Wang
- Graduate School, Xuzhou Medical University, Xuzhou, 221004, China.,Department of Geriatric Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| | - Weiguang Zhao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou, 221004, China.,Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jianxin Liu
- Department of human anatomy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Deguang Wang
- Department of human anatomy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Bilal Muhammad
- Graduate School, Xuzhou Medical University, Xuzhou, 221004, China.,Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| | - Xiaoyu Liu
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Ning Quan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Haoyu Zhang
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Fang Zhang
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yong Wang
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Haiying Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou, 221004, China.,Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Rongli Yang
- Department of Geriatric Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China.,Department of Geriatrics, Xuzhou Medical University, Xuzhou, 221004, China
| |
Collapse
|
43
|
Wakabayashi K. Where and how alpha-synuclein pathology spreads in Parkinson's disease. Neuropathology 2020; 40:415-425. [PMID: 32750743 DOI: 10.1111/neup.12691] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022]
Abstract
In Parkinson's disease (PD), neuronal alpha-synuclein aggregates are distributed throughout the nervous system, including the brain, spinal cord, sympathetic ganglia, submandibular gland, enteric nervous system, cardiac and pelvic plexuses, adrenal medulla, and skin. Thus, PD is a progressive multiorgan disease clinically associated with various motor and nonmotor symptoms. The earliest PD-related lesions appear to develop in the olfactory bulb, dorsal vagal nucleus, and possibly also the peripheral autonomic nervous system. The brain is closely connected with the enteric nervous system via axons of the efferent fibers of the dorsal nucleus of vagal nerve. Anatomical connections also exist between the olfactory bulb and brainstem. Accumulating evidence from experimental studies indicates that transneuronal propagation of misfolded alpha-synuclein is involved in the progression of PD. However, it cannot be ruled out that alpha-synuclein pathology in PD is multicentric in origin. Based on pathological findings from studies on human materials, the present review will update the progression pattern of alpha-synuclein pathology in PD.
Collapse
Affiliation(s)
- Koichi Wakabayashi
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
44
|
Borghammer P, Van Den Berge N. Brain-First versus Gut-First Parkinson's Disease: A Hypothesis. JOURNAL OF PARKINSONS DISEASE 2020; 9:S281-S295. [PMID: 31498132 PMCID: PMC6839496 DOI: 10.3233/jpd-191721] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Parkinson’s disease (PD) is a highly heterogeneous disorder, which probably consists of multiple subtypes. Aggregation of misfolded alpha-synuclein and propagation of these proteinacious aggregates through interconnected neural networks is believed to be a crucial pathogenetic factor. It has been hypothesized that the initial pathological alpha-synuclein aggregates originate in the enteric or peripheral nervous system (PNS) and invade the central nervous system (CNS) via retrograde vagal transport. However, evidence from neuropathological studies suggests that not all PD patients can be reconciled with this hypothesis. Importantly, a small fraction of patients do not show pathology in the dorsal motor nucleus of the vagus. Here, it is hypothesized that PD can be divided into a PNS-first and a CNS-first subtype. The former is tightly associated with REM sleep behavior disorder (RBD) during the prodromal phase and is characterized by marked autonomic damage before involvement of the dopaminergic system. In contrast, the CNS-first phenotype is most often RBD-negative during the prodromal phase and characterized by nigrostriatal dopaminergic dysfunction prior to involvement of the autonomic PNS. The existence of these subtypes is supported by in vivo imaging studies of RBD-positive and RBD-negative patient groups and by histological evidence— reviewed herein. The present proposal provides a fresh hypothesis-generating framework for future studies into the etiopathogenesis of PD and seems capable of explaining a number of discrepant findings in the neuropathological literature.
Collapse
Affiliation(s)
- Per Borghammer
- Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
45
|
Marin C, Langdon C, Alobid I, Mullol J. Olfactory Dysfunction in Traumatic Brain Injury: the Role of Neurogenesis. Curr Allergy Asthma Rep 2020; 20:55. [PMID: 32648230 DOI: 10.1007/s11882-020-00949-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Olfactory functioning disturbances are common following traumatic brain injury (TBI) having a significant impact on quality of life. A spontaneous recovery of the olfactory function over time may occur in TBI patients. Although there is no standard treatment for patients with posttraumatic olfactory loss, olfactory training (OT) has shown some promise beneficial effects. However, the mechanisms underlying spontaneous recovery and olfactory improvement induced by OT are not completely known. RECENT FINDINGS The spontaneous recovery of the olfactory function and the improvement of olfactory function after OT have recently been associated with an increase in subventricular (SVZ) neurogenesis and an increase in olfactory bulb (OB) glomerular dopaminergic (DAergic) interneurons. In addition, after OT, an increase in electrophysiological responses at the olfactory epithelium (OE) level has been reported, indicating that recovery of olfactory function not only affects olfactory processing at the central level, but also at peripheral level. However, the role of OE stem cells in the spontaneous recovery and in the improvement of olfactory function after OT in TBI is still unknown. In this review, we describe the physiology of the olfactory system, and the olfactory dysfunction after TBI. We highlight the possible role for the SVZ neurogenesis and DAergic OB interneurons in the recovery of the olfactory function. In addition, we point out the relevance of the OE neurogenesis process as a future target for the research in the pathophysiological mechanisms involved in the olfactory dysfunction in TBI. The potential of basal stem cells as a promising candidate for replacement therapies is also described.
Collapse
Affiliation(s)
- Concepció Marin
- INGENIO, IRCE, Department 2B, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villarroel 170, 08036, Barcelona, Catalonia, Spain. .,Centre for Biomedical Investigation in Respiratory Diseases (CIBERES), Barcelona, Spain.
| | - Cristóbal Langdon
- INGENIO, IRCE, Department 2B, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villarroel 170, 08036, Barcelona, Catalonia, Spain.,Centre for Biomedical Investigation in Respiratory Diseases (CIBERES), Barcelona, Spain.,Rhinology Unit and Smell Clinic, ENT Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Isam Alobid
- INGENIO, IRCE, Department 2B, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villarroel 170, 08036, Barcelona, Catalonia, Spain.,Centre for Biomedical Investigation in Respiratory Diseases (CIBERES), Barcelona, Spain.,Rhinology Unit and Smell Clinic, ENT Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Joaquim Mullol
- INGENIO, IRCE, Department 2B, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villarroel 170, 08036, Barcelona, Catalonia, Spain. .,Centre for Biomedical Investigation in Respiratory Diseases (CIBERES), Barcelona, Spain. .,Rhinology Unit and Smell Clinic, ENT Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
46
|
The Impact of Mitochondrial Dysfunction on Dopaminergic Neurons in the Olfactory Bulb and Odor Detection. Mol Neurobiol 2020; 57:3646-3657. [PMID: 32564285 PMCID: PMC7398899 DOI: 10.1007/s12035-020-01947-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 05/13/2020] [Indexed: 01/27/2023]
Abstract
Understanding non-motor symptoms of Parkinson’s disease is important in order to unravel the underlying molecular mechanisms of the disease. Olfactory dysfunction is an early stage, non-motor symptom which occurs in 95% of Parkinson’s disease patients. Mitochondrial dysfunction is a key feature in Parkinson’s disease and importantly contributes to the selective loss of dopaminergic neurons the substantia nigra pars compacta. The olfactory bulb, the first olfactory processing station, also contains dopaminergic neurons, which modulate odor information and thereby enable odor detection as well as odor discrimination. MitoPark mice are a genetic model for Parkinson’s disease with severe mitochondrial dysfunction, reproducing the differential vulnerability of dopaminergic neurons in the midbrain. These animals were used to investigate the impact of mitochondrial dysfunction on olfactory-related behavior and olfactory bulb dopaminergic neuron survival. Odor detection was severely impaired in MitoPark mice. Interestingly, only the small anaxonic dopaminergic subpopulation, which is continuously replenished by neurogenesis, was moderately reduced in number, much less compared with dopaminergic neurons in the midbrain. As a potential compensatory response, an enhanced mobilization of progenitor cells was found in the subventricular zone. These results reveal a high robustness of dopaminergic neurons located in the olfactory bulb towards mitochondrial impairment, in striking contrast to their midbrain counterparts.
Collapse
|
47
|
Urban P, Falkenburger B, Jost WH, Ransmayr G, Riederer P, Winkler C. [Structure and efferences of the substantia nigra pars compacta in Parkinson's disease]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2020; 88:591-599. [PMID: 32396943 DOI: 10.1055/a-1149-9280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is consensus that the neuropathological characteristic of Parkinson's disease (PD) is the neuronal cell loss of the substantia nigra pars compacta (SNc) in connection with a Lewy pathology. The transsynaptic spread of Lewy pathology is considered essential in PD pathogenesis. Therefore, the knowledge of pre-existing neuroanatomical connections of the SNc is essential. We describe recent animal experiments on the afferent and efferent projections of the SNc and discuss the evidence for and against the sequential transsynaptic spread of Lewy pathology in the pathogenesis of PD.
Collapse
Affiliation(s)
- Peter Urban
- Abteilung für Neurologie, Asklepios Klinik Barmbek
| | | | | | - Gerhard Ransmayr
- Klinik für Neurologie 2, Kepler Universitätsklinikum, Linz/Austria
| | - Peter Riederer
- Klinik und Poliklinik für Psychiatrie, Psychosomatik und Psychotherapie, Universitätsklinikum Würzburg
| | | |
Collapse
|
48
|
Liu X, Zhou Y, Li S, Yang D, Jiao M, Liu X, Wang Z. Type 3 adenylyl cyclase in the main olfactory epithelium participates in depression-like and anxiety-like behaviours. J Affect Disord 2020; 268:28-38. [PMID: 32158004 DOI: 10.1016/j.jad.2020.02.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/07/2020] [Accepted: 02/26/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Deficiency of olfaction is thought to be associated with depression, and type 3 adenylyl cyclase (AC3) genetic knockout and forebrain knockout mice show depression-like behaviours. AC3 is expressed in the main olfactory epithelium (MOE) and hippocampus, which plays an important role in olfactory signal transduction. However, it is unclear whether AC3 in the MOE also plays a role in the pathogenesis of depression. Thus, we aimed to study the relationship between AC3 in the MOE and the pathogenesis of depression. METHODS We obtained anosmic mice by intranasal perfusion of zinc sulphate (ZnSO4) (ZnSO4 mice), and distinctively knocked down AC3 in the MOE (AC3KD/MOE mice) by CRISPR/cas9 technology. Behavioural tests related to depression and anxiety were employed to evaluate the depression- and anxiety-like behaviours of mice. The mRNA and protein expressions of tyrosine hydroxylase (TH), dopamine receptors (Drds), and N-Methyl D-aspartate receptor subunit 2B (GluN2B) in the hippocampus of mice were investigated by qPCR and western blotting to explore the mechanism of depression and anxiety caused by AC3 in the MOE, preliminarily. RESULTS Compared with NaCl mice, ZnSO4 mice exhibited depression-like behaviours in tail suspension tests (TST), forced swimming tests, and social (FST) interaction tests (SIT), but showed no anxiety-like behaviours in anxiety-related behavioural tests. The mRNA and protein expressions of Drd3 and GluN2B in the hippocampus of ZnSO4 mice were significantly downregulated. Compared with the negative control mice (NC mice), AC3KD / MOE mice showed depression-like behaviours in TST, FST, and SIT tests, anxiety-like behaviours in light/dark transition test, elevated-plus maze test, and novelty-suppressed feeding test. The protein expressions of Drd3, TH, and GluN2B were significantly downregulated in the hippocampus. LIMITATIONS We did not further demonstrate that AC3 in the MOE causes depression through the dopaminergic nervous system with dopamine or dopamine receptor agonists. CONCLUSIONS Our data demonstrate that intranasal infusion of ZnSO4 can cause depression-like behaviours and has no effect on anxiety-like behaviours. Specific knockdown of AC3 in the MOE can cause depression-like and anxiety-like behaviours. The behavioural changes caused by intranasal ZnSO4 and specific knockdown of AC3 in the MOE can be related to the significant downregulation of dopaminergic system and GluN2B expressions in the hippocampus of mice.
Collapse
Affiliation(s)
- Xinxia Liu
- College of Life Science, Hebei University, Baoding, 071002, China; Medical College, Hebei University, 071000 Baoding, China
| | - Yanfen Zhou
- College of Life Science, Hebei University, Baoding, 071002, China
| | - Shujuan Li
- College of Life Science, Hebei University, Baoding, 071002, China
| | - Dong Yang
- College of Life Science, Hebei University, Baoding, 071002, China
| | - Mingming Jiao
- Medical College, Hebei University, 071000 Baoding, China
| | - Xiaodong Liu
- Medical College, Hebei University, 071000 Baoding, China
| | - Zhenshan Wang
- College of Life Science, Hebei University, Baoding, 071002, China.
| |
Collapse
|
49
|
Soto-Rojas LO, Martínez-Dávila IA, Luna-Herrera C, Gutierrez-Castillo ME, Lopez-Salas FE, Gatica-Garcia B, Soto-Rodriguez G, Bringas Tobon ME, Flores G, Padilla-Viveros A, Bañuelos C, Blanco-Alvarez VM, Dávila-Ayala J, Reyes-Corona D, Garcés-Ramírez L, Hidalgo-Alegria O, De La Cruz-lópez F, Martinez-Fong D. Unilateral intranigral administration of β-sitosterol β-D-glucoside triggers pathological α-synuclein spreading and bilateral nigrostriatal dopaminergic neurodegeneration in the rat. Acta Neuropathol Commun 2020; 8:56. [PMID: 32321590 PMCID: PMC7178762 DOI: 10.1186/s40478-020-00933-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/14/2020] [Indexed: 02/05/2023] Open
Abstract
The spreading and accumulation of α-synuclein and dopaminergic neurodegeneration, two hallmarks of Parkinson’s disease (PD), have been faithfully reproduced in rodent brains by chronic, oral administration of β-sitosterol β-D-glucoside (BSSG). We investigated whether a single injection of BSSG (6 μg BSSG/μL DMSO) in the left substantia nigra of Wistar rats causes the same effects. Mock DMSO injections and untreated rats formed control groups. We performed immunostainings against the pathological α-synuclein, the dopaminergic marker tyrosine hydroxylase (TH), the neuroskeleton marker β-III tubulin, the neurotensin receptor type 1 (NTSR1) as non-dopaminergic phenotype marker and Fluro-Jade C (F-J C) label for neurodegeneration. Using β-galactosidase (β-Gal) assay and active caspase-3 immunostaining, we assessed cell death mechanisms. Golgi-Cox staining was used to measure the density and types of dendritic spines of striatal medium spiny neurons. Motor and non-motor alterations were also evaluated. The study period comprised 15 to 120 days after the lesion. In the injured substantia nigra, BSSG caused a progressive α-synuclein aggregation and dopaminergic neurodegeneration caused by senescence and apoptosis. The α-synuclein immunoreactivity was also present within microglia cells. Decreased density of dopaminergic fibers and dendritic spines also occurred in the striatum. Remarkably, all the histopathological changes also appeared on the contralateral nigrostriatal system, and α-synuclein aggregates were present in other brain regions. Motor and non-motor behavioral alterations were progressive. Our data show that the stereotaxic BSSG administration reproduces PD α-synucleinopathy phenotype in the rat. This approach will aid in identifying the spread mechanism of α-synuclein pathology and validate anti-synucleinopathy therapies.
Collapse
|
50
|
Aydin MD, Kanat A, Hacimuftuoglu A, Ozmen S, Ahiskalioglu A, Kocak MN. A new experimental evidence that olfactory bulb lesion may be a causative factor for substantia nigra degeneration; preliminary study. Int J Neurosci 2020; 131:220-227. [PMID: 32114876 DOI: 10.1080/00207454.2020.1737049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Background: Anosmia has been considered as the first diagnostic criteria of Parkinson disease (PD), we investigated the effect of the olfactory bulbectomy (OBX) on histopathological features of the substantia nigra in an animal model.Methods: Twenty-seven male rats were used in this study. Animals were divided into three groups as five (control), six SHAM and sixteen study (OBL) groups. Nothing was done in the control group, the only burr hole was done in the SHAM group, OBL was not applied, and bilateral OBL was performed in the study group, and followed ten weeks, then animals were decapitated. Olfactory bulb volumes were measured by macro anatomically. The olfactory bulbs and substantia nigra sections were analyzed by a stereological method to evaluate olfactory glomerulus and neuron density of substantia nigra per cubic centimeter and compared with statistically.Results: The mean olfactory bulb volume, degenerated olfactory glomerulus density and degenerated neuron density of substantia nigra were measured as:(4.14 ± 0.20) mm3, (1 ± 1)/mm3 and (7 ± 2)/mm3 in control (Group I); (3.6 ± 0.16)/mm3, (4 ± 1)/mm3 and(32 ± 7)/mm3 in SHAM (Group II) and (2.2 ± 0.9)/mm3, (112 ± 18)/mm3 and (1543 ± 115)/mm3in study group (Group III). Diminished olfactory bulb volume was observed in Group III animals.Conclusions: We concluded that OBL may lead to the degeneration of substantia nigra.
Collapse
Affiliation(s)
- Mehmet Dumlu Aydin
- Medical Faculty Department of Neurosurgery, Ataturk University, Erzurum, Turkey
| | - Ayhan Kanat
- Department of Neurosurgery, Recep Tayyip Erdogan University Medical Faculty, Rize, Turkey
| | - Ahmet Hacimuftuoglu
- Medical Faculty Department of Pharmacology, Ataturk University, Erzurum, Turkey
| | - Sevilay Ozmen
- Medical Faculty Department of Pathology, Ataturk University, Erzurum, Turkey
| | - Ali Ahiskalioglu
- Medical Faculty Department of Anesthesiology, Ataturk University, Erzurum, Turkey
| | - Mehmet Nuri Kocak
- Medical Faculty Department of Neurology, Ataturk University, Erzurum, Turkey
| |
Collapse
|