1
|
Bonkhoff AK, Coughlan G, Perosa V, Alhadid K, Schirmer MD, Regenhardt RW, van Veluw S, Buckley R, Fox MD, Rost NS. Sex differences in age-associated neurological diseases-A roadmap for reliable and high-yield research. SCIENCE ADVANCES 2025; 11:eadt9243. [PMID: 40043111 PMCID: PMC11881909 DOI: 10.1126/sciadv.adt9243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/06/2025] [Indexed: 03/09/2025]
Abstract
Once taken into consideration, sex differences in neurological diseases emerge in abundance: (i) Stroke severity is significantly higher in females than in males, (ii) Alzheimer's disease (AD) pathology is more pronounced in females, and (iii) conspicuous links with hormonal cycles led to female-specific diagnoses, such as catamenial migraines and epilepsy. While these differences receive increasing attention in isolation, they likely link to similar processes in the brain. Hence, this review aims to present an overview of the influences of sex chromosomes, hormones, and aging on male and female brains across health and disease, with a particular focus on AD and stroke. The focus here on advancements across several fields holds promise to fuel future research and to lead to an enriched understanding of the brain and more effective personalized neurologic care for all.
Collapse
Affiliation(s)
- Anna K. Bonkhoff
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Gillian Coughlan
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Valentina Perosa
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Kenda Alhadid
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Markus D. Schirmer
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Robert W. Regenhardt
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Susanne van Veluw
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Rachel Buckley
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Michael D. Fox
- Department of Neurology, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA, USA
| | - Natalia S. Rost
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Kaloss AM, Browning JL, Li J, Pan Y, Watsen S, Sontheimer H, Theus MH, Olsen ML. Vascular amyloidβ load in the meningeal arterial network correlates with loss of cerebral blood flow and pial collateral vessel enlargement in the J20 murine model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.635937. [PMID: 40161825 PMCID: PMC11952299 DOI: 10.1101/2025.02.05.635937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
INTRODUCTION Global reduction in cerebral blood flow (CBF) is an early pathology in Alzheimer's disease, preceding significant plaque accumulation and neurological decline. Chronic reduced CBF and subsequent reduction in tissue oxygenation and glucose may drive neurodegeneration, yet the underlying cause of globally reduced CBF remains unclear. METHODS Using premortem delivery of Methoxy-XO4 to label Aβ, and arterial vascular labeling, we assessed Aβ burden on the pial artery/arteriole network and cerebral blood flow in aged male and female WT and J20 AD mice. RESULTS The pial artery/arteriole vascular network selectively displayed extensive vascular Aβ burden. Pial collateral arteriole vessels, the by-pass system that reroutes blood flow during occlusion, displayed significant enlargement in J20 mice. Despite this, CBF was decreased by approximately 15% in 12-month J20 mice when compared to WT littermates. DISCUSSION Significant Aβ burden on the meningeal arterial network may contribute to the restriction of CBF. Redistribution of CBF through enlarged pial collateral vessels may serve as a compensatory mechanism to alter CBF during disease progression in cases of CAA.
Collapse
|
3
|
Zheng Q, Wang X. Alzheimer's disease: insights into pathology, molecular mechanisms, and therapy. Protein Cell 2025; 16:83-120. [PMID: 38733347 PMCID: PMC11786724 DOI: 10.1093/procel/pwae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
Alzheimer's disease (AD), the leading cause of dementia, is characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. This condition casts a significant shadow on global health due to its complex and multifactorial nature. In addition to genetic predispositions, the development of AD is influenced by a myriad of risk factors, including aging, systemic inflammation, chronic health conditions, lifestyle, and environmental exposures. Recent advancements in understanding the complex pathophysiology of AD are paving the way for enhanced diagnostic techniques, improved risk assessment, and potentially effective prevention strategies. These discoveries are crucial in the quest to unravel the complexities of AD, offering a beacon of hope for improved management and treatment options for the millions affected by this debilitating disease.
Collapse
Affiliation(s)
- Qiuyang Zheng
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Xin Wang
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| |
Collapse
|
4
|
Testa G, Giannelli S, Staurenghi E, Cecci R, Floro L, Gamba P, Sottero B, Leonarduzzi G. The Emerging Role of PCSK9 in the Pathogenesis of Alzheimer's Disease: A Possible Target for the Disease Treatment. Int J Mol Sci 2024; 25:13637. [PMID: 39769398 PMCID: PMC11727734 DOI: 10.3390/ijms252413637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease mainly caused by β-amyloid (Aβ) accumulation in the brain. Among the several factors that may concur to AD development, elevated cholesterol levels and brain cholesterol dyshomeostasis have been recognized to play a relevant role. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a protein primarily known to regulate plasma low-density lipoproteins (LDLs) rich in cholesterol and to be one of the main causes of familial hypercholesterolemia. In addition to that, PCSK9 is also recognized to carry out diverse important activities in the brain, including control of neuronal differentiation, apoptosis, and, importantly, LDL receptors functionality. Moreover, PCSK9 appeared to be directly involved in some of the principal processes responsible for AD development, such as inflammation, oxidative stress, and Aβ deposition. On these bases, PCSK9 management might represent a promising approach for AD treatment. The purpose of this review is to elucidate the role of PCSK9, whether or not cholesterol-related, in AD pathogenesis and to give an updated overview of the most innovative therapeutic strategies developed so far to counteract the pleiotropic activities of both humoral and brain PCSK9, focusing in particular on their potentiality for AD management.
Collapse
Affiliation(s)
- Gabriella Testa
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
| | - Serena Giannelli
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
- Division of Neurology Vand Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Erica Staurenghi
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
| | - Rebecca Cecci
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
| | - Lucrezia Floro
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
| | - Paola Gamba
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
| | - Barbara Sottero
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
| |
Collapse
|
5
|
Yu G, Thorpe A, Zeng Q, Wang E, Cai D, Wang M, Zhang B. The Landscape of Sex- and APOE Genotype-Specific Transcriptional Changes in Alzheimer's Disease at the Single Cell Level. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.01.626234. [PMID: 39677706 PMCID: PMC11642736 DOI: 10.1101/2024.12.01.626234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, with approximately two-thirds of AD patients are females. Basic and clinical research studies show evidence supporting sex-specific differences contributing to the complexity of AD. There is also strong evidence supporting sex-specific interaction between the primary genetic risk factor of AD, APOE4 and AD-associated neurodegenerative processes. Recent studies by us and others have identified sex and/or APOE4 specific differentially expressed genes in AD based on the bulk tissue RNA-sequencing data of postmortem human brain samples in AD. However, there lacks a comprehensive investigation of the interplay between sex and APOE genotypes at the single cell level. In the current study, we systematically explore sex and APOE genotype differences in single cell transcriptomics in AD. Our work provides a comprehensive overview of sex and APOE genotype-specific transcriptomic changes across 54 high-resolution cell types in AD and highlights individual genes and brain cell types that show significant differences between sexes and APOE genotypes. This study lays the groundwork for exploring the complex molecular mechanisms of AD and will inform the development of effective sex- and APOE-stratified interventions for AD.
Collapse
|
6
|
Godrich D, Pasteris J, Martin ER, Rundek T, Schellenberg G, Foroud T, Vance JM, Pericak-Vance MA, Cuccaro ML, Scott WK, Kukull W, Montine TJ, Beecham GW. Cerebral amyloid angiopathy impacts neurofibrillary tangle burden and cognition. Brain Commun 2024; 6:fcae369. [PMID: 39584156 PMCID: PMC11581998 DOI: 10.1093/braincomms/fcae369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 07/01/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024] Open
Abstract
Cerebral amyloid angiopathy commonly co-occurs with amyloid β plaques and neurofibrillary degeneration and is proposed to contribute to cognitive impairment. However, the interplay among these pathologic changes of Alzheimer disease is not well understood. Here we replicate and extend findings of a recent study that suggested the association of cerebral amyloid angiopathy and cognitive impairment is mediated by neurofibrillary degeneration. We employed similar approaches but in a larger, clinical-based (as opposed to community-based) set of 4915 autopsied National Alzheimer's Coordinating Center participants (60% with dementia). Neuropathologic lesions were measured ordinally; longitudinal change in cognition was used to measure cognitive impairment. Statistical analyses included ordinal logistic regression, mediation analyses and extension of models to include presence of APOE e4. We show a statistical interaction between cerebral amyloid angiopathy and neuritic plaques that impacts the burden of neurofibrillary tangles. Mediation analyses show that cerebral amyloid angiopathy is associated with cognitive impairment, but only by modifying the impact of neurofibrillary tangles on cognition. We expanded the mediation analysis to include APOE e4 and show similar results. Findings indicate that cerebral amyloid angiopathy plays an important role in the burden and impact of neurofibrillary degeneration contributing to cognitive impairment.
Collapse
Affiliation(s)
- Dana Godrich
- Dr. John T Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jeremy Pasteris
- Dr. John T Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Eden R Martin
- Dr. John T Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Tatjana Rundek
- Department of Neurology and Evelyn F. McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Gerard Schellenberg
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 190104, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, USA
| | - Jeffery M Vance
- Dr. John T Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Margaret A Pericak-Vance
- Dr. John T Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Michael L Cuccaro
- Dr. John T Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - William K Scott
- Dr. John T Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Walter Kukull
- Department of Epidemiology, University of Washington, Seattle, WA 351619, USA
| | - Thomas J Montine
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Gary W Beecham
- Dr. John T Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
7
|
Shade LMP, Katsumata Y, Abner EL, Aung KZ, Claas SA, Qiao Q, Heberle BA, Brandon JA, Page ML, Hohman TJ, Mukherjee S, Mayeux RP, Farrer LA, Schellenberg GD, Haines JL, Kukull WA, Nho K, Saykin AJ, Bennett DA, Schneider JA, Ebbert MTW, Nelson PT, Fardo DW. GWAS of multiple neuropathology endophenotypes identifies new risk loci and provides insights into the genetic risk of dementia. Nat Genet 2024; 56:2407-2421. [PMID: 39379761 PMCID: PMC11549054 DOI: 10.1038/s41588-024-01939-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/30/2024] [Indexed: 10/10/2024]
Abstract
Genome-wide association studies (GWAS) have identified >80 Alzheimer's disease and related dementias (ADRD)-associated genetic loci. However, the clinical outcomes used in most previous studies belie the complex nature of underlying neuropathologies. Here we performed GWAS on 11 ADRD-related neuropathology endophenotypes with participants drawn from the following three sources: the National Alzheimer's Coordinating Center, the Religious Orders Study and Rush Memory and Aging Project, and the Adult Changes in Thought study (n = 7,804 total autopsied participants). We identified eight independent significantly associated loci, of which four were new (COL4A1, PIK3R5, LZTS1 and APOC2). Separately testing known ADRD loci, 19 loci were significantly associated with at least one neuropathology after false-discovery rate adjustment. Genetic colocalization analyses identified pleiotropic effects and quantitative trait loci. Methylation in the cerebral cortex at two sites near APOC2 was associated with cerebral amyloid angiopathy. Studies that include neuropathology endophenotypes are an important step in understanding the mechanisms underlying genetic ADRD risk.
Collapse
Affiliation(s)
- Lincoln M P Shade
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Yuriko Katsumata
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
| | - Erin L Abner
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
- Department of Epidemiology and Environmental Health, College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Khine Zin Aung
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
| | - Steven A Claas
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Qi Qiao
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
| | - Bernardo Aguzzoli Heberle
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
| | - J Anthony Brandon
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Madeline L Page
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Richard P Mayeux
- Department of Neurology, Columbia University, New York City, NY, USA
| | - Lindsay A Farrer
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Ophthalmology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, USA
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jonathan L Haines
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Walter A Kukull
- National Alzheimer's Coordinating Center, Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Saykin
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David A Bennett
- Department of Neurological Sciences, Rush Medical College, Chicago, IL, USA
- Rush Alzheimer's Disease Center, Rush Medical College, Chicago, IL, USA
| | - Julie A Schneider
- Department of Neurological Sciences, Rush Medical College, Chicago, IL, USA
- Rush Alzheimer's Disease Center, Rush Medical College, Chicago, IL, USA
- Department of Pathology, Rush Medical College, Chicago, IL, USA
| | - Mark T W Ebbert
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | - David W Fardo
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA.
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
8
|
Koemans EA, Perosa V, Freeze WM, Lee H, Kozberg MG, Coughlan GT, Buckley RF, Wermer MJ, Greenberg SM, van Veluw SJ. Sex differences in histopathological markers of cerebral amyloid angiopathy and related hemorrhage. Int J Stroke 2024; 19:947-956. [PMID: 38703035 PMCID: PMC11408965 DOI: 10.1177/17474930241255276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
BACKGROUND Men with cerebral amyloid angiopathy (CAA) may have an earlier onset of intracerebral hemorrhage and a more hemorrhagic disease course compared to women. In this cohort study, we investigated sex differences in histopathological markers associated with amyloid-β burden and hemorrhage in cognitively impaired individuals and patients with CAA, using neuropathological data from two autopsy databases. METHODS First, we investigated presence of parenchymal (Thal score) and vascular amyloid-β (CAA severity score) in cognitively impaired individuals from the National Alzheimer's Coordinating Center (NACC) neuropathology database. Next, we examined sex differences in hemorrhagic ex vivo magnetic resonance imaging (MRI) markers and local cortical iron burden and the interaction of sex on factors associated with cortical iron burden (CAA percentage area and vessel remodeling) in patients with pathologically confirmed clinical CAA from the Massachusetts General Hospital (MGH) CAA neuropathology database. RESULTS In 6120 individuals from the NACC database (45% women, mean age 80 years), the presence of parenchymal amyloid-β (odds ratio (OR) (95% confidence interval (CI)) =0.68 (0.53-0.88)) but not vascular amyloid-β was less in men compared to women. In 19 patients with definite CAA from the MGH CAA database (35% women, mean age 75 years), a lower microbleed count (p < 0.001) but a higher proportion of cortical superficial siderosis and a higher local cortical iron burden was found in men (p < 0.001) compared to women. CAA percentage area was comparable in men and women (p = 0.732). Exploratory analyses demonstrated a possible stronger negative relation between cortical CAA percentage area and cortical iron density in men compared to women (p = 0.03). CONCLUSION Previously observed sex differences in hemorrhage onset and progression in CAA patients are likely not due to differences in global CAA severity between men and women. Other factors, such as vascular remodeling, may contribute, but future studies are necessary to replicate our findings in larger data sets and to further investigate the underlying mechanisms behind these complex sex differences.
Collapse
Affiliation(s)
- Emma A Koemans
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Valentina Perosa
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Whitney M Freeze
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hang Lee
- Department of Biostatistics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mariel G Kozberg
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gillian T Coughlan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rachel F Buckley
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marieke Jh Wermer
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Susanne J van Veluw
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
9
|
Sin MK, Dowling NM, Roseman JM, Ahmed A, Zamrini E. Late-Life Blood Pressure and Cerebral Amyloid Angiopathy: Findings from the U.S. National Alzheimer's Coordinating Center Uniform Dataset. Neurol Int 2024; 16:821-832. [PMID: 39195563 DOI: 10.3390/neurolint16040061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
High blood pressure (BP) and cerebral amyloid angiopathy (CAA) are two common risk factors for intracranial hemorrhage, potentially leading to cognitive impairment. Less is known about the relationship between BP and CAA, the examination of which was the objective of this study. We analyzed data from 2510 participants in the National Alzheimer's Coordinating Center (NACC) who had information on longitudinal BP measurements before death and on CAA from autopsy. Using the average of four systolic BPs (SBPs) prior to death, SBP was categorized into three groups: <120 mmHg (n = 435), 120-139 mmHg (n = 1335), and ≥140 mmHg (n = 740). CAA was diagnosed using immunohistochemistry in 1580 participants and categorized as mild (n = 759), moderate (n = 529), or severe (n = 292). When adjusted for age at death, sex, APOE genotype, Braak, CERAD, antihypertensive medication use, and microinfarcts, the odds ratios (95% CIs) for CAA associated with SBPs of 120-139 and ≥140 mmHg were 0.91 (0.74-1.12) and 1.00 (0.80-1.26), respectively. Findings from predictor effect plots show no variation in the probability of CAA between the three SBP categories. Microbleeds had no association with CAA, but among those with SBP ≥ 130 mmHg, the proportion of those with microbleeds was numerically greater in those with more severe CAA (p for trend, 0.084). In conclusion, we found no evidence of an association between SBP and CAA. Future studies need to develop non-invasive laboratory tests to diagnose CAA and prospectively examine this association and its implication on the pathophysiology and outcome of Alzheimer's disease.
Collapse
Affiliation(s)
- Mo-Kyung Sin
- College of Nursing, Seattle University, Seattle, WA 98122, USA
| | - N Maritza Dowling
- Department of Acute & Chronic Care, School of Nursing, George Washington University, Washington, DC 20147, USA
- Department of Epidemiology & Biostatistics, Milken School of Public Health, George Washington University, Washington, DC 20147, USA
| | - Jeffrey M Roseman
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ali Ahmed
- Center for Data Science and Outcomes Research, Veterans Affairs Medical Center, Washington, DC 20242, USA
- Department of Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC 20052, USA
- Department of Medicine, School of Medicine, Georgetown University, Washington, DC 20057, USA
| | - Edward Zamrini
- Center for Data Science and Outcomes Research, Veterans Affairs Medical Center, Washington, DC 20242, USA
- Department of Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC 20052, USA
- Biomedical Informatics Center, School of Medicine & Health Sciences, George Washington University, Washington, DC 20052, USA
| |
Collapse
|
10
|
Azargoonjahromi A. The duality of amyloid-β: its role in normal and Alzheimer's disease states. Mol Brain 2024; 17:44. [PMID: 39020435 PMCID: PMC11256416 DOI: 10.1186/s13041-024-01118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024] Open
Abstract
Alzheimer's disease (AD) is a degenerative neurological condition that gradually impairs cognitive abilities, disrupts memory retention, and impedes daily functioning by impacting the cells of the brain. A key characteristic of AD is the accumulation of amyloid-beta (Aβ) plaques, which play pivotal roles in disease progression. These plaques initiate a cascade of events including neuroinflammation, synaptic dysfunction, tau pathology, oxidative stress, impaired protein clearance, mitochondrial dysfunction, and disrupted calcium homeostasis. Aβ accumulation is also closely associated with other hallmark features of AD, underscoring its significance. Aβ is generated through cleavage of the amyloid precursor protein (APP) and plays a dual role depending on its processing pathway. The non-amyloidogenic pathway reduces Aβ production and has neuroprotective and anti-inflammatory effects, whereas the amyloidogenic pathway leads to the production of Aβ peptides, including Aβ40 and Aβ42, which contribute to neurodegeneration and toxic effects in AD. Understanding the multifaceted role of Aβ, particularly in AD, is crucial for developing effective therapeutic strategies that target Aβ metabolism, aggregation, and clearance with the aim of mitigating the detrimental consequences of the disease. This review aims to explore the mechanisms and functions of Aβ under normal and abnormal conditions, particularly in AD, by examining both its beneficial and detrimental effects.
Collapse
|
11
|
Bonomi CG, Martorana A, Fiorelli D, Nuccetelli M, Placidi F, Mercuri NB, Motta C. Constitutive NOS Production Is Modulated by Alzheimer's Disease Pathology Depending on APOE Genotype. Int J Mol Sci 2024; 25:3725. [PMID: 38612537 PMCID: PMC11011586 DOI: 10.3390/ijms25073725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Both the endothelial (eNOS) and the neuronal (nNOS) isoforms of constitutive Nitric Oxide Synthase have been implicated in vascular dysfunctions in Alzheimer's disease (AD). We aimed to explore the relationship between amyloid pathology and NO dynamics by comparing the cerebrospinal fluid (CSF) levels of nNOS and eNOS of 8 healthy controls (HC) and 27 patients with a clinical diagnosis of Alzheimer's disease and isolated CSF amyloid changes, stratified according to APOE ε genotype (APOE ε3 = 13, APOE ε4 = 14). Moreover, we explored the associations between NOS isoforms, CSF AD biomarkers, age, sex, cognitive decline, and blood-brain barrier permeability. In our cohort, both eNOS and nNOS levels were increased in APOE ε3 with respect to HC and APOE ε4. CSF eNOS inversely correlated with CSF Amyloid-β42 selectively in carriers of APOE ε3; CSF nNOS was negatively associated with age and CSF p-tau only in the APOE ε4 subgroup. Increased eNOS could represent compensative vasodilation to face progressive Aβ-induced vasoconstriction in APOE ε3, while nNOS could represent the activation of NO-mediated plasticity strategies in the same group. Our results confirm previous findings that the APOE genotype is linked with different vascular responses to AD pathology.
Collapse
Affiliation(s)
- Chiara Giuseppina Bonomi
- UOSD Memory Clinic, Policlinico Tor Vergata, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.G.B.); (C.M.)
| | - Alessandro Martorana
- UOSD Memory Clinic, Policlinico Tor Vergata, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.G.B.); (C.M.)
| | - Denise Fiorelli
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (D.F.); (M.N.)
| | - Marzia Nuccetelli
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (D.F.); (M.N.)
| | - Fabio Placidi
- Neurology Unit, Policlinico Tor Vergata, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.P.); (N.B.M.)
| | - Nicola Biagio Mercuri
- Neurology Unit, Policlinico Tor Vergata, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.P.); (N.B.M.)
| | - Caterina Motta
- UOSD Memory Clinic, Policlinico Tor Vergata, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.G.B.); (C.M.)
| |
Collapse
|
12
|
Raulin AC, Doss SV, Heckman MG, Craver EC, Li Z, Ikezu TC, Sekiya H, Liu CC, Martens YA, Rosenberg CL, Kuchenbecker LA, DeTure M, Reichard RR, Nguyen AT, Constantopoulos E, Larsen RA, Kounaves EK, Murray ME, Dickson DW, Petersen RC, Bu G, Kanekiyo T. Impact of APOE on amyloid and tau accumulation in argyrophilic grain disease and Alzheimer's disease. Acta Neuropathol Commun 2024; 12:25. [PMID: 38336940 PMCID: PMC10854035 DOI: 10.1186/s40478-024-01731-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024] Open
Abstract
Alzheimer's disease (AD), characterized by the deposition of amyloid-β (Aβ) in senile plaques and neurofibrillary tangles of phosphorylated tau (pTau), is increasingly recognized as a complex disease with multiple pathologies. AD sometimes pathologically overlaps with age-related tauopathies such as four repeat (4R)-tau predominant argyrophilic grain disease (AGD). While AGD is often detected with AD pathology, the contribution of APOE4 to AGD risk is not clear despite its robust effects on AD pathogenesis. Specifically, how APOE genotype influences Aβ and tau pathology in co-occurring AGD and AD has not been fully understood. Using postmortem brain samples (N = 353) from a neuropathologically defined cohort comprising of cases with AD and/or AGD pathology built to best represent different APOE genotypes, we measured the amounts of major AD-related molecules, including Aβ40, Aβ42, apolipoprotein E (apoE), total tau (tTau), and pTau181, in the temporal cortex. The presence of tau lesions characteristic of AD (AD-tau) was correlated with cognitive decline based on Mini-Mental State Examination (MMSE) scores, while the presence of AGD tau lesions (AGD-tau) was not. Interestingly, while APOE4 increased the risk of AD-tau pathology, it did not increase the risk of AGD-tau pathology. Although APOE4 was significantly associated with higher levels of insoluble Aβ40, Aβ42, apoE, and pTau181, the APOE4 effect was no longer detected in the presence of AGD-tau. We also found that co-occurrence of AGD with AD was associated with lower insoluble Aβ42 and pTau181 levels. Overall, our findings suggest that different patterns of Aβ, tau, and apoE accumulation mediate the development of AD-tau and AGD-tau pathology, which is affected by APOE genotype.
Collapse
Affiliation(s)
| | - Sydney V Doss
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Michael G Heckman
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Emily C Craver
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Zonghua Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Tadafumi C Ikezu
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Hiroaki Sekiya
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Biogen, Cambridge, MA, 02142, USA
| | - Yuka A Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- SciNeuro Pharmaceuticals, Rockville, MD, 20850, USA
| | | | | | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - R Ross Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Aivi T Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Eleni Constantopoulos
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Rachel A Larsen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Emmaline K Kounaves
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
13
|
Perez CM, Gong Z, Yoo C, Roy D, Deoraj A, Felty Q. Inhibitor of DNA Binding Protein 3 (ID3) and Nuclear Respiratory Factor 1 (NRF1) Mediated Transcriptional Gene Signatures are Associated with the Severity of Cerebral Amyloid Angiopathy. Mol Neurobiol 2024; 61:835-882. [PMID: 37668961 DOI: 10.1007/s12035-023-03541-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/25/2023] [Indexed: 09/06/2023]
Abstract
Cerebral amyloid angiopathy (CAA) is a degenerative vasculopathy. We have previously shown that transcription regulating proteins- inhibitor of DNA binding protein 3 (ID3) and the nuclear respiratory factor 1 (NRF1) contribute to vascular dysregulation. In this study, we have identified sex specific ID3 and NRF1-mediated gene networks in CAA patients diagnosed with Alzheimer's Disease (AD). High expression of ID3 mRNA coupled with low NRF1 mRNA levels was observed in the temporal cortex of men and women CAA patients. Low NRF1 mRNA expression in the temporal cortex was found in men with severe CAA. High ID3 expression was found in women with the genetic risk factor APOE4. Low NRF1 expression was also associated with APOE4 in women with CAA. Genome wide transcriptional activity of both ID3 and NRF1 paralleled their mRNA expression levels. Sex specific differences in transcriptional gene signatures of both ID3 and NRF1 were observed. These findings were further corroborated by Bayesian machine learning and the GeNIe simulation models. Dynamic machine learning using a Monte Carlo Markov Chain (MCMC) gene ordering approach revealed that ID3 was associated with disease severity in women. NRF1 was associated with CAA and severity of this disease in men. These findings suggest that aberrant ID3 and NRF1 activity presumably plays a major role in the pathogenesis and severity of CAA. Further analyses of ID3- and NRF1-regulated molecular drivers of CAA may provide new targets for personalized medicine and/or prevention strategies against CAA.
Collapse
Affiliation(s)
- Christian Michael Perez
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Zhenghua Gong
- Department of Biostatistics, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Changwon Yoo
- Department of Biostatistics, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Deodutta Roy
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Alok Deoraj
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Quentin Felty
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA.
| |
Collapse
|
14
|
Huang X, Zhao J, Wang Q, Yan T, Gou S, Zhu X, Yang L, Ye F, Zhang J, Wang Y, Yang S, Le W, Xiang Y. Association between plasma CTRPs with cognitive impairment and neurodegeneration of Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14606. [PMID: 38334009 PMCID: PMC10853890 DOI: 10.1111/cns.14606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 02/10/2024] Open
Abstract
AIMS Recent evidence indicated the biological basis of complement 1q (C1q)/tumor necrosis factor (TNF)-related protein (CTRP) 3, 4, and 14 for affecting brain structure and cognitive function. Thus, we aimed to investigate the association between plasma CTRPs with Alzheimer's disease (AD). METHODS A multicenter, cross-sectional study recruited patients with AD (n = 137) and cognitively normal (CN) controls (n = 140). After the data collection of demographic characteristics, lifestyle risk factors, and medical history, plasma levels of tau phosphorylated at threonine 217 (pT217), pT181, neurofilament light (NfL), CTRP3, 4, and 14 were examined and compared. Multivariate logistic regression analysis was applied to determine associations of plasma CTPRs with the presence of AD. The correlation analysis was used to explore correlations between plasma CTPRs with scores of Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Activities of Daily Living (ADL) scale, and Clinical Dementia Rating Sum of Boxes (CDR-SB), and levels of plasma pT217, pT181, and NfL. Receiver-operating characteristic (ROC) analysis and Delong's test were used to determine the diagnostic power of plasma CTPRs. RESULTS Plasma levels of CTRP3, 4, and 14 were higher in AD group than those in CN group. After adjusting for conventional risk factors, CTRP3, CTRP4, and CTRP14 were associated with the presence of AD. In AD patients, CTRP3 was negatively correlated with scores of MMSE and MoCA, while positively correlated with ADL score, CDR-SB score, pT217, and pT181; CTRP4 was positively correlated with CDR-SB score, pT181, and NfL; CTRP14 was negatively correlated with MMSE score, while positively correlated with CDR-SB score, pT217, and NfL. An independent addition of CTRP3 and 4 to the basic model combining age, sex, years of education, APOE4 status, BMI, TG, and HDL-C led to a significant improvement in diagnostic power for AD, respectively. CONCLUSIONS All the findings preliminarily uncovered associations between plasma CTRPs and AD and suggested the potential of CTRPs as a blood-derived biomarker for AD.
Collapse
Affiliation(s)
- Xiao Huang
- Institute of Neurology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Jialing Zhao
- Institute of Neurology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of Neurology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of NeurologyYunyang County People's HospitalChongqingChina
| | - Qinghua Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping HospitalThird Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Tingqi Yan
- Department of Neurology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Shu Gou
- Department of Neurology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xiaofeng Zhu
- Department of NeurologyChengdu Eighth People's HospitalChengduChina
| | - Liu Yang
- Department of Neurology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Fang Ye
- Department of Neurology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Jie Zhang
- Institute of Neurology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of Neurology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yanjiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping HospitalThird Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Shaojie Yang
- Department of NeurologyChengdu Eighth People's HospitalChengduChina
| | - Weidong Le
- Institute of Neurology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yang Xiang
- Institute of Neurology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of Neurology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
15
|
Kaur U, Reddy J, Tiwari A, Chakrabarti S, Chakrabarti SS. Lecanemab: More Questions Than Answers! Clin Drug Investig 2024; 44:1-10. [PMID: 38095822 DOI: 10.1007/s40261-023-01331-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 01/06/2024]
Abstract
The approval of lecanemab by the US Food and Drug Administration has been touted as a defining moment in the treatment of Alzheimer's disease. Lecanemab, an anti-amyloid beta monoclonal antibody, is the first Alzheimer's disease drug targeting amyloid beta that has shown statistically significant cognitive benefits in phase III trials. However, there have been many questions raised over the clinical relevance of the otherwise minimal cognitive improvements. Furthermore, its rapid approval has been mired in controversy, in addition to the reports of adverse events such as amyloid-related imaging abnormalities and several deaths of participants in the lecanemab trials. Here, we analyze the evidence supporting lecanemab as an amyloid beta therapy and also discuss the concerns raised about its efficacy and safety.
Collapse
Affiliation(s)
- Upinder Kaur
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Jaideep Reddy
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashutosh Tiwari
- Department of Neurology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Sasanka Chakrabarti
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar (deemed to be) University, Mullana, Haryana, India
| | - Sankha Shubhra Chakrabarti
- Department of Geriatric Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
16
|
Lee BN, Wang J, Hall MA, Kim D, Stites SD, Shen L. Sex modifies effects of imaging and CSF biomarkers on cognitive and functional outcomes: a study of Alzheimer's disease. Neurobiol Aging 2024; 133:67-77. [PMID: 37913627 PMCID: PMC10841593 DOI: 10.1016/j.neurobiolaging.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by memory and functional impairments. Two of 3 patients with AD are biologically female; therefore, the biological underpinnings of this diagnosis disparity may inform interventions slowing the AD progression. To bridge this gap, we conducted analyses of 1078 male and female participants from the Alzheimer's Disease Neuroimaging Initiative to examine associations between levels of cerebral spinal fluid (CSF)/neuroimaging biomarkers and cognitive/functional outcomes. The Chow test was used to quantify sex differences by determining if biological sex affects relationships between the studied biomarkers and outcomes. Multiple magnetic resonance imaging (whole brain, entorhinal cortex, middle temporal gyrus, fusiform gyrus, hippocampus), position emission tomography (AV45), and CSF (P-TAU, TAU) biomarkers were differentially associated with cognitive and functional outcomes. Post-hoc bootstrapped and association analyses confirmed these differential effects and emphasized the necessity of using separate, sex-stratified models. The studied imaging/CSF biomarkers may account for some of the sex-based variation in AD pathophysiology. The identified sex-varying relationships between CSF/imaging biomarkers and cognitive/functional outcomes warrant future biological investigation in independent cohorts.
Collapse
Affiliation(s)
- Brian N Lee
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Junwen Wang
- Department of Health Sciences Research, Mayo Clinic Alix School of Medicine, Phoenix, AZ, USA
| | - Molly A Hall
- Department of Veterinary and Biomedical Sciences, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Dokyoon Kim
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Shana D Stites
- Department of Psychiatry, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Reed EG, Keller-Norrell PR. Minding the Gap: Exploring Neuroinflammatory and Microglial Sex Differences in Alzheimer's Disease. Int J Mol Sci 2023; 24:17377. [PMID: 38139206 PMCID: PMC10743742 DOI: 10.3390/ijms242417377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Research into Alzheimer's Disease (AD) describes a link between AD and the resident immune cells of the brain, the microglia. Further, this suspected link is thought to have underlying sex effects, although the mechanisms of these effects are only just beginning to be understood. Many of these insights are the result of policies put in place by funding agencies such as the National Institutes of Health (NIH) to consider sex as a biological variable (SABV) and the move towards precision medicine due to continued lackluster therapeutic options. The purpose of this review is to provide an updated assessment of the current research that summarizes sex differences and the research pertaining to microglia and their varied responses in AD.
Collapse
Affiliation(s)
- Erin G. Reed
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44242, USA
| | | |
Collapse
|
18
|
Zhang Y, Lu J, Wang M, Zuo C, Jiang J. Influence of Gender on Tau Precipitation in Alzheimer's Disease According to ATN Research Framework. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:565-575. [PMID: 38223687 PMCID: PMC10781910 DOI: 10.1007/s43657-022-00076-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 01/16/2024]
Abstract
Tau proteins accumulation and their spreading pattern were affected by gender in cognitive impairment patients, especially in the progression of Alzheimer's disease (AD). However, it was unclear whether the gender effects for tau deposition influenced by amyloid deposition. The aim of this study was to investigate gender differences for tau depositions in Aβ positive (A+) subjects. In this study, tau and amyloid positron emission tomography images, structural magnetic resonance imaging images, and demographic information were collected from 179 subjects in Alzheimer's Disease Neuroimaging Initiative (ADNI) database and 63 subjects from Huashan Hospital. Subjects were classified as T+ or T- according to the presence or absence of tau (T) biomarkers. We used two-sample t test and one-way analysis of variance test to analyze the effect of gender with adjusting for age, years of education, and Minimum Mental State Examination. In the ADNI cohort, we found differences in Tau deposition in fusiform gyrus, inferior temporal gyrus, middle temporal gyrus and parahippocampal gyrus between the female T+ (FT+) and male T+ (MT+) groups (p < 0.05). Tau deposition did not differ significantly between female T- (FT-) and male T- (MT-) subjects (p > 0.05). In the Huashan Hospital cohort, there was no difference in Tau deposition between FT+ and MT+ (p > 0.05). The results show that tau depositions significantly increased in females in above brain regions. Our findings suggest that tau deposition is influenced by gender in the A+ subjects. This result has important clinical implications for the development of gender-guided early interventions for patients with both Tau and Amyloid depositions. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-022-00076-9.
Collapse
Affiliation(s)
- Ying Zhang
- School of Communication and Information Engineering, Shanghai University, Shanghai, 200444 China
| | - Jiaying Lu
- PET Center and National Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 201206 China
| | - Min Wang
- School of Communication and Information Engineering, Shanghai University, Shanghai, 200444 China
| | - Chuantao Zuo
- PET Center and National Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 201206 China
| | - Jiehui Jiang
- Institute of Biomedical Engineering, School of Life Science, Shanghai University, Shanghai, 200444 China
| |
Collapse
|
19
|
Tubi MA, Wheeler K, Matsiyevskiy E, Hapenney M, Mack WJ, Chui HC, King K, Thompson PM, Braskie MN. White matter hyperintensity volume modifies the association between CSF vascular inflammatory biomarkers and regional FDG-PET along the Alzheimer's disease continuum. Neurobiol Aging 2023; 132:1-12. [PMID: 37708739 PMCID: PMC10843575 DOI: 10.1016/j.neurobiolaging.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 09/16/2023]
Abstract
In older adults with abnormal levels of Alzheimer's disease neuropathology, lower cerebrospinal fluid (CSF) vascular endothelial growth factor (VEGF) levels are associated with lower [¹⁸F]-fluorodeoxyglucose positron emission tomography (FDG-PET) signal, but whether this association is (1) specific to VEGF or broadly driven by vascular inflammation, or (2) modified by vascular risk (e.g., white matter hyperintensities [WMHs]) remains unknown. To address this and build upon our past work, we evaluated whether 5 CSF vascular inflammation biomarkers (vascular cell adhesion molecule 1, VEGF, C-reactive protein, fibrinogen, and von Willebrand factor)-previously associated with CSF amyloid levels-were related to FDG-PET signal and whether WMH volume modified these associations in 158 Alzheimer's Disease Neuroimaging Initiative participants (55-90 years old, 39 cognitively normal, 80 mild cognitive impairment, 39 Alzheimer's disease). We defined regions both by cortical boundary and by the 3 major vascular territories: anterior, middle, and posterior cerebral arteries. We found that WMH volume had interactive effects with CSF biomarkers (VEGF and C-reactive protein) on FDG-PET throughout the cortex in both vascular territories and conventionally defined regions of interest.
Collapse
Affiliation(s)
- Meral A Tubi
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Koral Wheeler
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Elizabeth Matsiyevskiy
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Matthew Hapenney
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Wendy J Mack
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Helena C Chui
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kevin King
- Department of Neuroradiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Meredith N Braskie
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA.
| |
Collapse
|
20
|
Hosseinzadeh S, Afshari S, Molaei S, Rezaei N, Dadkhah M. The role of genetics and gender specific differences in neurodegenerative disorders: Insights from molecular and immune landscape. J Neuroimmunol 2023; 384:578206. [PMID: 37813041 DOI: 10.1016/j.jneuroim.2023.578206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/09/2023] [Accepted: 09/23/2023] [Indexed: 10/11/2023]
Abstract
Neurodegenerative disorders (NDDs) are the most common neurological disorders with high prevalence and have significant socioeconomic implications. Understanding the underlying cellular and molecular mechanisms associated with the immune system can be effective in disease etiology, leading to more effective therapeutic approaches for both females and males. The central nervous system (CNS) actively participates in immune responses, both within and outside the CNS. Immune system activation is a common feature in NDDs. Gender-specific factors play a significant role in the prevalence, progression, and manifestation of NDDs. Neuroinflammation, in both inflammatory neurological and neurodegenerative conditions, is defined by the triggering of microglia and astrocyte cell activation. This results in the secretion of pro-inflammatory cytokines and chemokines. Numerous studies have documented the role of neuroinflammation in neurological diseases, highlighting the involvement of immune signaling pathways in disease development. Converging evidence support immune system involvement during neurodegeneration in NDDs. In this review, we summarize emerging evidence that reveals gender-dependent differences in immune responses related to NDDs. Also, we highlight sex differences in immune responses and discuss how these sex-specific influences can increase the risk of NDDs. Understanding the role of gender-specific factors can aid in developing targeted therapeutic strategies and improving patient outcomes. Ultimately, the better understanding of these mechanisms contributed to sex-dependent immune response in NDDs, can be critically usful in targeting of immune signaling cascades in such disorders. In this regard, sex-related immune responses in NDDs may be promising and effective targets in therapeutic strategies.
Collapse
Affiliation(s)
- Shahnaz Hosseinzadeh
- Department of Microbiology & Immunology, School of Medicine, Ardabil University of Medical Sciences, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Salva Afshari
- Students Research Committee, Pharmacy School, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Soheila Molaei
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran 1419733151, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education Research Network (USERN), Tehran, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
21
|
Yang LG, March ZM, Stephenson RA, Narayan PS. Apolipoprotein E in lipid metabolism and neurodegenerative disease. Trends Endocrinol Metab 2023; 34:430-445. [PMID: 37357100 PMCID: PMC10365028 DOI: 10.1016/j.tem.2023.05.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/27/2023]
Abstract
Dysregulation of lipid metabolism has emerged as a central component of many neurodegenerative diseases. Variants of the lipid transport protein, apolipoprotein E (APOE), modulate risk and resilience in several neurodegenerative diseases including late-onset Alzheimer's disease (LOAD). Allelic variants of the gene, APOE, alter the lipid metabolism of cells and tissues and have been broadly associated with several other cellular and systemic phenotypes. Targeting APOE-associated metabolic pathways may offer opportunities to alter disease-related phenotypes and consequently, attenuate disease risk and impart resilience to multiple neurodegenerative diseases. We review the molecular, cellular, and tissue-level alterations to lipid metabolism that arise from different APOE isoforms. These changes in lipid metabolism could help to elucidate disease mechanisms and tune neurodegenerative disease risk and resilience.
Collapse
Affiliation(s)
- Linda G Yang
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Zachary M March
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Roxan A Stephenson
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Priyanka S Narayan
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA.; National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA; Center for Alzheimer's and Related Dementias (CARD), National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
22
|
Pinho J, Almeida FC, Araújo JM, Machado Á, Costa AS, Silva F, Francisco A, Quintas-Neves M, Ferreira C, Soares-Fernandes JP, Oliveira TG. Sex-Specific Patterns of Cerebral Atrophy and Enlarged Perivascular Spaces in Patients with Cerebral Amyloid Angiopathy and Dementia. AJNR Am J Neuroradiol 2023; 44:792-798. [PMID: 37290817 PMCID: PMC10337609 DOI: 10.3174/ajnr.a7900] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/07/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND PURPOSE Cerebral amyloid angiopathy is characterized by amyloid β deposition in leptomeningeal and superficial cortical vessels. Cognitive impairment is common and may occur independent of concomitant Alzheimer disease neuropathology. It is still unknown which neuroimaging findings are associated with dementia in cerebral amyloid angiopathy and whether they are modulated by sex. This study compared MR imaging markers in patients with cerebral amyloid angiopathy with dementia or mild cognitive impairment or who are cognitively unimpaired and explored sex-specific differences. MATERIALS AND METHODS We studied 58 patients with cerebral amyloid angiopathy selected from the cerebrovascular and memory outpatient clinics. Clinical characteristics were collected from clinical records. Cerebral amyloid angiopathy was diagnosed on MR imaging on the basis of the Boston criteria. Visual rating scores for atrophy and other imaging features were independently assessed by 2 senior neuroradiologists. RESULTS Medial temporal lobe atrophy was higher for those with cerebral amyloid angiopathy with dementia versus those cognitively unimpaired (P = .015), but not for those with mild cognitive impairment. This effect was mainly driven by higher atrophy in men with dementia, compared with women with and without dementia (P = .034, P = .012; respectively) and with men without dementia (P = .012). Enlarged perivascular spaces in the centrum semiovale were more frequent in women with dementia versus men with and without dementia (P = .021, P = .011; respectively) and women without dementia (P = .011). CONCLUSIONS Medial temporal lobe atrophy was more prominent in men with dementia, whereas women showed a higher number of enlarged perivascular spaces in the centrum semiovale. Overall, this finding suggests differential pathophysiologic mechanisms with sex-specific neuroimaging patterns in cerebral amyloid angiopathy.
Collapse
Affiliation(s)
- J Pinho
- From the Department of Neurology (J.P., A.S.C.), University Hospital RWTH Aachen, Aachen, Germany
| | - F C Almeida
- Life and Health Sciences Research Institute (F.C.A., M.Q.-N., T.G.O.), School of Medicine
- Life and Health Sciences Research Institute/3Bs (F.C.A., M.Q.-N., T.G.O.), Portuguese Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Neuroradiology (F.C.A.), Centro Hospitalar Universitxrário do Porto, Porto, Portugal
| | - J M Araújo
- Departments of Neurology (J.M.A., Á.M., C.F.)
| | - Á Machado
- Departments of Neurology (J.M.A., Á.M., C.F.)
| | - A S Costa
- From the Department of Neurology (J.P., A.S.C.), University Hospital RWTH Aachen, Aachen, Germany
- JARA Institute Molecular Neuroscience and Neuroimaging (A.S.C.), Forschungszentrum Jülich and RWTH Aachen University, Aachen, Germany
| | - F Silva
- Algoritmi Center (F.S., A.F.), University of Minho, Braga, Portugal
| | - A Francisco
- Algoritmi Center (F.S., A.F.), University of Minho, Braga, Portugal
| | - M Quintas-Neves
- Life and Health Sciences Research Institute (F.C.A., M.Q.-N., T.G.O.), School of Medicine
- Life and Health Sciences Research Institute/3Bs (F.C.A., M.Q.-N., T.G.O.), Portuguese Government Associate Laboratory, Braga/Guimarães, Portugal
- Neuroradiology (M.Q.-N., J.P.S.-F., T.G.O.), Hospital de Braga, Braga, Portugal
| | - C Ferreira
- Departments of Neurology (J.M.A., Á.M., C.F.)
| | | | - T G Oliveira
- Life and Health Sciences Research Institute (F.C.A., M.Q.-N., T.G.O.), School of Medicine
- Life and Health Sciences Research Institute/3Bs (F.C.A., M.Q.-N., T.G.O.), Portuguese Government Associate Laboratory, Braga/Guimarães, Portugal
- Neuroradiology (M.Q.-N., J.P.S.-F., T.G.O.), Hospital de Braga, Braga, Portugal
| |
Collapse
|
23
|
Lou T, Tao B, Chen M. Relationship of Apolipoprotein E with Alzheimer's Disease and Other Neurological Disorders: An Updated Review. Neuroscience 2023; 514:123-140. [PMID: 36736614 DOI: 10.1016/j.neuroscience.2023.01.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) and other neurodegenerative diseases, for which there is no effective cure, cause great social burden. Apolipoprotein E (APOE) is an important lipid transporter, which has been shown to have a close relationship with AD and other neurological disorders in an increasing number of studies, suggesting its potential as a therapeutic target. In this review, we summarize the recent advances in clinical and basic research on the role of APOE in the pathogenesis of multiple neurological diseases, with an emphasis on the new associations between APOE and AD, and between APOE and depression. The progress of APOE research in Parkinson's disease (PD) and some other neurological diseases is briefly discussed.
Collapse
Affiliation(s)
- Tianwen Lou
- The First Clinical Medical College, Anhui Medical University, Hefei, China; Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Borui Tao
- The First Clinical Medical College, Anhui Medical University, Hefei, China; Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ming Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
24
|
Shang X, Roccati E, Zhu Z, Kiburg K, Wang W, Huang Y, Zhang X, Zhang X, Liu J, Tang S, Hu Y, Ge Z, Yu H, He M. Leading mediators of sex differences in the incidence of dementia in community-dwelling adults in the UK Biobank: a retrospective cohort study. Alzheimers Res Ther 2023; 15:7. [PMID: 36617573 PMCID: PMC9827665 DOI: 10.1186/s13195-022-01140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/08/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Little is known regarding whether sex assigned at birth modifies the association between several predictive factors for dementia and the risk of dementia itself. METHODS Our retrospective cohort study included 214,670 men and 214,670 women matched by age at baseline from the UK Biobank. Baseline data were collected between 2006 and 2010, and incident dementia was ascertained using hospital inpatient or death records until January 2021. Mediation analysis was tested for 133 individual factors. RESULTS Over 5,117,381 person-years of follow-up, 5928 cases of incident all-cause dementia (452 cases of young-onset dementia, 5476 cases of late-onset dementia) were documented. Hazard ratios (95% CI) for all-cause, young-onset, and late-onset dementias associated with the male sex (female as reference) were 1.23 (1.17-1.29), 1.42 (1.18-1.71), and 1.21 (1.15-1.28), respectively. Out of 133 individual factors, the strongest mediators for the association between sex and incident dementia were multimorbidity risk score (percentage explained (95% CI): 62.1% (45.2-76.6%)), apolipoprotein A in the blood (25.5% (15.2-39.4%)), creatinine in urine (24.9% (16.1-36.5%)), low-density lipoprotein cholesterol in the blood (23.2% (16.2-32.1%)), and blood lymphocyte percentage (21.1% (14.5-29.5%)). Health-related conditions (percentage (95% CI) explained: 74.4% (51.3-88.9%)) and biomarkers (83.0% (37.5-97.5%)), but not lifestyle factors combined (30.1% (20.7-41.6%)), fully mediated sex differences in incident dementia. Health-related conditions combined were a stronger mediator for late-onset (75.4% (48.6-90.8%)) than for young-onset dementia (52.3% (25.8-77.6%)), whilst lifestyle factors combined were a stronger mediator for young-onset (42.3% (19.4-69.0%)) than for late-onset dementia (26.7% (17.1-39.2%)). CONCLUSIONS Our analysis matched by age has demonstrated that men had a higher risk of all-cause, young-onset, and late-onset dementias than women. This association was fully mediated by health-related conditions or blood/urinary biomarkers and largely mediated by lifestyle factors. Our findings are important for understanding potential mechanisms of sex in dementia risk.
Collapse
Affiliation(s)
- Xianwen Shang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
- Centre for Eye Research Australia, Melbourne, VIC, 3002, Australia.
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne, VIC, 3050, Australia.
| | - Eddy Roccati
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne, VIC, 3050, Australia
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Zhuoting Zhu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Centre for Eye Research Australia, Melbourne, VIC, 3002, Australia
| | - Katerina Kiburg
- Centre for Eye Research Australia, Melbourne, VIC, 3002, Australia
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yu Huang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Xueli Zhang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Xiayin Zhang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Jiahao Liu
- Centre for Eye Research Australia, Melbourne, VIC, 3002, Australia
| | - Shulin Tang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yijun Hu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Zongyuan Ge
- Monash e-Research Center, Faculty of Engineering, Airdoc Research, Nvidia AI Technology Research Center, Monash University, Melbourne, VIC, 3800, Australia
| | - Honghua Yu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Mingguang He
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- Centre for Eye Research Australia, Melbourne, VIC, 3002, Australia.
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
25
|
Nakamura T, Kawarabayashi T, Ueda T, Shimomura S, Hoshino M, Itoh K, Ihara K, Nakaji S, Takatama M, Ikeda Y, Shoji M. Plasma ApoE4 Levels Are Lower than ApoE2 and ApoE3 Levels, and Not Associated with Plasma Aβ40/42 Ratio as a Biomarker of Amyloid-β Amyloidosis in Alzheimer's Disease. J Alzheimers Dis 2023; 93:333-348. [PMID: 36970894 DOI: 10.3233/jad-220996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND APOE4 is the strongest risk factor for Alzheimer's disease (AD). However, limited information is currently available on APOE4 and the pathological role of plasma apolipoprotein E (ApoE) 4 remains unclear. OBJECTIVE The aims of the present study were to measure plasma levels of total ApoE (tE), ApoE2, ApoE3, and ApoE4 using mass spectrometry and elucidate the relationships between plasma ApoE and blood test items. METHODS We herein examined plasma levels of tE, ApoE2, ApoE3, and ApoE4 in 498 subjects using liquid chromatograph-mass spectrometry (LC-MS/MS). RESULTS Among 498 subjects, mean age was 60 years and 309 were female. tE levels were distributed as ApoE2/E3 = ApoE2/E4 >ApoE3/E3 = ApoE3/E4 >ApoE4/E4. In the heterozygous group, ApoE isoform levels were distributed as ApoE2 >ApoE3 >ApoE4. ApoE levels were not associated with aging, the plasma amyloid-β (Aβ) 40/42 ratio, or the clinical diagnosis of AD. Total cholesterol levels correlated with the level of each ApoE isoform. ApoE2 levels were associated with renal function, ApoE3 levels with low-density lipoprotein cholesterol and liver function, and ApoE4 levels with triglycerides, high-density lipoprotein cholesterol, body weight, erythropoiesis, and insulin metabolism. CONCLUSION The present results suggest the potential of LC-MS/MS for the phenotyping and quantitation of plasma ApoE. Plasma ApoE levels are regulated in the order of ApoE2 >ApoE3 >ApoE4 and are associated with lipids and multiple metabolic pathways, but not directly with aging or AD biomarkers. The present results provide insights into the multiple pathways by which peripheral ApoE4 influences the progression of AD and atherosclerosis.
Collapse
Affiliation(s)
- Takumi Nakamura
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
- Department of Social Medicine, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Takeshi Kawarabayashi
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Japan
- Department of Social Medicine, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Tetsuya Ueda
- Bioanalysis Department, LSI Medience Corporation, Itabashi-ku, Tokyo, Japan
| | - Sachiko Shimomura
- Bioanalysis Department, LSI Medience Corporation, Itabashi-ku, Tokyo, Japan
| | - Masaki Hoshino
- Bioanalysis Department, LSI Medience Corporation, Itabashi-ku, Tokyo, Japan
| | - Ken Itoh
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kazushige Ihara
- Department of Social Medicine, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Shigeyuki Nakaji
- Department of Social Medicine, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Masamitsu Takatama
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Yoshio Ikeda
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Mikio Shoji
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Japan
- Department of Social Medicine, Hirosaki University School of Medicine, Hirosaki, Japan
| |
Collapse
|
26
|
Factors associated with the location of perivascular space enlargement in middle-aged individuals undergoing brain screening in Japan. Clin Neurol Neurosurg 2022; 223:107497. [DOI: 10.1016/j.clineuro.2022.107497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/15/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022]
|
27
|
Fray S, Achouri-Rassas A, Belal S, Messaoud T. Missing apolipoprotein E ɛ4 allele associated with nonamnestic Alzheimer’s disease in a Tunisian population. J Genet 2022. [DOI: 10.1007/s12041-022-01384-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
28
|
Kim H, Devanand DP, Carlson S, Goldberg TE. Apolipoprotein E Genotype e2: Neuroprotection and Its Limits. Front Aging Neurosci 2022; 14:919712. [PMID: 35912085 PMCID: PMC9329577 DOI: 10.3389/fnagi.2022.919712] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
In this review, we comprehensively, qualitatively, and critically synthesized several features of APOE-e2, a known APOE protective variant, including its associations with longevity, cognition, and neuroimaging, and neuropathology, all in humans. If e2’s protective effects—and their limits—could be elucidated, it could offer therapeutic windows for Alzheimer’s disease (AD) prevention or amelioration. Literature examining e2 within the years 1994–2021 were considered for this review. Studies on human subjects were selectively reviewed and were excluded if observation of e2 was not specified. Effects of e2 were compared with e3 and e4, separately and as a combined non-e2 group. Our examination of existing literature indicated that the most robust protective role of e2 is in longevity and AD neuropathologies, but e2’s effect on cognition and other AD imaging markers (brain structure, function, and metabolism) were inconsistent, thus inconclusive. Notably, e2 was associated with greater risk of non-AD proteinopathies and a disadvantageous cerebrovascular profile. We identified multiple methodological shortcomings of the literature on brain function and cognition that could have contributed to inconsistent and potentially misleading findings. We make careful interpretations of existing findings and provide directions for research strategies that could effectively examine the independent and unbiased effect of e2 on AD risk.
Collapse
Affiliation(s)
- Hyun Kim
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, United States
- Department of Geriatric Psychiatry, New York State Psychiatric Institute, New York, NY, United States
| | - Davangere P. Devanand
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, United States
- Department of Geriatric Psychiatry, New York State Psychiatric Institute, New York, NY, United States
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Scott Carlson
- Department of Geriatric Psychiatry, New York State Psychiatric Institute, New York, NY, United States
| | - Terry E. Goldberg
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, United States
- Department of Geriatric Psychiatry, New York State Psychiatric Institute, New York, NY, United States
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, United States
- *Correspondence: Terry E. Goldberg,
| |
Collapse
|
29
|
McCorkindale AN, Mundell HD, Guennewig B, Sutherland GT. Vascular Dysfunction Is Central to Alzheimer's Disease Pathogenesis in APOE e4 Carriers. Int J Mol Sci 2022; 23:7106. [PMID: 35806110 PMCID: PMC9266739 DOI: 10.3390/ijms23137106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and the leading risk factor, after age, is possession of the apolipoprotein E epsilon 4 allele (APOE4). Approximately 50% of AD patients carry one or two copies of APOE4 but the mechanisms by which it confers risk are still unknown. APOE4 carriers are reported to demonstrate changes in brain structure, cognition, and neuropathology, but findings have been inconsistent across studies. In the present study, we used multi-modal data to characterise the effects of APOE4 on the brain, to investigate whether AD pathology manifests differently in APOE4 carriers, and to determine if AD pathomechanisms are different between carriers and non-carriers. Brain structural differences in APOE4 carriers were characterised by applying machine learning to over 2000 brain MRI measurements from 33,384 non-demented UK biobank study participants. APOE4 carriers showed brain changes consistent with vascular dysfunction, such as reduced white matter integrity in posterior brain regions. The relationship between APOE4 and AD pathology was explored among the 1260 individuals from the Religious Orders Study and Memory and Aging Project (ROSMAP). APOE4 status had a greater effect on amyloid than tau load, particularly amyloid in the posterior cortical regions. APOE status was also highly correlated with cerebral amyloid angiopathy (CAA). Bulk tissue brain transcriptomic data from ROSMAP and a similar dataset from the Mount Sinai Brain Bank showed that differentially expressed genes between the dementia and non-dementia groups were enriched for vascular-related processes (e.g., "angiogenesis") in APOE4 carriers only. Immune-related transcripts were more strongly correlated with AD pathology in APOE4 carriers with some transcripts such as TREM2 and positively correlated with pathology severity in APOE4 carriers, but negatively in non-carriers. Overall, cumulative evidence from the largest neuroimaging, pathology, and transcriptomic studies available suggests that vascular dysfunction is key to the development of AD in APOE4 carriers. However, further studies are required to tease out non-APOE4-specific mechanisms.
Collapse
Affiliation(s)
- Andrew N. McCorkindale
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia; (A.N.M.); (H.D.M.)
| | - Hamish D. Mundell
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia; (A.N.M.); (H.D.M.)
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
| | - Boris Guennewig
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
| | - Greg T. Sutherland
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia; (A.N.M.); (H.D.M.)
| |
Collapse
|
30
|
Zhu N, Wei M, Yuan L, He X, Chen C, Ji A, Zhang G. Claudin-5 relieves cognitive decline in Alzheimer's disease mice through suppression of inhibitory GABAergic neurotransmission. Aging (Albany NY) 2022; 14:3554-3568. [PMID: 35471411 PMCID: PMC9085235 DOI: 10.18632/aging.204029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/08/2022] [Indexed: 11/25/2022]
Abstract
Alzheimer’s disease (AD) is characterized by progressive cognitive decline, which is considered as the most common form of dementia in the elderly. Recently, it is suggested that impaired cerebrovascular function may precede the onset of AD. Claudin-5, which is the most enriched tight junction protein, has been reported to prevent the passage of damaging material at the blood-brain barrier. However, whether claudin-5 impacts AD has no direct evidence. We found a decrease level of claudin-5 in the hippocampus of AD and elder mice. And intravenous injection of claudin-5 improved learning and memory ability in these mice, while knockout of the protein led to impaired learning and memory and long-term potentiation in adult control mice. Furthermore, the effects of claudin-5 are mediated by suppressing inhibitory GABAergic neurotransmission. Our results suggest benefit effects of claudin-5 on learning and memory, which may provide a new treatment strategy for AD.
Collapse
Affiliation(s)
- Ning Zhu
- General Practice Center, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528244, China.,Department of Pharmacy, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528244, China
| | - Meidan Wei
- Department of Pharmacy, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Linguang Yuan
- College of Basic Medicine, Changsha Medical University, Changsha 410219, China
| | - Xiaodan He
- General Practice Center, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528244, China
| | - Chunli Chen
- Department of Pharmacy, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528244, China
| | - Aimin Ji
- Department of Pharmacy, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528244, China
| | - Guozeng Zhang
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng 475004, China
| |
Collapse
|
31
|
Magid-Bernstein J, Girard R, Polster S, Srinath A, Romanos S, Awad IA, Sansing LH. Cerebral Hemorrhage: Pathophysiology, Treatment, and Future Directions. Circ Res 2022; 130:1204-1229. [PMID: 35420918 PMCID: PMC10032582 DOI: 10.1161/circresaha.121.319949] [Citation(s) in RCA: 259] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intracerebral hemorrhage (ICH) is a devastating form of stroke with high morbidity and mortality. This review article focuses on the epidemiology, cause, mechanisms of injury, current treatment strategies, and future research directions of ICH. Incidence of hemorrhagic stroke has increased worldwide over the past 40 years, with shifts in the cause over time as hypertension management has improved and anticoagulant use has increased. Preclinical and clinical trials have elucidated the underlying ICH cause and mechanisms of injury from ICH including the complex interaction between edema, inflammation, iron-induced injury, and oxidative stress. Several trials have investigated optimal medical and surgical management of ICH without clear improvement in survival and functional outcomes. Ongoing research into novel approaches for ICH management provide hope for reducing the devastating effect of this disease in the future. Areas of promise in ICH therapy include prognostic biomarkers and primary prevention based on disease pathobiology, ultra-early hemostatic therapy, minimally invasive surgery, and perihematomal protection against inflammatory brain injury.
Collapse
Affiliation(s)
| | - Romuald Girard
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Sean Polster
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Abhinav Srinath
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Sharbel Romanos
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Issam A. Awad
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Lauren H. Sansing
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
32
|
Blackman J, Love S, Sinclair L, Cain R, Coulthard E. APOE ε4, Alzheimer's disease neuropathology and sleep disturbance, in individuals with and without dementia. Alzheimers Res Ther 2022; 14:47. [PMID: 35354468 PMCID: PMC8969347 DOI: 10.1186/s13195-022-00992-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/20/2022] [Indexed: 12/20/2022]
Abstract
Background Apolipoprotein E epsilon 4 (APOE-ε4) carrier status is an established risk factor for Alzheimer’s disease (AD) dementia. It has also been linked with sleep disturbance in healthy older adults and increased insomnia risk. This association may be driven by the effect of APOE-ε4 on AD pathological change, itself associated with sleep abnormalities. To assess this relationship, we have evaluated post-mortem neuropathological findings in patients with and without cognitive impairment and AD pathology, who had extensive clinical assessment within 12 months of death. Methods This retrospective cohort study used UK Brain Banks Network data. Eligible subjects were aged over 50, with pre-mortem neuropsychiatry inventory scores of sleep disturbance (NPI-K), neurocognitive testing and functional cognitive status assessment (Clinical Dementia Rating scale). Neuropathological data included Thal phase, Braak stage and CERAD scores (measures of Aβ plaque distribution, tangle distribution and neuritic plaque density, respectively) combined to form the National Institute on Aging Alzheimer’s Association (NIA-AA) ABC score reflecting AD neuropathology. Participants with other significant intracerebral pathology or pathological features of non-AD dementia were excluded. Multivariate linear regression was performed with NPIK Global Score (NPIK frequency score multiplied by severity score) as the dependent variable and APOE-ε4 heterozygosity or homozygosity as independent variables. Covariates included age, gender, APOE-ε2 status and ABC NPI measures reflecting depression and anxiety. Further models stratified by ABC score and functional cognitive status were also produced. Results Seven hundred twenty-eight records were identified. Two hundred two participants were included in the final analysis: mean (SD) age 84.0 (9.2) and MMSE 14.0 (11.8). Mean sleep disturbance scores were highest in ε4 homozygosity (n=11), 4.55 (5.4); intermediate in ε4 heterozygosity (n=95), 2.03 (4.0); and lowest in non-ε4 carriers (n=96), 1.36 (3.3). Within the full sample, controlling for pathological status, age, gender, depression, anxiety and CDR-SOB status, APOE-ε4 homozygosity was associated with sleep disturbance (β 2.53, p=0.034). APOE-ε4 heterozygosity was similarly associated in individuals without dementia (β 1.21, p=0.048). Conclusion These findings lend weight to the hypothesis that APOE-ε4 affects sleep by mechanisms independent of AD pathological change. Evaluation of those mechanisms would enhance understanding of sleep disturbance pathways and potentially provide treatment targets. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-00992-y.
Collapse
Affiliation(s)
| | - Seth Love
- Learning and Research, University of Bristol, Southmead, Bristol, BS10 5NB, UK
| | - Lindsey Sinclair
- Learning and Research, University of Bristol, Southmead, Bristol, BS10 5NB, UK
| | - Richard Cain
- Learning and Research, University of Bristol, Southmead, Bristol, BS10 5NB, UK
| | - Elizabeth Coulthard
- Learning and Research, University of Bristol, Southmead, Bristol, BS10 5NB, UK.
| |
Collapse
|
33
|
Martens YA, Zhao N, Liu CC, Kanekiyo T, Yang AJ, Goate AM, Holtzman DM, Bu G. ApoE Cascade Hypothesis in the pathogenesis of Alzheimer's disease and related dementias. Neuron 2022; 110:1304-1317. [PMID: 35298921 PMCID: PMC9035117 DOI: 10.1016/j.neuron.2022.03.004] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/08/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022]
Abstract
The ε4 allele of the apolipoprotein E gene (APOE4) is a strong genetic risk factor for Alzheimer's disease (AD) and several other neurodegenerative conditions, including Lewy body dementia (LBD). The three APOE alleles encode protein isoforms that differ from one another only at amino acid positions 112 and 158: apoE2 (C112, C158), apoE3 (C112, R158), and apoE4 (R112, R158). Despite progress, it remains unclear how these small amino acid differences in apoE sequence among the three isoforms lead to profound effects on aging and disease-related pathways. Here, we propose a novel "ApoE Cascade Hypothesis" in AD and age-related cognitive decline, which states that the biochemical and biophysical properties of apoE impact a cascade of events at the cellular and systems levels, ultimately impacting aging-related pathogenic conditions including AD. As such, apoE-targeted therapeutic interventions are predicted to be more effective by addressing the biochemical phase of the cascade.
Collapse
Affiliation(s)
- Yuka A Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Austin J Yang
- Division of Neuroscience, National Institute on Aging, Bethesda, MD, USA
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
34
|
Heshmatollah A, Fani L, Koudstaal PJ, Ghanbari M, Ikram MA, Ikram MK. Plasma Amyloid Beta, Total-Tau and Neurofilament Light Chain Levels and the Risk of Stroke: A Prospective Population-Based Study. Neurology 2022; 98:e1729-e1737. [PMID: 35232820 DOI: 10.1212/wnl.0000000000200004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 01/03/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES To unravel whether Alzheimer's disease-related pathology or neurodegeneration play a role in stroke etiology, we determined the effect of plasma levels amyloid β (Aβ), total-tau and neurofilament light chain (NfL) on risk of stroke and its subtypes. METHODS Between 2002 and 2005, we measured plasma Aβ40, Aβ42, total-tau, and NfL in 4,661 stroke-free participants from the population-based Rotterdam Study. We used Cox proportional-hazards models to determine the association between these markers with incident stroke for the entire cohort, per stroke subtype, and by median age, sex, Apolipoprotein E (APOE) ε4 carriership, and education. RESULTS After a mean follow-up of 10.8 ± 3.3 years, 379 participants suffered a first-ever stroke. Log2 total-tau at baseline showed a non-linear association with risk of any stroke and ischemic stroke: compared to the first (lowest) quartile the adjusted hazard ratio for the highest quartile total-tau was 1.68, 95% CI: 1.18-2.40 for any stroke. Log2 NfL was associated with an increased risk of any stroke (HR per SD increase 1.27, 95% CI: 1.12-1.44), ischemic stroke, and hemorrhagic stroke (HR 1.56, 95% CI: 1.14-2.12). Log2 Aβ40, Aβ42, and Aβ42/40 ratio levels were not associated with stroke risk.Discussion Participants with higher total-tau and NfL at baseline had a higher risk of stroke and several stroke subtypes. These findings support the role of markers of neurodegeneration in the etiology of stroke. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that higher plasma levels of total-tau and NfL are associated with an increased risk of subsequent stroke.
Collapse
Affiliation(s)
- Alis Heshmatollah
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands.,Department of Neurology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Lana Fani
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Peter J Koudstaal
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - M Kamran Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands.,Department of Neurology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
35
|
Perez C, Felty Q. Molecular basis of the association between transcription regulators nuclear respiratory factor 1 and inhibitor of DNA binding protein 3 and the development of microvascular lesions. Microvasc Res 2022; 141:104337. [PMID: 35143811 PMCID: PMC8923910 DOI: 10.1016/j.mvr.2022.104337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/25/2022]
Abstract
The prognosis of patients with microvascular lesions remains poor because vascular remodeling eventually obliterates the lumen. Here we have focused our efforts on vessel dysfunction in two different organs, the lung and brain. Despite tremendous progress in understanding the importance of blood vessel integrity, gaps remain in our knowledge of the underlying molecular factors contributing to vessel injury, including microvascular lesions. Most of the ongoing research on these lesions have focused on oxidative stress but have not found major molecular targets for the discovery of new treatment or early diagnosis. Herein, we have focused on elucidating the molecular mechanism(s) based on two new emerging molecules NRF1 and ID3, and how they may contribute to microvascular lesions in the lung and brain. Redox sensitive transcriptional activation of target genes depends on not only NRF1, but the recruitment of co-activators such as ID3 to the target gene promoter. Our review highlights the fact that targeting NRF1 and ID3 could be a promising therapeutic approach as they are major players in influencing cell growth, cell repair, senescence, and apoptotic cell death which contribute to vascular lesions. Knowledge about the molecular biology of these processes will be relevant for future therapeutic approaches to not only PAH but cerebral angiopathy and other vascular disorders. Therapies targeting transcription regulators NRF1 or ID3 have the potential for vascular disease-modification because they will address the root causes such as genomic instability and epigenetic changes in vascular lesions. We hope that our findings will serve as a stimulus for further research towards an effective treatment of microvascular lesions.
Collapse
Affiliation(s)
- Christian Perez
- Department of Environmental Health Sciences, Florida International University, Miami, FL, USA
| | - Quentin Felty
- Department of Environmental Health Sciences, Florida International University, Miami, FL, USA.
| |
Collapse
|
36
|
Lecordier S, Pons V, Rivest S, ElAli A. Multifocal Cerebral Microinfarcts Modulate Early Alzheimer’s Disease Pathology in a Sex-Dependent Manner. Front Immunol 2022; 12:813536. [PMID: 35173711 PMCID: PMC8841345 DOI: 10.3389/fimmu.2021.813536] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/17/2021] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) constitutes a major cause of dementia, affecting more women than men. It is characterized by amyloid-β (Aβ) deposition and neurofibrillary tangles (NFTs) formation, associated with a progressive cognitive decline. Evidence indicates that AD onset increases the prevalence of cerebral microinfarcts caused by vascular pathologies, which occur in approximately in half of AD patients. In this project, we postulated that multifocal cerebral microinfarcts decisively influence early AD-like pathology progression in a sex dependent manner in young APP/PS1 mice. For this purpose, we used a novel approach to model multifocal microinfarcts in APP/PS1 mice via the sporadic occlusions of the microvasculature. Our findings indicate that microinfarcts reduced Aβ deposits without affecting soluble Aβ levels in the brain of male and female APP/PS1 mice, while causing rapid and prolonged cognitive deficits in males, and a mild and transient cognitive decline in females. In male APP/PS1 mice, microinfarcts triggered an acute hypoperfusion followed by a chronic hyperperfusion. Whereas in female APP/PS1 mice, microinfarcts caused an acute hypoperfusion, which was recovered in the chronic phase. Microinfarcts triggered a robust microglial activation and recruitment of peripheral monocytes to the lesion sites and Aβ plaques more potently in female APP/PS1 mice, possibly accounting for the reduced Aβ deposition. Finally, expression of Dickkopf-1 (DKK1), which plays a key role in mediating synaptic and neuronal dysfunction in AD, was strongly induced at the lesion sites of male APP/PS1 mice, while its expression was reduced in females. Our findings suggest that multifocal microinfarcts accelerate AD pathology more potently in young males compared to young females independently upon Aβ pathology via modulation of neurovascular coupling, inflammatory response, and DKK1 expression. Our results suggest that the effects of microinfarcts should be taken into consideration in AD diagnosis, prognosis, and therapies.
Collapse
Affiliation(s)
- Sarah Lecordier
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Vincent Pons
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Quebec City, QC, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Serge Rivest
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Quebec City, QC, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Ayman ElAli
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- *Correspondence: Ayman ElAli,
| |
Collapse
|
37
|
Atayde AL, Fischer CE, Schweizer TA, Munoz DG. Neuropsychiatric Inventory-Questionnaire Assessed Nighttime Behaviors in Cognitively Asymptomatic Patients with Pathologically Confirmed Alzheimer's Disease Predict More Rapid Cognitive Deterioration. J Alzheimers Dis 2022; 86:1137-1147. [PMID: 35180114 PMCID: PMC9664561 DOI: 10.3233/jad-215276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND The temporal relationship between sleep, Alzheimer's disease (AD), and cognitive impairment remains to be further elucidated. OBJECTIVE First, we aim to determine whether the Neuropsychiatric Inventory-Questionnaire (NPI-Q) assessed nighttime behaviors prior to cognitive decline influence the rate of cognitive deterioration in pathologically confirmed AD, and second, to assess the possible interactions with APOE allele and cerebral amyloid angiopathy (CAA). METHODS The rate of cognitive decline between cognitively asymptomatic participants from the National Alzheimer Coordinating Center who eventually received a neuropathologic diagnosis of AD with (+NTB) or without (-NTB) nighttime behaviors were compared using independent samples t-test. Participants were stratified by APOE carrier and CAA status. Demographic and patient characteristics were assessed using descriptive statistics, and the independent samples t-test was used for continuous variables and chi-square test for categorical variables. The significance level was set at p≤0.05. RESULTS The rate of cognitive decline was greater in +NTB (n = 74; 3.30 points/year) than -NTB (n = 330; 2.45 points/year) (p = 0.016), even if there was no difference in cognitive status at onset. This difference was restricted to APOE ɛ4 carriers (p = 0.049) and positive CAA participants (p = 0.020). Significance was not reached in non-carriers (p = 0.186) and negative CAA (p = 0.364). APOE and CAA were not differentially distributed between the NTB groups. CONCLUSION NPI-Q assessed nighttime behaviors, a surrogate for sleep disturbances, are associated with more rapidly deteriorating cognition in patients with AD neuropathology who are also carriers of APOE ɛ4 or show CAA.
Collapse
Affiliation(s)
- Adrienne L. Atayde
- Keenan Research Centre for Biomedical Research, the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 209 Victoria Street, Toronto, Canada
| | - Corinne E. Fischer
- Keenan Research Centre for Biomedical Research, the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 209 Victoria Street, Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Faculty of Medicine, Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Tom A. Schweizer
- Keenan Research Centre for Biomedical Research, the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 209 Victoria Street, Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Toronto, Canada
- Division of Neurosurgery, St. Michael’s Hospital, Toronto, Canada
| | - David G. Munoz
- Keenan Research Centre for Biomedical Research, the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 209 Victoria Street, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Division of Pathology, St. Michael’s Hospital, Toronto, Canada
| |
Collapse
|
38
|
Staurenghi E, Giannelli S, Testa G, Sottero B, Leonarduzzi G, Gamba P. Cholesterol Dysmetabolism in Alzheimer's Disease: A Starring Role for Astrocytes? Antioxidants (Basel) 2021; 10:antiox10121890. [PMID: 34943002 PMCID: PMC8750262 DOI: 10.3390/antiox10121890] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 01/19/2023] Open
Abstract
In recent decades, the impairment of cholesterol metabolism in the pathogenesis of Alzheimer’s disease (AD) has been intensively investigated, and it has been recognized to affect amyloid β (Aβ) production and clearance, tau phosphorylation, neuroinflammation and degeneration. In particular, the key role of cholesterol oxidation products, named oxysterols, has emerged. Brain cholesterol metabolism is independent from that of peripheral tissues and it must be preserved in order to guarantee cerebral functions. Among the cells that help maintain brain cholesterol homeostasis, astrocytes play a starring role since they deliver de novo synthesized cholesterol to neurons. In addition, other physiological roles of astrocytes are to modulate synaptic transmission and plasticity and support neurons providing energy. In the AD brain, astrocytes undergo significant morphological and functional changes that contribute to AD onset and development. However, the extent of this contribution and the role played by oxysterols are still unclear. Here we review the current understanding of the physiological role exerted by astrocytes in the brain and their contribution to AD pathogenesis. In particular, we focus on the impact of cholesterol dysmetabolism on astrocyte functions suggesting new potential approaches to develop therapeutic strategies aimed at counteracting AD development.
Collapse
|
39
|
Liu CC, Murray ME, Li X, Zhao N, Wang N, Heckman MG, Shue F, Martens Y, Li Y, Raulin AC, Rosenberg CL, Doss SV, Zhao J, Wren MC, Jia L, Ren Y, Ikezu TC, Lu W, Fu Y, Caulfield T, Trottier ZA, Knight J, Chen Y, Linares C, Wang X, Kurti A, Asmann YW, Wszolek ZK, Smith GE, Vemuri P, Kantarci K, Knopman DS, Lowe VJ, Jack CR, Parisi JE, Ferman TJ, Boeve BF, Graff-Radford NR, Petersen RC, Younkin SG, Fryer JD, Wang H, Han X, Frieden C, Dickson DW, Ross OA, Bu G. APOE3-Jacksonville (V236E) variant reduces self-aggregation and risk of dementia. Sci Transl Med 2021; 13:eabc9375. [PMID: 34586832 PMCID: PMC8824726 DOI: 10.1126/scitranslmed.abc9375] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Apolipoprotein E (APOE) genetic variants have been shown to modify Alzheimer’s disease (AD) risk. We previously identified an APOE3 variant (APOE3-V236E), named APOE3-Jacksonville (APOE3-Jac), associated with healthy brain aging and reduced risk for AD and dementia with Lewy bodies (DLB). Herein, we resolved the functional mechanism by which APOE3-Jac reduces APOE aggregation and enhances its lipidation in human brains, as well as in cellular and biochemical assays. Compared to APOE3, expression of APOE3-Jac in astrocytes increases several classes of lipids in the brain including phosphatidylserine, phosphatidylethanolamine, phosphatidic acid, and sulfatide, critical for synaptic functions. Mice expressing APOE3-Jac have reduced amyloid pathology, plaque-associated immune responses, and neuritic dystrophy. The V236E substitution is also sufficient to reduce the aggregation of APOE4, whose gene allele is a major genetic risk factor for AD and DLB. These findings suggest that targeting APOE aggregation might be an effective strategy for treating a subgroup of individuals with AD and DLB.
Collapse
Affiliation(s)
- Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Xia Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Na Wang
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Michael G. Heckman
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Jacksonville, Florida, USA
| | - Francis Shue
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Yuka Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Yonghe Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | - Sydney V. Doss
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Jing Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Melissa C. Wren
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Lin Jia
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Yingxue Ren
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Wenyan Lu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Yuan Fu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Thomas Caulfield
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Joshua Knight
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Yixing Chen
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Cynthia Linares
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Xue Wang
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Jacksonville, Florida, USA
| | - Aishe Kurti
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Yan W. Asmann
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Glenn E. Smith
- Department of Psychiatry and Psychology Mayo Clinic, Rochester, Minnesota, USA
| | | | - Kejal Kantarci
- Department of Radiology Mayo Clinic, Rochester, Minnesota, USA
| | | | - Val J. Lowe
- Department of Radiology Mayo Clinic, Rochester, Minnesota, USA
| | | | - Joseph E. Parisi
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Tanis J. Ferman
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | | | - John D. Fryer
- Department of Neuroscience, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Hu Wang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Carl Frieden
- Department of Biochemistry and Molecular Biophysics, Washington University, St. Louis, MO, USA
| | | | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, Florida, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
40
|
Maniskas ME, Mack AF, Morales-Scheihing D, Finger C, Zhu L, Paulter R, Urayama A, McCullough LD, Manwani B. Sex differences in a murine model of Cerebral Amyloid Angiopathy. Brain Behav Immun Health 2021; 14:100260. [PMID: 34589766 PMCID: PMC8474688 DOI: 10.1016/j.bbih.2021.100260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 01/14/2023] Open
Abstract
Cerebral amyloid angiopathy (CAA) is one of the common causes of lobar intracerebral hemorrhage and vascular cognitive impairment (VCI) in the aging population. Increased amyloid plaque deposition within cerebral blood vessels, specifically the smooth muscle layer, is linked to increased cerebral microbleeds (CMBs) and impaired cognition in CAA. Studies in Alzheimer's disease (AD) have shown that amyloid plaque pathology is more prevalent in the brains of elderly women (2/3rd of the dementia population) compared with men, however, there is a paucity of studies on sex differences in CAA. The objective of this study was to discern the sexual dichotomies in CAA. We utilized male and female Tg-SwDI mice (mouse model of CAA) at 12-14 months of age for this study. We evaluated sex differences in CMBs, cognitive function and inflammation. Cognition was assessed using Y-maze (spatial working memory) and Fear Conditioning (contextual memory). CMBs were quantified by ex vivo brain MRI scans. Inflammatory cytokines in brain were quantified using ELISA. Our results demonstrated that aging Tg-SwDI female mice had a significantly higher burden of CMBs on MRI as compared to males. Interestingly, these aging Tg-SwDI female mice also had significantly impaired spatial and contextual memory on Y maze and Fear Conditioning respectively. Furthermore, female mice had significantly lower circulating inflammatory cytokines, IL-1α, IL-2, IL-9, and IFN-γ, as compared to males. Our results demonstrate that aging female Tg-SwDI mice are more cognitively impaired and have higher number of CMBs, as compared to males at 12-14 months of age. This may be secondary to reduced levels of neural repair cytokines (IL-1α, IL-2, IL-9 and IFN-γ) involved in sex specific inflammatory signaling in CAA.
Collapse
Affiliation(s)
- Michael E. Maniskas
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Alexis F. Mack
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Diego Morales-Scheihing
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Carson Finger
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Liang Zhu
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Robia Paulter
- Department of Molecular Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Akihiko Urayama
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Louise D. McCullough
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Bharti Manwani
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| |
Collapse
|
41
|
Zhu D, Montagne A, Zhao Z. Alzheimer's pathogenic mechanisms and underlying sex difference. Cell Mol Life Sci 2021; 78:4907-4920. [PMID: 33844047 PMCID: PMC8720296 DOI: 10.1007/s00018-021-03830-w] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 01/01/2023]
Abstract
AD is a neurodegenerative disease, and its frequency is often reported to be higher for women than men: almost two-thirds of patients with AD are women. One prevailing view is that women live longer than men on average of 4.5 years, plus there are more women aged 85 years or older than men in most global subpopulations; and older age is the greatest risk factor for AD. However, the differences in the actual risk of developing AD for men and women of the same age is difficult to assess, and the findings have been mixed. An increasing body of evidence from preclinical and clinical studies as well as the complications in estimating incidence support the sex-specific biological mechanisms in diverging AD risk as an important adjunct explanation to the epidemiologic perspective. Although some of the sex differences in AD prevalence are due to differences in longevity, other distinct biological mechanisms increase the risk and progression of AD in women. These risk factors include (1) deviations in brain structure and biomarkers, (2) psychosocial stress responses, (3) pregnancy, menopause, and sex hormones, (4) genetic background (i.e., APOE), (5) inflammation, gliosis, and immune module (i.e., TREM2), and (6) vascular disorders. More studies focusing on the underlying biological mechanisms for this phenomenon are needed to better understand AD. This review presents the most recent data in sex differences in AD-the gateway to precision medicine, therefore, shaping expert perspectives, inspiring researchers to go in new directions, and driving development of future diagnostic tools and treatments for AD in a more customized way.
Collapse
Affiliation(s)
- Donghui Zhu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.
- Neuroscience Graduate Program, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| | - Axel Montagne
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Zhen Zhao
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
42
|
Reddy JS, Allen M, Ho CCG, Oatman SR, İş Ö, Quicksall ZS, Wang X, Jin J, Patel TA, Carnwath TP, Nguyen TT, Malphrus KG, Lincoln SJ, Carrasquillo MM, Crook JE, Kanekiyo T, Murray ME, Bu G, Dickson DW, Ertekin-Taner N. Genome-wide analysis identifies a novel LINC-PINT splice variant associated with vascular amyloid pathology in Alzheimer's disease. Acta Neuropathol Commun 2021; 9:93. [PMID: 34020725 PMCID: PMC8147512 DOI: 10.1186/s40478-021-01199-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 01/09/2023] Open
Abstract
Cerebral amyloid angiopathy (CAA) contributes to accelerated cognitive decline in Alzheimer’s disease (AD) dementia and is a common finding at autopsy. The APOEε4 allele and male sex have previously been reported to associate with increased CAA in AD. To inform biomarker and therapeutic target discovery, we aimed to identify additional genetic risk factors and biological pathways involved in this vascular component of AD etiology. We present a genome-wide association study of CAA pathology in AD cases and report sex- and APOE-stratified assessment of this phenotype. Genome-wide genotypes were collected from 853 neuropathology-confirmed AD cases scored for CAA across five brain regions, and imputed to the Haplotype Reference Consortium panel. Key variables and genome-wide genotypes were tested for association with CAA in all individuals and in sex and APOEε4 stratified subsets. Pathway enrichment was run for each of the genetic analyses. Implicated loci were further investigated for functional consequences using brain transcriptome data from 1,186 samples representing seven brain regions profiled as part of the AMP-AD consortium. We confirmed association of male sex, AD neuropathology and APOEε4 with increased CAA, and identified a novel locus, LINC-PINT, associated with lower CAA amongst APOEε4-negative individuals (rs10234094-C, beta = −3.70 [95% CI −0.49—−0.24]; p = 1.63E-08). Transcriptome profiling revealed higher LINC-PINT expression levels in AD cases, and association of rs10234094-C with altered LINC-PINT splicing. Pathway analysis indicates variation in genes involved in neuronal health and function are linked to CAA in AD patients. Further studies in additional and diverse cohorts are needed to assess broader translation of our findings.
Collapse
|
43
|
Robinson JL, Richardson H, Xie SX, Suh E, Van Deerlin VM, Alfaro B, Loh N, Porras-Paniagua M, Nirschl JJ, Wolk D, Lee VMY, Lee EB, Trojanowski JQ. The development and convergence of co-pathologies in Alzheimer's disease. Brain 2021; 144:953-962. [PMID: 33449993 PMCID: PMC8041349 DOI: 10.1093/brain/awaa438] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/15/2020] [Accepted: 10/02/2020] [Indexed: 12/14/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA), limbic-predominant age-related TDP-43 encephalopathy neuropathological change (LATE-NC) and Lewy bodies occur in the absence of clinical and neuropathological Alzheimer's disease, but their prevalence and severity dramatically increase in Alzheimer's disease. To investigate how plaques, tangles, age and apolipoprotein E ε4 (APOE ε4) interact with co-pathologies in Alzheimer's disease, we analysed 522 participants ≥50 years of age with and without dementia from the Center for Neurodegenerative Disease Research (CNDR) autopsy program and 1340 participants in the National Alzheimer's Coordinating Center (NACC) database. Consensus criteria were applied for Alzheimer's disease using amyloid phase and Braak stage. Co-pathology was staged for CAA (neocortical, allocortical, and subcortical), LATE-NC (amygdala, hippocampal, and cortical), and Lewy bodies (brainstem, limbic, neocortical, and amygdala predominant). APOE genotype was determined for all CNDR participants. Ordinal logistic regression was performed to quantify the effect of independent variables on the odds of having a higher stage after checking the proportional odds assumption. We found that without dementia, increasing age associated with all pathologies including CAA (odds ratio 1.63, 95% confidence interval 1.38-1.94, P < 0.01), LATE-NC (1.48, 1.16-1.88, P < 0.01), and Lewy bodies (1.45, 1.15-1.83, P < 0.01), but APOE ε4 only associated with CAA (4.80, 2.16-10.68, P < 0.01). With dementia, increasing age associated with LATE-NC (1.30, 1.15-1.46, P < 0.01), while Lewy bodies associated with younger ages (0.90, 0.81-1.00, P = 0.04), and APOE ε4 only associated with CAA (2.36, 1.52-3.65, P < 0.01). A longer disease course only associated with LATE-NC (1.06, 1.01-1.11, P = 0.01). Dementia in the NACC cohort associated with the second and third stages of CAA (2.23, 1.50-3.30, P < 0.01), LATE-NC (5.24, 3.11-8.83, P < 0.01), and Lewy bodies (2.41, 1.51-3.84, P < 0.01). Pathologically, increased Braak stage associated with CAA (5.07, 2.77-9.28, P < 0.01), LATE-NC (5.54, 2.33-13.15, P < 0.01), and Lewy bodies (4.76, 2.07-10.95, P < 0.01). Increased amyloid phase associated with CAA (2.27, 1.07-4.80, P = 0.03) and Lewy bodies (6.09, 1.66-22.33, P = 0.01). In summary, we describe widespread distributions of CAA, LATE-NC and Lewy bodies that progressively accumulate alongside plaques and tangles in Alzheimer's disease dementia. CAA interacted with plaques and tangles especially in APOE ε4 positive individuals; LATE-NC associated with tangles later in the disease course; most Lewy bodies associated with moderate to severe plaques and tangles.
Collapse
Affiliation(s)
- John L Robinson
- Center for Neurodegenerative Disease Research, Department of Pathology and
Laboratory Medicine, Institute on Aging, University of Pennsylvannia,
Philadelphia, PA, USA
| | - Hayley Richardson
- Department of Biostatistics, Epidemiology and Informatics, University of
Pennsylvannia, Philadelphia, PA, USA
| | - Sharon X Xie
- Center for Neurodegenerative Disease Research, Department of Pathology and
Laboratory Medicine, Institute on Aging, University of Pennsylvannia,
Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, University of
Pennsylvannia, Philadelphia, PA, USA
| | - EunRan Suh
- Center for Neurodegenerative Disease Research, Department of Pathology and
Laboratory Medicine, Institute on Aging, University of Pennsylvannia,
Philadelphia, PA, USA
| | - Vivianna M Van Deerlin
- Center for Neurodegenerative Disease Research, Department of Pathology and
Laboratory Medicine, Institute on Aging, University of Pennsylvannia,
Philadelphia, PA, USA
| | - Brian Alfaro
- Center for Neurodegenerative Disease Research, Department of Pathology and
Laboratory Medicine, Institute on Aging, University of Pennsylvannia,
Philadelphia, PA, USA
| | - Nicholas Loh
- Center for Neurodegenerative Disease Research, Department of Pathology and
Laboratory Medicine, Institute on Aging, University of Pennsylvannia,
Philadelphia, PA, USA
| | - Matias Porras-Paniagua
- Center for Neurodegenerative Disease Research, Department of Pathology and
Laboratory Medicine, Institute on Aging, University of Pennsylvannia,
Philadelphia, PA, USA
| | - Jeffrey J Nirschl
- Center for Neurodegenerative Disease Research, Department of Pathology and
Laboratory Medicine, Institute on Aging, University of Pennsylvannia,
Philadelphia, PA, USA
| | - David Wolk
- Department of Neurology, University of Pennsylvania Perelman School of
Medicine, Philadelphia, PA, USA
| | - Virginia M -Y Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and
Laboratory Medicine, Institute on Aging, University of Pennsylvannia,
Philadelphia, PA, USA
| | - Edward B Lee
- Department of Neurology, University of Pennsylvania Perelman School of
Medicine, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Neurology, University of Pennsylvania Perelman School of
Medicine, Philadelphia, PA, USA
| |
Collapse
|
44
|
Bruni AC, Bernardi L, Gabelli C. From beta amyloid to altered proteostasis in Alzheimer's disease. Ageing Res Rev 2020; 64:101126. [PMID: 32683041 DOI: 10.1016/j.arr.2020.101126] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/27/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is an age related neurodegenerative disorder causing severe disability and important socio-economic burden, but with no cure available to date. To disentangle this puzzling disease genetic studies represented an important way for the comprehension of pathogenic mechanisms. Abnormal processing and accumulation of amyloid-β peptide (Aβ) has been considered the main cause and trigger factor of the disease. The amyloid cascade theory has fallen into crisis because the failure of several anti-amyloid drugs trials and because of the simple equation AD = abnormal Aβ deposition is not always the case. We now know that multiple neurodegenerative diseases share common pathogenic mechanisms leading to accumulation of misfolded protein species. Genome Wide Association studies (GWAS) led to the identification of large numbers of DNA common variants (SNPs) distributed on different chromosomes and modulating the Alzheimer's risk. GWAS genes fall into several common pathways such as immune system and neuroinflammation, lipid metabolism, synaptic dysfunction and endocytosis, all of them addressing to novel routes for different pathogenic mechanisms. Other hints could be derived from epidemiological and experimental studies showing some lifestyles may have a major role in the pathogenesis of many age-associated diseases by modifying cell metabolism, proteostasis and microglia mediated neuroinflammation.
Collapse
Affiliation(s)
- Amalia C Bruni
- Regional Neurogenetic Centre, ASP Catanzaro, Lamezia Terme (CZ), Italy.
| | - Livia Bernardi
- Regional Neurogenetic Centre, ASP Catanzaro, Lamezia Terme (CZ), Italy
| | - Carlo Gabelli
- Regional Brain Aging Centre, Azienda Ospedale Università Di Padova, Padova Italy
| |
Collapse
|
45
|
Emrani S, Arain HA, DeMarshall C, Nuriel T. APOE4 is associated with cognitive and pathological heterogeneity in patients with Alzheimer's disease: a systematic review. ALZHEIMERS RESEARCH & THERAPY 2020; 12:141. [PMID: 33148345 PMCID: PMC7643479 DOI: 10.1186/s13195-020-00712-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023]
Abstract
Possession of the ε4 allele of apolipoprotein E (APOE) is the primary genetic risk factor for the sporadic form of Alzheimer’s disease (AD). While researchers have extensively characterized the impact that APOE ε4 (APOE4) has on the susceptibility of AD, far fewer studies have investigated the phenotypic differences of patients with AD who are APOE4 carriers vs. those who are non-carriers. In order to understand these differences, we performed a qualitative systematic literature review of the reported cognitive and pathological differences between APOE4-positive (APOE4+) vs. APOE4-negative (APOE4−) AD patients. The studies performed on this topic to date suggest that APOE4 is not only an important mediator of AD susceptibility, but that it likely confers specific phenotypic heterogeneity in AD presentation, as well. Specifically, APOE4+ AD patients appear to possess more tau accumulation and brain atrophy in the medial temporal lobe, resulting in greater memory impairment, compared to APOE4− AD patients. On the other hand, APOE4− AD patients appear to possess more tau accumulation and brain atrophy in the frontal and parietal lobes, resulting in greater impairment in executive function, visuospatial abilities, and language, compared to APOE4+ AD patients. Although more work is necessary to validate and interrogate these findings, these initial observations of pathological and cognitive heterogeneity between APOE4+ vs. APOE4− AD patients suggest that there is a fundamental divergence in AD manifestation related to APOE genotype, which may have important implications in regard to the therapeutic treatment of these two patient populations.
Collapse
Affiliation(s)
- Sheina Emrani
- Department of Psychology, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, 08028, USA
| | - Hirra A Arain
- Department of Pathology and Cell Biology, Columbia University, 630 West 168th Street, New York, NY, 10032, USA.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
| | - Cassandra DeMarshall
- Department of Geriatrics and Gerontology, Rowan University School of Osteopathic Medicine, One Medical Center Drive, Stratford, NJ, 08084, USA
| | - Tal Nuriel
- Department of Pathology and Cell Biology, Columbia University, 630 West 168th Street, New York, NY, 10032, USA. .,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, 630 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
46
|
Sakae N, Heckman MG, Vargas ER, Carrasquillo MM, Murray ME, Kasanuki K, Ertekin-Taner N, Younkin SG, Dickson DW. Evaluation of Associations of Alzheimer's Disease Risk Variants that Are Highly Expressed in Microglia with Neuropathological Outcome Measures. J Alzheimers Dis 2020; 70:659-666. [PMID: 31256143 DOI: 10.3233/jad-190451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A number of Alzheimer's disease (AD) susceptibility loci are expressed abundantly in microglia. We examined associations between AD risk variants in genes that are highly expressed in microglia and neuropathological outcomes, including cerebral amyloid angiopathy (CAA) and microglial activation, in 93 AD patients. We observed significant associations of CAA pathology with APOEɛ4 and PTK2B rs28834970. Nominally significant associations with measures of microglial activation in white matter were observed for variants in PTK2B, PICALM, and CR1. Our findings suggest that several AD risk variants may also function as disease modifiers through amyloid-β metabolism and white matter microglial activity.
Collapse
Affiliation(s)
- Nobutaka Sakae
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Michael G Heckman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL, USA
| | - Emily R Vargas
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Koji Kasanuki
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Nilufer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.,Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | | | | |
Collapse
|
47
|
Liu CC, Yamazaki Y, Heckman MG, Martens YA, Jia L, Yamazaki A, Diehl NN, Zhao J, Zhao N, DeTure M, Davis MD, Felton LM, Qiao W, Li Y, Li H, Fu Y, Wang N, Wren M, Aikawa T, Holm ML, Oue H, Linares C, Allen M, Carrasquillo MM, Murray ME, Petersen RC, Ertekin-Taner N, Dickson DW, Kanekiyo T, Bu G. Tau and apolipoprotein E modulate cerebrovascular tight junction integrity independent of cerebral amyloid angiopathy in Alzheimer's disease. Alzheimers Dement 2020; 16:1372-1383. [PMID: 32827351 PMCID: PMC8103951 DOI: 10.1002/alz.12104] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 01/05/2020] [Accepted: 01/15/2020] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Cerebrovascular pathologies including cerebral amyloid angiopathy (CAA) and blood-brain barrier (BBB) dysregulation are prominent features in the majority of Alzheimer's disease (AD) cases. METHODS We performed neuropathologic and biochemical studies on a large, neuropathologically confirmed human AD cohort (N = 469). Amounts of endothelial tight junction proteins claudin-5 (CLDN5) and occludin (OCLN), and major AD-related molecules (amyloid beta [Aβ40], Aβ42, tau, p-tau, and apolipoprotein E) in the temporal cortex were assessed by ELISA. RESULTS Higher levels of soluble tau, insoluble p-tau, and apolipoprotein E (apoE) were independently correlated with lower levels of endothelial tight junction proteins CLDN5 and OCLN in AD brains. Although high Aβ40 levels, APOE ε4, and male sex were predominantly associated with exacerbated CAA severity, those factors did not influence tight junction protein levels. DISCUSSION Refining the molecular mechanisms connecting tau, Aβ, and apoE with cerebrovascular pathologies is critical for greater understanding of AD pathogenesis and establishing effective therapeutic interventions for the disease.
Collapse
Affiliation(s)
- Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Yu Yamazaki
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Michael G. Heckman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, Florida, USA
| | - Yuka A. Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Lin Jia
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Akari Yamazaki
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Nancy N. Diehl
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, Florida, USA
| | - Jing Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Mary D. Davis
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Wenhui Qiao
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Yonghe Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Hongmei Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Yuan Fu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Na Wang
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Melissa Wren
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Tomonori Aikawa
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Hiroshi Oue
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Cynthia Linares
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | | | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
48
|
Blood-brain barrier integrity in the pathogenesis of Alzheimer's disease. Front Neuroendocrinol 2020; 59:100857. [PMID: 32781194 DOI: 10.1016/j.yfrne.2020.100857] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
The blood-brain barrier (BBB) tightly controls the molecular exchange between the brain parenchyma and blood. Accumulated evidence from transgenic animal Alzheimer's disease (AD) models and human AD patients have demonstrated that BBB dysfunction is a major player in AD pathology. In this review, we discuss the role of the BBB in maintaining brain integrity and how this is mediated by crosstalk between BBB-associated cells within the neurovascular unit (NVU). We then discuss the role of the NVU, in particular its endothelial cell, pericyte, and glial cell constituents, in AD pathogenesis. The effect of substances released by the neuroendocrine system in modulating BBB function and AD pathogenesis is also discussed. We perform a systematic review of currently available AD treatments specifically targeting pericytes and BBB glial cells. In summary, this review provides a comprehensive overview of BBB dysfunction in AD and a new perspective on the development of therapeutics for AD.
Collapse
|
49
|
Ford J, Zheng B, Hurtado B, de Jager CA, Udeh-Momoh C, Middleton L, Price G. Strategy or symptom: Semantic clustering and risk of Alzheimer's disease-related impairment. J Clin Exp Neuropsychol 2020; 42:849-856. [PMID: 32933358 DOI: 10.1080/13803395.2020.1819964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, impacting global cognitive performance, including episodic memory. Semantic clustering is a learning strategy involving grouping words of similar meaning and can improve episodic memory performance, e.g., list learning. As the APOE ε4 allele is the most validated genetic risk factor for AD, we predicted that its presence would be associated with poorer list learning performance, and we hypothesized that semantic clustering moderates or mediates this association. The sample comprised 699 healthy older adults participating in the CHARIOT PRO Main Study, 169 of whom were APOE ε4 carriers. Participants' ability to form groups of related stimuli (assessed via a categorization task, CAT), and their use of semantic clustering during list learning, were investigated using the Neuropsychological Assessment Battery (NAB). CAT scores predicted the use of semantic clustering in, and performance on, the list learning task. CAT scores were not significantly lower in APOE ε4 carriers, suggesting that the ability to categorize was preserved. However, APOE ε4 carriers made less use of semantic clustering in list learning. Semantic clustering use partially mediated the relationship between CAT scores and list learning performance, and, in women only, moderated the impact of APOE ε4 on list learning performance. The results suggest that better categorization ability is associated with greater use of mnemonic strategies and better performance on memory tasks regardless of genetic risk, but that APOE ε4 carriers make less use of such strategies. Furthermore, female APOE ε4 carriers may benefit more than their non-carriers from using semantic clustering to aid list learning. Thus, semantic clustering may be a contributing factor of their "cognitive reserve", compensating for potential deficits in episodic memory.
Collapse
Affiliation(s)
- Jamie Ford
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London , London, UK
| | - Bang Zheng
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London , London, UK
| | - Barbara Hurtado
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London , London, UK
| | - Celeste A de Jager
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London , London, UK
| | - Chi Udeh-Momoh
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London , London, UK
| | - Lefkos Middleton
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London , London, UK.,Directorate of Public Health, Imperial College Healthcare NHS Trust , London, UK
| | - Geraint Price
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London , London, UK
| |
Collapse
|
50
|
Keable A, O’Neill R, MacGregor Sharp M, Gatherer M, Yuen HM, Johnston DA, Weller RO, Carare RO. ApoE4 Astrocytes Secrete Basement Membranes Rich in Fibronectin and Poor in Laminin Compared to ApoE3 Astrocytes. Int J Mol Sci 2020; 21:ijms21124371. [PMID: 32575521 PMCID: PMC7352194 DOI: 10.3390/ijms21124371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 11/16/2022] Open
Abstract
The accumulation of amyloid-β (Aβ) in the walls of capillaries and arteries as cerebral amyloid angiopathy (CAA) is part of the small vessel disease spectrum, related to a failure of elimination of Aβ from the brain. Aβ is eliminated along basement membranes in walls of cerebral capillaries and arteries (Intramural Peri-Arterial Drainage-IPAD), a pathway that fails with age and ApolipoproteinEε4 (ApoE4) genotype. IPAD is along basement membranes formed by capillary endothelial cells and surrounding astrocytes. Here, we examine (1) the composition of basement membranes synthesised by ApoE4 astrocytes; (2) structural differences between ApoE4 and ApoE3 astrocytes, and (3) how flow of Aβ affects Apo3/4 astrocytes. Using cultured astrocytes expressing ApoE3 or ApoE4, immunofluorescence, confocal, correlative light and electron microscopy (CLEM), and a millifluidic flow system, we show that ApoE4 astrocytes synthesise more fibronectin, possess smaller processes, and become rarefied when Aβ flows over them, as compared to ApoE3 astrocytes. Our results suggest that basement membranes synthesised by ApoE4 astrocytes favour the aggregation of Aβ, its reduced clearance via IPAD, thus promoting cerebral amyloid angiopathy.
Collapse
|