1
|
Li E, Gao Y, Zhang J, Zou P, Qiao H, Zhang R, Huang Y. Glial cell crosstalk in the local microenvironment following spinal cord injury. Brain Res Bull 2025; 229:111436. [PMID: 40540843 DOI: 10.1016/j.brainresbull.2025.111436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2025] [Revised: 06/05/2025] [Accepted: 06/18/2025] [Indexed: 06/22/2025]
Abstract
Spinal cord injury (SCI) has a high incidence, significant rates of disability, and substantial economic costs. The response of glial cells is crucial for spinal cord regeneration following SCI. However, the roles of various glial cell types in SCI pathology and their interactions with other cellular targets remain poorly understood. Using single-cell RNA sequencing, we characterized the local microenvironment following SCI and isolated three glial cell types-microglia, astrocytes, and oligodendrocytes-at the injury site. Immunofluorescence confirmed the differential expression of these cell types in spinal cord tissues. Four subtypes of microglia were identified: activated, dividing, homeostatic, and inflammatory. Astrocytes were categorized into 11 clusters, while oligodendrocytes were classified into eight clusters. Enrichment analysis indicated that the loss of oligodendrocytes was associated with ferroptosis. The glial cell crosstalk network revealed various interactions, including TIMP1-FGFR2 and PLXNB2-PTN in astrocytes and oligodendrocytes, as well as LGALS3-MERTK, GPR37L1-PSAP, TFRSF1A-GRN, and PGRMC2-CCL4L2 in astrocytes and microglia. A total of 75 drugs were identified through target-drug screening. This study suggests potential differentiation and intricate crosstalk among these three cell types, provides a theoretical framework for simulating the glial cellular microenvironment of SCI, and establishes a foundation for future interventions aimed at targeting various glial cell processes in the treatment of SCI.
Collapse
Affiliation(s)
- Erliang Li
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710000, China
| | - Yingchao Gao
- Department of Orthopaedics, the 942nd Hospital of the Joint Logistics Support Force of the People's Liberation Army of China, Yinchuan, Ningxia 750004, China
| | - Jianfeng Zhang
- Department of Pharmacy, Eighth Hospital of Xi'an City, Xi'an, Shaanxi, 710000, China
| | - Peng Zou
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710000, China
| | - Huanhuan Qiao
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, Shaanxi, 710000, China
| | - Rui Zhang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710000, China.
| | - Yansheng Huang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710000, China.
| |
Collapse
|
2
|
Martiskainen H, Willman RM, Harju P, Heikkinen S, Heiskanen M, Müller SA, Sinisalo R, Takalo M, Mäkinen P, Kuulasmaa T, Pekkala V, Galván Del Rey A, Juopperi SP, Jeskanen H, Kervinen I, Saastamoinen K, Niiranen M, Heikkinen SV, Kurki MI, Marttila J, Mäkinen PI, Rostalski H, Hietanen T, Ngandu T, Lehtisalo J, Bellenguez C, Lambert JC, Haass C, Rinne J, Hakumäki J, Rauramaa T, Krüger J, Soininen H, Haapasalo A, Lichtenthaler SF, Leinonen V, Solje E, Hiltunen M. Monoallelic TYROBP deletion is a novel risk factor for Alzheimer's disease. Mol Neurodegener 2025; 20:50. [PMID: 40301889 PMCID: PMC12038944 DOI: 10.1186/s13024-025-00830-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 03/20/2025] [Indexed: 05/01/2025] Open
Abstract
Biallelic loss-of-function variants in TYROBP and TREM2 cause autosomal recessive presenile dementia with bone cysts known as Nasu-Hakola disease (NHD, alternatively polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy, PLOSL). Some other TREM2 variants contribute to the risk of Alzheimer's disease (AD) and frontotemporal dementia, while deleterious TYROBP variants are globally extremely rare and their role in neurodegenerative diseases remains unclear. The population history of Finns has favored the enrichment of deleterious founder mutations, including a 5.2 kb deletion encompassing exons 1-4 of TYROBP and causing NHD in homozygous carriers. We used here a proxy marker to identify monoallelic TYROBP deletion carriers in the Finnish biobank study FinnGen combining genome and health registry data of 520,210 Finns. We show that monoallelic TYROBP deletion associates with an increased risk and earlier onset age of AD and dementia when compared to noncarriers. In addition, we present the first reported case of a monoallelic TYROBP deletion carrier with NHD-type bone cysts. Mechanistically, monoallelic TYROBP deletion leads to decreased levels of DAP12 protein (encoded by TYROBP) in myeloid cells. Using transcriptomic and proteomic analyses of human monocyte-derived microglia-like cells, we show that upon lipopolysaccharide stimulation monoallelic TYROBP deletion leads to the upregulation of the inflammatory response and downregulation of the unfolded protein response when compared to cells with two functional copies of TYROBP. Collectively, our findings indicate TYROBP deletion as a novel risk factor for AD and suggest specific pathways for therapeutic targeting.
Collapse
Affiliation(s)
- Henna Martiskainen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| | | | - Päivi Harju
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Sami Heikkinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Mette Heiskanen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Rosa Sinisalo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Mari Takalo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Petra Mäkinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Teemu Kuulasmaa
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Viivi Pekkala
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ana Galván Del Rey
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | | | - Heli Jeskanen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Inka Kervinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Kirsi Saastamoinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Marja Niiranen
- Neuro Center - Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Sami V Heikkinen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Mitja I Kurki
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (Hilife), University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Jarkko Marttila
- Department of Clinical Radiology, Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Petri I Mäkinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Hannah Rostalski
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tomi Hietanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tiia Ngandu
- Department of Public Health, Finnish Institute for Health and Welfare, Helsinki, Finland
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Jenni Lehtisalo
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
- Department of Public Health, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Céline Bellenguez
- LabEx DISTALZ - U1167-RID-AGE Facteurs de Risque Et Déterminants Moléculaires Des Maladies Liées Au Vieillissement, Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Jean-Charles Lambert
- LabEx DISTALZ - U1167-RID-AGE Facteurs de Risque Et Déterminants Moléculaires Des Maladies Liées Au Vieillissement, Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Metabolic Biochemistry, Faculty of Medicine, Biomedical Centre (BMC), Ludwig-Maximilian University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (Synergy), Munich, Germany
| | - Juha Rinne
- Turku PET Centre, Turku University Hospital, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Juhana Hakumäki
- Department of Clinical Radiology, Imaging Center, Kuopio University Hospital, Kuopio, Finland
- Unit of Radiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Tuomas Rauramaa
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
- Unit of Pathology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Johanna Krüger
- Research Unit of Clinical Medicine, Neurology, University of Oulu, Oulu, Finland
- Medical Research Center, Oulu University Hospital, Oulu, Finland
- Neurocenter, Neurology, Oulu University Hospital, Oulu, Finland
| | - Hilkka Soininen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Annakaisa Haapasalo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (Synergy), Munich, Germany
| | - Ville Leinonen
- Department of Neurosurgery, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Eino Solje
- Neuro Center - Neurology, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
3
|
Garton T, Smith MD, Kesharwani A, Gharagozloo M, Oh S, Na CH, Absinta M, Reich DS, Zack DJ, Calabresi PA. Myeloid lineage C3 induces reactive gliosis and neuronal stress during CNS inflammation. Nat Commun 2025; 16:3481. [PMID: 40216817 PMCID: PMC11992029 DOI: 10.1038/s41467-025-58708-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
Complement component C3 mediates pathology in CNS neurodegenerative diseases. Here we use scRNAseq of sorted C3-reporter positive cells from mouse brain and optic nerve to characterize C3 producing glia in experimental autoimmune encephalomyelitis (EAE), a model in which peripheral immune cells infiltrate the CNS, causing reactive gliosis and neuro-axonal pathology. We find that C3 expression in the early inflammatory stage of EAE defines disease-associated glial subtypes characterized by increased expression of genes associated with mTOR activation and cell metabolism. This pro-inflammatory subtype is abrogated with genetic C3 depletion, a finding confirmed with proteomic analyses. In addition, early optic nerve axonal injury and retinal ganglion cell oxidative stress, but not loss of post-synaptic density protein 95, are ameliorated by selective deletion of C3 in myeloid cells. These data suggest that in addition to C3b opsonization of post synaptic proteins leading to neuronal demise, C3 activation is a contributor to reactive glia in the optic nerve.
Collapse
Affiliation(s)
- Thomas Garton
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Matthew D Smith
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ajay Kesharwani
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Marjan Gharagozloo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Sungtaek Oh
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Chan-Hyun Na
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Martina Absinta
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Reserach Hospital, Milan, Italy
| | - Daniel S Reich
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Donald J Zack
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
4
|
Zhao Y, Guo Q, Tian J, Liu W, Wang X. TREM2 bridges microglia and extracellular microenvironment: Mechanistic landscape and therapeutical prospects on Alzheimer's disease. Ageing Res Rev 2025; 103:102596. [PMID: 39608728 DOI: 10.1016/j.arr.2024.102596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
Neuroinflammation is closely related to the pathogenesis of Alzheimer's disease (AD). One of its prominent cellular components, microglia, is a potent coordinator of neuroinflammation in interplay with the characteristic AD pathological alterations including Aβ, tau, and neuronal defects, which constitute the AD-unique extracellular microenvironment. Mounting evidence implicates Triggering Receptors Expressed on Myeloid Cells 2 (TREM2) in the center of microglial activation, a vital event in the pathogenesis of AD. TREM2 is a pivotal microglial receptor that interacts with specific elements present in the AD microenvironment and induces microglial intracellular signallings contributing to phagocytosis, migration, cytokine production, metabolism, and survival, which shapes the microglial activation profile. It follows that TREM2 builds up a bridge between microglia and the extracellular microenvironment. This review illustrates how TREM2 modulates microglia to affect AD pathogenesis. Mainly presented facets in the review are i. the development of AD-specific microglial phenotypes (disease-associated microglia, DAM), ii. microglial interactions with major AD pathologies, and iii. the underlying intracellular signallings of microglial activation. Also, outstanding controversies regarding the nature of neuroinflammation are discussed. Through our illustration, we attempt to establish a TREM2-centered network of AD pathogenesis, in the hope as well to provide insights into the potential therapeutic strategies based on the underlying mechanisms.
Collapse
Affiliation(s)
- Yiheng Zhao
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Guo
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jia Tian
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Liu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.
| |
Collapse
|
5
|
Pashaei S, Shabani S, Mohammadi S, Morozova-Roche LA, Salari N, Rahimi Z, Khodarahmi R. Differential Expression of Neurodegeneration-Related Genes in SH-SY5Y Neuroblastoma Cells Under the Influence of Cyclophilin A: Could the Enzyme be a Likely Trigger and Therapeutic Target for Alzheimer's Disease? Neurochem Res 2024; 50:47. [PMID: 39636462 DOI: 10.1007/s11064-024-04253-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/08/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024]
Abstract
The function and mechanism of Cyclophilin A (CypA) in modulating gene expression associated with Alzheimer's disease (AD) remain unclear. This multifunctional protein is found to be elevated in the cerebrospinal fluid (CSF) of individuals at risk for AD. The cytotoxic effects of CypA, including both wild-type and the mutant R55A, were assessed using the MTT assay. Prior to this evaluation, the purified recombinant protein was validated through enzymatic activity assays and western blot analysis. Following treatment with CypA and transient transfection using the CypA construct, real-time PCR (qRT-PCR) and western blotting were conducted to analyze the expression of factors involved in various signaling pathways, with an emphasis on inflammation, cell death, and intercellular communication. The findings indicate that CypA has a significant impact on the gene expression of factors associated with inflammation and the progression of AD in SH-SY5Y cells. It can be concluded that CypA is capable of regulating gene expression in SH-SY5Y cells, either in a manner dependent on or independent of its enzymatic activity. Additionally, the influence of this multifunctional protein on gene expression is contingent upon the specific site of action, as well as the dosage and duration of exposure to the cells.
Collapse
Affiliation(s)
- Somayeh Pashaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sasan Shabani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Nader Salari
- Department of Biostatics, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Rahimi
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
6
|
Yang Y, Wu J, Jia L, Feng S, Qi Z, Yu H, Wu Y, Wang S. Berberine modulates microglial polarization by activating TYROBP in Alzheimer's disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156237. [PMID: 39566407 DOI: 10.1016/j.phymed.2024.156237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/29/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Characterized by β-amyloid (Aβ) plaques, neurofibrillary tangles, and aberrant neuroinflammation in the brain, Alzheimer's disease (AD) is the most common neurodegenerative disease. Microglial polarization is a subtle mechanism which maintains immunological homeostasis and has emerged as a putative therapeutic to combat AD. Berberine (BBR) is a natural alkaloid compound with multiple pharmacological effects, and has shown considerable therapeutic potential against inflammatory disorders. However, BBR functions and underlying mechanisms in neuroinflammation remain unclear. PURPOSE To examine BBR pharmacological effects and mechanisms in neuroinflammation with a view to treating AD. METHODS BBR effects on cognitive performance in 5 × FAD mice were assessed using open field, Y-maze, and Morris Water Maze (MWM) tests. Neuroinflammation-related markers and Aβ pathology were examined in brain sections from mice. Transcriptomic analyses of hippocampus tissues were also conducted. Microglial BV2 cells were also used to verify potential BBR mechanisms in neuroinflammation and microglial polarization. RESULTS BBR improved cognitive performance, reduced amyloid pathology, and alleviated aberrant neuroinflammation in an AD mouse model. BBR induced microglial polarization to an M2-like phenotype, which was manifested by lowered and elevated proinflammatory and anti-inflammatory cytokine production, respectively, improved microglial uptake and Aβ clearance. Mechanistically, BBR directly interacted with TYROBP and promoted its activation by stabilizing TYROBP oligomerization. TYROBP knockdown aggravated M1-like polarization and pro-inflammatory gene expression in microglial cells in the presence of lipopolysaccharide (LPS)+Aβ, while blocked microglial M2-like polarization benefited from BBR administration. CONCLUSIONS BBR modulated neuroinflammation by regulating microglial polarization via TYROBP activation. Our study provided new insight into BBR pharmacological actions in regulating microglial homeostasis and combating AD.
Collapse
Affiliation(s)
- Yu Yang
- Shandong Key Laboratory of Psychiatric and Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, 272013, Shandong, China; Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, 272013, Shandong, China
| | - Jiwen Wu
- Shandong Key Laboratory of Psychiatric and Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, 272013, Shandong, China; Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, 272013, Shandong, China
| | - Luping Jia
- Shandong Key Laboratory of Psychiatric and Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, 272013, Shandong, China; Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, 272013, Shandong, China
| | - Shicheng Feng
- Shandong Key Laboratory of Psychiatric and Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, 272013, Shandong, China; Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, 272013, Shandong, China
| | - Zihan Qi
- Shandong Key Laboratory of Psychiatric and Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, 272013, Shandong, China; Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, 272013, Shandong, China
| | - Hao Yu
- Shandong Key Laboratory of Psychiatric and Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, 272013, Shandong, China; Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, 272013, Shandong, China
| | - Yili Wu
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Key Laboratory of Basic and Translational Research for Mental Disorders, Zhejiang Provincial Clinical Research Center for Mental Health, School of Mental Health, Institute of Aging, Wenzhou Medical University, Wenzhou, 325000, China; Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, 325000, China.
| | - Shuai Wang
- Shandong Key Laboratory of Psychiatric and Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, 272013, Shandong, China; Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, 272013, Shandong, China.
| |
Collapse
|
7
|
Tangavelou K, Bhaskar K. The Mechanistic Link Between Tau-Driven Proteotoxic Stress and Cellular Senescence in Alzheimer's Disease. Int J Mol Sci 2024; 25:12335. [PMID: 39596399 PMCID: PMC11595124 DOI: 10.3390/ijms252212335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
In Alzheimer's disease (AD), tau dissociates from microtubules (MTs) due to hyperphosphorylation and misfolding. It is degraded by various mechanisms, including the 20S proteasome, chaperone-mediated autophagy (CMA), 26S proteasome, macroautophagy, and aggrephagy. Neurofibrillary tangles (NFTs) form upon the impairment of aggrephagy, and eventually, the ubiquitin chaperone valosin-containing protein (VCP) and heat shock 70 kDa protein (HSP70) are recruited to the sites of NFTs for the extraction of tau for the ubiquitin-proteasome system (UPS)-mediated degradation. However, the impairment of tau degradation in neurons allows tau to be secreted into the extracellular space. Secreted tau can be monomers, oligomers, and paired helical filaments (PHFs), which are seeding competent pathological tau that can be endocytosed/phagocytosed by healthy neurons, microglia, astrocytes, oligodendrocyte progenitor cells (OPCs), and oligodendrocytes, often causing proteotoxic stress and eventually triggers senescence. Senescent cells secrete various senescence-associated secretory phenotype (SASP) factors, which trigger cellular atrophy, causing decreased brain volume in human AD. However, the molecular mechanisms of proteotoxic stress and cellular senescence are not entirely understood and are an emerging area of research. Therefore, this comprehensive review summarizes pertinent studies that provided evidence for the sequential tau degradation, failure, and the mechanistic link between tau-driven proteotoxic stress and cellular senescence in AD.
Collapse
Affiliation(s)
- Karthikeyan Tangavelou
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
8
|
Wang Q, Liu J, Zhang Y, Li Z, Zhao Z, Jiang W, Zhao J, Hou L, Wang Q. Microglial CR3 promotes neuron ferroptosis via NOX2-mediated iron deposition in rotenone-induced experimental models of Parkinson's disease. Redox Biol 2024; 77:103369. [PMID: 39357423 PMCID: PMC11471230 DOI: 10.1016/j.redox.2024.103369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/22/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024] Open
Abstract
The activation of complement receptor 3 (CR3) in microglia contributes to neurodegeneration in neurological disorders, including Parkinson's disease (PD). However, it remains unclear for mechanistic knowledge on how CR3 mediates neuronal damage. In this study, the expression of CR3 and its ligands iC3b and ICAM-1 was found to be up-regulated in the midbrain of rotenone PD mice, which was associated with elevation of iron content and disruption of balance of iron metabolism proteins. Interestingly, genetic deletion of CR3 blunted iron accumulation and recovered the expression of iron metabolism markers in response to rotenone. Furthermore, reduced lipid peroxidation, ferroptosis of dopaminergic neurons and neuroinflammation were detected in rotenone-lesioned CR3-/- mice compared with WT mice. The regulatory effect of CR3 on ferroptotic death of dopaminergic neurons was also mirrored in vitro. Mechanistic study revealed that iron accumulation in neuron but not the physiological contact between microglia and neurons was essential for microglial CR3-regulated neuronal ferroptosis. In a cell-culture system, microglial CR3 silence significantly dampened iron deposition in neuron in response to rotenone, which was accompanied by mitigated lipid peroxidation and neurodegeneration. Furthermore, ROS released from activated microglia via NOX2 was identified to couple microglial CR3-mediated iron accumulation and subsequent neuronal ferroptosis. Finally, supplementation with exogenous iron was found to recover the sensitivity of CR3-/- mice to rotenone-induced neuronal ferroptosis. Altogether, our findings suggested that microglial CR3 regulates neuron ferroptosis through NOX2 -mediated iron accumulation in experimental Parkinsonism, providing novel points of the immunopathogenesis of neurological disorders.
Collapse
Affiliation(s)
- Qinghui Wang
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China; Department of Anesthesiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116023, China
| | - Jianing Liu
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Yu Zhang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Zhen Li
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Zirui Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Wanwei Jiang
- Department of Anesthesiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116023, China
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Liyan Hou
- The Library of Dalian Medical University, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China.
| | - Qingshan Wang
- School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China; National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China.
| |
Collapse
|
9
|
Reus LM, Jansen IE, Tijms BM, Visser PJ, Tesi N, van der Lee SJ, Vermunt L, Peeters CFW, De Groot LA, Hok-A-Hin YS, Chen-Plotkin A, Irwin DJ, Hu WT, Meeter LH, van Swieten JC, Holstege H, Hulsman M, Lemstra AW, Pijnenburg YAL, van der Flier WM, Teunissen CE, del Campo Milan M. Connecting dementia risk loci to the CSF proteome identifies pathophysiological leads for dementia. Brain 2024; 147:3522-3533. [PMID: 38527854 PMCID: PMC11449142 DOI: 10.1093/brain/awae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/29/2024] [Accepted: 02/23/2024] [Indexed: 03/27/2024] Open
Abstract
Genome-wide association studies have successfully identified many genetic risk loci for dementia, but exact biological mechanisms through which genetic risk factors contribute to dementia remains unclear. Integrating CSF proteomic data with dementia risk loci could reveal intermediate molecular pathways connecting genetic variance to the development of dementia. We tested to what extent effects of known dementia risk loci can be observed in CSF levels of 665 proteins [proximity extension-based (PEA) immunoassays] in a deeply-phenotyped mixed memory clinic cohort [n = 502, mean age (standard deviation, SD) = 64.1 (8.7) years, 181 female (35.4%)], including patients with Alzheimer's disease (AD, n = 213), dementia with Lewy bodies (DLB, n = 50) and frontotemporal dementia (FTD, n = 93), and controls (n = 146). Validation was assessed in independent cohorts (n = 99 PEA platform, n = 198, mass reaction monitoring-targeted mass spectroscopy and multiplex assay). We performed additional analyses stratified according to diagnostic status (AD, DLB, FTD and controls separately), to explore whether associations between CSF proteins and genetic variants were specific to disease or not. We identified four AD risk loci as protein quantitative trait loci (pQTL): CR1-CR2 (rs3818361, P = 1.65 × 10-8), ZCWPW1-PILRB (rs1476679, P = 2.73 × 10-32), CTSH-CTSH (rs3784539, P = 2.88 × 10-24) and HESX1-RETN (rs186108507, P = 8.39 × 10-8), of which the first three pQTLs showed direct replication in the independent cohorts. We identified one AD-specific association between a rare genetic variant of TREM2 and CSF IL6 levels (rs75932628, P = 3.90 × 10-7). DLB risk locus GBA showed positive trans effects on seven inter-related CSF levels in DLB patients only. No pQTLs were identified for FTD loci, either for the total sample as for analyses performed within FTD only. Protein QTL variants were involved in the immune system, highlighting the importance of this system in the pathophysiology of dementia. We further identified pQTLs in stratified analyses for AD and DLB, hinting at disease-specific pQTLs in dementia. Dissecting the contribution of risk loci to neurobiological processes aids in understanding disease mechanisms underlying dementia.
Collapse
Affiliation(s)
- Lianne M Reus
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Center for Neurobehavioral Genetics, University of California Los Angeles, Los Angeles, CA 90095 CA, USA
| | - Iris E Jansen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Pieter Jelle Visser
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Psychiatry, Maastricht University, 6229 ET Maastricht, The Netherlands
| | - Niccoló Tesi
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HZ Amsterdam, The Netherlands
| | - Sven J van der Lee
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HZ Amsterdam, The Netherlands
| | - Lisa Vermunt
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, 1081 HZ Amsterdam, The Netherlands
| | - Carel F W Peeters
- Mathematical and Statistical Methods group (Biometris), Wageningen University and Research, Wageningen, 6708 PB Wageningen, The Netherlands
| | - Lisa A De Groot
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Yanaika S Hok-A-Hin
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, 1081 HZ Amsterdam, The Netherlands
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David J Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William T Hu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Rutgers-RWJ Medical School, Institute for Health, Health Care Policy, and Aging Research, Rutgers Biomedical and Health Sciences, New Brunswick, NJ 08901, USA
| | - Lieke H Meeter
- Department of Neurology and Alzheimer Center, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GD, The Netherlands
| | - John C van Swieten
- Department of Neurology and Alzheimer Center, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GD, The Netherlands
| | - Henne Holstege
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HZ Amsterdam, The Netherlands
| | - Marc Hulsman
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HZ Amsterdam, The Netherlands
| | - Afina W Lemstra
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, 1081 HZ Amsterdam, The Netherlands
| | - Marta del Campo Milan
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, 1081 HZ Amsterdam, The Netherlands
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, 28003 Madrid, Spain
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, 08005 Barcelona, Spain
| |
Collapse
|
10
|
Zhang M, Duan Y, Gan H, Jiang N, Qin L, Luo Y, Palahati A, He Y, Li C, Zhai X. TYROBP serve as potential immune-related signature genes in the acute phase of intracerebral hemorrhage. Sci Rep 2024; 14:20158. [PMID: 39215129 PMCID: PMC11364555 DOI: 10.1038/s41598-024-71132-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
The development of intracerebral hemorrhage (ICH) is a dynamic process and intervention during the acute phase of ICH is critical for subsequent recovery. Therefore, it is crucial to screen potential signature genes and therapeutic target genes in the acute phase of ICH. In this study, based on the results of mRNA sequencing in mouse ICH and mRNA sequencing of human ICH from online databases, top five potential signature genes after ICH, Tyrobp, Itgb2, Tlr2, Ptprc and Itgam, were screened. Quantitative PCR results showed higher mRNA expression of Tyrobp, Itgb2, Tlr2, Ptprc, and Itgam in the 1-, 3- and 5-day mouse ICH groups compared to the sham-operated group. Immune infiltration correlation analysis shows that the top-ranked signature gene, Tyrobp, is negatively correlated with M2 macrophages and plasma cells, and Western blot analysis shows higher expression of the Tyrobp protein in the 1-, 3-, and 5-day mouse ICH groups compared to the sham-operated group. Furthermore, immunohistochemistry revealed that TYROBP protein expression was significantly higher in human ICH tissues than in normal brain tissues. Our results suggest that Tyrobp is a signature gene in the acute phase of ICH and may be a potential target for the treatment of the acute phase of ICH.
Collapse
Affiliation(s)
- Mi Zhang
- Department of Neurosurgery, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, China
- Institute of Neuroscience, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yuhao Duan
- Department of Neurosurgery, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, China
- Institute of Neuroscience, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hui Gan
- Department of Neurosurgery, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, China
- Institute of Neuroscience, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ning Jiang
- Department of Pathology, Chongqing Medical University, Chongqing, 400016, China
| | - Le Qin
- Department of Neurosurgery, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, China
- Institute of Neuroscience, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yujia Luo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ailiyaer Palahati
- Department of Neurosurgery, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, China
- Institute of Neuroscience, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yaying He
- Department of Neurosurgery, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, China
- Institute of Neuroscience, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Chenyang Li
- Department of Neurosurgery, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, China
- Institute of Neuroscience, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xuan Zhai
- Department of Neurosurgery, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, China.
| |
Collapse
|
11
|
Zhou W, He J, Shen G, Liu Y, Zhao P, Li J. TREM2-dependent activation of microglial cell protects photoreceptor cell during retinal degeneration via PPARγ and CD36. Cell Death Dis 2024; 15:623. [PMID: 39187498 PMCID: PMC11347571 DOI: 10.1038/s41419-024-07002-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Retinal degeneration is a collection of devastating conditions with progressive loss of vision which often lead to blindness. Research on retinal microglial cells offers great therapeutic potential in deterring the progression of degeneration. This study explored the mechanisms underlying the TREM2-mediated protective function of activated microglial cells during retinal degeneration. N-methyl-N-nitrosourea (MNU)-induced retinal degeneration was established in C57BL/6 J (WT) and Trem2 knockout (Trem2-/-) mice. We discovered that MNU treatment led to the concurrent processes of photoreceptor apoptosis and microglia infiltration. A significant upregulation of disease-associated microglia signature genes was observed during photoreceptor degeneration. Following MNU treatment, Trem2-/- mice showed exacerbated photoreceptor cell death, decreased microglia migration and phagocytosis, reduced microglial PPARγ activation and CD36 expression. Pharmaceutical activation of PPARγ promoted microglial migration, ameliorated photoreceptor degeneration and restored CD36 expression in MNU-treated Trem2-/- mice. Inhibition of CD36 activity worsened photoreceptor degeneration in MNU-treated WT mice. Our findings suggested that the protective effect of microglia during retinal degeneration was dependent on Trem2 expression and carried out via the activation of PPARγ and the consequent upregulation of CD36 expression. Our study linked TREM2 signaling with PPARγ activation, and provided a potential therapeutic target for the management of retinal degeneration.
Collapse
Affiliation(s)
- Wenchuan Zhou
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jincan He
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Guiyan Shen
- Institute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Ya Liu
- Institute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Jing Li
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
12
|
Wanionok NE, Morel GR, Fernández JM. Osteoporosis and Alzheimer´s disease (or Alzheimer´s disease and Osteoporosis). Ageing Res Rev 2024; 99:102408. [PMID: 38969142 DOI: 10.1016/j.arr.2024.102408] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Alzheimer's disease (AD) and osteoporosis are two diseases that mainly affect elderly people, with increases in the occurrence of cases due to a longer life expectancy. Several epidemiological studies have shown a reciprocal association between both diseases, finding an increase in incidence of osteoporosis in patients with AD, and a higher burden of AD in osteoporotic patients. This epidemiological relationship has motivated the search for molecules, genes, signaling pathways and mechanisms that are related to both pathologies. The mechanisms found in these studies can serve to improve treatments and establish better patient care protocols.
Collapse
Affiliation(s)
- Nahuel E Wanionok
- Laboratorio de Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Cs. Exactas. Universidad Nacional de La Plata UNLP-CIC, Argentina
| | - Gustavo R Morel
- Biochemistry Research Institute of La Plata "Professor Doctor Rodolfo R. Brenner" (INIBIOLP), Argentina
| | - Juan M Fernández
- Laboratorio de Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Cs. Exactas. Universidad Nacional de La Plata UNLP-CIC, Argentina.
| |
Collapse
|
13
|
Etxeberria A, Shen YAA, Vito S, Silverman SM, Imperio J, Lalehzadeh G, Soung AL, Du C, Xie L, Choy MK, Hsiao YC, Ngu H, Cho CH, Ghosh S, Novikova G, Rezzonico MG, Leahey R, Weber M, Gogineni A, Elstrott J, Xiong M, Greene JJ, Stark KL, Chan P, Roth GA, Adrian M, Li Q, Choi M, Wong WR, Sandoval W, Foreman O, Nugent AA, Friedman BA, Sadekar S, Hötzel I, Hansen DV, Chih B, Yuen TJ, Weimer RM, Easton A, Meilandt WJ, Bohlen CJ. Neutral or Detrimental Effects of TREM2 Agonist Antibodies in Preclinical Models of Alzheimer's Disease and Multiple Sclerosis. J Neurosci 2024; 44:e2347232024. [PMID: 38830764 PMCID: PMC11255434 DOI: 10.1523/jneurosci.2347-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/06/2024] [Accepted: 05/25/2024] [Indexed: 06/05/2024] Open
Abstract
Human genetics and preclinical studies have identified key contributions of TREM2 to several neurodegenerative conditions, inspiring efforts to modulate TREM2 therapeutically. Here, we characterize the activities of three TREM2 agonist antibodies in multiple mixed-sex mouse models of Alzheimer's disease (AD) pathology and remyelination. Receptor activation and downstream signaling are explored in vitro, and active dose ranges are determined in vivo based on pharmacodynamic responses from microglia. For mice bearing amyloid-β (Aβ) pathology (PS2APP) or combined Aβ and tau pathology (TauPS2APP), chronic TREM2 agonist antibody treatment had limited impact on microglia engagement with pathology, overall pathology burden, or downstream neuronal damage. For mice with demyelinating injuries triggered acutely with lysolecithin, TREM2 agonist antibodies unexpectedly disrupted injury resolution. Likewise, TREM2 agonist antibodies limited myelin recovery for mice experiencing chronic demyelination from cuprizone. We highlight the contributions of dose timing and frequency across models. These results introduce important considerations for future TREM2-targeting approaches.
Collapse
Affiliation(s)
- Ainhoa Etxeberria
- Departments of Neuroscience, Genentech, Inc., South San Francisco, California 94080
| | - Yun-An A Shen
- Departments of Neuroscience, Genentech, Inc., South San Francisco, California 94080
| | - Stephen Vito
- Departments of Neuroscience, Genentech, Inc., South San Francisco, California 94080
| | - Sean M Silverman
- Departments of Neuroscience, Genentech, Inc., South San Francisco, California 94080
| | - Jose Imperio
- Departments of Neuroscience, Genentech, Inc., South San Francisco, California 94080
| | - Guita Lalehzadeh
- Departments of Neuroscience, Genentech, Inc., South San Francisco, California 94080
| | - Allison L Soung
- Departments of Neuroscience, Genentech, Inc., South San Francisco, California 94080
| | - Changchun Du
- Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, California 94080
| | - Luke Xie
- Translational Imaging, Genentech, Inc., South San Francisco, California 94080
| | - Man Kin Choy
- Translational Imaging, Genentech, Inc., South San Francisco, California 94080
| | - Yi-Chun Hsiao
- Antibody Engineering, Genentech, Inc., South San Francisco, California 94080
| | - Hai Ngu
- Pathology, Genentech, Inc., South San Francisco, California 94080
| | - Chang Hoon Cho
- Human Pathobiology and OMNI Reverse Translation, Genentech, Inc., South San Francisco, California 94080
| | - Soumitra Ghosh
- Departments of Neuroscience, Genentech, Inc., South San Francisco, California 94080
| | - Gloriia Novikova
- Bioinformatics, Genentech, Inc., South San Francisco, California 94080
| | | | - Rebecca Leahey
- Departments of Neuroscience, Genentech, Inc., South San Francisco, California 94080
| | - Martin Weber
- Departments of Neuroscience, Genentech, Inc., South San Francisco, California 94080
| | - Alvin Gogineni
- Translational Imaging, Genentech, Inc., South San Francisco, California 94080
| | - Justin Elstrott
- Translational Imaging, Genentech, Inc., South San Francisco, California 94080
| | - Monica Xiong
- Departments of Neuroscience, Genentech, Inc., South San Francisco, California 94080
| | - Jacob J Greene
- Departments of Neuroscience, Genentech, Inc., South San Francisco, California 94080
| | - Kimberly L Stark
- Departments of Neuroscience, Genentech, Inc., South San Francisco, California 94080
| | - Pamela Chan
- Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, California 94080
| | - Gillie A Roth
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc., South San Francisco, California 94080
| | - Max Adrian
- Pathology, Genentech, Inc., South San Francisco, California 94080
| | - Qingling Li
- Microchemistry Lipidomics and Proteomics, Genentech, Inc., South San Francisco, California 94080
| | - Meena Choi
- Microchemistry Lipidomics and Proteomics, Genentech, Inc., South San Francisco, California 94080
| | - Weng Ruh Wong
- Microchemistry Lipidomics and Proteomics, Genentech, Inc., South San Francisco, California 94080
| | - Wendy Sandoval
- Microchemistry Lipidomics and Proteomics, Genentech, Inc., South San Francisco, California 94080
| | - Oded Foreman
- Pathology, Genentech, Inc., South San Francisco, California 94080
| | - Alicia A Nugent
- Human Pathobiology and OMNI Reverse Translation, Genentech, Inc., South San Francisco, California 94080
| | - Brad A Friedman
- Bioinformatics, Genentech, Inc., South San Francisco, California 94080
| | - Shraddha Sadekar
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc., South San Francisco, California 94080
| | - Isidro Hötzel
- Antibody Engineering, Genentech, Inc., South San Francisco, California 94080
| | - David V Hansen
- Departments of Neuroscience, Genentech, Inc., South San Francisco, California 94080
| | - Ben Chih
- Departments of Neuroscience, Genentech, Inc., South San Francisco, California 94080
- Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, California 94080
| | - Tracy J Yuen
- Departments of Neuroscience, Genentech, Inc., South San Francisco, California 94080
| | - Robby M Weimer
- Translational Imaging, Genentech, Inc., South San Francisco, California 94080
| | - Amy Easton
- Departments of Neuroscience, Genentech, Inc., South San Francisco, California 94080
| | - William J Meilandt
- Departments of Neuroscience, Genentech, Inc., South San Francisco, California 94080
| | - Christopher J Bohlen
- Departments of Neuroscience, Genentech, Inc., South San Francisco, California 94080
| |
Collapse
|
14
|
Mi X, Kang C, Hou S, Gao Y, Hao L, Gao X. Mining and exploration of appendicitis nursing targets: An observational study. Medicine (Baltimore) 2024; 103:e38667. [PMID: 38941398 PMCID: PMC11466127 DOI: 10.1097/md.0000000000038667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/31/2024] [Indexed: 06/30/2024] Open
Abstract
Appendicitis is an inflammation caused by obstruction of the appendiceal lumen or termination of blood supply leading to appendiceal necrosis followed by secondary bacterial infection. The relationship between TYROBP gene and the nursing of appendicitis remains unclear. The appendicitis dataset GSE9579 profile was downloaded from the gene expression omnibus database generated from GPL571. Differentially expressed genes were screened, followed by weighted gene co-expression network analysis, functional enrichment analysis, gene set enrichment analysis, construction and analysis of protein-protein interaction network, Comparative Toxicogenomics Database analysis, and immune infiltration analysis. Heatmaps of gene expression levels were plotted. A total of 1570 differentially expressed genes were identified. According to gene ontology analysis, they were mainly enriched in organic acid metabolic process, condensed chromosome kinetochore, oxidoreductase activity. In Kyoto Encyclopedia of Gene and Genome analysis, they mainly concentrated in metabolic pathways, P53 signaling pathway, PPAR signaling pathway. The soft threshold power in weighted gene co-expression network analysis was set to 12. Through the construction and analysis of protein-protein interaction network, 5 core genes (FCGR2A, IL1B, ITGAM, TLR2, TYROBP) were obtained. Heatmap of core gene expression levels revealed high expression of TYROBP in appendicitis samples. Comparative Toxicogenomics Database analysis found that core genes (FCGR2A, IL1B, ITGAM, TLR2, TYROBP) were closely related to abdominal pain, gastrointestinal dysfunction, fever, and inflammation occurrence. TYROBP gene is highly expressed in appendicitis, and higher expression of TYROBP gene indicates worse prognosis. TYROBP may serve as a molecular target for appendicitis and its nursing.
Collapse
Affiliation(s)
- Xihua Mi
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Chunbo Kang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Shiyang Hou
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Yanfang Gao
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Lingli Hao
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Xiaoli Gao
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Bharadwaj S, Groza Y, Mierzwicka JM, Malý P. Current understanding on TREM-2 molecular biology and physiopathological functions. Int Immunopharmacol 2024; 134:112042. [PMID: 38703564 DOI: 10.1016/j.intimp.2024.112042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 05/06/2024]
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM-2), a glycosylated receptor belonging to the immunoglobin superfamily and especially expressed in the myeloid cell lineage, is frequently explained as a reminiscent receptor for both adaptive and innate immunity regulation. TREM-2 is also acknowledged to influence NK cell differentiation via the PI3K and PLCγ signaling pathways, as well as the partial activation or direct inhibition of T cells. Additionally, TREM-2 overexpression is substantially linked to cell-specific functions, such as enhanced phagocytosis, reduced toll-like receptor (TLR)-mediated inflammatory cytokine production, increased transcription of anti-inflammatory cytokines, and reshaped T cell function. Whereas TREM-2-deficient cells exhibit diminished phagocytic function and enhanced proinflammatory cytokines production, proceeding to inflammatory injuries and an immunosuppressive environment for disease progression. Despite the growing literature supporting TREM-2+ cells in various diseases, such as neurodegenerative disorders and cancer, substantial facets of TREM-2-mediated signaling remain inadequately understood relevant to pathophysiology conditions. In this direction, herein, we have summarized the current knowledge on TREM-2 biology and cell-specific TREM-2 expression, particularly in the modulation of pivotal TREM-2-dependent functions under physiopathological conditions. Furthermore, molecular regulation and generic biological relevance of TREM-2 are also discussed, which might provide an alternative approach for preventing or reducing TREM-2-associated deformities. At last, we discussed the TREM-2 function in supporting an immunosuppressive cancer environment and as a potential drug target for cancer immunotherapy. Hence, summarized knowledge of TREM-2 might provide a window to overcome challenges in clinically effective therapies for TREM-2-induced diseases in humans.
Collapse
Affiliation(s)
- Shiv Bharadwaj
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic.
| | - Yaroslava Groza
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Joanna M Mierzwicka
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic.
| |
Collapse
|
16
|
Kim B, Dabin LC, Tate MD, Karahan H, Sharify AD, Acri DJ, Al-Amin MM, Philtjens S, Smith DC, Wijeratne HRS, Park JH, Jucker M, Kim J. Effects of SPI1-mediated transcriptome remodeling on Alzheimer's disease-related phenotypes in mouse models of Aβ amyloidosis. Nat Commun 2024; 15:3996. [PMID: 38734693 PMCID: PMC11088624 DOI: 10.1038/s41467-024-48484-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
SPI1 was recently reported as a genetic risk factor for Alzheimer's disease (AD) in large-scale genome-wide association studies. However, it is unknown whether SPI1 should be downregulated or increased to have therapeutic benefits. To investigate the effect of modulating SPI1 levels on AD pathogenesis, we performed extensive biochemical, histological, and transcriptomic analyses using both Spi1-knockdown and Spi1-overexpression mouse models. Here, we show that the knockdown of Spi1 expression significantly exacerbates insoluble amyloid-β (Aβ) levels, amyloid plaque deposition, and gliosis. Conversely, overexpression of Spi1 significantly ameliorates these phenotypes and dystrophic neurites. Further mechanistic studies using targeted and single-cell transcriptomics approaches demonstrate that altered Spi1 expression modulates several pathways, such as immune response pathways and complement system. Our data suggest that transcriptional reprogramming by targeting transcription factors, like Spi1, might hold promise as a therapeutic strategy. This approach could potentially expand the current landscape of druggable targets for AD.
Collapse
Affiliation(s)
- Byungwook Kim
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Luke Child Dabin
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mason Douglas Tate
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Hande Karahan
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Ahmad Daniel Sharify
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Dominic J Acri
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Md Mamun Al-Amin
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Stéphanie Philtjens
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Daniel Curtis Smith
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - H R Sagara Wijeratne
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jung Hyun Park
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Mathias Jucker
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Jungsu Kim
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
17
|
Huang J, He B, Yang X, Long X, Wei Y, Li L, Tang M, Gao Y, Fang Y, Ying W, Wang Z, Li C, Zhou Y, Li S, Shi L, Choi S, Zhou H, Guo F, Yang H, Wu J. Generation of rat forebrain tissues in mice. Cell 2024; 187:2129-2142.e17. [PMID: 38670071 PMCID: PMC11646705 DOI: 10.1016/j.cell.2024.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/14/2023] [Accepted: 03/13/2024] [Indexed: 04/28/2024]
Abstract
Interspecies blastocyst complementation (IBC) provides a unique platform to study development and holds the potential to overcome worldwide organ shortages. Despite recent successes, brain tissue has not been achieved through IBC. Here, we developed an optimized IBC strategy based on C-CRISPR, which facilitated rapid screening of candidate genes and identified that Hesx1 deficiency supported the generation of rat forebrain tissue in mice via IBC. Xenogeneic rat forebrain tissues in adult mice were structurally and functionally intact. Cross-species comparative analyses revealed that rat forebrain tissues developed at the same pace as the mouse host but maintained rat-like transcriptome profiles. The chimeric rate of rat cells gradually decreased as development progressed, suggesting xenogeneic barriers during mid-to-late pre-natal development. Interspecies forebrain complementation opens the door for studying evolutionarily conserved and divergent mechanisms underlying brain development and cognitive function. The C-CRISPR-based IBC strategy holds great potential to broaden the study and application of interspecies organogenesis.
Collapse
Affiliation(s)
- Jia Huang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bingbing He
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiali Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Xin Long
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yinghui Wei
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Leijie Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Min Tang
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yanxia Gao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuan Fang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenqin Ying
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zikang Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chao Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yingsi Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuaishuai Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Linyu Shi
- Huidagene Therapeutics Co., Ltd, Shanghai 200131, China
| | - Seungwon Choi
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Haibo Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Fan Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
18
|
de Vries LE, Jongejan A, Monteiro Fortes J, Balesar R, Rozemuller AJM, Moerland PD, Huitinga I, Swaab DF, Verhaagen J. Gene-expression profiling of individuals resilient to Alzheimer's disease reveals higher expression of genes related to metallothionein and mitochondrial processes and no changes in the unfolded protein response. Acta Neuropathol Commun 2024; 12:68. [PMID: 38664739 PMCID: PMC11046840 DOI: 10.1186/s40478-024-01760-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/10/2024] [Indexed: 04/28/2024] Open
Abstract
Some individuals show a discrepancy between cognition and the amount of neuropathological changes characteristic for Alzheimer's disease (AD). This phenomenon has been referred to as 'resilience'. The molecular and cellular underpinnings of resilience remain poorly understood. To obtain an unbiased understanding of the molecular changes underlying resilience, we investigated global changes in gene expression in the superior frontal gyrus of a cohort of cognitively and pathologically well-defined AD patients, resilient individuals and age-matched controls (n = 11-12 per group). 897 genes were significantly altered between AD and control, 1121 between resilient and control and 6 between resilient and AD. Gene set enrichment analysis (GSEA) revealed that the expression of metallothionein (MT) and of genes related to mitochondrial processes was higher in the resilient donors. Weighted gene co-expression network analysis (WGCNA) identified gene modules related to the unfolded protein response, mitochondrial processes and synaptic signaling to be differentially associated with resilience or dementia. As changes in MT, mitochondria, heat shock proteins and the unfolded protein response (UPR) were the most pronounced changes in the GSEA and/or WGCNA, immunohistochemistry was used to further validate these processes. MT was significantly increased in astrocytes in resilient individuals. A higher proportion of the mitochondrial gene MT-CO1 was detected outside the cell body versus inside the cell body in the resilient compared to the control group and there were higher levels of heat shock protein 70 (HSP70) and X-box-binding protein 1 spliced (XBP1s), two proteins related to heat shock proteins and the UPR, in the AD donors. Finally, we show evidence for putative sex-specific alterations in resilience, including gene expression differences related to autophagy in females compared to males. Taken together, these results show possible mechanisms involving MTs, mitochondrial processes and the UPR by which individuals might maintain cognition despite the presence of AD pathology.
Collapse
Affiliation(s)
- Luuk E de Vries
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands.
| | - Aldo Jongejan
- Amsterdam UMC Location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Jennifer Monteiro Fortes
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Rawien Balesar
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | - Perry D Moerland
- Amsterdam UMC Location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Inge Huitinga
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Dick F Swaab
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Joost Verhaagen
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands.
- Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Homma H, Yoshioka Y, Fujita K, Shirai S, Hama Y, Komano H, Saito Y, Yabe I, Okano H, Sasaki H, Tanaka H, Okazawa H. Dynamic molecular network analysis of iPSC-Purkinje cells differentiation delineates roles of ISG15 in SCA1 at the earliest stage. Commun Biol 2024; 7:413. [PMID: 38594382 PMCID: PMC11003991 DOI: 10.1038/s42003-024-06066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 03/18/2024] [Indexed: 04/11/2024] Open
Abstract
Better understanding of the earliest molecular pathologies of all neurodegenerative diseases is expected to improve human therapeutics. We investigated the earliest molecular pathology of spinocerebellar ataxia type 1 (SCA1), a rare familial neurodegenerative disease that primarily induces death and dysfunction of cerebellum Purkinje cells. Extensive prior studies have identified involvement of transcription or RNA-splicing factors in the molecular pathology of SCA1. However, the regulatory network of SCA1 pathology, especially central regulators of the earliest developmental stages and inflammatory events, remains incompletely understood. Here, we elucidated the earliest developmental pathology of SCA1 using originally developed dynamic molecular network analyses of sequentially acquired RNA-seq data during differentiation of SCA1 patient-derived induced pluripotent stem cells (iPSCs) to Purkinje cells. Dynamic molecular network analysis implicated histone genes and cytokine-relevant immune response genes at the earliest stages of development, and revealed relevance of ISG15 to the following degradation and accumulation of mutant ataxin-1 in Purkinje cells of SCA1 model mice and human patients.
Collapse
Affiliation(s)
- Hidenori Homma
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yuki Yoshioka
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kyota Fujita
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takaramachi, Kanazawa-shi, Ishikawa, 920-8640, Japan
| | - Shinichi Shirai
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Yuka Hama
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hajime Komano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yuko Saito
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Ichiro Yabe
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hidenao Sasaki
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hikari Tanaka
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
20
|
de Vries LE, Huitinga I, Kessels HW, Swaab DF, Verhaagen J. The concept of resilience to Alzheimer's Disease: current definitions and cellular and molecular mechanisms. Mol Neurodegener 2024; 19:33. [PMID: 38589893 PMCID: PMC11003087 DOI: 10.1186/s13024-024-00719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Some individuals are able to maintain their cognitive abilities despite the presence of significant Alzheimer's Disease (AD) neuropathological changes. This discrepancy between cognition and pathology has been labeled as resilience and has evolved into a widely debated concept. External factors such as cognitive stimulation are associated with resilience to AD, but the exact cellular and molecular underpinnings are not completely understood. In this review, we discuss the current definitions used in the field, highlight the translational approaches used to investigate resilience to AD and summarize the underlying cellular and molecular substrates of resilience that have been derived from human and animal studies, which have received more and more attention in the last few years. From these studies the picture emerges that resilient individuals are different from AD patients in terms of specific pathological species and their cellular reaction to AD pathology, which possibly helps to maintain cognition up to a certain tipping point. Studying these rare resilient individuals can be of great importance as it could pave the way to novel therapeutic avenues for AD.
Collapse
Affiliation(s)
- Luuk E de Vries
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands.
| | - Inge Huitinga
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Helmut W Kessels
- Swammerdam Institute for Life Sciences, Amsterdam Neuroscience, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - Dick F Swaab
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, Netherlands
| | - Joost Verhaagen
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Creus-Muncunill J, Haure-Mirande JV, Mattei D, Bons J, Ramirez AV, Hamilton BW, Corwin C, Chowdhury S, Schilling B, Ellerby LM, Ehrlich ME. TYROBP/DAP12 knockout in Huntington's disease Q175 mice cell-autonomously decreases microglial expression of disease-associated genes and non-cell-autonomously mitigates astrogliosis and motor deterioration. J Neuroinflammation 2024; 21:66. [PMID: 38459557 PMCID: PMC10924371 DOI: 10.1186/s12974-024-03052-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/19/2024] [Indexed: 03/10/2024] Open
Abstract
INTRODUCTION Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an expansion of the CAG trinucleotide repeat in the Huntingtin gene (HTT). Immune activation is abundant in the striatum of HD patients. Detection of active microglia at presymptomatic stages suggests that microgliosis is a key early driver of neuronal dysfunction and degeneration. Recent studies showed that deletion of Tyrobp, a microglial protein, ameliorates neuronal dysfunction in Alzheimer's disease amyloidopathy and tauopathy mouse models while decreasing components of the complement subnetwork. OBJECTIVE While TYROBP/DAP12-mediated microglial activation is detrimental for some diseases such as peripheral nerve injury, it is beneficial for other diseases. We sought to determine whether the TYROBP network is implicated in HD and whether Tyrobp deletion impacts HD striatal function and transcriptomics. METHODS To test the hypothesis that Tyrobp deficiency would be beneficial in an HD model, we placed the Q175 HD mouse model on a Tyrobp-null background. We characterized these mice with a combination of behavioral testing, immunohistochemistry, transcriptomic and proteomic profiling. Further, we evaluated the gene signature in isolated Q175 striatal microglia, with and without Tyrobp. RESULTS Comprehensive analysis of publicly available human HD transcriptomic data revealed that the TYROBP network is overactivated in the HD putamen. The Q175 mice showed morphologic microglial activation, reduced levels of post-synaptic density-95 protein and motor deficits at 6 and 9 months of age, all of which were ameliorated on the Tyrobp-null background. Gene expression analysis revealed that lack of Tyrobp in the Q175 model does not prevent the decrease in the expression of striatal neuronal genes but reduces pro-inflammatory pathways that are specifically active in HD human brain, including genes identified as detrimental in neurodegenerative diseases, e.g. C1q and members of the Ccr5 signaling pathway. Integration of transcriptomic and proteomic data revealed that astrogliosis and complement system pathway were reduced after Tyrobp deletion, which was further validated by immunofluorescence analysis. CONCLUSIONS Our data provide molecular and functional support demonstrating that Tyrobp deletion prevents many of the abnormalities in the HD Q175 mouse model, suggesting that the Tyrobp pathway is a potential therapeutic candidate for Huntington's disease.
Collapse
Affiliation(s)
| | | | - Daniele Mattei
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Joanna Bons
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Angie V Ramirez
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - B Wade Hamilton
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Chuhyon Corwin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Sarah Chowdhury
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | | | - Michelle E Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
22
|
Gammie SC, Messing A, Hill MA, Kelm-Nelson CA, Hagemann TL. Large-scale gene expression changes in APP/PSEN1 and GFAP mutation models exhibit high congruence with Alzheimer's disease. PLoS One 2024; 19:e0291995. [PMID: 38236817 PMCID: PMC10796008 DOI: 10.1371/journal.pone.0291995] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/10/2023] [Indexed: 01/22/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder with both genetic and non-genetic causes. Animal research models are available for a multitude of diseases and conditions affecting the central nervous system (CNS), and large-scale CNS gene expression data exist for many of these. Although there are several models specifically for AD, each recapitulates different aspects of the human disease. In this study we evaluate over 500 animal models to identify those with CNS gene expression patterns matching human AD datasets. Approaches included a hypergeometric based scoring system that rewards congruent gene expression patterns but penalizes discordant gene expression patterns. The top two models identified were APP/PS1 transgenic mice expressing mutant APP and PSEN1, and mice carrying a GFAP mutation that is causative of Alexander disease, a primary disorder of astrocytes in the CNS. The APP/PS1 and GFAP models both matched over 500 genes moving in the same direction as in human AD, and both had elevated GFAP expression and were highly congruent with one another. Also scoring highly were the 5XFAD model (with five mutations in APP and PSEN1) and mice carrying CK-p25, APP, and MAPT mutations. Animals with the APOE3 and 4 mutations combined with traumatic brain injury ranked highly. Bulbectomized rats scored high, suggesting anosmia could be causative of AD-like gene expression. Other matching models included the SOD1G93A strain and knockouts for SNORD116 (Prader-Willi mutation), GRID2, INSM1, XBP1, and CSTB. Many top models demonstrated increased expression of GFAP, and results were similar across multiple human AD datasets. Heatmap and Uniform Manifold Approximation Plot results were consistent with hypergeometric ranking. Finally, some gene manipulation models, including for TYROBP and ATG7, were identified with reversed AD patterns, suggesting possible neuroprotective effects. This study provides insight for the pathobiology of AD and the potential utility of available animal models.
Collapse
Affiliation(s)
- Stephen C. Gammie
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Albee Messing
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mason A. Hill
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Cynthia A. Kelm-Nelson
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Tracy L. Hagemann
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
23
|
Batista AF, Khan KA, Papavergi MT, Lemere CA. The Importance of Complement-Mediated Immune Signaling in Alzheimer's Disease Pathogenesis. Int J Mol Sci 2024; 25:817. [PMID: 38255891 PMCID: PMC10815224 DOI: 10.3390/ijms25020817] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
As an essential component of our innate immune system, the complement system is responsible for our defense against pathogens. The complement cascade has complex roles in the central nervous system (CNS), most of what we know about it stems from its role in brain development. However, in recent years, numerous reports have implicated the classical complement cascade in both brain development and decline. More specifically, complement dysfunction has been implicated in neurodegenerative disorders, such as Alzheimer's disease (AD), which is the most common form of dementia. Synapse loss is one of the main pathological hallmarks of AD and correlates with memory impairment. Throughout the course of AD progression, synapses are tagged with complement proteins and are consequently removed by microglia that express complement receptors. Notably, astrocytes are also capable of secreting signals that induce the expression of complement proteins in the CNS. Both astrocytes and microglia are implicated in neuroinflammation, another hallmark of AD pathogenesis. In this review, we provide an overview of previously known and newly established roles for the complement cascade in the CNS and we explore how complement interactions with microglia, astrocytes, and other risk factors such as TREM2 and ApoE4 modulate the processes of neurodegeneration in both amyloid and tau models of AD.
Collapse
Affiliation(s)
- André F. Batista
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.F.B.); (K.A.K.); (M.-T.P.)
| | - Khyrul A. Khan
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.F.B.); (K.A.K.); (M.-T.P.)
| | - Maria-Tzousi Papavergi
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.F.B.); (K.A.K.); (M.-T.P.)
- School for Mental Health and Neuroscience (MHeNs), Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Cynthia A. Lemere
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.F.B.); (K.A.K.); (M.-T.P.)
| |
Collapse
|
24
|
Ning Z, Liu Y, Guo D, Lin WJ, Tang Y. Natural killer cells in the central nervous system. Cell Commun Signal 2023; 21:341. [PMID: 38031097 PMCID: PMC10685650 DOI: 10.1186/s12964-023-01324-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/17/2023] [Indexed: 12/01/2023] Open
Abstract
Natural killer (NK) cells are essential components of the innate lymphoid cell family that work as both cytotoxic effectors and immune regulators. Accumulating evidence points to interactions between NK cells and the central nervous system (CNS). Here, we review the basic knowledge of NK cell biology and recent advances in their roles in the healthy CNS and pathological conditions, with a focus on normal aging, CNS autoimmune diseases, neurodegenerative diseases, cerebrovascular diseases, and CNS infections. We highlight the crosstalk between NK cells and diverse cell types in the CNS and the potential value of NK cells as novel therapeutic targets for CNS diseases. Video Abstract.
Collapse
Affiliation(s)
- Zhiyuan Ning
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ying Liu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Daji Guo
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Wei-Jye Lin
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China.
| |
Collapse
|
25
|
Chen H, Fan L, Guo Q, Wong MY, Yu F, Foxe N, Wang W, Nessim A, Carling G, Liu B, Lopez-Lee C, Huang Y, Amin S, Patel T, Mok SA, Song WM, Zhang B, Ma Q, Fu H, Gan L, Luo W. DAP12 deficiency alters microglia-oligodendrocyte communication and enhances resilience against tau toxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.563970. [PMID: 37961594 PMCID: PMC10634844 DOI: 10.1101/2023.10.26.563970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Pathogenic tau accumulation fuels neurodegeneration in Alzheimer's disease (AD). Enhancing aging brain's resilience to tau pathology would lead to novel therapeutic strategies. DAP12 (DNAX-activation protein 12) is critically involved in microglial immune responses. Previous studies have showed that mice lacking DAP12 in tauopathy mice exhibit higher tau pathology but are protected from tau-induced cognitive deficits. However, the exact mechanism remains elusive. Our current study uncovers a novel resilience mechanism via microglial interaction with oligodendrocytes. Despite higher tau inclusions, Dap12 deletion curbs tau-induced brain inflammation and ameliorates myelin and synapse loss. Specifically, removal of Dap12 abolished tau-induced disease-associated clusters in microglia (MG) and intermediate oligodendrocytes (iOli), which are spatially correlated with tau pathology in AD brains. Our study highlights the critical role of interactions between microglia and oligodendrocytes in tau toxicity and DAP12 signaling as a promising target for enhancing resilience in AD.
Collapse
Affiliation(s)
- Hao Chen
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Li Fan
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Qi Guo
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH 43210 USA
| | - Man Ying Wong
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Fangmin Yu
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Nessa Foxe
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | | | - Aviram Nessim
- The State University of New York at Stony Brook, Long Island, New York, USA
| | - Gillian Carling
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Bangyan Liu
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Chloe Lopez-Lee
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Yige Huang
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Sadaf Amin
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Tark Patel
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB Canada
| | - Sue-Ann Mok
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB Canada
| | - Won-min Song
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH 43210 USA
| | - Hongjun Fu
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH 43210 USA
| | - Li Gan
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Millburn High School, New Jersey, NJ, USA
| | - Wenjie Luo
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
26
|
Chen H, Fan L, Guo Q, Wong MY, Yu F, Foxe N, Wang W, Nessim A, Carling G, Liu B, Lopez-Lee C, Huang Y, Amin S, Mok SA, Song WM, Zhang B, Ma Q, Fu H, Gan L, Luo W. DAP12 deficiency alters microglia-oligodendrocyte communication and enhances resilience against tau toxicity. RESEARCH SQUARE 2023:rs.3.rs-3454358. [PMID: 37961627 PMCID: PMC10635319 DOI: 10.21203/rs.3.rs-3454358/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Pathogenic tau accumulation fuels neurodegeneration in Alzheimer's disease (AD). Enhancing aging brain's resilience to tau pathology would lead to novel therapeutic strategies. DAP12 (DNAX-activation protein 12) is critically involved in microglial immune responses. Previous studies have showed that mice lacking DAP12 in tauopathy mice exhibit higher tau pathology but are protected from tau-induced cognitive deficits. However, the exact mechanism remains elusive. Our current study uncovers a novel resilience mechanism via microglial interaction with oligodendrocytes. Despite higher tau inclusions, Dap12 deletion curbs tau-induced brain inflammation and ameliorates myelin and synapse loss. Specifically, removal of Dap12 abolished tau-induced disease-associated clusters in microglia (MG) and intermediate oligodendrocytes (iOli), which are spatially correlated with tau pathology in AD brains. Our study highlights the critical role of interactions between microglia and oligodendrocytes in tau toxicity and DAP12 signaling as a promising target for enhancing resilience in AD.
Collapse
Affiliation(s)
- Hao Chen
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Li Fan
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Qi Guo
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH 43210 USA
| | - Man Ying Wong
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Fangmin Yu
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Nessa Foxe
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | | | - Aviram Nessim
- The State University of New York at Stony Brook, Long Island, New York, USA
| | - Gillian Carling
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Bangyan Liu
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Chloe Lopez-Lee
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Yige Huang
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Sadaf Amin
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Sue-Ann Mok
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB Canada
| | - Won-min Song
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH 43210 USA
| | - Hongjun Fu
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH 43210 USA
| | - Li Gan
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Millburn High School, New Jersey, NJ, USA
| | - Wenjie Luo
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
27
|
Litke R, Vicari J, Huang BT, Shapiro L, Roh KH, Silver A, Talreja P, Palacios N, Yoon Y, Kellner C, Kaniskan H, Vangeti S, Jin J, Ramos-Lopez I, Mobbs C. Novel small molecules inhibit proteotoxicity and inflammation: Mechanistic and therapeutic implications for Alzheimer's Disease, healthspan and lifespan- Aging as a consequence of glycolysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544352. [PMID: 37398396 PMCID: PMC10312632 DOI: 10.1101/2023.06.12.544352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Inflammation drives many age-related, especially neurological, diseases, and likely mediates age-related proteotoxicity. For example, dementia due to Alzheimer's Disease (AD), cerebral vascular disease, many other neurodegenerative conditions is increasingly among the most devastating burdens on the American (and world) health system and threatens to bankrupt the American health system as the population ages unless effective treatments are developed. Dementia due to either AD or cerebral vascular disease, and plausibly many other neurodegenerative and even psychiatric conditions, is driven by increased age-related inflammation, which in turn appears to mediate Abeta and related proteotoxic processes. The functional significance of inflammation during aging is also supported by the fact that Humira, which is simply an antibody to the pro-inflammatory cytokine TNF-a, is the best-selling drug in the world by revenue. These observations led us to develop parallel high-throughput screens to discover small molecules which inhibit age-related Abeta proteotoxicity in a C. elegans model of AD AND LPS-induced microglial TNF-a. In the initial screen of 2560 compounds (Microsource Spectrum library) to delay Abeta proteotoxicity, the most protective compounds were, in order, phenylbutyrate, methicillin, and quetiapine, which belong to drug classes (HDAC inhibitors, beta lactam antibiotics, and tricyclic antipsychotics, respectably) already robustly implicated as promising to protect in neurodegenerative diseases, especially AD. RNAi and chemical screens indicated that the protective effects of HDAC inhibitors to reduce Abeta proteotoxicity are mediated by inhibition of HDAC2, also implicated in human AD, dependent on the HAT Creb binding protein (Cbp), which is also required for the protective effects of both dietary restriction and the daf-2 mutation (inactivation of IGF-1 signaling) during aging. In addition to methicillin, several other beta lactam antibiotics also delayed Abeta proteotoxicity and reduced microglial TNF-a. In addition to quetiapine, several other tricyclic antipsychotic drugs also delayed age-related Abeta proteotoxicity and increased microglial TNF-a, leading to the synthesis of a novel congener, GM310, which delays Abeta as well as Huntingtin proteotoxicity, inhibits LPS-induced mouse and human microglial and monocyte TNF-a, is highly concentrated in brain after oral delivery with no apparent toxicity, increases lifespan, and produces molecular responses highly similar to those produced by dietary restriction, including induction of Cbp inhibition of inhibitors of Cbp, and genes promoting a shift away from glycolysis and toward metabolism of alternate (e.g., lipid) substrates. GM310, as well as FDA-approved tricyclic congeners, prevented functional impairments and associated increase in TNF-a in a mouse model of stroke. Robust reduction of glycolysis by GM310 was functionally corroborated by flux analysis, and the glycolytic inhibitor 2-DG inhibited microglial TNF-a and other markers of inflammation, delayed Abeta proteotoxicity, and increased lifespan. These results support the value of phenotypic screens to discover drugs to treat age-related, especially neurological and even psychiatric diseases, including AD and stroke, and to clarify novel mechanisms driving neurodegeneration (e.g., increased microglial glycolysis drives neuroinflammation and subsequent neurotoxicity) suggesting novel treatments (selective inhibitors of microglial glycolysis).
Collapse
|
28
|
Widjaya MA, Liu CH, Lee SD, Cheng WC. Transcriptomics Meta-Analysis Reveals Phagosome and Innate Immune System Dysfunction as Potential Mechanisms in the Cortex of Alzheimer's Disease Mouse Strains. J Mol Neurosci 2023; 73:773-786. [PMID: 37733230 DOI: 10.1007/s12031-023-02152-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/30/2023] [Indexed: 09/22/2023]
Abstract
Immune-related pathways can affect the immune system directly, such as the chemokine signaling pathway, or indirectly, such as the phagosome pathway. Alzheimer's disease (AD) is reportedly associated with several immune-related pathways. However, exploring its underlying mechanism is challenging in animal studies because AD mouse strains differentially express immune-related pathway characteristics. To overcome this problem, we performed a meta-analysis to identify significant and consistent immune-related AD pathways that are expressed in different AD mouse strains. Next-generation RNA sequencing (RNA-seq) and microarray datasets for the cortex of AD mice from different strains such as APP/PSEN1, APP/PS2, 3xTg, TREM, and 5xFAD were collected from the NCBI GEO database. Each dataset's quality control and normalization were already processed from each original study source using various methods depending on the high-throughput analysis platform (FastQC, median of ratios, RMA, between array normalization). Datasets were analyzed using DESeq2 for RNA-seq and GEO2R for microarray to identify differentially expressed (DE) genes. Significantly DE genes were meta-analyzed using Stouffer's method, with significant genes further analyzed for functional enrichment. Ten datasets representing 20 conditions were obtained from the NCBI GEO database, comprising 116 control and 120 AD samples. The DE analysis identified 284 significant DE genes. The meta-analysis identified three significantly enriched immune-related AD pathways: phagosome, the complement and coagulation cascade, and chemokine signaling. Phagosomes-related genes correlated with complement and immune system. Meanwhile, phagosomes and chemokine signaling genes overlapped with B cells receptors pathway genes indicating potential correlation between phagosome, chemokines, and adaptive immune system as well. The transcriptomic meta-analysis showed that AD is associated with immune-related pathways in the brain's cortex through the phagosome, complement and coagulation cascade, and chemokine signaling pathways. Interestingly, phagosome and chemokine signaling pathways had potential correlation with B cells receptors pathway.
Collapse
Affiliation(s)
- Michael Anekson Widjaya
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Chia-Hsin Liu
- Cancer Biology and Precision Therapeutics Center, China Medical University and Academia Sinica China Medical University, Taichung, 40403, Taiwan
| | - Shin-Da Lee
- Department of Physical Therapy, PhD program in Healthcare Science, China Medical University, Taichung, 406040, Taiwan.
| | - Wei-Chung Cheng
- Cancer Biology and Precision Therapeutics Center, China Medical University and Academia Sinica China Medical University, Taichung, 40403, Taiwan.
- Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan.
| |
Collapse
|
29
|
Xie Z, Meng J, Wu Z, Nakanishi H, Hayashi Y, Kong W, Lan F, Narengaowa, Yang Q, Qing H, Ni J. The Dual Nature of Microglia in Alzheimer's Disease: A Microglia-Neuron Crosstalk Perspective. Neuroscientist 2023; 29:616-638. [PMID: 35348415 DOI: 10.1177/10738584211070273] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Microglia are critical players in the neuroimmune system, and their involvement in Alzheimer's disease (AD) pathogenesis is increasingly being recognized. However, whether microglia play a positive or negative role in AD remains largely controversial and the precise molecular targets for intervention are not well defined. This partly results from the opposing roles of microglia in AD pathology, and is mainly reflected in the microglia-neuron interaction. Microglia can prune synapses resulting in excessive synapse loss and neuronal dysfunction, but they can also promote synapse formation, enhancing neural network plasticity. Neuroimmune crosstalk accelerates microglial activation, which induces neuron death and enhances the microglial phagocytosis of β-amyloid to protect neurons. Moreover, microglia have dual opposing roles in developing the major pathological features in AD, such as amyloid deposition and blood-brain barrier permeability. This review summarizes the dual opposing role of microglia in AD from the perspective of the interaction between neurons and microglia. Additionally, current AD treatments targeting microglia and the advantages and disadvantages of developing microglia-targeted therapeutic strategies are discussed.
Collapse
Affiliation(s)
- Zhen Xie
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Department of Biology, Beijing Institute of Technology, Beijing, China
- Research Center for Resource Peptide Drugs, Shanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yanan University, Yanan, China
| | - Jie Meng
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hiroshi Nakanishi
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Wei Kong
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Department of Biology, Beijing Institute of Technology, Beijing, China
| | - Fei Lan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Department of Biology, Beijing Institute of Technology, Beijing, China
| | - Narengaowa
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Department of Biology, Beijing Institute of Technology, Beijing, China
| | - Qinghu Yang
- Research Center for Resource Peptide Drugs, Shanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yanan University, Yanan, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Department of Biology, Beijing Institute of Technology, Beijing, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Department of Biology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
30
|
Li Y, Xu H, Wang H, Yang K, Luan J, Wang S. TREM2: Potential therapeutic targeting of microglia for Alzheimer's disease. Biomed Pharmacother 2023; 165:115218. [PMID: 37517293 DOI: 10.1016/j.biopha.2023.115218] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, resulting in the loss of cognitive ability and memory. However, there is no specific treatment to mechanistically inhibit the progression of Alzheimer's disease, and most drugs only provide symptom relief and do not fundamentally reverse AD. Current studies show that triggering receptor expressed on myeloid cells 2 (TREM2) is predominantly expressed in microglia of the central nervous system (CNS) and is involved in microglia proliferation, survival, migration and phagocytosis. The current academic view suggests that TREM2 and its ligands have CNS protective effects in AD. Specifically, TREM2 acts by regulating the function of microglia and promoting the clearance of neuronal toxic substances and abnormal proteins by microglia. In addition, TREM2 is also involved in regulating inflammatory response and cell signaling pathways, affecting the immune response and regulatory role of microglia. Although the relationship between TREM2 and Alzheimer's disease has been extensively studied, its specific mechanism of action is not fully understood. The purpose of this review is to provide a comprehensive analysis of the research of TREM2, including its regulation of the inflammatory response, lipid metabolism and phagocytosis in microglia of CNS in AD, and to explore the potential application prospects as well as limitations of targeting TREM2 for the treatment of AD.
Collapse
Affiliation(s)
- Yueran Li
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Huifang Xu
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Huifang Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Kui Yang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China.
| |
Collapse
|
31
|
Martínez‐Mármol R, Chai Y, Conroy JN, Khan Z, Hong S, Kim SB, Gormal RS, Lee DH, Lee JK, Coulson EJ, Lee MK, Kim SY, Meunier FA. Hericerin derivatives activates a pan-neurotrophic pathway in central hippocampal neurons converging to ERK1/2 signaling enhancing spatial memory. J Neurochem 2023; 165:791-808. [PMID: 36660878 PMCID: PMC10952766 DOI: 10.1111/jnc.15767] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023]
Abstract
The traditional medicinal mushroom Hericium erinaceus is known for enhancing peripheral nerve regeneration through targeting nerve growth factor (NGF) neurotrophic activity. Here, we purified and identified biologically new active compounds from H. erinaceus, based on their ability to promote neurite outgrowth in hippocampal neurons. N-de phenylethyl isohericerin (NDPIH), an isoindoline compound from this mushroom, together with its hydrophobic derivative hericene A, were highly potent in promoting extensive axon outgrowth and neurite branching in cultured hippocampal neurons even in the absence of serum, demonstrating potent neurotrophic activity. Pharmacological inhibition of tropomyosin receptor kinase B (TrkB) by ANA-12 only partly prevented the NDPIH-induced neurotrophic activity, suggesting a potential link with BDNF signaling. However, we found that NDPIH activated ERK1/2 signaling in the absence of TrkB in HEK-293T cells, an effect that was not sensitive to ANA-12 in the presence of TrkB. Our results demonstrate that NDPIH acts via a complementary neurotrophic pathway independent of TrkB with converging downstream ERK1/2 activation. Mice fed with H. erinaceus crude extract and hericene A also exhibited increased neurotrophin expression and downstream signaling, resulting in significantly enhanced hippocampal memory. Hericene A therefore acts through a novel pan-neurotrophic signaling pathway, leading to improved cognitive performance.
Collapse
Affiliation(s)
- Ramón Martínez‐Mármol
- Clem Jones Centre for Ageing Dementia ResearchQueensland Brain Institute, The University of QueenslandBrisbaneQueenslandAustralia
| | - YeJin Chai
- Clem Jones Centre for Ageing Dementia ResearchQueensland Brain Institute, The University of QueenslandBrisbaneQueenslandAustralia
| | - Jacinta N. Conroy
- School of Biomedical SciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Zahra Khan
- College of PharmacyGachon UniversityIncheonRepublic of Korea
| | - Seong‐Min Hong
- College of PharmacyGachon UniversityIncheonRepublic of Korea
| | - Seon Beom Kim
- College of PharmacyChungbuk National UniversityCheongjuRepublic of Korea
| | - Rachel S. Gormal
- Clem Jones Centre for Ageing Dementia ResearchQueensland Brain Institute, The University of QueenslandBrisbaneQueenslandAustralia
| | - Dae Hee Lee
- CNGBio corpCheongju‐siChungcheongbuk‐doRepublic of Korea
| | - Jae Kang Lee
- CNGBio corpCheongju‐siChungcheongbuk‐doRepublic of Korea
| | - Elizabeth J. Coulson
- Clem Jones Centre for Ageing Dementia ResearchQueensland Brain Institute, The University of QueenslandBrisbaneQueenslandAustralia
- School of Biomedical SciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Mi Kyeong Lee
- College of PharmacyChungbuk National UniversityCheongjuRepublic of Korea
| | - Sun Yeou Kim
- College of PharmacyGachon UniversityIncheonRepublic of Korea
- Gachon Institute of Pharmaceutical ScienceGachon UniversityIncheonRepublic of Korea
| | - Frédéric A. Meunier
- Clem Jones Centre for Ageing Dementia ResearchQueensland Brain Institute, The University of QueenslandBrisbaneQueenslandAustralia
- School of Biomedical SciencesThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
32
|
Castranio EL, Hasel P, Haure-Mirande JV, Ramirez Jimenez AV, Hamilton BW, Kim RD, Glabe CG, Wang M, Zhang B, Gandy S, Liddelow SA, Ehrlich ME. Microglial INPP5D limits plaque formation and glial reactivity in the PSAPP mouse model of Alzheimer's disease. Alzheimers Dement 2023; 19:2239-2252. [PMID: 36448627 PMCID: PMC10481344 DOI: 10.1002/alz.12821] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/23/2022] [Accepted: 09/13/2022] [Indexed: 12/05/2022]
Abstract
INTRODUCTION The inositol polyphosphate-5-phosphatase D (INPP5D) gene encodes a dual-specificity phosphatase that can dephosphorylate both phospholipids and phosphoproteins. Single nucleotide polymorphisms in INPP5D impact risk for developing late onset sporadic Alzheimer's disease (LOAD). METHODS To assess the consequences of inducible Inpp5d knockdown in microglia of APPKM670/671NL /PSEN1Δexon9 (PSAPP) mice, we injected 3-month-old Inpp5dfl/fl /Cx3cr1CreER/+ and PSAPP/Inpp5dfl/fl /Cx3cr1CreER/+ mice with either tamoxifen (TAM) or corn oil (CO) to induce recombination. RESULTS At age 6 months, we found that the percent area of 6E10+ deposits and plaque-associated microglia in Inpp5d knockdown mice were increased compared to controls. Spatial transcriptomics identified a plaque-specific expression profile that was extensively altered by Inpp5d knockdown. DISCUSSION These results demonstrate that conditional Inpp5d downregulation in the PSAPP mouse increases plaque burden and recruitment of microglia to plaques. Spatial transcriptomics highlighted an extended gene expression signature associated with plaques and identified CST7 (cystatin F) as a novel marker of plaques. HIGHLIGHTS Inpp5d knockdown increases plaque burden and plaque-associated microglia number. Spatial transcriptomics identifies an expanded plaque-specific gene expression profile. Plaque-induced gene expression is altered by Inpp5d knockdown in microglia. Our plaque-associated gene signature overlaps with human Alzheimer's disease gene networks.
Collapse
Affiliation(s)
- Emilie L. Castranio
- Department of Neurology, Icahn School of Medicine at Mount
Sinai, New York, New York, USA
| | - Philip Hasel
- Neuroscience Institute, NYU Grossman School of Medicine,
New York, New York, USA
| | | | | | - B. Wade Hamilton
- Department of Neurology, Icahn School of Medicine at Mount
Sinai, New York, New York, USA
| | - Rachel D. Kim
- Neuroscience Institute, NYU Grossman School of Medicine,
New York, New York, USA
| | - Charles G. Glabe
- Department of Molecular Biology and Biochemistry,
University of California, Irvine, Irvine, California, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School
of Medicine at Mount Sinai, New York, New York, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School
of Medicine at Mount Sinai, New York, New York, USA
| | - Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount
Sinai, New York, New York, USA
- Department of Psychiatry and Alzheimer’s Disease
Research Center, Icahn School of Medicine at Mount Sinai, New York, New York,
USA
- James J. Peters VA Medical Center, Bronx, New York,
USA
| | - Shane A. Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine,
New York, New York, USA
- Department of Neuroscience & Physiology, NYU Grossman
School of Medicine, New York, New York, USA
- Department of Ophthalmology, NYU Grossman School of
Medicine, New York, New York, USA
- Parekh Center for Interdisciplinary Neurology, NYU Grossman
School of Medicine, New York, New York, USA
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount
Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School
of Medicine at Mount Sinai, New York, New York, USA
- Department of Pediatrics, Icahn School of Medicine at
Mount Sinai, New York, New York, USA
| |
Collapse
|
33
|
Abstract
As resident immune cells of the brain, microglia serve pivotal roles in regulating neuronal function under both physiological and pathological conditions, including aging and the most prevalent neurodegenerative disease, Alzheimer's disease (AD). Instructed by neurons, microglia regulate synaptic function and guard brain homeostasis throughout life. Dysregulation of microglial function, however, can lead to dire consequences, including aggravated cognitive decline during aging and exacerbated neuropathology in diseases. The triggering receptor expressed on myeloid cells 2 (TREM2) is a key regulator of microglial function. Loss-of-function variants of TREM2 are associated with an increased risk of AD. TREM2 orchestrates the switch of microglial transcriptome programming that modulates microglial chemotaxis, phagocytosis, and inflammatory responses, as well as microglial regulation of synaptic function in health and disease. Intriguingly, the outcome of microglial/TREM2 function is influenced by age and the context of neuropathology. This review summarizes the rapidly growing research on TREM2 under physiological conditions and in AD, particularly highlighting the impact of TREM2 on neuronal function.
Collapse
Affiliation(s)
- Wenhui Qu
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455
| | - Ling Li
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
34
|
Iguchi A, Takatori S, Kimura S, Muneto H, Wang K, Etani H, Ito G, Sato H, Hori Y, Sasaki J, Saito T, Saido TC, Ikezu T, Takai T, Sasaki T, Tomita T. INPP5D modulates TREM2 loss-of-function phenotypes in a β-amyloidosis mouse model. iScience 2023; 26:106375. [PMID: 37035000 PMCID: PMC10074152 DOI: 10.1016/j.isci.2023.106375] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
The genetic associations of TREM2 loss-of-function variants with Alzheimer disease (AD) indicate the protective roles of microglia in AD pathogenesis. Functional deficiencies of TREM2 disrupt microglial clustering around amyloid β (Aβ) plaques, impair their transcriptional response to Aβ, and worsen neuritic dystrophy. However, the molecular mechanism underlying these phenotypes remains unclear. In this study, we investigated the pathological role of another AD risk gene, INPP5D, encoding a phosphoinositide PI(3,4,5)P3 phosphatase expressed in microglia. In a Tyrobp-deficient TREM2 loss-of-function mouse model, Inpp5d haplodeficiency restored the association of microglia with Aβ plaques, partially restored plaque compaction, and astrogliosis, and reduced phosphorylated tau+ dystrophic neurites. Mechanistic analyses suggest that TREM2/TYROBP and INPP5D exert opposing effects on PI(3,4,5)P3 signaling pathways as well as on phosphoproteins involved in the actin assembly. Our results suggest that INPP5D acts downstream of TREM2/TYROBP to regulate the microglial barrier against Aβ toxicity, thereby modulates Aβ-dependent pathological conversion of tau.
Collapse
Affiliation(s)
- Akihiro Iguchi
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sho Takatori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shingo Kimura
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroki Muneto
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kai Wang
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hayato Etani
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Genta Ito
- Department of Biomolecular Chemistry, Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Haruaki Sato
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yukiko Hori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Junko Sasaki
- Department of Lipid Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tsuneya Ikezu
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo, Sendai 980-8575, Japan
| | - Takehiko Sasaki
- Department of Lipid Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
35
|
Zhou Y, Tada M, Cai Z, Andhey PS, Swain A, Miller KR, Gilfillan S, Artyomov MN, Takao M, Kakita A, Colonna M. Human early-onset dementia caused by DAP12 deficiency reveals a unique signature of dysregulated microglia. Nat Immunol 2023; 24:545-557. [PMID: 36658241 PMCID: PMC9992145 DOI: 10.1038/s41590-022-01403-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/07/2022] [Indexed: 01/21/2023]
Abstract
The TREM2-DAP12 receptor complex sustains microglia functions. Heterozygous hypofunctional TREM2 variants impair microglia, accelerating late-onset Alzheimer's disease. Homozygous inactivating variants of TREM2 or TYROBP-encoding DAP12 cause Nasu-Hakola disease (NHD), an early-onset dementia characterized by cerebral atrophy, myelin loss and gliosis. Mechanisms underpinning NHD are unknown. Here, single-nucleus RNA-sequencing analysis of brain specimens from DAP12-deficient NHD individuals revealed a unique microglia signature indicating heightened RUNX1, STAT3 and transforming growth factor-β signaling pathways that mediate repair responses to injuries. This profile correlated with a wound healing signature in astrocytes and impaired myelination in oligodendrocytes, while pericyte profiles indicated vascular abnormalities. Conversely, single-nuclei signatures in mice lacking DAP12 signaling reflected very mild microglial defects that did not recapitulate NHD. We envision that DAP12 signaling in microglia attenuates wound healing pathways that, if left unchecked, interfere with microglial physiological functions, causing pathology in human. The identification of a dysregulated NHD microglia signature sparks potential therapeutic strategies aimed at resetting microglia signaling pathways.
Collapse
Affiliation(s)
- Yingyue Zhou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mari Tada
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Zhangying Cai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Prabhakar S Andhey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Amanda Swain
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kelly R Miller
- 10x Genomics, Pleasanton, CA, USA
- Deepcell, Menlo Park, CA, USA
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Masaki Takao
- Department of Clinical Laboratory and Internal Medicine, National Center of Neurology and Psychiatry (NCNP), National Center Hospital, Tokyo, Japan
- Department of Brain Bank, Mihara Memorial Hospital, Isesaki, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
36
|
Yarani R, Palasca O, Doncheva NT, Anthon C, Pilecki B, Svane CAS, Mirza AH, Litman T, Holmskov U, Bang-Berthelsen CH, Vilien M, Jensen LJ, Gorodkin J, Pociot F. Cross-species high-resolution transcriptome profiling suggests biomarkers and therapeutic targets for ulcerative colitis. Front Mol Biosci 2023; 9:1081176. [PMID: 36685283 PMCID: PMC9850088 DOI: 10.3389/fmolb.2022.1081176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023] Open
Abstract
Background: Ulcerative colitis (UC) is a disorder with unknown etiology, and animal models play an essential role in studying its molecular pathophysiology. Here, we aim to identify common conserved pathological UC-related gene expression signatures between humans and mice that can be used as treatment targets and/or biomarker candidates. Methods: To identify differentially regulated protein-coding genes and non-coding RNAs, we sequenced total RNA from the colon and blood of the most widely used dextran sodium sulfate Ulcerative colitis mouse. By combining this with public human Ulcerative colitis data, we investigated conserved gene expression signatures and pathways/biological processes through which these genes may contribute to disease development/progression. Results: Cross-species integration of human and mouse Ulcerative colitis data resulted in the identification of 1442 genes that were significantly differentially regulated in the same direction in the colon and 157 in blood. Of these, 51 genes showed consistent differential regulation in the colon and blood. Less known genes with importance in disease pathogenesis, including SPI1, FPR2, TYROBP, CKAP4, MCEMP1, ADGRG3, SLC11A1, and SELPLG, were identified through network centrality ranking and validated in independent human and mouse cohorts. Conclusion: The identified Ulcerative colitis conserved transcriptional signatures aid in the disease phenotyping and future treatment decisions, drug discovery, and clinical trial design.
Collapse
Affiliation(s)
- Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark,*Correspondence: Reza Yarani, ; Flemming Pociot,
| | - Oana Palasca
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark,Center for non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark,Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nadezhda T. Doncheva
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark,Center for non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark,Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Anthon
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark,Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bartosz Pilecki
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Cecilie A. S. Svane
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Aashiq H. Mirza
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark,Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Thomas Litman
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Uffe Holmskov
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Claus H. Bang-Berthelsen
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark,Department of Gastroenterology, North Zealand Hillerød Hospital, Hillerød, Denmark
| | - Mogens Vilien
- Department of Surgery, North Zealand Hospital, Hillerød, Denmark
| | - Lars J. Jensen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark,Center for non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
| | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark,Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark,Center for non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark,Copenhagen Diabetes Research Center, Department of Pediatrics, Herlev University Hospital, Herlev, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,*Correspondence: Reza Yarani, ; Flemming Pociot,
| |
Collapse
|
37
|
Tyagi A, Musa M, Labeikovsky W, Pugazhenthi S. Sirt3 deficiency induced down regulation of insulin degrading enzyme in comorbid Alzheimer's disease with metabolic syndrome. Sci Rep 2022; 12:19808. [PMID: 36396721 PMCID: PMC9672095 DOI: 10.1038/s41598-022-23652-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022] Open
Abstract
SIRT3 deacetylates mitochondrial proteins, thereby enhancing their function. We have previously demonstrated that Sirt3 gene deletion leads to brain mitochondrial dysfunction and neuroinflammation. We also reported that silencing of Sirt3 gene in APP/PS1 mice results in exacerbation of insulin resistance, neuroinflammation and β amyloid plaque deposition. To further understand how metabolic syndrome and amyloid pathology interact, we performed RNA-seq analysis of the brain samples of APP/PS1/Sirt3-/- mice. Gene expression patterns were modulated in metabolic and inflammatory pathways by Sirt3 gene deletion, amyloid pathology, and the combination. Following Sirt3 gene deletion, a key finding was the decreased expression of insulin-degrading enzyme (IDE), an enzyme that regulates the levels of insulin and Aβ peptides. Western diet feeding of Sirt3-/- and APP/PS1 mice resulted in decrease of IDE protein, parallel to Sirt3 downregulation. Conversely, activation of SIRT3 by nicotinamide riboside in vivo and in vitro resulted in IDE upregulation. SIRT3 activation in vivo also increased the levels of neprilysin, another Aβ degrading enzyme and decreased the levels of BACE1 which generates Aβ peptide suggesting SIRT3's role in amyloid plaque reduction. Our findings provide a plausible mechanism linking metabolic syndrome and amyloid pathology. SIRT3 may be a potential therapeutic target to treat AD.
Collapse
Affiliation(s)
- Alpna Tyagi
- grid.422100.50000 0000 9751 469XRocky Mountain Regional VA Medical Center, Aurora, CO USA ,grid.430503.10000 0001 0703 675XDepartment of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Musa Musa
- grid.422100.50000 0000 9751 469XRocky Mountain Regional VA Medical Center, Aurora, CO USA
| | - Wladimir Labeikovsky
- grid.430503.10000 0001 0703 675XDepartment of Education and Research, Strauss Health Sciences Library, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Subbiah Pugazhenthi
- grid.422100.50000 0000 9751 469XRocky Mountain Regional VA Medical Center, Aurora, CO USA ,grid.430503.10000 0001 0703 675XDepartment of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045 USA
| |
Collapse
|
38
|
Peng W, Xie Y, Liao C, Bai Y, Wang H, Li C. Spatiotemporal patterns of gliosis and neuroinflammation in presenilin 1/2 conditional double knockout mice. Front Aging Neurosci 2022; 14:966153. [PMID: 36185485 PMCID: PMC9521545 DOI: 10.3389/fnagi.2022.966153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Increasing evidence indicates that neuroinflammation contributes to and exacerbates the pathogenesis of Alzheimer’s disease (AD). Neuroinflammation is thought to be primarily driven by glial cells (microglia and astrocytes) and escalates with neurodegenerative progression in AD. However, the spatiotemporal change patterns of glial reactivity and neuroinflammatory response during different stages of neurodegeneration, especially early in disease, remain unknown. Here we found that gliosis and the up-regulation of substantial neuroinflammatory genes were primarily initiated in the cortex of presenilin 1/2 conditional double knockout (cDKO) mice, rather than in the hippocampus. Specifically, astrocyte activation preceding microglial activation was found in the somatosensory cortex (SS) of cDKO mice at 6 weeks of age. Over time, both astrocyte and microglial activation were found in the whole cortex, and age-related increases in gliosis activation were more pronounced in the cortex compared to hippocampus. Moreover, the age-associated increase in glial activation was accompanied by a gradual increase in the expression of cell chemokines Ccl3 and Ccl4, complement related factors C1qb, C3 and C4, and lysosomal proteases cathepsin S and Z. These findings suggest that astrocyte and microglial activation with a concurrent increase in inflammatory mediators such as chemokines might be an early event and contribute to the pathogenesis of neurodegeneration due to presenilin deficiency.
Collapse
Affiliation(s)
- Wenjun Peng
- Key Laboratory of Brain Functional Genomics (STCSM and MOE), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yuan Xie
- Key Laboratory of Brain Functional Genomics (STCSM and MOE), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Chongzheng Liao
- Key Laboratory of Brain Functional Genomics (STCSM and MOE), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yunxia Bai
- Key Laboratory of Brain Functional Genomics (STCSM and MOE), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Huimin Wang
- Key Laboratory of Brain Functional Genomics (STCSM and MOE), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Changning Mental Health Center, Shanghai, China
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
- Huimin Wang,
| | - Chunxia Li
- Key Laboratory of Brain Functional Genomics (STCSM and MOE), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Changning Mental Health Center, Shanghai, China
- *Correspondence: Chunxia Li,
| |
Collapse
|
39
|
Haure-Mirande JV, Audrain M, Ehrlich ME, Gandy S. Microglial TYROBP/DAP12 in Alzheimer's disease: Transduction of physiological and pathological signals across TREM2. Mol Neurodegener 2022; 17:55. [PMID: 36002854 PMCID: PMC9404585 DOI: 10.1186/s13024-022-00552-w] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
TYROBP (also known as DAP12 or KARAP) is a transmembrane adaptor protein initially described as a receptor-activating subunit component of natural killer (NK) cells. TYROBP is expressed in numerous cell types, including peripheral blood monocytes, macrophages, dendritic cells, and osteoclasts, but a key point of recent interest is related to the critical role played by TYROBP in the function of many receptors expressed on the plasma membrane of microglia. TYROBP is the downstream adaptor and putative signaling partner for several receptors implicated in Alzheimer's disease (AD), including SIRP1β, CD33, CR3, and TREM2. TYROBP has received much of its current notoriety because of its importance in brain homeostasis by signal transduction across those receptors. In this review, we provide an overview of evidence indicating that the biology of TYROBP extends beyond its interaction with these four ligand-binding ectodomain-intramembranous domain molecules. In addition to reviewing the structure and localization of TYROBP, we discuss our recent progress using mouse models of either cerebral amyloidosis or tauopathy that were engineered to be TYROBP-deficient or TYROBP-overexpressing. Remarkably, constitutively TYROBP-deficient mice provided a model of genetic resilience to either of the defining proteinopathies of AD. Learning behavior and synaptic electrophysiological function were preserved at normal physiological levels even in the face of robust cerebral amyloidosis (in APP/PSEN1;Tyrobp-/- mice) or tauopathy (in MAPTP301S;Tyrobp-/- mice). A fundamental underpinning of the functional synaptic dysfunction associated with each proteotype was an accumulation of complement C1q. TYROBP deficiency prevented C1q accumulation associated with either proteinopathy. Based on these data, we speculate that TYROBP plays a key role in the microglial sensome and the emergence of the disease-associated microglia (DAM) phenotype. TYROBP may also play a key role in the loss of markers of synaptic integrity (e.g., synaptophysin-like immunoreactivity) that has long been held to be the feature of human AD molecular neuropathology that most closely correlates with concurrent clinical cognitive function.
Collapse
Affiliation(s)
| | - Mickael Audrain
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Department of Psychiatry and the NIA-Designated Mount Sinai Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- James J Peters VA Medical Center, New York, Bronx NY 10468 USA
| |
Collapse
|
40
|
Carvalho K, Schartz ND, Balderrama-Gutierrez G, Liang HY, Chu SH, Selvan P, Gomez-Arboledas A, Petrisko TJ, Fonseca MI, Mortazavi A, Tenner AJ. Modulation of C5a-C5aR1 signaling alters the dynamics of AD progression. J Neuroinflammation 2022; 19:178. [PMID: 35820938 PMCID: PMC9277945 DOI: 10.1186/s12974-022-02539-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/23/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The complement system is part of the innate immune system that clears pathogens and cellular debris. In the healthy brain, complement influences neurodevelopment and neurogenesis, synaptic pruning, clearance of neuronal blebs, recruitment of phagocytes, and protects from pathogens. However, excessive downstream complement activation that leads to generation of C5a, and C5a engagement with its receptor C5aR1, instigates a feed-forward loop of inflammation, injury, and neuronal death, making C5aR1 a potential therapeutic target for neuroinflammatory disorders. C5aR1 ablation in the Arctic (Arc) model of Alzheimer's disease protects against cognitive decline and neuronal injury without altering amyloid plaque accumulation. METHODS To elucidate the effects of C5a-C5aR1 signaling on AD pathology, we crossed Arc mice with a C5a-overexpressing mouse (ArcC5a+) and tested hippocampal memory. RNA-seq was performed on hippocampus and cortex from Arc, ArcC5aR1KO, and ArcC5a+ mice at 2.7-10 months and age-matched controls to assess mechanisms involved in each system. Immunohistochemistry was used to probe for protein markers of microglia and astrocytes activation states. RESULTS ArcC5a+ mice had accelerated cognitive decline compared to Arc. Deletion of C5ar1 delayed or prevented the expression of some, but not all, AD-associated genes in the hippocampus and a subset of pan-reactive and A1 reactive astrocyte genes, indicating a separation between genes induced by amyloid plaques alone and those influenced by C5a-C5aR1 signaling. Biological processes associated with AD and AD mouse models, including inflammatory signaling, microglial cell activation, and astrocyte migration, were delayed in the ArcC5aR1KO hippocampus. Interestingly, C5a overexpression also delayed the increase of some AD-, complement-, and astrocyte-associated genes, suggesting the possible involvement of neuroprotective C5aR2. However, these pathways were enhanced in older ArcC5a+ mice compared to Arc. Immunohistochemistry confirmed that C5a-C5aR1 modulation in Arc mice delayed the increase in CD11c-positive microglia, while not affecting other pan-reactive microglial or astrocyte markers. CONCLUSION C5a-C5aR1 signaling in AD largely exerts its effects by enhancing microglial activation pathways that accelerate disease progression. While C5a may have neuroprotective effects via C5aR2, engagement of C5a with C5aR1 is detrimental in AD models. These data support specific pharmacological inhibition of C5aR1 as a potential therapeutic strategy to treat AD.
Collapse
Affiliation(s)
- Klebea Carvalho
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA 92697 USA
| | - Nicole D. Schartz
- Department of Molecular Biology & Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900 USA
| | | | - Heidi Y. Liang
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA 92697 USA
| | - Shu-Hui Chu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900 USA
| | - Purnika Selvan
- Department of Molecular Biology & Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900 USA
| | - Angela Gomez-Arboledas
- Department of Molecular Biology & Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900 USA
| | - Tiffany J. Petrisko
- Department of Molecular Biology & Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900 USA
| | - Maria I. Fonseca
- Department of Molecular Biology & Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900 USA
| | - Ali Mortazavi
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA 92697 USA
| | - Andrea J. Tenner
- Department of Molecular Biology & Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900 USA
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, School of Medicine, Irvine, CA USA
| |
Collapse
|
41
|
Lv Z, Xu T, Li R, Zheng D, Li Y, Li W, Yang Y, Hao Y. Downregulation of m6A Methyltransferase in the Hippocampus of Tyrobp–/– Mice and Implications for Learning and Memory Deficits. Front Neurosci 2022; 16:739201. [PMID: 35386591 PMCID: PMC8978996 DOI: 10.3389/fnins.2022.739201] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
Loss-of-function mutations in the gene that encodes TYRO protein kinase-binding protein (TYROBP) cause Nasu-Hakola disease, a heritable disease resembling Alzheimer’s disease (AD). Methylation of N6 methyl-adenosine (m6A) in mRNA plays essential roles in learning and memory. Aberrant m6A methylation has been detected in AD patients and animal models. In the present study, Tyrobp–/– mice showed learning and memory deficits in the Morris water maze, which worsened with age. Tyrobp–/– mice also showed elevated levels of total tau, Ser202/Thr205-phosphorylated tau and amyloid β in the hippocampus and cerebrocortex, which worsened with aging. The m6A methyltransferase components METTL3, METTL14, and WTAP were downregulated in Tyrobp–/– mice, while expression of demethylases that remove the m6A modification (e.g., FTO and ALKBH5) were unaltered. Methylated RNA immunoprecipitation sequencing identified 498 m6A peaks that were upregulated in Tyrobp–/– mice, and 312 m6A peaks that were downregulated. Bioinformatic analysis suggested that most of these m6A peaks occur in sequences near stop codons and 3′-untranslated regions. These findings suggest an association between m6A RNA methylation and pathological TYROBP deficiency.
Collapse
Affiliation(s)
- Zhanyun Lv
- Zhejiang University Medical Center, Hangzhou, China
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Tongxiao Xu
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Ran Li
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dejie Zheng
- Health Management Center, Weifang People’s Hospital, Weifang, China
| | - Yanxin Li
- Department of Neurology, Pingdu People’s Hospital, Qingdao, China
| | - Wei Li
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Yan Yang
- College of Clinical Medicine, Jining Medical University, Jining, China
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining, China
| | - Yanlei Hao
- College of Clinical Medicine, Jining Medical University, Jining, China
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining, China
- *Correspondence: Yanlei Hao,
| |
Collapse
|
42
|
Chronic Intermittent Hypoxia Enhances Pathological Tau Seeding, Propagation, and Accumulation and Exacerbates Alzheimer-like Memory and Synaptic Plasticity Deficits and Molecular Signatures. Biol Psychiatry 2022; 91:346-358. [PMID: 34130857 PMCID: PMC8895475 DOI: 10.1016/j.biopsych.2021.02.973] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 02/19/2021] [Accepted: 02/28/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Obstructive sleep apnea, characterized by sleep fragmentation and chronic intermittent hypoxia (CIH), is a risk factor for Alzheimer's disease (AD) progression. Recent epidemiological studies point to CIH as the best predictor of developing cognitive decline and AD in older adults with obstructive sleep apnea. However, the precise underlying mechanisms remain unknown. This study was undertaken to evaluate the effect of CIH on pathological human tau seeding, propagation, and accumulation; cognition; synaptic plasticity; neuronal network excitability; and gene expression profiles in a P301S human mutant tau mouse model of AD and related tauopathies. METHODS We exposed 4- to 4.5-month-old male P301S and wild-type mice to an 8-week CIH protocol (6-min cycle: 21% O2 to 8% O2 to 21% O2, 80 cycles per 8 hours during daytime) and assessed its effect on tau pathology and various AD-related phenotypic and molecular signatures. Age- and sex-matched P301S and wild-type mice were reared in normoxia (21% O2) as experimental controls. RESULTS CIH significantly enhanced pathological human tau seeding and spread across connected brain circuitry in P301S mice; it also increased phosphorylated tau load. CIH also exacerbated memory and synaptic plasticity deficits in P301S mice. However, CIH had no effect on seizure susceptibility and network hyperexcitability in these mice. Finally, CIH exacerbated AD-related pathogenic molecular signaling in P301S mice. CONCLUSIONS CIH-induced increase in pathologic human tau seeding and spread and exacerbation of other AD-related impairments provide new insights into the role of CIH and obstructive sleep apnea in AD pathogenesis.
Collapse
|
43
|
Mauduit O, Delcroix V, Umazume T, de Paiva CS, Dartt DA, Makarenkova HP. Spatial transcriptomics of the lacrimal gland features macrophage activity and epithelium metabolism as key alterations during chronic inflammation. Front Immunol 2022; 13:1011125. [PMID: 36341342 PMCID: PMC9628215 DOI: 10.3389/fimmu.2022.1011125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
The lacrimal gland (LG) is an exocrine gland that produces the watery part of the tear film that lubricates the ocular surface. Chronic inflammation, such as Sjögren's syndrome (SS), is one of the leading causes of aqueous-deficiency dry eye (ADDE) disease worldwide. In this study we analyzed the chronic inflammation in the LGs of the NOD.B10Sn-H2b/J (NOD.H-2b) mice, a mouse model of SS, utilizing bulk RNAseq and Visium spatial gene expression. With Seurat we performed unsupervised clustering and analyzed the spatial cell distribution and gene expression changes in all cell clusters within the LG sections. Moreover, for the first time, we analyzed and validated specific pathways defined by bulk RNAseq using Visium technology to determine activation of these pathways within the LG sections. This analysis suggests that altered metabolism and the hallmarks of inflammatory responses from both epithelial and immune cells drive inflammation. The most significant pathway enriched in upregulated DEGs was the "TYROBP Causal Network", that has not been described previously in SS. We also noted a significant decrease in lipid metabolism in the LG of the NOD.H-2b mice. Our data suggests that modulation of these pathways can provide a therapeutic strategy to treat ADDE.
Collapse
Affiliation(s)
- Olivier Mauduit
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Vanessa Delcroix
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Takeshi Umazume
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Cintia S de Paiva
- The Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Cullen Eye Institute, Houston, TX, United States
| | - Darlene A Dartt
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Helen P Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
44
|
Ai R, Jin X, Tang B, Yang G, Niu Z, Fang EF. Aging and Alzheimer’s Disease. Artif Intell Med 2022. [DOI: 10.1007/978-3-030-64573-1_74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Brain Immunoinformatics: A Symmetrical Link between Informatics, Wet Lab and the Clinic. Symmetry (Basel) 2021. [DOI: 10.3390/sym13112168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Breakthrough advances in informatics over the last decade have thoroughly influenced the field of immunology. The intermingling of machine learning with wet lab applications and clinical results has hatched the newly defined immunoinformatics society. Immunoinformatics of the central neural system, referred to as neuroimmunoinformatics (NII), investigates symmetrical and asymmetrical interactions of the brain-immune interface. This interdisciplinary overview on NII is addressed to bioscientists and computer scientists. We delineate the dominating trajectories and field-shaping achievements and elaborate on future directions using bridging language and terminology. Computation, varying from linear modeling to complex deep learning approaches, fuels neuroimmunology through three core directions. Firstly, by providing big-data analysis software for high-throughput methods such as next-generation sequencing and genome-wide association studies. Secondly, by designing models for the prediction of protein morphology, functions, and symmetrical and asymmetrical protein–protein interactions. Finally, NII boosts the output of quantitative pathology by enabling the automatization of tedious processes such as cell counting, tracing, and arbor analysis. The new classification of microglia, the brain’s innate immune cells, was an NII achievement. Deep sequencing classifies microglia in “sensotypes” to accurately describe the versatility of immune responses to physiological and pathological challenges, as well as to experimental conditions such as xenografting and organoids. NII approaches complex tasks in the brain-immune interface, recognizes patterns and allows for hypothesis-free predictions with ultimate targeted individualized treatment strategies, and personalizes disease prognosis and treatment response.
Collapse
|
46
|
G N S HS, Marise VLP, Satish KS, Yergolkar AV, Krishnamurthy M, Ganesan Rajalekshmi S, Radhika K, Burri RR. Untangling huge literature to disinter genetic underpinnings of Alzheimer's Disease: A systematic review and meta-analysis. Ageing Res Rev 2021; 71:101421. [PMID: 34371203 DOI: 10.1016/j.arr.2021.101421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/25/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Drug discovery for Alzheimer's Disease (AD) is channeled towards unravelling key disease specific drug targets/genes to predict promising therapeutic candidates. Though enormous literature on AD genetics is available, there exists dearth in data pertinent to drug targets and crucial pathological pathways intertwined in disease progression. Further, the research findings revealing genetic associations failed to demonstrate consistency across different studies. This scenario prompted us to initiate a systematic review and meta-analysis with an aim of unearthing significant genetic hallmarks of AD. Initially, a Boolean search strategy was developed to retrieve case-control studies from PubMed, Cochrane, ProQuest, Europe PMC, grey literature and HuGE navigator. Subsequently, certain inclusion and exclusion criteria were framed to shortlist the relevant studies. These studies were later critically appraised using New Castle Ottawa Scale and Q-Genie followed by data extraction. Later, meta-analysis was performed only for those Single Nucleotide Polymorphisms (SNPs) which were evaluated in at least two different ethnicities from two different reports. Among, 204,351 studies retrieved, 820 met our eligibility criteria and 117 were processed for systematic review after critical appraisal. Ultimately, meta-analysis was performed for 23 SNPs associated with 15 genes which revealed significant associations of rs3865444 (CD33), rs7561528 (BIN1) and rs1801133 (MTHFR) with AD risk.
Collapse
|
47
|
Alzheimer's Disease Interventions: Implications of therapeutic promises amidst questions and doubts about clinically meaningful outcomes. Alzheimers Dement 2021; 17:1591-1594. [PMID: 34717294 DOI: 10.1002/alz.12490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 12/23/2022]
|
48
|
Serrano-Pozo A, Li Z, Noori A, Nguyen HN, Mezlini A, Li L, Hudry E, Jackson RJ, Hyman BT, Das S. Effect of APOE alleles on the glial transcriptome in normal aging and Alzheimer's disease. NATURE AGING 2021; 1:919-931. [PMID: 36199750 PMCID: PMC9531903 DOI: 10.1038/s43587-021-00123-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 09/03/2021] [Indexed: 05/02/2023]
Abstract
The roles of APOEε4 and APOEε2-the strongest genetic risk and protective factors for Alzheimer's disease-in glial responses remain elusive. We tested the hypothesis that APOE alleles differentially impact glial responses by investigating their effects on the glial transcriptome from elderly control brains with no neuritic amyloid plaques. We identified a cluster of microglial genes that are upregulated in APOEε4 and downregulated in APOEε2 carriers relative to APOEε3 homozygotes. This microglia-APOE cluster is enriched in phagocytosis-including TREM2 and TYROBP-and proinflammatory genes, and is also detectable in brains with frequent neuritic plaques. Next, we tested these findings in APOE knock-in mice exposed to acute (lipopolysaccharide challenge) and chronic (cerebral β-amyloidosis) insults and found that these mice partially recapitulate human APOE-linked expression patterns. Thus, the APOEε4 allele might prime microglia towards a phagocytic and proinflammatory state through an APOE-TREM2-TYROBP axis in normal aging as well as in Alzheimer's disease.
Collapse
Affiliation(s)
- Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Zhaozhi Li
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA, USA
| | - Ayush Noori
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA, USA
| | - Huong N. Nguyen
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Aziz Mezlini
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Liang Li
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Eloise Hudry
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Rosemary J. Jackson
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bradley T. Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
49
|
Morgan DG, Mielke MM. Knowledge gaps in Alzheimer's disease immune biomarker research. Alzheimers Dement 2021; 17:2030-2042. [PMID: 33984178 DOI: 10.1002/alz.12342] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 11/09/2022]
Abstract
Considerable evidence has accumulated implicating a role for immune mechanisms in moderating the pathology in Alzheimer's disease dementia. However, the appropriate therapeutic target, the appropriate direction of manipulation, and the stage of disease at which to begin treatment remain unanswered questions. Part of the challenge derives from the absence of any selective pressure to develop a coordinated beneficial immune response to severe neural injury in adults. Thus, immune responses to the prevailing stimuli are likely to contain both beneficial and detrimental components. Knowledge gaps include: (1) how a biomarker change relates to the underlying biology, (2) the degree to which pathological stage group differences reflect a response to pathology versus trait differences among individuals regulating risk of developing pathology, (3) the degree to which biomarker levels are predictive of subsequent changes in pathology and/or cognition, and (4) experimental manipulations in model systems to determine whether differences in immune biomarkers are causally related to pathology.
Collapse
Affiliation(s)
- David G Morgan
- Alzheimer's Alliance, Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Michelle M Mielke
- Division of Epidemiology, Department of Health Sciences Research, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
50
|
Schwab N, Ju Y, Hazrati LN. Early onset senescence and cognitive impairment in a murine model of repeated mTBI. Acta Neuropathol Commun 2021; 9:82. [PMID: 33964983 PMCID: PMC8106230 DOI: 10.1186/s40478-021-01190-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022] Open
Abstract
Mild traumatic brain injury (mTBI) results in broad neurological symptoms and an increased risk of being diagnosed with a neurodegenerative disease later in life. While the immediate oxidative stress response and post-mortem pathology of the injured brain has been well studied, it remains unclear how early pathogenic changes may drive persistent symptoms and confer susceptibility to neurodegeneration. In this study we have used a mouse model of repeated mTBI (rmTBI) to identify early gene expression changes at 24 h or 7 days post-injury (7 dpi). At 24 h post-injury, gene expression of rmTBI mice shows activation of the DNA damage response (DDR) towards double strand DNA breaks, altered calcium and cell–cell signalling, and inhibition of cell death pathways. By 7 dpi, rmTBI mice had a gene expression signature consistent with induction of cellular senescence, activation of neurodegenerative processes, and inhibition of the DDR. At both timepoints gliosis, microgliosis, and axonal damage were evident in the absence of any gross lesion, and by 7 dpi rmTBI also mice had elevated levels of IL1β, p21, 53BP1, DNA2, and p53, supportive of DNA damage-induced cellular senescence. These gene expression changes reflect establishment of processes usually linked to brain aging and suggests that cellular senescence occurs early and most likely prior to the accumulation of toxic proteins. These molecular changes were accompanied by spatial learning and memory deficits in the Morris water maze. To conclude, we have identified DNA damage-induced cellular senescence as a repercussion of repeated mild traumatic brain injury which correlates with cognitive impairment. Pathways involved in senescence may represent viable treatment targets of post-concussive syndrome. Senescence has been proposed to promote neurodegeneration and appears as an effective target to prevent long-term complications of mTBI, such as chronic traumatic encephalopathy and other related neurodegenerative pathologies.
Collapse
|