1
|
Zhang B, Zhou Q, Xue C, Zhang P, Ke X, Wang Y, Zhang Y, Deng L, Jing M, Han T, Zhou F, Dong W, Zhou J. Predicting telomerase reverse transcriptase promoter mutation status in glioblastoma by whole-tumor multi-sequence magnetic resonance texture analysis. Magn Reson Imaging 2025; 118:110360. [PMID: 39983804 DOI: 10.1016/j.mri.2025.110360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
OBJECTIVE This study aimed to determine the feasibility of preoperative multi-sequence magnetic resonance texture analysis (MRTA) for predicting TERT promoter mutation status in IDH-wildtype glioblastoma (IDHwt GB). METHODS The clinical and imaging data of 111 patients with IDHwt GB at our hospital between November 2018 and June 2023 were retrospectively analyzed as the training set, and those of 23 patients with IDHwt GB between July 2023 and November 2023 were interpreted as the validation set. We used molecular sequencing results to classify the training set into TERT promoter mutation and wildtype groups. Textural features of the whole-tumor volume were extracted, including T2-weighted imaging (T2WI), T2-fluid-attenuated inversion recovery, apparent diffusion coefficient (ADC) map, and contrast-enhanced T1-weighted imaging (CE-T1). All textural features were obtained using open-source pyradiomics. After feature selection, logistic regression was used to build prediction models, and a nomogram was generated. Finally, the model was validated using validation cohort. RESULTS The CE-T1_Model (AUC 0.704) had a better predictive ability than the T2_Model (AUC 0.684) and ADC_Model (AUC 0.624). The MRI_Combined_Model (CE-T1, T2, and ADC texture features) (AUC 0.780) had a better predictive ability than the Clinical_Model (AUC 0.758). The Combined_Model (CE-T1, T2, ADC texture features, and clinical features) had the best predictive performance (AUC 0.871), with a sensitivity, specificity, and accuracy of 82.60 %, 83.30 %, and 80.18 %, respectively. The AUC, sensitivity, specificity, and accuracy in the validation cohort were 0.775, 86.70 %, 75.00 %, and 69.57 %, respectively. CONCLUSIONS Whole-tumor multi-sequence MRTA can be used as non-invasive quantitative parameters to assist in the preoperative clinical prediction of TERT promoter mutation status in IDHwt GB.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Second Clinical School, Lanzhou University, Lanzhou, Gansu, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Qing Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Second Clinical School, Lanzhou University, Lanzhou, Gansu, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Caiqiang Xue
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Second Clinical School, Lanzhou University, Lanzhou, Gansu, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Peng Zhang
- Department of Pathology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiaoai Ke
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Second Clinical School, Lanzhou University, Lanzhou, Gansu, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Yige Wang
- Medical Department, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Yuting Zhang
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Second Clinical School, Lanzhou University, Lanzhou, Gansu, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Liangna Deng
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Second Clinical School, Lanzhou University, Lanzhou, Gansu, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Mengyuan Jing
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Second Clinical School, Lanzhou University, Lanzhou, Gansu, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Tao Han
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Second Clinical School, Lanzhou University, Lanzhou, Gansu, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Fengyu Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Second Clinical School, Lanzhou University, Lanzhou, Gansu, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Wenjie Dong
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Second Clinical School, Lanzhou University, Lanzhou, Gansu, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Second Clinical School, Lanzhou University, Lanzhou, Gansu, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China.
| |
Collapse
|
2
|
Li Y, Shen X, Zhang J, Xian X, Chen S, Zeng J, Hu W. Adult diffuse IDH-wildtype lower-grade gliomas with PDGFRA gain/amplification should be upgraded as glioblastoma. J Neuropathol Exp Neurol 2025:nlaf039. [PMID: 40238212 DOI: 10.1093/jnen/nlaf039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
We explored the prognostic significance of platelet-derived growth factor receptor α (PDGFRA) gain/amplification in grade 2-4 adult gliomas to assess its value as an upgrading indicator. Fluorescence in situ hybridization was performed to detect PDGFRA gain/amplification in 321 glioma specimens from Sun Yat-sen University Cancer Center (SYSUCC). Data from 1934 cases with available next-generation sequencing results from The Cancer Genome Atlas (TCGA) and cBioPortal were also analyzed. Of the adult grade 2-4 gliomas, 12.15% (39/321), 8.76% (93/1062), and 6.88% (60/872) had PDGFRA gain/amplification in the SYSUCC, TCGA, and cBioPortal cohorts, respectively. Grade 4 glioblastomas had a greater PDGFRA gain/amplification rate than lower-grade gliomas (LGGs) in all cohorts (all P < .05). PDGFRA gain/amplification was associated with older age, greater World Health Organization grade, isocitrate dehydrogenase (IDH)-wildtype, intact 1p/19q, telomerase reverse transcriptase promoter-wildtype, greater Ki67 index, epidermal growth factor receptor amplification, and chromosome 7+/10- alterations. PDGFRA gain/amplification predicted poor overall survival (OS) in grade 2-4 gliomas, particularly IDH-wildtype LGGs, in all cohorts (all P < .05). OS was worse in PDGFRA-amplified IDH-wildtype LGGs than in IDH-wildtype glioblastomas in the cBioPortal (P = .031) and SYSUCC (P = .026) cohorts. PDGFRA gain/amplification predicted poor OS in adult diffuse IDH-wildtype LGGs and may serve as an upgrading indicator.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiujiao Shen
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ji Zhang
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Neurosurgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xinyi Xian
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shaoyu Chen
- Guangzhou LBP Medical Technology Co., Ltd., Guangzhou, China
| | - Jing Zeng
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wanming Hu
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
3
|
Wang J, Lan Y, Qi HY, Wang LH, Wei S, Yuan Y, Ge J, Li AL, Yan ZX, Li L, Ming PY, Hu TR, Bian XW, Yao XH, Luo T. Comparison of Fluorescence In Situ Hybridization, Next-Generation Sequencing, and DNA Methylation Microarray for Copy Number Variation Assessment in Gliomas. J Transl Med 2025; 105:104168. [PMID: 40210170 DOI: 10.1016/j.labinv.2025.104168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 04/12/2025] Open
Abstract
Gene-level and chromosomal copy number variation (CNV) assessments are critical in the integrated diagnosis of gliomas. Whereas fluorescence in situ hybridization (FISH) has been traditionally employed for CNV detection, emerging technologies such as next-generation sequencing (NGS) and DNA methylation microarray (DMM) are available in clinical practice. Nevertheless, the comparative performance of these 3 assays and the concordance of them remain unclear. A retrospective cohort study comprising 104 patients diagnosed with gliomas was conducted at our hospital. We systematically compared FISH, NGS, and DMM for detecting the following 6 CNV-related diagnostic or prognostic parameters: epidermal growth factor receptor (EGFR), cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B), 1p, 19q, chromosome 7, and chromosome 10. All the 3 methods showed high consistency in EGFR assessment; however, FISH demonstrated relatively low concordance with NGS/DMM in detecting other parameters. In contrast, NGS and DMM exhibited strong concordance in the assessment of all the 6 parameters. Notably, discordant cases were associated with high-grade gliomas (grade 3/4; P < .05) and a high fraction of genome altered (P < .01), indicating high malignancy and genomic instability of discordant cases. This study elucidated the discrepancies and limitations of conventional FISH compared with NGS/DMM in CNV assessments. The discrepancies were associated with high-grade gliomas and genomic instability. We propose a process with recommendations on methods, highlighting the importance of integrated multiplatform assays in accurate clinical diagnosis.
Collapse
Affiliation(s)
- Jiao Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, The Ministry of Education of China, Chongqing, China
| | - Yang Lan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, The Ministry of Education of China, Chongqing, China
| | - Hao-Yue Qi
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, The Ministry of Education of China, Chongqing, China
| | - Li-Hong Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, The Ministry of Education of China, Chongqing, China
| | - Sen Wei
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, The Ministry of Education of China, Chongqing, China
| | - Ye Yuan
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jia Ge
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, The Ministry of Education of China, Chongqing, China
| | - Ai-Ling Li
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, The Ministry of Education of China, Chongqing, China
| | - Ze-Xuan Yan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, The Ministry of Education of China, Chongqing, China
| | - Lei Li
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, The Ministry of Education of China, Chongqing, China
| | - Peng-Yu Ming
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China
| | - Tian-Ran Hu
- Department of Pathology, School of Basic Medical Science, Bengbu Medical University, Bengbu, Anhui, China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, The Ministry of Education of China, Chongqing, China.
| | - Xiao-Hong Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, The Ministry of Education of China, Chongqing, China.
| | - Tao Luo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, The Ministry of Education of China, Chongqing, China.
| |
Collapse
|
4
|
Ghosh HS, Patel RV, Woodward E, Greenwald NF, Bhave VM, Maury EA, Cello G, Hoffman SE, Li Y, Gupta H, Youssef G, Spurr LF, Vogelzang J, Touat M, Dubois F, Cherniack AD, Guo X, Tavakol S, Cioffi G, Lindeman NI, Ligon AH, Chiocca EA, Reardon DA, Wen PY, Meredith DM, Santagata S, Barnholtz-Sloan JS, Ligon KL, Beroukhim R, Bi WL. Contemporary prognostic signatures and refined risk stratification of gliomas: An analysis of 4400 tumors. Neuro Oncol 2025; 27:195-208. [PMID: 39164213 PMCID: PMC11726335 DOI: 10.1093/neuonc/noae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND With the significant shift in the classification, risk stratification, and standards of care for gliomas, we sought to understand how the overall survival of patients with these tumors is impacted by molecular features, clinical metrics, and treatment received. METHODS We assembled a cohort of patients with histopathologically diagnosed glioma from The Cancer Genome Atlas (TCGA), Project Genomics Evidence Neoplasia Information Exchange, and Dana-Farber Cancer Institute/Brigham and Women's Hospital. This incorporated retrospective clinical, histological, and molecular data alongside a prospective assessment of patient survival. RESULTS Of 4400 gliomas were identified: 2195 glioblastomas, 1198 IDH1/2-mutant astrocytomas, 531 oligodendrogliomas, 271 other IDH1/2-wild-type gliomas, and 205 pediatric-type glioma. Molecular classification updated 27.2% of gliomas from their original histopathologic diagnosis. Examining the distribution of molecular alterations across glioma subtypes revealed mutually exclusive alterations within tumorigenic pathways. Non-TCGA patients had significantly improved overall survival compared to TCGA patients, with 26.7%, 55.6%, and 127.8% longer survival for glioblastoma, IDH1/2-mutant astrocytoma, and oligodendroglioma, respectively (all P < .01). Several prognostic features were characterized, including NF1 alteration and 21q loss in glioblastoma, and EGFR amplification and 22q loss in IDH1/2-mutant astrocytoma. Leveraging the size of this cohort, nomograms were generated to assess the probability of overall survival based on patient age, the molecular features of a tumor, and the treatment received. CONCLUSIONS By applying modern molecular criteria, we characterize the genomic diversity across glioma subtypes, identify clinically applicable prognostic features, and provide a contemporary update on patient survival to serve as a reference for ongoing investigations.
Collapse
Affiliation(s)
- Hia S Ghosh
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ruchit V Patel
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Eleanor Woodward
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Noah F Greenwald
- School of Medicine, Stanford University, Palo Alto, California, USA
| | - Varun M Bhave
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Eduardo A Maury
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gregory Cello
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Samantha E Hoffman
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yvonne Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Hersh Gupta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Gilbert Youssef
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Liam F Spurr
- Department of Radiation and Cellular Oncology, University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| | - Jayne Vogelzang
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Mehdi Touat
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Frank Dubois
- Division of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Andrew D Cherniack
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Xiaopeng Guo
- Department of Neurosurgery, Peking Union Medical College Hospital, Beijing, China
| | - Sherwin Tavakol
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Gino Cioffi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Neal I Lindeman
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Azra H Ligon
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - David M Meredith
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Sandro Santagata
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Jill S Barnholtz-Sloan
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, Maryland
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Keith L Ligon
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Rameen Beroukhim
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Xing H, Liu D, Li J, Ge Y, Guo X, Chen W, Zhao D, Shi Y, Li Y, Wang Y, Wang Y, Xia Y, Wu J, Liang T, Wang H, Liu Q, Jin S, Qu T, Guo S, Li H, Yang T, Zhang K, Wang Y, Ma W. TERTp Mutation and its Prognostic Value in Glioma Patients Under the 2021 WHO Classification: A Real-World Study. Cancer Med 2025; 14:e70533. [PMID: 39804195 PMCID: PMC11727134 DOI: 10.1002/cam4.70533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/16/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND The 2021 WHO Classification of Central Nervous System Tumors introduces more molecular markers for glioma reclassification, including TERT promoter (TERTp) mutation as a key feature in glioblastoma diagnosis. AIMS Given the changes in the entities included in each subtype under the new classification, this research investigated the distribution, prognostic value, and correlations with other molecular alterations of TERTp mutation in different subgroups under this latest classification. METHODS All glioma patients admitted to Peking Union Medical College Hospital for surgical resection or biopsy from 2011 to 2022 were included. Samples were analyzed for TERTp mutation and 59 other gene alterations and chromosome copy number variations. RESULTS A total of 207 patients were included. The occurrence of TERTp mutations varied with percentages of 4.55%, 100%, and 77.92% in astrocytoma, oligodendroglioma, and glioblastoma, respectively. 65% of all adult-type glioma patients and 42.6% of IDH-wildtype histology grade 2 or 3 patients were TERTp-mutant. Survival analysis showed that TERTp mutation was a predictor of better prognosis in IDH-mutant grade 2 gliomas (median OS (mOS): not reached (NA) (95% CI: NA-NA) vs. 75.9 (95% CI: 55.4-NA) months, HR = 0.077 (95% CI: 0.01-0.64), p = 0.003), while poor OS was associated with all Grade 4 gliomas (mOS: 17.5 (95% CI: 12.6-24.2) vs. 40.5 (95% CI: 24.4-83.8) months, HR = 2.014 (95% CI: 1.17-3.47), p = 0.01) and all IDH-wildtype histology grade 2 or 3 gliomas (median OS: 12.6 (95% CI: 11-24.2) vs. 83.8 (95% CI: 35.2-NA) months, HR = 3.768 (95% CI: 1.83-7.78), p < 0.001). Moreover, TERTp mutation tended to co-occur with EGFR, KRAS, and MET in glioblastoma. In the IDH-mutant subgroup, it tended to co-occur with CIC and FUBP1 alterations, while being mutually exclusive with ATRX and TP53 alterations. These correlations may further refine prognostic predictions.
Collapse
Affiliation(s)
- Hao Xing
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Delin Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Junlin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yulu Ge
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaopeng Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- China Anti‐Cancer Association Specialty Committee of GliomaBeijingChina
| | - Wenlin Chen
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Dachun Zhao
- Department of PathologyPeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yixin Shi
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yilin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yaning Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yuekun Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yu Xia
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jiaming Wu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tingyu Liang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hai Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qianshu Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shanmu Jin
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tian Qu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Siying Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Huanzhang Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tianrui Yang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Kun Zhang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yu Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- China Anti‐Cancer Association Specialty Committee of GliomaBeijingChina
| | - Wenbin Ma
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT AlliancePeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- China Anti‐Cancer Association Specialty Committee of GliomaBeijingChina
| |
Collapse
|
6
|
Honma H, Tateishi K, Iwashita H, Miyake Y, Tsujimoto S, Hayashi H, Ohgaki F, Nakano Y, Ichimura K, Yamanaka S, Kato M, Fujii S, Ito S, Yokoo H, Yamamoto T. Primary intracranial sarcoma associated with DICER1 mutant: a case report and preclinical investigation. Brain Tumor Pathol 2025; 42:12-20. [PMID: 39522081 DOI: 10.1007/s10014-024-00495-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Primary intracranial sarcoma (PIS) is a rare and aggressive pediatric brain tumor, which is partially associated with DICER1 mutant. Although the molecular genetic characteristics of this tumor have previously been investigated, novel therapeutic targets remain unclear. Further, the lack of faithful preclinical models has hampered the development of novel therapeutic strategies. Herein, we describe a pediatric case of PIS with DICER1 mutant and describe the development of the first novel patient-derived xenograft (PDX) model of this rare tumor. Somatic genomic profiling of the tumor revealed mutations in DICER1, TP53, and ATRX. Germline analysis further revealed a pathogenic variant of DICER1, significant for the diagnosis and management of hereditary tumor predisposition syndrome. Overall, we demonstrated that the PDX model faithfully retained the phenotype and genotype of the patient's tumor, as well as the DNA methylation profile. Through high-throughput drug screening using PDX tumor cells, we found that activation of the retinoic acid receptor (RAR) signaling pathway reduced tumor cell viability. These findings indicate that the RAR signaling pathway is a potential therapeutic target for PIS in DICER1 mutant.
Collapse
Affiliation(s)
- Hirokuni Honma
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Kensuke Tateishi
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan.
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan.
- Laboratory of Biopharmaceutical and Regenerative Science, Graduate School of Medical Science, Yokohama City University, Yokohama, Japan.
| | - Hiromichi Iwashita
- Department of Pathology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
- Department of Pathology, Yokohama City University Hospital, Yokohama, Japan
| | - Yohei Miyake
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Shinichi Tsujimoto
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Hiroaki Hayashi
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Fukutaro Ohgaki
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
- Department of Neurosurgery, Yokohama City Minato Red Cross Hospital, Yokohama, Japan
| | - Yoshiko Nakano
- Department of Pediatrics, The University of Tokyo, Tokyo, Japan
| | - Koichi Ichimura
- Department of Pathology, Graduate School of Medicine, Kyorin University, Mitaka, Japan
| | - Shoji Yamanaka
- Department of Pathology, Yokohama City University Hospital, Yokohama, Japan
| | - Motohiro Kato
- Department of Pediatrics, The University of Tokyo, Tokyo, Japan
| | - Satoshi Fujii
- Department of Pathology, Yokohama City University Hospital, Yokohama, Japan
- Department of Molecular Pathology, Graduate School of Medicine, Yokohama, Japan
| | - Shuichi Ito
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Hideaki Yokoo
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
| |
Collapse
|
7
|
Higa N, Akahane T, Kirishima M, Yonezawa H, Makino R, Uchida H, Yokoyama S, Takajo T, Otsuji R, Fujioka Y, Sangatsuda Y, Kuga D, Yamahata H, Hata N, Horie N, Kurosaki M, Yamamoto J, Yoshimoto K, Tanimoto A, Hanaya R. All-in-one bimodal DNA and RNA next-generation sequencing panel for integrative diagnosis of glioma. Pathol Res Pract 2024; 263:155598. [PMID: 39357189 DOI: 10.1016/j.prp.2024.155598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/08/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Previously, we constructed a DNA-based next-generation sequencing (NGS) panel for an integrated diagnosis of gliomas according to the 2021 World Health Organization classification system. The aim of the current study was to evaluate the feasibility of a modified panel to include fusion gene detection via RNA-based analysis. Using this bimodal DNA/RNA panel, we analyzed 210 cases of gliomas and others to identify fusion genes in addition to gene alterations, including TERT promoter (TERTp) mutation and 1p/19q co-deletion, in formalin-fixed paraffin-embedded tissues. Of the 210 patients, fusion genes were detected in tumors of 35 patients. Eighteen of 112 glioblastomas (GBs) harbored fusion genes, including EGFR and FGFR3 fusions. In IDH-mutant astrocytoma, 6 of 30 cases showed fusion genes such as MET and NTRK2 fusions. Eleven molecular GBs and 20 not-elsewhere-classified cases harbored no gene fusions. Other 11 tumors including ependymoma, pilocytic astrocytoma, diffuse hemispheric glioma, infant-type hemispheric glioma, and solitary fibrous tumors exhibited diagnostic fusion genes. Overall, our results suggest that the all-in-one bimodal DNA/RNA panel is reliable for detecting diagnostic gene alterations in accordance with the latest WHO classification. The integrative pathological and molecular strategy could be valuable in confirmation of diagnosis and selection of treatment options for brain tumors.
Collapse
Affiliation(s)
- Nayuta Higa
- Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima 890-8520, Japan
| | - Toshiaki Akahane
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima 890-8544, Japan; Center for Human Genome and Gene Analysis, Kagoshima University Hospital, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima 890-8544, Japan
| | - Mari Kirishima
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima 890-8544, Japan
| | - Hajime Yonezawa
- Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima 890-8520, Japan
| | - Ryutaro Makino
- Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima 890-8520, Japan
| | - Hiroyuki Uchida
- Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima 890-8520, Japan
| | - Seiya Yokoyama
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima 890-8544, Japan
| | - Tomoko Takajo
- Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima 890-8520, Japan
| | - Ryosuke Otsuji
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yutaka Fujioka
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuhei Sangatsuda
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Daisuke Kuga
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hitoshi Yamahata
- Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima 890-8520, Japan
| | - Nobuhiro Hata
- Department of Neurosurgery, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasamamachi, Yufu, Oita 879-5593, Japan
| | - Nobutaka Horie
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Masamichi Kurosaki
- Division of Neurosurgery, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori 683-8504, Japan
| | - Junkoh Yamamoto
- Department of Neurosurgery, University of Occupational and Environmental Health, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Akihide Tanimoto
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima 890-8544, Japan; Center for Human Genome and Gene Analysis, Kagoshima University Hospital, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima 890-8544, Japan.
| | - Ryosuke Hanaya
- Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima 890-8520, Japan.
| |
Collapse
|
8
|
Lee M, Karschnia P, Park YW, Choi K, Han K, Choi SH, Yoon HI, Shin NY, Ahn SS, Tonn JC, Chang JH, Kim SH, Lee SK. Comparative analysis of molecular and histological glioblastomas: insights into prognostic variance. J Neurooncol 2024; 169:531-541. [PMID: 39115615 DOI: 10.1007/s11060-024-04737-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 08/23/2024]
Abstract
PURPOSE Whether molecular glioblastomas (GBMs) identify with a similar dismal prognosis as a "classical" histological GBM is controversial. This study aimed to compare the clinical, molecular, imaging, surgical factors, and prognosis between molecular GBMs and histological GBMs. METHODS Retrospective chart and imaging review was performed in 983 IDH-wildtype GBM patients (52 molecular GBMs and 931 histological GBMs) from a single institution between 2005 and 2023. Propensity score-matched analysis was additionally performed to adjust for differences in baseline variables between molecular GBMs and histological GBMs. RESULTS Molecular GBM patients were substantially younger (58.1 vs. 62.4, P = 0.014) with higher rate of TERTp mutation (84.6% vs. 50.3%, P < 0.001) compared with histological GBM patients. Imaging showed higher incidence of gliomatosis cerebri pattern (32.7% vs. 9.2%, P < 0.001) in molecular GBM compared with histological GBM, which resulted in lesser extent of resection (P < 0.001) in these patients. The survival was significantly better in molecular GBM compared to histological GBM (median OS 30.2 vs. 18.4 months, P = 0.001). The superior outcome was confirmed in propensity score analyses by matching histological GBM to molecular GBM (P < 0.001). CONCLUSION There are distinct clinical, molecular, and imaging differences between molecular GBMs and histological GBMs. Our results suggest that molecular GBMs have a more favorable prognosis than histological GBMs.
Collapse
Affiliation(s)
- Myunghwan Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Philipp Karschnia
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
- Department German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea.
| | - Kaeum Choi
- Department of Statistics and Data Science, Yonsei University, Seoul, Korea
| | - Kyunghwa Han
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Seo Hee Choi
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Hong In Yoon
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Na-Young Shin
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Joerg-Christian Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
- Department German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| |
Collapse
|
9
|
Song B, Wang X, Qin L, Hussain S, Liang W. Brain gliomas: Diagnostic and therapeutic issues and the prospects of drug-targeted nano-delivery technology. Pharmacol Res 2024; 206:107308. [PMID: 39019336 DOI: 10.1016/j.phrs.2024.107308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Glioma is the most common intracranial malignant tumor, with severe difficulty in treatment and a low patient survival rate. Due to the heterogeneity and invasiveness of tumors, lack of personalized clinical treatment design, and physiological barriers, it is often difficult to accurately distinguish gliomas, which dramatically affects the subsequent diagnosis, imaging treatment, and prognosis. Fortunately, nano-delivery systems have demonstrated unprecedented capabilities in diagnosing and treating gliomas in recent years. They have been modified and surface modified to efficiently traverse BBB/BBTB, target lesion sites, and intelligently release therapeutic or contrast agents, thereby achieving precise imaging and treatment. In this review, we focus on nano-delivery systems. Firstly, we provide an overview of the standard and emerging diagnostic and treatment technologies for glioma in clinical practice. After induction and analysis, we focus on summarizing the delivery methods of drug delivery systems, the design of nanoparticles, and their new advances in glioma imaging and treatment in recent years. Finally, we discussed the prospects and potential challenges of drug-delivery systems in diagnosing and treating glioma.
Collapse
Affiliation(s)
- Baoqin Song
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Xiu Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China.
| | - Lijing Qin
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Shehbaz Hussain
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Wanjun Liang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China.
| |
Collapse
|
10
|
Yu Y, Yu M, Luo L, Zhang Z, Zeng H, Chen Y, Lin Z, Chen M, Wang W. Molecular characteristics and immune microenvironment of gastrointestinal stromal tumours: targets for therapeutic strategies. Front Oncol 2024; 14:1405727. [PMID: 39070147 PMCID: PMC11272528 DOI: 10.3389/fonc.2024.1405727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024] Open
Abstract
Gastrointestinal stromal tumours (GISTs) are the most common mesenchymal tumours, arising mainly from the interstitial cells of Cajal (ICCs) of the gastrointestinal tract. As radiotherapy and chemotherapy are generally ineffective for GISTs, the current primary treatment is surgical resection. However, surgical resection is not choice for most patients. Therefore, new therapeutic strategies are urgently needed. Targeted therapy, represented by tyrosine kinase inhibitors (TKIs), and immunotherapy, represented by immune checkpoint inhibitor therapies and chimeric antigen receptor T-cell immunotherapy (CAR-T), offer new therapeutic options in GISTs and have shown promising treatment responses. In this review, we summarize the molecular classification and immune microenvironment of GISTs and discuss the corresponding targeted therapy and immunotherapy options. This updated knowledge may provide more options for future therapeutic strategies and applications in GISTs.
Collapse
Affiliation(s)
- Yang Yu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Mengdie Yu
- Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou, Guangdong, China
| | - Lijie Luo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Zijing Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Haiping Zeng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Yan Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Zeyu Lin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Mengnan Chen
- Department of Thyroid and Breast Surgery, Baiyun Hospital, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Wei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Namiot ED, Zembatov GM, Tregub PP. Insights into brain tumor diagnosis: exploring in situ hybridization techniques. Front Neurol 2024; 15:1393572. [PMID: 39022728 PMCID: PMC11252041 DOI: 10.3389/fneur.2024.1393572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/31/2024] [Indexed: 07/20/2024] Open
Abstract
Objectives Diagnosing brain tumors is critical due to their complex nature. This review explores the potential of in situ hybridization for diagnosing brain neoplasms, examining their attributes and applications in neurology and oncology. Methods The review surveys literature and cross-references findings with the OMIM database, examining 513 records. It pinpoints mutations suitable for in situ hybridization and identifies common chromosomal and gene anomalies in brain tumors. Emphasis is placed on mutations' clinical implications, including prognosis and drug sensitivity. Results Amplifications in EGFR, MDM2, and MDM4, along with Y chromosome loss, chromosome 7 polysomy, and deletions of PTEN, CDKN2/p16, TP53, and DMBT1, correlate with poor prognosis in glioma patients. Protective genetic changes in glioma include increased expression of ADGRB3/1, IL12B, DYRKA1, VEGFC, LRRC4, and BMP4. Elevated MMP24 expression worsens prognosis in glioma, oligodendroglioma, and meningioma patients. Meningioma exhibits common chromosomal anomalies like loss of chromosomes 1, 9, 17, and 22, with specific genes implicated in their development. Main occurrences in medulloblastoma include the formation of isochromosome 17q and SHH signaling pathway disruption. Increased expression of BARHL1 is associated with prolonged survival. Adenomas mutations were reviewed with a focus on adenoma-carcinoma transition and different subtypes, with MMP9 identified as the main metalloprotease implicated in tumor progression. Discussion Molecular-genetic diagnostics for common brain tumors involve diverse genetic anomalies. In situ hybridization shows promise for diagnosing and prognosticating tumors. Detecting tumor-specific alterations is vital for prognosis and treatment. However, many mutations require other methods, hindering in situ hybridization from becoming the primary diagnostic method.
Collapse
Affiliation(s)
- E. D. Namiot
- Department of Pathophysiology, First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - G. M. Zembatov
- Department of Pathophysiology, First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - P. P. Tregub
- Department of Pathophysiology, First Moscow State Medical University (Sechenov University), Moscow, Russia
- Brain Research Department, Federal State Scientific Center of Neurology, Moscow, Russia
- Scientific and Educational Resource Center, Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
12
|
Xi S, Jiang S, Li H, Huang Q, Lu J, Zhang X, Li Z, Zeng J. Adult epithelioid glioblastoma exhibits an extremely poor prognosis and high frequency of SWI/SNF complex mutation: Insights from a retrospective study. Int J Cancer 2024; 155:172-183. [PMID: 38411299 DOI: 10.1002/ijc.34854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/25/2023] [Accepted: 01/03/2024] [Indexed: 02/28/2024]
Abstract
Epithelioid glioblastoma (eGBM) is a rare subtype of GBM. Given the update of the definition of GBM, the understanding of the molecular characteristics and prognosis of "true" adult eGBM remains limited. Herein, we retrospectively analyzed the clinicopathological data of 39 adult eGBM cases. Adult eGBM primarily affected females, with a male-to-female ratio of 1:2.3. The average age of diagnosis was 53 years, and the tumor affected the temporal lobe in 41% of cases (16/39, 41%). Microscopically, the tumors consisted mainly or entirely of epithelioid cells. Perivascular infiltration (10/39, 25.6%) and leptomeningeal dissemination (7/39, 17.9%) were not uncommon. BRAF V600E mutation was detected in 40.9% of cases (n = 9/22). Next-generation sequencing revealed that CDKN2A/B homogeneous deletion was the most frequently mutated gene (8/10, 80%), followed by TERT promoter mutation (7/10, 70%), Cyclin-dependent kinases 4 or 6 (CDK4/6) amplification (5/10, 50%) and BRAF V600E mutation (50%, 5/10). Notably, the incidence of ARID1B mutation in eGBM was 50% (5/10), representing the first report of such a mutation in this subtype of GBM. ARID1B was known to be a subunit of the SWI/SNF chromatin remodeler. Chromosome analysis showed a 7+/10- signature in 90% (9/10) cases. Adult eGBM carried a dismal prognosis compared to GBM with IDH and H3 wild-type (typical GBM) (OS: 13.89 vs 24.30 months; P = .003) and even typical GBM without MGMT promoter methylation (OS: 13.89 vs 22.08 months; P = .036). Based on these findings, it can be concluded that adult eGBM harbors a high frequency of the 7+/10- signature and alterations in the MAPK pathway, SWI/SNF complex and cyclin-related genes and portends an extremely poor prognosis.
Collapse
Affiliation(s)
- Shaoyan Xi
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shimeng Jiang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hainan Li
- Department of Pathology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Qitao Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiabin Lu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xing Zhang
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co, Ltd, Nanjing, China
| | - Zhi Li
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jing Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
13
|
Ji Q, Zheng Y, Zhou L, Chen F, Li W. Unveiling divergent treatment prognoses in IDHwt-GBM subtypes through multiomics clustering: a swift dual MRI-mRNA model for precise subtype prediction. J Transl Med 2024; 22:578. [PMID: 38890658 PMCID: PMC11186189 DOI: 10.1186/s12967-024-05401-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND IDH1-wildtype glioblastoma multiforme (IDHwt-GBM) is a highly heterogeneous and aggressive brain tumour characterised by a dismal prognosis and significant challenges in accurately predicting patient outcomes. To address these issues and personalise treatment approaches, we aimed to develop and validate robust multiomics molecular subtypes of IDHwt-GBM. Through this, we sought to uncover the distinct molecular signatures underlying these subtypes, paving the way for improved diagnosis and targeted therapy for this challenging disease. METHODS To identify stable molecular subtypes among 184 IDHwt-GBM patients from TCGA, we used the consensus clustering method to consolidate the results from ten advanced multiomics clustering approaches based on mRNA, lncRNA, and mutation data. We developed subtype prediction models using the PAM and machine learning algorithms based on mRNA and MRI data for enhanced clinical utility. These models were validated in five independent datasets, and an online interactive system was created. We conducted a comprehensive assessment of the clinical impact, drug treatment response, and molecular associations of the IDHwt-GBM subtypes. RESULTS In the TCGA cohort, two molecular subtypes, class 1 and class 2, were identified through multiomics clustering of IDHwt-GBM patients. There was a significant difference in survival between Class 1 and Class 2 patients, with a hazard ratio (HR) of 1.68 [1.15-2.47]. This difference was validated in other datasets (CGGA: HR = 1.75[1.04, 2.94]; CPTAC: HR = 1.79[1.09-2.91]; GALSS: HR = 1.66[1.09-2.54]; UCSF: HR = 1.33[1.00-1.77]; UPENN HR = 1.29[1.04-1.58]). Additionally, class 2 was more sensitive to treatment with radiotherapy combined with temozolomide, and this sensitivity was validated in the GLASS cohort. Correspondingly, class 2 and class 1 exhibited significant differences in mutation patterns, enriched pathways, programmed cell death (PCD), and the tumour immune microenvironment. Class 2 had more mutation signatures associated with defective DNA mismatch repair (P = 0.0021). Enriched pathways of differentially expressed genes in class 1 and class 2 (P-adjust < 0.05) were mainly related to ferroptosis, the PD-1 checkpoint pathway, the JAK-STAT signalling pathway, and other programmed cell death and immune-related pathways. The different cell death modes and immune microenvironments were validated across multiple datasets. Finally, our developed survival prediction model, which integrates molecular subtypes, age, and sex, demonstrated clinical benefits based on the decision curve in the test set. We deployed the molecular subtyping prediction model and survival prediction model online, allowing interactive use and facilitating user convenience. CONCLUSIONS Molecular subtypes were identified and verified through multiomics clustering in IDHwt-GBM patients. These subtypes are linked to specific mutation patterns, the immune microenvironment, prognoses, and treatment responses.
Collapse
Affiliation(s)
- Qiang Ji
- Department of Neuro-Oncology, Cancer Center, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Institute for Data Science in Health and Medicine, Capital Medical University, Beijing, China
| | - Yi Zheng
- Department of Neuro-Oncology, Cancer Center, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Lili Zhou
- Department of Neuro-Oncology, Cancer Center, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Feng Chen
- Department of Neuro-Oncology, Cancer Center, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Wenbin Li
- Department of Neuro-Oncology, Cancer Center, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- National Institute for Data Science in Health and Medicine, Capital Medical University, Beijing, China.
| |
Collapse
|
14
|
Shi Y, Kang X, Ge Y, Cao Y, Li Y, Guo X, Chen W, Guo S, Wang Y, Liu D, Wang Y, Xing H, Xia Y, Li J, Wu J, Liang T, Wang H, Liu Q, Jin S, Qu T, Li H, Yang T, Zhang K, Feng F, Wang Y, You H, Ma W. The molecular signature and prognosis of glioma with preoperative intratumoral hemorrhage: a retrospective cohort analysis. BMC Neurol 2024; 24:202. [PMID: 38877400 PMCID: PMC11177380 DOI: 10.1186/s12883-024-03703-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/31/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Intratumoral hemorrhage, though less common, could be the first clinical manifestation of glioma and is detectable via MRI; however, its exact impacts on patient outcomes remain unclear and controversial. The 2021 WHO CNS 5 classification emphasised genetic and molecular features, initiating the necessity to establish the correlation between hemorrhage and molecular alterations. This study aims to determine the prevalence of intratumoral hemorrhage in glioma subtypes and identify associated molecular and clinical characteristics to improve patient management. METHODS Integrated clinical data and imaging studies of patients who underwent surgery at the Department of Neurosurgery at Peking Union Medical College Hospital from January 2011 to January 2022 with pathological confirmation of glioma were retrospectively reviewed. Patients were divided into hemorrhage and non-hemorrhage groups based on preoperative magnetic resonance imaging. A comparison and survival analysis were conducted with the two groups. In terms of subgroup analysis, we classified patients into astrocytoma, IDH-mutant; oligodendroglioma, IDH-mutant, 1p/19q-codeleted; glioblastoma, IDH-wildtype; pediatric-type gliomas; or circumscribed glioma using integrated histological and molecular characteristics, according to WHO CNS 5 classifications. RESULTS 457 patients were enrolled in the analysis, including 67 (14.7%) patients with intratumoral hemorrhage. The hemorrhage group was significantly older and had worse preoperative Karnofsky performance scores. The hemorrhage group had a higher occurrence of neurological impairment and a higher Ki-67 index. Molecular analysis indicated that CDKN2B, KMT5B, and PIK3CA alteration occurred more in the hemorrhage group (CDKN2B, 84.4% vs. 62.2%, p = 0.029; KMT5B, 25.0% vs. 8.9%, p = 0.029; and PIK3CA, 81.3% vs. 58.5%, p = 0.029). Survival analysis showed significantly worse prognoses for the hemorrhage group (hemorrhage 18.4 months vs. non-hemorrhage 39.1 months, p = 0.01). In subgroup analysis, the multivariate analysis showed that intra-tumoral hemorrhage is an independent risk factor only in glioblastoma, IDH-wildtype (162 cases of 457 overall, HR = 1.72, p = 0.026), but not in other types of gliomas. The molecular alteration of CDK6 (hemorrhage group p = 0.004, non-hemorrhage group p < 0.001), EGFR (hemorrhage group p = 0.003, non-hemorrhage group p = 0.001), and FGFR2 (hemorrhage group p = 0.007, non-hemorrhage group p = 0.001) was associated with shorter overall survival time in both hemorrhage and non-hemorrhage groups. CONCLUSIONS Glioma patients with preoperative intratumoral hemorrhage had unfavorable prognoses compared to their nonhemorrhage counterparts. CDKN2B, KMT5B, and PIK3CA alterations were associated with an increased occurrence of intratumoral hemorrhage, which might be future targets for further investigation of intratumoral hemorrhage.
Collapse
Affiliation(s)
- Yixin Shi
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiaoman Kang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- '4+4' Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yulu Ge
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yaning Cao
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yilin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- '4+4' Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiaopeng Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- China Anti-Cancer Association Specialty Committee of Glioma, Beijing, 100730, China
| | - Wenlin Chen
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Siying Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yaning Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Delin Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yuekun Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hao Xing
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yu Xia
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Junlin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jiaming Wu
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tingyu Liang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hai Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Qianshu Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Shanmu Jin
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- '4+4' Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tian Qu
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Huanzhang Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tianrui Yang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Kun Zhang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Feng Feng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Yu Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- China Anti-Cancer Association Specialty Committee of Glioma, Beijing, 100730, China.
| | - Hui You
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China.
| | - Wenbin Ma
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- China Anti-Cancer Association Specialty Committee of Glioma, Beijing, 100730, China.
| |
Collapse
|
15
|
Wang J, Hao Z, Li R, Wu W, Huang N, Zhang K, Hao S, Feng J, Chu J, Ji N. Association of body mass index with clinical outcome of primary WHO grade 4 glioma. Front Oncol 2024; 14:1318785. [PMID: 38741777 PMCID: PMC11089228 DOI: 10.3389/fonc.2024.1318785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Abstract
Background The prognostic value of body mass index (BMI) in primary WHO grade 4 gliomas is not widely acknowledged. This study aims to assess the survival outcomes of patients with different BMIs. Methods Real-world data of patients diagnosed with primary WHO grade 4 (2021 version) glioma was assessed. All 127 patients admitted in this study were administered with standard-of-care from September 2018 to September 2021. The outcomes of overall survival and progression-free survival were analyzed. Results The baseline characteristics of clinical features, molecular features, and secondary treatment in BMI subsets showed no significant difference. The survival analyses showed a significantly superior overall survival (OS) in the overweight group compared to the normal weight group. A trend of better OS in the overweight group compared to the obesity group was observed. The univariate Cox regression demonstrated patients of round-BMI 25 and 26 had superior OS outcomes. Conclusion In this real-world setting, patients with a BMI between 24 and 28 have superior overall survival. Patients in the proper BMI range may acquire survival benefits undergoing standard-of-care of primary WHO grade 4 gliomas. The prospective studies on a larger scale on these subsets of patients are necessary to solve the paradox of BMI in glioma.
Collapse
Affiliation(s)
- Jiejun Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhaonian Hao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruyuan Li
- National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weiqi Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Na Huang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kangna Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuyu Hao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jie Feng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Junsheng Chu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Zhang B, Zhang H, Wang Z, Cao H, Zhang N, Dai Z, Liang X, Peng Y, Wen J, Zhang X, Zhang L, Luo P, Zhang J, Liu Z, Cheng Q, Peng R. The regulatory role and clinical application prospects of circRNA in the occurrence and development of CNS tumors. CNS Neurosci Ther 2024; 30:e14500. [PMID: 37953502 PMCID: PMC11017455 DOI: 10.1111/cns.14500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Central nervous system (CNS) tumors originate from the spinal cord or brain. The study showed that even with aggressive treatment, malignant CNS tumors have high mortality rates. However, CNS tumor risk factors and molecular mechanisms have not been verified. Due to the reasons mentioned above, diagnosis and treatment of CNS tumors in clinical practice are currently fraught with difficulties. Circular RNAs (circRNAs), single-stranded ncRNAs with covalently closed continuous structures, are essential to CNS tumor development. Growing evidence has proved the numeral critical biological functions of circRNAs for disease progression: sponging to miRNAs, regulating gene transcription and splicing, interacting with proteins, encoding proteins/peptides, and expressing in exosomes. AIMS This review aims to summarize current progress regarding the molecular mechanism of circRNA in CNS tumors and to explore the possibilities of clinical application based on circRNA in CNS tumors. METHODS We have summarized studies of circRNA in CNS tumors in Pubmed. RESULTS This review summarized their connection with CNS tumors and their functions, biogenesis, and biological properties. Furthermore, we introduced current advances in clinical RNA-related technologies. Then we discussed the diagnostic and therapeutic potential (especially for immunotherapy, chemotherapy, and radiotherapy) of circRNA in CNS tumors in the context of the recent advanced research and application of RNA in clinics. CONCLUSIONS CircRNA are increasingly proven to participate in decveloping CNS tumors. An in-depth study of the causal mechanisms of circRNAs in CNS tomor progression will ultimately advance their implementation in the clinic and developing new strategies for preventing and treating CNS tumors.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Hao Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Department of Neurosurgery, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- MRC Centre for Regenerative Medicine, Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Hui Cao
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaChina
| | - Nan Zhang
- College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Xisong Liang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yun Peng
- Teaching and Research Section of Clinical NursingXiangya Hospital of Central South UniversityChangshaChina
- Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaChina
| | - Jie Wen
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Xun Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Peng Luo
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jian Zhang
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zaoqu Liu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Quan Cheng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Renjun Peng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
17
|
Cao W, Lan J, Hu C, Kong J, Xiang L, Zhang Z, Sun Y, Zeng Z, Lei S. Predicting the prognosis of glioma patients with TERT promoter mutations and guiding the specific immune profile of immune checkpoint blockade therapy. Aging (Albany NY) 2024; 16:5618-5633. [PMID: 38499392 PMCID: PMC11006486 DOI: 10.18632/aging.205668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/26/2023] [Indexed: 03/20/2024]
Abstract
The telomerase reverse transcriptase promoter (TERTp) is frequently mutated in gliomas. This study sought to identify immune biomarkers of gliomas with TERTp mutations. Data from TCGA were used to identify and validate survival-associated gene signatures, and immune and stromal scores were calculated using the ESTIMATE algorithm. High stromal or immune scores in patients with TERTp-mutant gliomas correlated with shorter overall survival compared to cases with low stromal or immune scores. Among TERTp-mutant gliomas with both high immune and high stromal scores, 213 commonly shared DEGs were identified. Among 71 interacting DEGs representing candidate hub genes in a PPI network, HOXC6, WT1, CD70, and OTP showed significant ability in establishing subgroups of high- and low-risk patients. A risk model based on these 4 genes showed strong prognostic potential for gliomas with mutated TERTp, but was inapplicable for TERTp-wild-type gliomas. TERTp-mutant gliomas with high-risk scores displayed a greater percentage of naïve B cells, plasma cells, naïve CD4 T cells, and activated mast cells than low-risk score gliomas. TIDE analysis indicated that immune checkpoint blockade (ICB) therapy may benefit glioma patients with TERTp mutations. The present risk model can help predict prognosis of glioma patients with TERTp mutations and aid ICB treatment options.
Collapse
Affiliation(s)
- Wenpeng Cao
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
- Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Jinzhi Lan
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Chujiao Hu
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550025, China
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guiyang, Guizhou 550025, China
| | - Jinping Kong
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Limin Xiang
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Zhixue Zhang
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yating Sun
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Zhirui Zeng
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Shan Lei
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| |
Collapse
|
18
|
Liang Q, Jing H, Shao Y, Wang Y, Zhang H. Artificial Intelligence Imaging for Predicting High-risk Molecular Markers of Gliomas. Clin Neuroradiol 2024; 34:33-43. [PMID: 38277059 DOI: 10.1007/s00062-023-01375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024]
Abstract
Gliomas, the most prevalent primary malignant tumors of the central nervous system, present significant challenges in diagnosis and prognosis. The fifth edition of the World Health Organization Classification of Tumors of the Central Nervous System (WHO CNS5) published in 2021, has emphasized the role of high-risk molecular markers in gliomas. These markers are crucial for enhancing glioma grading and influencing survival and prognosis. Noninvasive prediction of these high-risk molecular markers is vital. Genetic testing after biopsy, the current standard for determining molecular type, is invasive and time-consuming. Magnetic resonance imaging (MRI) offers a non-invasive alternative, providing structural and functional insights into gliomas. Advanced MRI methods can potentially reflect the pathological characteristics associated with glioma molecular markers; however, they struggle to fully represent gliomas' high heterogeneity. Artificial intelligence (AI) imaging, capable of processing vast medical image datasets, can extract critical molecular information. AI imaging thus emerges as a noninvasive and efficient method for identifying high-risk molecular markers in gliomas, a recent focus of research. This review presents a comprehensive analysis of AI imaging's role in predicting glioma high-risk molecular markers, highlighting challenges and future directions.
Collapse
Affiliation(s)
- Qian Liang
- Department of Radiology, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China
- College of Medical Imaging, Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China
| | - Hui Jing
- Department of MRI, The Sixth Hospital, Shanxi Medical University, 030008, Taiyuan, Shanxi Province, China
| | - Yingbo Shao
- Department of Radiology, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China
- College of Medical Imaging, Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China
| | - Yinhua Wang
- Department of Radiology, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China
- College of Medical Imaging, Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China
| | - Hui Zhang
- Department of Radiology, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China.
- College of Medical Imaging, Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China.
- Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China.
- Intelligent Imaging Big Data and Functional Nano-imaging Engineering Research Center of Shanxi Province, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China.
| |
Collapse
|
19
|
Gorria T, Crous C, Pineda E, Hernandez A, Domenech M, Sanz C, Jares P, Muñoz-Mármol AM, Arpí-Llucía O, Melendez B, Gut M, Esteve A, Esteve-Codina A, Parra G, Alameda F, Carrato C, Aldecoa I, Mallo M, de la Iglesia N, Balana C. The C250T Mutation of TERTp Might Grant a Better Prognosis to Glioblastoma by Exerting Less Biological Effect on Telomeres and Chromosomes Than the C228T Mutation. Cancers (Basel) 2024; 16:735. [PMID: 38398126 PMCID: PMC10886885 DOI: 10.3390/cancers16040735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The aim of this study was to determine how TERTp mutations impact glioblastoma prognosis. MATERIALS AND METHODS TERTp mutations were assessed in a retrospective cohort of 258 uniformly treated glioblastoma patients. RNA-sequencing and whole exome sequencing results were available in a subset of patients. RESULTS Overall, there were no differences in outcomes between patients with mutated TERTp-wt or TERTp. However, we found significant differences according to the type of TERTp mutation. Progression-free survival (mPFS) was 9.1 months for those with the C250T mutation and 7 months for those with either the C228T mutation or TERTp-wt (p = 0.016). Overall survival (mOS) was 21.9 and 15 months, respectively (p = 0.026). This differential effect was more pronounced in patients with MGMTp methylation (mPFS: p = 0.008; mOS: p = 0.021). Multivariate analysis identified the C250T mutation as an independent prognostic factor for longer mOS (HR 0.69; p = 0.044). We found no differences according to TERTp mutation status in molecular alterations common in glioblastoma, nor in copy number variants in genes related to alternative lengthening of telomeres. Nevertheless, in the gene enrichment analysis adjusted for MGMTp methylation status, some Reactome gene sets were differentially enriched, suggesting that the C250T mutation may exert a lesser effect on telomeres or chromosomes. CONCLUSIONS In our series, patients exhibiting the C250T mutation had a more favorable prognosis compared to those with either TERPp-wt or TERTp C228T mutations. Additionally, our findings suggest a reduced involvement of the C250T mutation in the underlying biological mechanisms related to telomeres.
Collapse
Affiliation(s)
- Teresa Gorria
- Medical Oncology, Hospital Clínic, Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; (T.G.); (C.C.); (E.P.)
| | - Carme Crous
- Medical Oncology, Hospital Clínic, Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; (T.G.); (C.C.); (E.P.)
| | - Estela Pineda
- Medical Oncology, Hospital Clínic, Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; (T.G.); (C.C.); (E.P.)
| | - Ainhoa Hernandez
- Medical Oncology, Institut Catala d’Oncologia (ICO) Badalona, Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain; (A.H.); (M.D.); (A.E.)
| | - Marta Domenech
- Medical Oncology, Institut Catala d’Oncologia (ICO) Badalona, Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain; (A.H.); (M.D.); (A.E.)
| | - Carolina Sanz
- Pathology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (C.S.); (A.M.M.-M.); (C.C.)
| | - Pedro Jares
- Department of Pathology, Biomedical Diagnostic Centre (CDB) and Neurological Tissue Bank of the Biobank-IDIBAPS, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain; (P.J.); (I.A.)
| | - Ana María Muñoz-Mármol
- Pathology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (C.S.); (A.M.M.-M.); (C.C.)
| | - Oriol Arpí-Llucía
- Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain;
| | - Bárbara Melendez
- Molecular Pathology Research Unit, Hospital Universitario de Toledo, 45007 Toledo, Spain;
| | - Marta Gut
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain; (M.G.); (A.E.-C.); (G.P.)
| | - Anna Esteve
- Medical Oncology, Institut Catala d’Oncologia (ICO) Badalona, Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain; (A.H.); (M.D.); (A.E.)
- Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain
| | - Anna Esteve-Codina
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain; (M.G.); (A.E.-C.); (G.P.)
| | - Genis Parra
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain; (M.G.); (A.E.-C.); (G.P.)
| | - Francesc Alameda
- Pathology Department, Neuropathology Unit, Hospital del Mar, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain;
| | - Cristina Carrato
- Pathology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (C.S.); (A.M.M.-M.); (C.C.)
| | - Iban Aldecoa
- Department of Pathology, Biomedical Diagnostic Centre (CDB) and Neurological Tissue Bank of the Biobank-IDIBAPS, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain; (P.J.); (I.A.)
| | - Mar Mallo
- Unidad de Microarrays, Institut de Recerca Contra la Leucèmia Josep Carreras (IJC), ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain;
| | - Nuria de la Iglesia
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain;
| | - Carmen Balana
- Pathology Department, Neuropathology Unit, Hospital del Mar, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain;
| |
Collapse
|
20
|
Satomi K, Ichimura K, Shibahara J. Decoding the DNA methylome of central nervous system tumors: An emerging modality for integrated diagnosis. Pathol Int 2024; 74:51-67. [PMID: 38224248 DOI: 10.1111/pin.13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024]
Abstract
The definitive diagnosis and classification of individual cancers are crucial for patient care and cancer research. To achieve a robust diagnosis of central nervous system (CNS) tumors, a genotype-phenotype integrated diagnostic approach was introduced in recent versions of the World Health Organization classification, followed by the incorporation of a genome-wide DNA methylome-based classification. Microarray-based platforms are widely used to obtain DNA methylome data, and the German Cancer Research Center (Deutsches Krebsforschungszentrum [DKFZ]) has a webtool for a DNA methylation-based classifier (DKFZ classifier). Integration of DNA methylome will further enhance the precision of CNS tumor classification, especially in diagnostically challenging cases. However, in the clinical application of DNA methylome-based classification, challenges related to data interpretation persist, in addition to technical caveats, regulations, and limited accessibility. Dimensionality reduction (DMR) can complement integrated diagnosis by visualizing a profile and comparing it with other known samples. Therefore, DNA methylome-based classification is a highly useful research tool for auxiliary analysis in challenging diagnostic and rare disease cases, and for establishing novel tumor concepts. Decoding the DNA methylome, especially by DMR in addition to DKFZ classifier, emphasizes the capability of grasping the fundamental biological principles that provide new perspectives on CNS tumors.
Collapse
Affiliation(s)
- Kaishi Satomi
- Department of Pathology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Koichi Ichimura
- Department of Brain Disease Translational Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Junji Shibahara
- Department of Pathology, Kyorin University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
21
|
Zhang H, Zhou B, Zhang H, Zhang Y, Lei Y, Huang B. Peritumoral Radiomics for Identification of Telomerase Reverse Transcriptase Promoter Mutation in Patients With Glioblastoma Based on Preoperative MRI. Can Assoc Radiol J 2024; 75:143-152. [PMID: 37552107 DOI: 10.1177/08465371231183309] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Purpose: To evaluate the value of intra- and peritumoral deep learning (DL) features based on multi-parametric magnetic resonance imaging (MRI) for identifying telomerase reverse transcriptase (TERT) promoter mutation in glioblastoma (GBM). Methods: In this study, we included 229 patients with GBM who underwent preoperative MRI in two hospitals between November 2016 and September 2022. We used four 2D Convolutional Neural Networks (GoogLeNet, DenseNet121, VGG16, and MobileNetV3-Large) to extract intra- and peritumoral DL features. The Mann-Whitney U test, Pearson correlation analysis, least absolute shrinkage and selection operator, and logistic regression analysis were used for feature selection and construction of DL radiomics (DLR) signatures in different regions. These multi-parametric and multi-region signatures were combined to identify TERT promoter mutation. The area under the receiver operating characteristic curve (AUC) was used to evaluate the effects of the signatures. Results: The signatures based on the DL features from the peritumoral regions with expansion distances of 2 mm, 8 mm, and 10 mm using the GoogLeNet architecture correlated with the optimal AUC values (test set: .823, .753, and .768) in the T2-weighted, T1-weighted contrast-enhanced, and T1-weighted images. Using the stacking fusion method, DLR with multi-parameter and multi-region fusion achieved the best discrimination with AUC values of .948 and .902 in the training and test sets, respectively. Conclusions: The radiomics model based on the fusion of multi-parameter MRI intra- and peritumoral DLR signatures may help to identify TERT promoter mutation in patients with GBM.
Collapse
Affiliation(s)
- Hongbo Zhang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Beibei Zhou
- Department of Radiology, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, China
| | - Hanwen Zhang
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yuze Zhang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yi Lei
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Biao Huang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
22
|
Liu M, Zhang Y, Jian Y, Gu L, Zhang D, Zhou H, Wang Y, Xu ZX. The regulations of telomerase reverse transcriptase (TERT) in cancer. Cell Death Dis 2024; 15:90. [PMID: 38278800 PMCID: PMC10817947 DOI: 10.1038/s41419-024-06454-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
Abnormal activation of telomerase occurs in most cancer types, which facilitates escaping from cell senescence. As the key component of telomerase, telomerase reverse transcriptase (TERT) is regulated by various regulation pathways. TERT gene changing in its promoter and phosphorylation respectively leads to TERT ectopic expression at the transcription and protein levels. The co-interacting factors play an important role in the regulation of TERT in different cancer types. In this review, we focus on the regulators of TERT and these downstream functions in cancer regulation. Determining the specific regulatory mechanism will help to facilitate the development of a cancer treatment strategy that targets telomerase and cancer cell senescence. As the most important catalytic subunit component of telomerase, TERT is rapidly regulated by transcriptional factors and PTM-related activation. These changes directly influence TERT-related telomere maintenance by regulating telomerase activity in telomerase-positive cancer cells, telomerase assembly with telomere-binding proteins, and recruiting telomerase to the telomere. Besides, there are also non-canonical functions that are influenced by TERT, including the basic biological functions of cancer cells, such as proliferation, apoptosis, cell cycle regulation, initiating cell formation, EMT, and cell invasion. Other downstream effects are the results of the influence of transcriptional factors by TERT. Currently, some small molecular inhibitors of TERT and TERT vaccine are under research as a clinical therapeutic target. Purposeful work is in progress.
Collapse
Affiliation(s)
- Mingdi Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Yuning Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Yongping Jian
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Liting Gu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China.
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
23
|
Mishchenko TA, Turubanova VD, Gorshkova EN, Krysko O, Vedunova MV, Krysko DV. Glioma: bridging the tumor microenvironment, patient immune profiles and novel personalized immunotherapy. Front Immunol 2024; 14:1299064. [PMID: 38274827 PMCID: PMC10809268 DOI: 10.3389/fimmu.2023.1299064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Glioma is the most common primary brain tumor, characterized by a consistently high patient mortality rate and a dismal prognosis affecting both survival and quality of life. Substantial evidence underscores the vital role of the immune system in eradicating tumors effectively and preventing metastasis, underscoring the importance of cancer immunotherapy which could potentially address the challenges in glioma therapy. Although glioma immunotherapies have shown promise in preclinical and early-phase clinical trials, they face specific limitations and challenges that have hindered their success in further phase III trials. Resistance to therapy has been a major challenge across many experimental approaches, and as of now, no immunotherapies have been approved. In addition, there are several other limitations facing glioma immunotherapy in clinical trials, such as high intra- and inter-tumoral heterogeneity, an inherently immunosuppressive microenvironment, the unique tissue-specific interactions between the central nervous system and the peripheral immune system, the existence of the blood-brain barrier, which is a physical barrier to drug delivery, and the immunosuppressive effects of standard therapy. Therefore, in this review, we delve into several challenges that need to be addressed to achieve boosted immunotherapy against gliomas. First, we discuss the hurdles posed by the glioma microenvironment, particularly its primary cellular inhabitants, in particular tumor-associated microglia and macrophages (TAMs), and myeloid cells, which represent a significant barrier to effective immunotherapy. Here we emphasize the impact of inducing immunogenic cell death (ICD) on the migration of Th17 cells into the tumor microenvironment, converting it into an immunologically "hot" environment and enhancing the effectiveness of ongoing immunotherapy. Next, we address the challenge associated with the accurate identification and characterization of the primary immune profiles of gliomas, and their implications for patient prognosis, which can facilitate the selection of personalized treatment regimens and predict the patient's response to immunotherapy. Finally, we explore a prospective approach to developing highly personalized vaccination strategies against gliomas, based on the search for patient-specific neoantigens. All the pertinent challenges discussed in this review will serve as a compass for future developments in immunotherapeutic strategies against gliomas, paving the way for upcoming preclinical and clinical research endeavors.
Collapse
Affiliation(s)
- Tatiana A. Mishchenko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Victoria D. Turubanova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Neuroscience Research Institute, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Ekaterina N. Gorshkova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Olga Krysko
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
| | - Dmitri V. Krysko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
24
|
Karschnia P, Dietrich J, Bruno F, Dono A, Juenger ST, Teske N, Young JS, Sciortino T, Häni L, van den Bent M, Weller M, Vogelbaum MA, Morshed RA, Haddad AF, Molinaro AM, Tandon N, Beck J, Schnell O, Bello L, Hervey-Jumper S, Thon N, Grau SJ, Esquenazi Y, Rudà R, Chang SM, Berger MS, Cahill DP, Tonn JC. Surgical management and outcome of newly diagnosed glioblastoma without contrast enhancement (low-grade appearance): a report of the RANO resect group. Neuro Oncol 2024; 26:166-177. [PMID: 37665776 PMCID: PMC10768992 DOI: 10.1093/neuonc/noad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Resection of the contrast-enhancing (CE) tumor represents the standard of care in newly diagnosed glioblastoma. However, some tumors ultimately diagnosed as glioblastoma lack contrast enhancement and have a 'low-grade appearance' on imaging (non-CE glioblastoma). We aimed to (a) volumetrically define the value of non-CE tumor resection in the absence of contrast enhancement, and to (b) delineate outcome differences between glioblastoma patients with and without contrast enhancement. METHODS The RANO resect group retrospectively compiled a global, eight-center cohort of patients with newly diagnosed glioblastoma per WHO 2021 classification. The associations between postoperative tumor volumes and outcome were analyzed. Propensity score-matched analyses were constructed to compare glioblastomas with and without contrast enhancement. RESULTS Among 1323 newly diagnosed IDH-wildtype glioblastomas, we identified 98 patients (7.4%) without contrast enhancement. In such patients, smaller postoperative tumor volumes were associated with more favorable outcome. There was an exponential increase in risk for death with larger residual non-CE tumor. Accordingly, extensive resection was associated with improved survival compared to lesion biopsy. These findings were retained on a multivariable analysis adjusting for demographic and clinical markers. Compared to CE glioblastoma, patients with non-CE glioblastoma had a more favorable clinical profile and superior outcome as confirmed in propensity score analyses by matching the patients with non-CE glioblastoma to patients with CE glioblastoma using a large set of clinical variables. CONCLUSIONS The absence of contrast enhancement characterizes a less aggressive clinical phenotype of IDH-wildtype glioblastomas. Maximal resection of non-CE tumors has prognostic implications and translates into favorable outcome.
Collapse
Affiliation(s)
- Philipp Karschnia
- Department of Neurosurgery, LMU University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | - Jorg Dietrich
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Francesco Bruno
- Division of Neuro-Oncology, Department of Neuroscience, University of Turin, Italy
| | - Antonio Dono
- Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX, USA
| | | | - Nico Teske
- Department of Neurosurgery, LMU University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | - Jacob S Young
- Department of Neurosurgery and Division of Neuro-Oncology, University of San Francisco, San Francisco, CA, USA
| | - Tommaso Sciortino
- Division of Neuro-Oncology, Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Levin Häni
- Department of Neurosurgery, Medical Center – University of Freiburg, Freiburg, Germany
| | - Martin van den Bent
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | | | - Ramin A Morshed
- Department of Neurosurgery and Division of Neuro-Oncology, University of San Francisco, San Francisco, CA, USA
| | - Alexander F Haddad
- Department of Neurosurgery and Division of Neuro-Oncology, University of San Francisco, San Francisco, CA, USA
| | - Annette M Molinaro
- Department of Neurosurgery and Division of Neuro-Oncology, University of San Francisco, San Francisco, CA, USA
| | - Nitin Tandon
- Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX, USA
| | - Juergen Beck
- Department of Neurosurgery, Medical Center – University of Freiburg, Freiburg, Germany
| | - Oliver Schnell
- Department of Neurosurgery, Medical Center – University of Freiburg, Freiburg, Germany
| | - Lorenzo Bello
- Division of Neuro-Oncology, Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Shawn Hervey-Jumper
- Department of Neurosurgery and Division of Neuro-Oncology, University of San Francisco, San Francisco, CA, USA
| | - Niklas Thon
- Department of Neurosurgery, LMU University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | - Stefan J Grau
- Department of Neurosurgery, University of Cologne, Cologne, Germany
| | - Yoshua Esquenazi
- Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX, USA
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience, University of Turin, Italy
| | - Susan M Chang
- Department of Neurosurgery and Division of Neuro-Oncology, University of San Francisco, San Francisco, CA, USA
| | - Mitchel S Berger
- Department of Neurosurgery and Division of Neuro-Oncology, University of San Francisco, San Francisco, CA, USA
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joerg-Christian Tonn
- Department of Neurosurgery, LMU University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Germany
| |
Collapse
|
25
|
Hayashi T, Tateishi K, Matsuyama S, Iwashita H, Miyake Y, Oshima A, Honma H, Sasame J, Takabayashi K, Sugino K, Hirata E, Udaka N, Matsushita Y, Kato I, Hayashi H, Nakamura T, Ikegaya N, Takayama Y, Sonoda M, Oka C, Sato M, Isoda M, Kato M, Uchiyama K, Tanaka T, Muramatsu T, Miyake S, Suzuki R, Takadera M, Tatezuki J, Ayabe J, Suenaga J, Matsunaga S, Miyahara K, Manaka H, Murata H, Yokoyama T, Tanaka Y, Shuto T, Ichimura K, Kato S, Yamanaka S, Cahill DP, Fujii S, Shankar GM, Yamamoto T. Intraoperative Integrated Diagnostic System for Malignant Central Nervous System Tumors. Clin Cancer Res 2024; 30:116-126. [PMID: 37851071 DOI: 10.1158/1078-0432.ccr-23-1660] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/19/2023] [Accepted: 10/16/2023] [Indexed: 10/19/2023]
Abstract
PURPOSE The 2021 World Health Organization (WHO) classification of central nervous system (CNS) tumors uses an integrated approach involving histopathology and molecular profiling. Because majority of adult malignant brain tumors are gliomas and primary CNS lymphomas (PCNSL), rapid differentiation of these diseases is required for therapeutic decisions. In addition, diffuse gliomas require molecular information on single-nucleotide variants (SNV), such as IDH1/2. Here, we report an intraoperative integrated diagnostic (i-ID) system to classify CNS malignant tumors, which updates legacy frozen-section (FS) diagnosis through incorporation of a qPCR-based genotyping assay. EXPERIMENTAL DESIGN FS evaluation, including GFAP and CD20 rapid IHC, was performed on adult malignant CNS tumors. PCNSL was diagnosed through positive CD20 and negative GFAP immunostaining. For suspected glioma, genotyping for IDH1/2, TERT SNV, and CDKN2A copy-number alteration was routinely performed, whereas H3F3A and BRAF SNV were assessed for selected cases. i-ID was determined on the basis of the 2021 WHO classification and compared with the permanent integrated diagnosis (p-ID) to assess its reliability. RESULTS After retrospectively analyzing 153 cases, 101 cases were prospectively examined using the i-ID system. Assessment of IDH1/2, TERT, H3F3AK27M, BRAFV600E, and CDKN2A alterations with i-ID and permanent genomic analysis was concordant in 100%, 100%, 100%, 100%, and 96.4%, respectively. Combination with FS and intraoperative genotyping assay improved diagnostic accuracy in gliomas. Overall, i-ID matched with p-ID in 80/82 (97.6%) patients with glioma and 18/19 (94.7%) with PCNSL. CONCLUSIONS The i-ID system provides reliable integrated diagnosis of adult malignant CNS tumors.
Collapse
Affiliation(s)
- Takahiro Hayashi
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Kensuke Tateishi
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
- Laboratory of Biopharmaceutical and Regenerative Science, Graduate School of Medical Science, Yokohama City University, Yokohama, Japan
| | - Shinichiro Matsuyama
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Hiromichi Iwashita
- Department of Pathology, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Yohei Miyake
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Akito Oshima
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Hirokuni Honma
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Jo Sasame
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Katsuhiro Takabayashi
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Kyoka Sugino
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
- Laboratory of Biopharmaceutical and Regenerative Science, Graduate School of Medical Science, Yokohama City University, Yokohama, Japan
| | - Emi Hirata
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Naoko Udaka
- Department of Diagnostic Pathology, Yokohama City University Hospital, Yokohama, Japan
| | - Yuko Matsushita
- Department of Brain Disease Translational Research, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Ikuma Kato
- Department of Molecular Pathology, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Hiroaki Hayashi
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
- Department of Pediatrics, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Taishi Nakamura
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
- Department of Neurosurgery, Yokohama City University Medical Center, Yokohama, Japan
| | - Naoki Ikegaya
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Yutaro Takayama
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Masaki Sonoda
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Chihiro Oka
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Mitsuru Sato
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Masataka Isoda
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Miyui Kato
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
- Laboratory of Biopharmaceutical and Regenerative Science, Graduate School of Medical Science, Yokohama City University, Yokohama, Japan
| | - Kaho Uchiyama
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
- Laboratory of Biopharmaceutical and Regenerative Science, Graduate School of Medical Science, Yokohama City University, Yokohama, Japan
| | - Tamon Tanaka
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Toshiki Muramatsu
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Shigeta Miyake
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Ryosuke Suzuki
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
- Department of Neurosurgery, Odawara Municipal Hospital, Odawara, Japan
| | - Mutsumi Takadera
- Department of Neurosurgery, Yokohama City Minato Red Cross Hospital, Yokohama, Japan
- Department of Neurosurgery, Yokosuka Kyosai Hospital, Yokosuka, Japan
| | - Junya Tatezuki
- Department of Neurosurgery, Yokohama City Minato Red Cross Hospital, Yokohama, Japan
| | - Junichi Ayabe
- Department of Neurosurgery, Yokosuka Kyosai Hospital, Yokosuka, Japan
| | - Jun Suenaga
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Shigeo Matsunaga
- Department of Neurosurgery, Yokohama Rosai Hospital, Yokohama, Japan
| | - Kosuke Miyahara
- Department of Neurosurgery, National Hospital Organization Yokohama Medical Center, Yokohama, Japan
| | - Hiroshi Manaka
- Department of Neurosurgery, Yokohama Minami Kyosai Hospital, Yokohama, Japan
| | - Hidetoshi Murata
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | | | - Yoshihide Tanaka
- Department of Neurosurgery, Yokosuka Kyosai Hospital, Yokosuka, Japan
| | - Takashi Shuto
- Department of Neurosurgery, Yokohama Rosai Hospital, Yokohama, Japan
| | - Koichi Ichimura
- Department of Brain Disease Translational Research, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Shingo Kato
- Department of Clinical Cancer Genomics, Yokohama City University, Yokohama, Japan
| | - Shoji Yamanaka
- Department of Diagnostic Pathology, Yokohama City University Hospital, Yokohama, Japan
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Satoshi Fujii
- Department of Diagnostic Pathology, Yokohama City University Hospital, Yokohama, Japan
- Department of Molecular Pathology, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Ganesh M Shankar
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
26
|
Komori T. Beyond the WHO 2021 classification of the tumors of the central nervous system: transitioning from the 5th edition to the next. Brain Tumor Pathol 2024; 41:1-3. [PMID: 38113018 DOI: 10.1007/s10014-023-00474-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Affiliation(s)
- Takashi Komori
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital, Tokyo, Japan.
| |
Collapse
|
27
|
Zhao Z, Song Z, Wang Z, Zhang F, Ding Z, Fan T. Advances in Molecular Pathology, Diagnosis and Treatment of Spinal Cord Astrocytomas. Technol Cancer Res Treat 2024; 23:15330338241262483. [PMID: 39043042 PMCID: PMC11271101 DOI: 10.1177/15330338241262483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 07/25/2024] Open
Abstract
Spinal cord astrocytoma (SCA) is a rare subtype of astrocytoma, posing challenges in diagnosis and treatment. Low-grade SCA can achieve long-term survival solely through surgery, while high-grade has a disappointing prognosis even with comprehensive treatment. Diagnostic criteria and standard treatment of intracranial astrocytoma have shown obvious limitations in SCA. Research on the molecular mechanism in SCA is lagging far behind that on intracranial astrocytoma. In recent years, huge breakthroughs have been made in molecular pathology of astrocytoma, and novel techniques have emerged, including DNA methylation analysis and radiomics. These advances are now making it possible to provide a precise diagnosis and develop corresponding treatment strategies in SCA. Our aim is to review the current status of diagnosis and treatment of SCA, and summarize the latest research advancement, including tumor subtype, molecular characteristics, diagnostic technology, and potential therapy strategies, thus deepening our understanding of this uncommon tumor type and providing guidance for accurate diagnosis and treatment.
Collapse
Affiliation(s)
- Zijun Zhao
- Spine Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Zihan Song
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zairan Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fan Zhang
- Spine Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Ze Ding
- Spine Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Tao Fan
- Spine Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Macedo C, Costa PC, Rodrigues F. Bioactive compounds from Actinidia arguta fruit as a new strategy to fight glioblastoma. Food Res Int 2024; 175:113770. [PMID: 38129059 DOI: 10.1016/j.foodres.2023.113770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
In recent years, there has been a significant demand for natural products as a mean of disease prevention or as an alternative to conventional medications. The driving force for this change is the growing recognition of the abundant presence of valuable bioactive compounds in natural products. On recent years Actinia arguta fruit, also known as kiwiberry, has attracted a lot of attention from scientific community due to its richness in bioactive compounds, including phenolic compounds, organic acids, vitamins, carotenoids and fiber. These bioactive compounds contribute to the fruit's diverse outstanding biological activities such as antioxidant, anti-inflammatory, neuroprotective, immunomodulatory, and anti-cancer properties. Due to these properties, the fruit may have the potential to be used in the treatment/prevention of various types of cancer, including glioblastoma. Glioblastoma is the most aggressive form of brain cancer, displaying 90 % of recurrence rate within a span of 2 years. Despite the employment of an aggressive approach, the prognosis remains unfavorable, emphasizing the urgent requirement for the development of new effective treatments. The preclinical evidence suggests that kiwiberry has potential impact on glioblastoma by reducing the cancer self-renewal, modulating the signaling pathways involved in the regulation of the cell phenotype and metabolism, and influencing the consolidation of the tumor microenvironment. Even though, challenges such as the imprecise composition and concentration of bioactive compounds, and its low bioavailability after oral administration may be drawbacks to the development of kiwiberry-based treatments, being urgent to ensure the safety and efficacy of kiwiberry for the prevention and treatment of glioblastoma. This review aims to highlight the potential impact of A. arguta bioactive compounds on glioblastoma, providing novel insights into their applicability as complementary or alternative therapies.
Collapse
Affiliation(s)
- Catarina Macedo
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal; REQUIMTE/UCIBIO, MedTech-Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paulo C Costa
- REQUIMTE/UCIBIO, MedTech-Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Francisca Rodrigues
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal.
| |
Collapse
|
29
|
Di Nunno V, Aprile M, Bartolini S, Gatto L, Tosoni A, Ranieri L, De Biase D, Asioli S, Franceschi E. The Biological and Clinical Role of the Telomerase Reverse Transcriptase Gene in Glioblastoma: A Potential Therapeutic Target? Cells 2023; 13:44. [PMID: 38201248 PMCID: PMC10778438 DOI: 10.3390/cells13010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Glioblastoma IDH-wildtype represents the most lethal and frequent primary tumor of the central nervous system. Thanks to important scientific efforts, we can now investigate its deep genomic assessment, elucidating mutated genes and altered biological mechanisms in addition to its clinical aggressiveness. The telomerase reverse transcriptase gene (TERT) is the most frequently altered gene in solid tumors, including brain tumors and GBM IDH-wildtype. In particular, it can be observed in approximately 80-90% of GBM IDH-wildtype cases. Its clonal distribution on almost all cancer cells makes this gene an optimal target. However, the research of effective TERT inhibitors is complicated by several biological and clinical obstacles which can be only partially surmounted. Very recently, novel immunological approaches leading to TERT inhibition have been investigated, offering the potential to develop an effective target for this altered protein. Here, we perform a narrative review investigating the biological role of TERT alterations on glioblastoma and the principal obstacles associated with TERT inhibitions in this population. Moreover, we discuss possible combination treatment strategies to overcome these limitations.
Collapse
Affiliation(s)
- Vincenzo Di Nunno
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy (E.F.)
| | - Marta Aprile
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy
| | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy (E.F.)
| | - Lidia Gatto
- Department of Oncology, Azienda Unità Sanitaria Locale (AUSL) Bologna, 40139 Bologna, Italy
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy (E.F.)
| | - Lucia Ranieri
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy (E.F.)
| | - Dario De Biase
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, 40126 Bologna, Italy
| | - Sofia Asioli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Surgical Pathology Section, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy (E.F.)
| |
Collapse
|
30
|
Huo X, Wang Y, Ma S, Zhu S, Wang K, Ji Q, Chen F, Wang L, Wu Z, Li W. Multimodal MRI-based radiomic nomogram for predicting telomerase reverse transcriptase promoter mutation in IDH-wildtype histological lower-grade gliomas. Medicine (Baltimore) 2023; 102:e36581. [PMID: 38134061 PMCID: PMC10735121 DOI: 10.1097/md.0000000000036581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
The presence of TERTp mutation in isocitrate dehydrogenase-wildtype (IDHwt) histologically lower-grade glioma (LGA) has been linked to a poor prognosis. In this study, we aimed to develop and validate a radiomic nomogram based on multimodal MRI for predicting TERTp mutations in IDHwt LGA. One hundred and nine IDH wildtype glioma patients (TERTp-mutant, 78; TERTp-wildtype, 31) with clinical, radiomic, and molecular information were collected and randomly divided into training and validation set. Clinical model, fusion radiomic model, and combined radiomic nomogram were constructed for the discrimination. Radiomic features were screened with 3 algorithms (Wilcoxon rank sum test, elastic net, and the recursive feature elimination) and the clinical characteristics of combined radiomic nomogram were screened by the Akaike information criterion. Finally, receiver operating characteristic curve, calibration curve, Hosmer-Lemeshow test, and decision curve analysis were utilized to assess these models. Fusion radiomic model with 4 radiomic features achieved an area under the curve value of 0.876 and 0.845 in the training and validation set. And, the combined radiomic nomogram achieved area under the curve value of 0.897 (training set) and 0.882 (validation set). Above that, calibration curve and Hosmer-Lemeshow test showed that the radiomic model and combined radiomic nomogram had good agreement between observations and predictions in the training set and the validation set. Finally, the decision curve analysis revealed that the 2 models had good clinical usefulness for the prediction of TERTp mutation status in IDHwt LGA. The combined radiomics nomogram performed great performance and high sensitivity in prediction of TERTp mutation status in IDHwt LGA, and has good clinical application.
Collapse
Affiliation(s)
- Xulei Huo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yali Wang
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Sihan Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Sipeng Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ke Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiang Ji
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Feng Chen
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenbin Li
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
31
|
Tateishi K, Miyake Y, Nakamura T, Iwashita H, Hayashi T, Oshima A, Honma H, Hayashi H, Sugino K, Kato M, Satomi K, Fujii S, Komori T, Yamamoto T, Cahill DP, Wakimoto H. Genetic alterations that deregulate RB and PDGFRA signaling pathways drive tumor progression in IDH2-mutant astrocytoma. Acta Neuropathol Commun 2023; 11:186. [PMID: 38012788 PMCID: PMC10680361 DOI: 10.1186/s40478-023-01683-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023] Open
Abstract
In IDH-mutant astrocytoma, IDH2 mutation is quite rare and biological mechanisms underlying tumor progression in IDH2-mutant astrocytoma remain elusive. Here, we report a unique case of IDH2 mutant astrocytoma, CNS WHO grade 3 that developed tumor progression. We performed a comprehensive genomic and epigenomic analysis for primary and recurrent tumors and found that both tumors harbored recurrent IDH2R172K and TP53R248W mutation with CDKN2A/B hemizygous deletion. We also found amplifications of CDK4 and MDM2 with PDGFRA gain in the recurrent tumor and upregulated protein expressions of these genes. We further developed, for the first time, a xenograft mouse model of IDH2R172K and TP53R248W mutant astrocytoma from the recurrent tumor, but not from the primary tumor. Consistent with parent recurrent tumor cells, amplifications of CDK4 and MDM2 and PDGFRA gain were found, while CDKN2A/B was identified as homozygous deletion in the xenografts, qualifying for integrated diagnosis of astrocytoma, IDH2-mutant, CNS WHO grade 4. Cell viability assay found that CDK4/6 inhibitor and PDGFR inhibitor potently decreased cell viability in recurrent tumor cells, as compared to primary tumor cells. These findings suggest that gene alterations that activate retinoblastoma (RB) signaling pathways and PDGFR may drive tumor progression and xenograft formation in IDH2-mutant astrocytoma, which is equivalent to progressive IDH1-mutant astrocytoma. Also, our findings suggest that these genomic alterations may represent therapeutic targets in IDH2-mutant astrocytoma.
Collapse
Affiliation(s)
- Kensuke Tateishi
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan.
- Laboratory of Biopharmaceutical and Regenerative Science, Graduate School of Medical Science, Yokohama City University, Yokohama, Japan.
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan.
| | - Yohei Miyake
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Taishi Nakamura
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Hiromichi Iwashita
- Department of Pathology, Yokohama City University Hospital, Yokohama, Japan
- Department of Diagnostic Pathology, Yokohama City University Hospital, Yokohama, Japan
| | - Takahiro Hayashi
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Akito Oshima
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Hirokuni Honma
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Hiroaki Hayashi
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Kyoka Sugino
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
- Laboratory of Biopharmaceutical and Regenerative Science, Graduate School of Medical Science, Yokohama City University, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Miyui Kato
- Laboratory of Biopharmaceutical and Regenerative Science, Graduate School of Medical Science, Yokohama City University, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Kaishi Satomi
- Department of Pathology, Kyorin University School of Medicine, Tokyo, Japan
| | - Satoshi Fujii
- Department of Diagnostic Pathology, Yokohama City University Hospital, Yokohama, Japan
- Department of Molecular Pathology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Takashi Komori
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Translational-Neurooncology Laboratory, Brain Tumor Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Translational-Neurooncology Laboratory, Brain Tumor Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
Zhang H, Zhang H, Zhang Y, Zhou B, Wu L, Lei Y, Huang B. Deep Learning Radiomics for the Assessment of Telomerase Reverse Transcriptase Promoter Mutation Status in Patients With Glioblastoma Using Multiparametric MRI. J Magn Reson Imaging 2023; 58:1441-1451. [PMID: 36896953 DOI: 10.1002/jmri.28671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Studies have shown that magnetic resonance imaging (MRI)-based deep learning radiomics (DLR) has the potential to assess glioma grade; however, its role in predicting telomerase reverse transcriptase (TERT) promoter mutation status in patients with glioblastoma (GBM) remains unclear. PURPOSE To evaluate the value of deep learning (DL) in multiparametric MRI-based radiomics in identifying TERT promoter mutations in patients with GBM preoperatively. STUDY TYPE Retrospective. POPULATION A total of 274 patients with isocitrate dehydrogenase-wildtype GBM were included in the study. The training and external validation cohorts included 156 (54.3 ± 12.7 years; 96 males) and 118 (54 .2 ± 13.4 years; 73 males) patients, respectively. FIELD STRENGTH/SEQUENCE Axial contrast-enhanced T1-weighted spin-echo inversion recovery sequence (T1CE), T1-weighted spin-echo inversion recovery sequence (T1WI), and T2-weighted spin-echo inversion recovery sequence (T2WI) on 1.5-T and 3.0-T scanners were used in this study. ASSESSMENT Overall tumor area regions (the tumor core and edema) were segmented, and the radiomics and DL features were extracted from preprocessed multiparameter preoperative brain MRI images-T1WI, T1CE, and T2WI. A model based on the DLR signature, clinical signature, and clinical DLR (CDLR) nomogram was developed and validated to identify TERT promoter mutation status. STATISTICAL TESTS The Mann-Whitney U test, Pearson test, least absolute shrinkage and selection operator, and logistic regression analysis were applied for feature selection and construction of radiomics and DL signatures. Results were considered statistically significant at P-value <0.05. RESULTS The DLR signature showed the best discriminative power for predicting TERT promoter mutations, yielding an AUC of 0.990 and 0.890 in the training and external validation cohorts, respectively. Furthermore, the DLR signature outperformed CDLR nomogram (P = 0.670) and significantly outperformed clinical models in the validation cohort. DATA CONCLUSION The multiparameter MRI-based DLR signature exhibited a promising performance for the assessment of TERT promoter mutations in patients with GBM, which could provide information for individualized treatment. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Hongbo Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hanwen Zhang
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yuze Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Beibei Zhou
- Department of Radiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Lei Wu
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yi Lei
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Biao Huang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
33
|
Wang H, Pu S, Xu H, Yang L, Shao L, Chen X, Huang X, Pu J. BTN2A2, a new biomarker and therapeutic target for glioma. Aging (Albany NY) 2023; 15:10996-11011. [PMID: 37851374 PMCID: PMC10637821 DOI: 10.18632/aging.205039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/26/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Protein casein 2A2 (BTN2A2) is a costimulatory molecule first identified in antigen-presenting cells. Studies have shown the involvement of BTN2A2 in immunity. However, the exact role and the mechanism of BTN2A2 in tumors are still unclear. METHODS First, we performed real-time PCR to measure BTN2A2 expression in glioma cell lines. Next, we performed Genes Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses to understand the mechanism of BTN2A2 in glioma. Next, we used the "ESTIMATE", "ssGSEA" and "CIBERSORT" algorithms to analyze the correlation between BTN2A2 and immune cell infiltration (ICI). Finally, we performed immunohistochemistry, growth curve, transwell, and colony formation assays to determine the functions of BTN2A2 in glioma. RESULTS Our results showed an increase in BTN2A2 expression levels in glioma tissues and cells. Next, we determined that BTN2A2 was correlated with the prognosis of patients with glioma. Then, using the ESTIMATE, ssGSEA, and CIBERSORT algorithms, we discovered that BTN2A2 was significantly associated with immune cell infiltration (ICI) in glioma. We observed an increase in BTN2A2 expression levels with an increase in the patient's tumor grade. Furthermore, BTN2A2 significantly enhanced the proliferative and migratory abilities of glioma cells. CONCLUSIONS Our results showed a significant increase in BTN2A2 expression levels in glioma cells and tissues. Furthermore, the prognosis of patients expressing high BTN2A2 levels was poor. Moreover, BTN2A2 was correlated with progression and ICI in patients with glioma. Together, this indicates that BTN2A2 could be a therapeutic target for patients with glioma.
Collapse
Affiliation(s)
- Heping Wang
- The First Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650223, China
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China
- The First Department of Neurosurgery, The Sixth Affiliated Hospital, Kunming Medical University, People’s Hospital of Yuxi, Yunnan 653100, China
| | - Shanrui Pu
- Institute of Biological Science, Xi’ an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
| | - Haitao Xu
- The First Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650223, China
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China
| | - Lihong Yang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Lishi Shao
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China
- Department of Radiology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650223, China
| | - Xi Chen
- The First Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650223, China
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China
| | - Xiaobin Huang
- The First Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650223, China
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China
| | - Jun Pu
- The First Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650223, China
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
34
|
Huang H, Lv Z, Yang L, Zhang X, Deng Y, Huang Z, Bi H, Sun X, Zhang M, Hu D, Liang H, Hu F. Development and validation of cuproptosis molecular subtype-related signature for predicting immune prognostic characterization in gliomas. J Cancer Res Clin Oncol 2023; 149:11499-11515. [PMID: 37392200 DOI: 10.1007/s00432-023-05021-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
PURPOSE Cuproptosis, a novel programmed cell death, plays an important role in glioma growth, angiogenesis, and immune response. Nonetheless, the role of cuproptosis-related genes (CRGs) in the prognosis and tumor microenvironment (TME) of gliomas remains unknown. METHODS By non-negative matrix factorization consensus clustering, 1286 glioma patients were classified based on the mRNA expression levels of 27 CRGs and investigated the association of immune infiltration and clinical characteristics with cuproptosis subtypes. A CRG-score system was constructed using LASSO and multivariate Cox regression methods and validated in independent cohorts to predict the prognosis of glioma patients. RESULTS Glioma patients were divided into two cuproptosis subtypes. Cluster C2 was enriched in immune-related pathways, had higher macrophage M2, neutrophils, and CD8 + T cells, and poorer prognosis compared with cluster C1 which was enriched in metabolism-related pathways. We further constructed and validated the ten-gene CRG risk scores. Glioma patients in the high CRG-score group had higher tumor mutation burden, higher TME scores, and poorer prognoses compared with the low CRG-score group. Additionally, the AUC value of the CRG-score was 0.778 in predicting the prognosis of gliomas. WHO grading, IDH mutation, 1p/19q codeletion, and MGMT methylation were significant differences between high and low CRG-score groups. CONCLUSION This study demonstrated that CRG-score was related to immune cell infiltration and could accurately predict gliomas' prognosis. Our findings may provide a novel understanding of the potential role of cuproptosis molecular pattern and TME in the immune response and prognosis of glioma patients.
Collapse
Affiliation(s)
- Hao Huang
- Department of Epidemiology and Health Statistics, Shenzhen University Medical School, Shenzhen, 518060, Guangdong Province, People's Republic of China
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, 518020, Guangdong Province, People's Republic of China
| | - Zhonghua Lv
- Department of Neurosurgery, Third Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Longkun Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, People's Republic of China
| | - Xing Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, People's Republic of China
| | - Ying Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, People's Republic of China
| | - Zhicong Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, People's Republic of China
| | - Haoran Bi
- Department of Biostatistics, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, People's Republic of China
| | - Xizhuo Sun
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, 518020, Guangdong Province, People's Republic of China
| | - Ming Zhang
- Department of Epidemiology and Health Statistics, Shenzhen University Medical School, Shenzhen, 518060, Guangdong Province, People's Republic of China
| | - Dongsheng Hu
- Department of Epidemiology and Health Statistics, Shenzhen University Medical School, Shenzhen, 518060, Guangdong Province, People's Republic of China
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, 518020, Guangdong Province, People's Republic of China
| | - Hongsheng Liang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang Province, People's Republic of China.
| | - Fulan Hu
- Department of Epidemiology and Health Statistics, Shenzhen University Medical School, Shenzhen, 518060, Guangdong Province, People's Republic of China.
| |
Collapse
|
35
|
Satomi K, Saito K, Shimoyamada H, Onizuka H, Shibayama T, Hibiya T, Hayashi A, Nagahama K, Yamagishi Y, Sasaki N, Kobayashi K, Gomyo M, Nagane M, Shibahara J. The role of nonlinear dimension reduction of genome-wide DNA methylome in integrated diagnosis: A case study of glioblastoma, IDH-wildtype. Pathol Int 2023; 73:523-526. [PMID: 37530489 DOI: 10.1111/pin.13359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/15/2023] [Indexed: 08/03/2023]
Affiliation(s)
- Kaishi Satomi
- Department of Pathology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Kuniaki Saito
- Department of Neurosurgery, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Hiroaki Shimoyamada
- Department of Pathology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Hiromi Onizuka
- Department of Pathology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Takahiro Shibayama
- Department of Pathology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Takashi Hibiya
- Department of Pathology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Akimasa Hayashi
- Department of Pathology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Kiyotaka Nagahama
- Department of Pathology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Yuki Yamagishi
- Department of Neurosurgery, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Nobuyoshi Sasaki
- Department of Neurosurgery, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Keiichi Kobayashi
- Department of Neurosurgery, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Miho Gomyo
- Department of Radiology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Motoo Nagane
- Department of Neurosurgery, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Junji Shibahara
- Department of Pathology, Kyorin University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
36
|
Ninatti G, Pini C, Bono BC, Gelardi F, Antunovic L, Fernandes B, Sollini M, Landoni C, Chiti A, Pessina F. The prognostic power of [ 11C]methionine PET in IDH-wildtype diffuse gliomas with lower-grade histological features: venturing beyond WHO classification. J Neurooncol 2023; 164:473-481. [PMID: 37695488 DOI: 10.1007/s11060-023-04438-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/26/2023] [Indexed: 09/12/2023]
Abstract
PURPOSE IDH-wildtype (IDH-wt) diffuse gliomas with histological features of lower-grade gliomas (LGGs) are rare and heterogeneous primary brain tumours. [11C]Methionine (MET) positron emission tomography (PET) is commonly used to evaluate glial neoplasms at diagnosis. The present study aimed to assess the prognostic value of MET PET in newly diagnosed, treatment naïve IDH-wt gliomas with histological features of LGGs. METHODS Patients with a histological diagnosis of IDH-wt LGG who underwent preoperative (< 100 days) MET PET/CT and surgery were retrospectively included. Qualitative and semi-quantitative analyses of MET PET images were performed. Progression-free survival (PFS) and overall survival (OS) were analysed by Kaplan-Meier curves. Cox proportional-hazards regression was used to test the association of imaging and clinical data to PFS and OS. RESULTS We included 48 patients (M:F = 25:23; median age 55). 39 lesions were positive and 9 negative at MET PET. Positive MET PET was significantly associated with shorter median PFS (15.7 months vs. not reached, p = 0.0146) and OS time (32.6 months vs. not reached, p = 0.0253). Incomplete surgical resection and higher TBRmean values were independent predictors of shorter PFS on multivariate analysis (p < 0.001 for both). Higher tumour grade and incomplete surgical resection were independent predictors of OS at multivariate analysis (p = 0.027 and p = 0.01, respectively). CONCLUSION MET PET is useful for the prognostic stratification of patients with IDH-wt glial neoplasms with histological LGGs features. Considering their huge biological heterogeneity, the combination of MET PET and molecular analyses may help to improve the prognostic accuracy in these diffuse gliomas subset and influence therapeutic choices accordingly.
Collapse
Affiliation(s)
- Gaia Ninatti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Cristiano Pini
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Beatrice Claudia Bono
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
- Neurosurgery Department, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Fabrizia Gelardi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
| | - Lidija Antunovic
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bethania Fernandes
- Department of Pathology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Martina Sollini
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy.
- Nuclear Medicine, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.
| | - Claudio Landoni
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Nuclear Medicine Department, IRCCS Monza, San Gerardo Hospital, Monza, Italy
| | - Arturo Chiti
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Federico Pessina
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
- Neurosurgery Department, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
37
|
Picca A, Bruno F, Nichelli L, Sanson M, Rudà R. Advances in molecular and imaging biomarkers in lower-grade gliomas. Expert Rev Neurother 2023; 23:1217-1231. [PMID: 37982735 DOI: 10.1080/14737175.2023.2285472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
INTRODUCTION Lower-grade (grade 2-3) gliomas (LGGs) constitutes a group of primary brain tumors with variable clinical behaviors and treatment responses. Recent advancements in molecular biology have redefined their classification, and novel imaging modalities emerged for the noninvasive diagnosis and follow-up. AREAS COVERED This review comprehensively analyses the current knowledge on molecular and imaging biomarkers in LGGs. Key molecular alterations, such as IDH mutations and 1p/19q codeletion, are discussed for their prognostic and predictive implications in guiding treatment decisions. Moreover, the authors explore theranostic biomarkers for the potential of tailored therapies. Additionally, they also describe the utility of advanced imaging modalities, including widely available techniques, as dynamic susceptibility contrast perfusion-weighted imaging and less validated, emerging approaches, for the noninvasive LGGs characterization and follow-up. EXPERT OPINION The integration of molecular markers enhanced the stratification of LGGs, leading to the new concept of integrated histomolecular classification. While the IDH mutation is an established key prognostic and predictive marker, recent results from IDH inhibitors trials showed its potential value as a theranostic marker. In this setting, advanced MRI techniques such as 2-D-hydroxyglutarate spectroscopy are very promising for the noninvasive diagnosis and monitoring of LGGs. This progress offers exciting prospects for personalized medicine and improved treatment outcomes in LGGs.
Collapse
Affiliation(s)
- Alberto Picca
- Service de Neurologie 2 Mazarin, Hôpital Universitaire Pitié-Salpêtrière, AP-HP, Paris, France
- Sorbonne Université, Inserm, CNRS, UMRS1127, Institut du Cerveau-Paris Brain Institute-ICM, AP-HP, Paris, France
| | - Francesco Bruno
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science University Hospital, Turin, Italy
| | - Lucia Nichelli
- Service de Neuroradiologie, Hôpital Universitaire Pitié-Salpêtrière, AP-HP, Paris, France
| | - Marc Sanson
- Service de Neurologie 2 Mazarin, Hôpital Universitaire Pitié-Salpêtrière, AP-HP, Paris, France
- Sorbonne Université, Inserm, CNRS, UMRS1127, Institut du Cerveau-Paris Brain Institute-ICM, AP-HP, Paris, France
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science University Hospital, Turin, Italy
| |
Collapse
|
38
|
Yamashita K, Hatae R, Kikuchi K, Kuga D, Hata N, Yamamoto H, Obara M, Yoshimoto K, Ishigami K, Togao O. Predicting TERT promoter mutation status using 1H-MR spectroscopy and stretched-exponential model of diffusion-weighted imaging in IDH-wildtype diffuse astrocytic glioma without intense enhancement. Neuroradiology 2023:10.1007/s00234-023-03177-y. [PMID: 37308686 DOI: 10.1007/s00234-023-03177-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/04/2023] [Indexed: 06/14/2023]
Abstract
PURPOSE Isocitrate dehydrogenase (IDH)-wildtype diffuse astrocytic glioma with telomerase reverse transcriptase (TERT) promoter mutation is defined as glioblastoma by the WHO 2021 criteria, revealing that TERT promotor mutation is highly associated with tumor aggressiveness. The aim of this study was to identify features from MR spectroscopy (MRS) and multi-exponential models of DWI distinguishing wild-type TERT (TERTw) from TERT promoter mutation (TERTm) in IDH-wildtype diffuse astrocytic glioma. METHODS Participants comprised 25 adult patients with IDH-wildtype diffuse astrocytic glioma. Participants were classified into TERTw and TERTm groups. Point-resolved spectroscopy sequences were used for MRS data acquisition. DWI was performed with 13 different b-factors. Peak height ratios of NAA/Cr and Cho/Cr were calculated from MRS data. Mean apparent diffusion coefficient (ADC), perfusion fraction (f), diffusion coefficient (D), pseudo-diffusion coefficient (D*), distributed diffusion coefficient (DDC), and heterogeneity index (α) were obtained using multi-exponential models from DWI data. Each parameter was compared between TERTw and TERTm using the Mann-Whitney U test. Correlations between parameters derived from MRS and DWI were also evaluated. RESULTS NAA/Cr and Cho/Cr were both higher for TERTw than for TERTm. The α of TERTw was smaller than that of TERTm, while the f of TERTw was higher than that of TERTm. NAA/Cr correlated negatively with α, but not with other DWI parameters. Cho/Cr did not show significant correlations with any DWI parameters. CONCLUSION The combination of NAA/Cr and α may have merit in clinical situation to predict the TERT mutation status of IDH-wildtype diffuse astrocytic glioma without intense enhancement.
Collapse
Affiliation(s)
- Koji Yamashita
- Departments of Radiology Informatics and Network, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| | - Ryusuke Hatae
- Departments of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Kazufumi Kikuchi
- Departments of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Daisuke Kuga
- Departments of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Nobuhiro Hata
- Departments of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Hidetaka Yamamoto
- Departments of Anatomic Pathology Pathologic Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Makoto Obara
- Philips Japan, 13-37, Kohnan 2-Chome, Minato-Ku, Tokyo, 108-8507, Japan
| | - Koji Yoshimoto
- Departments of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Kousei Ishigami
- Departments of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Osamu Togao
- Departments of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
39
|
Raslan O, Ozturk A, Oguz KK, Sen F, Aboud O, Ivanovic V, Assadsangabi R, Hacein-Bey L. Imaging Cancer in Neuroradiology. Curr Probl Cancer 2023:100965. [PMID: 37349190 DOI: 10.1016/j.currproblcancer.2023.100965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023]
Abstract
Neuroimaging plays a pivotal role in the diagnosis, management, and prognostication of brain tumors. Recently, the World Health Organization published the fifth edition of the WHO Classification of Tumors of the Central Nervous System (CNS5), which places greater emphasis on tumor genetics and molecular markers to complement the existing histological and immunohistochemical approaches. Recent advances in computational power allowed modern neuro-oncological imaging to move from a strictly morphology-based discipline to advanced neuroimaging techniques with quantifiable tissue characteristics such as tumor cellularity, microstructural organization, hemodynamic, functional, and metabolic features, providing more precise tumor diagnosis and management. The aim of this review is to highlight the key imaging features of the recently published CNS5, outlining the current imaging standards and summarizing the latest advances in neuro-oncological imaging techniques and their role in complementing traditional brain tumor imaging and management.
Collapse
Affiliation(s)
- Osama Raslan
- Department of Radiology, Division of Neuroradiology, University of California Davis Medical Center, Sacramento, CA.
| | - Arzu Ozturk
- Department of Radiology, Division of Neuroradiology, University of California Davis Medical Center, Sacramento, CA
| | - Kader Karli Oguz
- Department of Radiology, Division of Neuroradiology, University of California Davis Medical Center, Sacramento, CA
| | - Fatma Sen
- Department of Radiology, Division of Nuclear Medicine, University of California Davis Medical Center, Sacramento, CA
| | - Orwa Aboud
- Department of Neurology and Neurological Surgery, UC Davis Comprehensive Cancer Center, CA
| | - Vladimir Ivanovic
- Department of Radiology, Division of Neuroradiology, Medical College of Wisconsin., Milwaukee, WI
| | - Reza Assadsangabi
- Department of Radiology, Keck School of Medicine of USC University of Southern California, Sacramento, CA
| | - Lotfi Hacein-Bey
- Department of Radiology, Division of Neuroradiology, University of California Davis Medical Center, Sacramento, CA
| |
Collapse
|
40
|
Nakasu S, Deguchi S, Nakasu Y. IDH wild-type lower-grade gliomas with glioblastoma molecular features: a systematic review and meta-analysis. Brain Tumor Pathol 2023:10.1007/s10014-023-00463-8. [PMID: 37212969 DOI: 10.1007/s10014-023-00463-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/09/2023] [Indexed: 05/23/2023]
Abstract
The WHO 2021 classification defines IDH wild type (IDHw) histologically lower-grade glioma (hLGG) as molecular glioblastoma (mGBM) if TERT promoter mutation (pTERTm), EGFR amplification or chromosome seven gain and ten loss aberrations are indicated. We systematically reviewed articles of IDHw hLGGs studies (49 studies, N = 3748) and meta-analyzed mGBM prevalence and overall survival (OS) according to the PRISMA statement. mGBM rates in IDHw hLGG were significantly lower in Asian regions (43.7%, 95% confidence interval [CI: 35.8-52.0]) when compared to non-Asian regions (65.0%, [CI: 52.9-75.4]) (P = 0.005) and were significantly lower in fresh-frozen specimen when compared to formalin-fixed paraffin-embedded samples (P = 0.015). IDHw hLGGs without pTERTm rarely expressed other molecular markers in Asian studies when compared to non-Asian studies. Patients with mGBM had significantly longer OS times when compared to histological GBM (hGBM) (pooled hazard ratio (pHR) 0.824, [CI: 0.694-0.98], P = 0.03)). In patients with mGBM, histological grade was a significant prognostic factor (pHR 1.633, [CI: 1.09-2.447], P = 0.018), as was age (P = 0.001) and surgical extent (P = 0.018). Although bias risk across studies was moderate, mGBM with grade II histology showed better OS rates when compared to hGBM.
Collapse
Affiliation(s)
- Satoshi Nakasu
- Division of Neurosurgery, Omi Medical Center, Yabase-cho 1660, Kusatsu, Shiga, 525-8585, Japan.
- Department of Neurosurgery, Shiga University of Medical Science, Ohtsu, Japan.
| | - Shoichi Deguchi
- Division of Neurosurgery, Shizuoka Cancer Center, Nagaizumi, Japan
| | - Yoko Nakasu
- Department of Neurosurgery, Shiga University of Medical Science, Ohtsu, Japan
- Division of Neurosurgery, Shizuoka Cancer Center, Nagaizumi, Japan
| |
Collapse
|
41
|
Martin KC, Ma C, Yip S. From Theory to Practice: Implementing the WHO 2021 Classification of Adult Diffuse Gliomas in Neuropathology Diagnosis. Brain Sci 2023; 13:brainsci13050817. [PMID: 37239289 DOI: 10.3390/brainsci13050817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Diffuse gliomas are the most common type of primary central nervous system (CNS) neoplasm to affect the adult population. The diagnosis of adult diffuse gliomas is dependent upon the integration of morphological features of the tumour with its underlying molecular alterations, and the integrative diagnosis has become of increased importance in the fifth edition of the WHO classification of CNS neoplasms (WHO CNS5). The three major diagnostic entities of adult diffuse gliomas are as follows: (1) astrocytoma, IDH-mutant; (2) oligodendroglioma, IDH-mutant and 1p/19q-codeleted; and (3) glioblastoma, IDH-wildtype. The aim of this review is to summarize the pathophysiology, pathology, molecular characteristics, and major diagnostic updates encountered in WHO CNS5 of adult diffuse gliomas. Finally, the application of implementing the necessary molecular tests for diagnostic workup of these entities in the pathology laboratory setting is discussed.
Collapse
Affiliation(s)
- Karina Chornenka Martin
- Department of Pathology & Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Crystal Ma
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 2A1, Canada
| | - Stephen Yip
- Department of Pathology & Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
42
|
Cheng L, Zhang F, Zhao X, Wang L, Duan W, Guan J, Wang K, Liu Z, Wang X, Wang Z, Wu H, Chen Z, Teng L, Li Y, Xiao F, Fan T, Jian F. Mutational landscape of primary spinal cord astrocytoma. J Pathol 2023. [PMID: 37114614 DOI: 10.1002/path.6084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/13/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023]
Abstract
Primary spinal cord astrocytoma (SCA) is a rare disease. Knowledge about the molecular profiles of SCAs mostly comes from intracranial glioma; the pattern of genetic alterations of SCAs is not well understood. Herein, we describe genome-sequencing analyses of primary SCAs, aiming to characterize the mutational landscape of primary SCAs. We utilized whole exome sequencing (WES) to analyze somatic nucleotide variants (SNVs) and copy number variants (CNVs) among 51 primary SCAs. Driver genes were searched using four algorithms. GISTIC2 was used to detect significant CNVs. Additionally, recurrently mutated pathways were also summarized. A total of 12 driver genes were identified. Of those, H3F3A (47.1%), TP53 (29.4%), NF1 (19.6%), ATRX (17.6%), and PPM1D (17.6%) were the most frequently mutated genes. Furthermore, three novel driver genes seldom reported in glioma were identified: HNRNPC, SYNE1, and RBM10. Several germline mutations, including three variants (SLC16A8 rs2235573, LMF1 rs3751667, FAM20C rs774848096) that were associated with risk of brain glioma, were frequently observed in SCAs. Moreover, 12q14.1 (13.7%) encompassing the oncogene CDK4 was recurrently amplified and negatively affected patient prognosis. Besides frequently mutated RTK/RAS pathway and PI3K pathway, the cell cycle pathway controlling the phosphorylation of retinoblastoma protein (RB) was mutated in 39.2% of patients. Overall, a considerable degree of the somatic mutation landscape is shared between SCAs and brainstem glioma. Our work provides a key insight into the molecular profiling of primary SCAs, which might represent candidate drug targets and complement the molecular atlas of glioma. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Lei Cheng
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, PR China
| | - Fan Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, PR China
| | - Xingang Zhao
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, PR China
| | - Leiming Wang
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, PR China
| | - Wanru Duan
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, PR China
| | - Jian Guan
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, PR China
| | - Kai Wang
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, PR China
| | - Zhenlei Liu
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, PR China
| | - Xingwen Wang
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, PR China
| | - Zuowei Wang
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, PR China
| | - Hao Wu
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, PR China
| | - Zan Chen
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, PR China
| | - Lianghong Teng
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, PR China
| | - Yifei Li
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Fei Xiao
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Tao Fan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, PR China
| | - Fengzeng Jian
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, PR China
| |
Collapse
|
43
|
Sha Y, Yan Q, Tan Y, Wang X, Zhang H, Yang G. Prediction of the Molecular Subtype of IDH Mutation Combined with MGMT Promoter Methylation in Gliomas via Radiomics Based on Preoperative MRI. Cancers (Basel) 2023; 15:cancers15051440. [PMID: 36900232 PMCID: PMC10001198 DOI: 10.3390/cancers15051440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND The molecular subtype of IDH mut combined with MGMT meth in gliomas suggests a good prognosis and potential benefit from TMZ chemotherapy. The aim of this study was to establish a radiomics model to predict this molecular subtype. METHOD The preoperative MR images and genetic data of 498 patients with gliomas were retrospectively collected from our institution and the TCGA/TCIA dataset. A total of 1702 radiomics features were extracted from the tumour region of interest (ROI) of CE-T1 and T2-FLAIR MR images. Least absolute shrinkage and selection operator (LASSO) and logistic regression were used for feature selection and model building. Receiver operating characteristic (ROC) curves and calibration curves were used to evaluate the predictive performance of the model. RESULTS Regarding clinical variables, age and tumour grade were significantly different between the two molecular subtypes in the training, test and independent validation cohorts (p < 0.05). The areas under the curve (AUCs) of the radiomics model based on 16 selected features in the SMOTE training cohort, un-SMOTE training cohort, test set and independent TCGA/TCIA validation cohort were 0.936, 0.932, 0.916 and 0.866, respectively, and the corresponding F1-scores were 0.860, 0.797, 0.880 and 0.802. The AUC of the independent validation cohort increased to 0.930 for the combined model when integrating the clinical risk factors and radiomics signature. CONCLUSIONS radiomics based on preoperative MRI can effectively predict the molecular subtype of IDH mut combined with MGMT meth.
Collapse
Affiliation(s)
- Yongjian Sha
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
- Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Xi'an 710018, China
| | - Qianqian Yan
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Yan Tan
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Xiaochun Wang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Hui Zhang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Guoqiang Yang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
44
|
Liu H, Zhang L, Tan Y, Jiang Y, Lu H. Observation of the delineation of the target volume of radiotherapy in adult-type diffuse gliomas after temozolomide-based chemoradiotherapy: analysis of recurrence patterns and predictive factors. Radiat Oncol 2023; 18:16. [PMID: 36691100 PMCID: PMC9872393 DOI: 10.1186/s13014-023-02203-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Radiation therapy is the cornerstone of treatment for adult-type diffuse gliomas, but recurrences are inevitable. Our study assessed the prognosis and recurrence pattern of different radiotherapy volumes after temozolomide-based chemoradiation in our institution. METHODS The treatment plans were classified into two groups, the plan 1 intentionally involved the entire edema area while plan 2 did not. Retrospectively investigate the differences in outcomes of 118 adult-type diffuse gliomas patients between these two treatment plans. Then, patients who underwent relapse were selected to analyze their recurrence patterns. Continuous dynamic magnetic resonance images (MRI) were collected to categorized the recurrence patterns into central, in-field, marginal, distant, and cerebrospinal fluid dissemination (CSF-d) recurrence. Finally, the clinical and molecular characteristics which influenced progression were analyzed. RESULTS Plan 1 (n = 63) showed a median progression-free survival (PFS) and overall survival (OS) of 9.5 and 26.4 months while plan 2 (n = 55) showed a median PFS and OS of 9.4 and 36.5 months (p = 0.418; p = 0.388). Treatment target volume had no effect on the outcome in patients with adult-type diffuse gliomas. And there was no difference in radiation toxicity (p = 0.388). Among the 90 relapsed patients, a total of 58 (64.4%) patients had central recurrence, 10 (11.1%) patients had in-field recurrence, 3 (3.3%) patients had marginal recurrence, 11 (12.2.%) patients had distant recurrence, and 8 (8.9%) patients had CSF-d recurrence. By treatment plans, the recurrence patterns were similar and there was no significant difference in survival. Reclassifying the progression pattern into local and non-local groups, we observed that oligodendroglioma (n = 10) all relapsed in local and no difference in PFS and OS between the two groups (p > 0.05). Multivariable analysis showed that subventricular zone (SVZ) involvement was the independent risk factor for non-local recurrence in patients with GBM (p < 0.05). CONCLUSION In our study, deliberately including or not the entire edema had no impact on prognosis and recurrence. Patients with varied recurrence patterns had diverse clinical and genetic features.
Collapse
Affiliation(s)
- Hongbo Liu
- grid.412521.10000 0004 1769 1119Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lu Zhang
- grid.412521.10000 0004 1769 1119Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ye Tan
- grid.412521.10000 0004 1769 1119Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanxia Jiang
- grid.412521.10000 0004 1769 1119Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haijun Lu
- grid.412521.10000 0004 1769 1119Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
45
|
Komori T. Update of the 2021 WHO classification of tumors of the central nervous system: adult diffuse gliomas. Brain Tumor Pathol 2023; 40:1-3. [PMID: 36538117 DOI: 10.1007/s10014-022-00446-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Takashi Komori
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital, Tokyo Metropolitan Hospital Organization, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042, Japan.
| |
Collapse
|
46
|
Molecular Characterization of Adult Tumors Diagnosed as Cerebellar Glioblastomas Identifies Subgroups Associated With Prognosis. Am J Surg Pathol 2023; 47:131-144. [PMID: 36418240 DOI: 10.1097/pas.0000000000001996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Adult tumors diagnosed as cerebellar glioblastoma (cGBM) are rare and their optimal classification remains to be determined. The aim of this study was to identify subgroups of cGBM based on targeted molecular analysis. cGBM diagnosed between 2003 and 2017 were identified from the French Brain Tumor Database and reviewed according to the WHO 2021 classification. The following molecular alterations were studied: IDH1/2 , H3F3A , FGFR1 , BRAF , TERT promoter mutations, EGFR amplification, MGMT promoter methylation, and alternative lengthening of telomere status. DNA methylation profile was assessed in a subset of cases. Eighty-three cGBM were included and could be classified into 6 mutually exclusive subgroups associated with median age at diagnosis (MA) and prognosis: TERT -mutant and/or EGFR -amplified tumors (n=22, 26.5%, MA=62 y, median overall survival [OS]=4 mo), H3K27M-mutant tumors (n=15, 18.1%, MA=48 y, median OS=8 mo), mitogen-activated protein kinases (MAPK) pathway-activated tumors ( FGFR1 , BRAF mutation, or occurring in neurofibromatosis type I patients, n=15, 18.1%, MA=48 y, median OS=57 mo), radiation-associated tumors (n=5, 6%, MA=47 y, median OS=5 mo), IDH-mutant tumors (n=1), and unclassified tumors (n=25, 30.1%, MA=63 y, median OS=17 mo). Most MAPK pathway-activated tumors corresponded to high-grade astrocytomas with piloid features based on DNA methylation profiling. In multivariate analysis, MAPK pathway-activating alterations, ATRX loss of expression, and alternative lengthening of telomere positivity were independently associated with a better outcome and TERT / EGFR alterations with a worse outcome. cGBM display an important intertumoral heterogeneity. Targeted molecular analysis enables to classify the majority of tumors diagnosed as cGBM into mutually exclusive and clinically relevant subgroups. The presence of MAPK pathway alterations is associated with a much better prognosis.
Collapse
|
47
|
TAKEUCHI H, TAKAHASHI Y, TANIGAWA S, OKAMOTO T, KODAMA Y, SHISHIDO-HARA Y, YOSHIOKA E, SHOFUDA T, KANEMURA Y, KONISHI E, HASHIMOTO N. Genetic Alteration May Proceed with a Histological Change in Glioblastoma: A Report from Initially Diagnosed as Nontumor Lesion Cases. NMC Case Rep J 2022; 9:199-208. [PMID: 35974956 PMCID: PMC9339260 DOI: 10.2176/jns-nmc.2022-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/02/2022] [Indexed: 11/20/2022] Open
Abstract
Despite recent signs of progress in diagnostic radiology, it is quite rare that a glioblastoma (GBM) is detected asymptomatically. We describe two patients with asymptomatic nonenhancing GBMs that were not diagnosed with neoplasia at first. The patients had brain scans as medical checkups, and incidentally lesions were detected. In both cases, surgical specimens histopathologically showed no evidence of neoplasia, whereas molecular genetic findings were isocitrate dehydrogenase (IDH)-wildtype, O6-methylguanine-DNA methyltransferase promoter (pMGMT) unmethylated, and telomerase reverse transcriptase (TERT) promoter mutated, which matched to GBM. One patient was observed without adjuvant therapy and the tumor recurred 7 months later. Reoperation was performed, and histopathologically GBM was confirmed with the same molecular diagnosis as the first surgical specimen. Another patient was carefully observed, and chemoradiotherapy was begun 6 months after the operation following the extension of the lesion. Eventually, because of disease progression, both patients deceased. We postulate that in each case, the tumor was not lower-grade glioma but corresponded to the early growth phase of GBM cells. Thus far, cases of malignant transformation from lower-grade glioma or asymptomatic GBM with typical histologic features are reported. Nevertheless, to the best of our knowledge, no such case of nonenhancing, nonhistologically confirmed GBM was reported. We conjecture these cases shed light on the yet unknown natural history of GBM. GBM can take the form of radiological nonenhancing and histological nonneoplastic fashion before typical morphology. Molecular genetic analysis can diagnose atypical preceding GBM, and we recommend early surgical removal and adjuvant treatment.
Collapse
Affiliation(s)
- Hayato TAKEUCHI
- Department of Neurosurgery, Kyoto Prefectural University Graduate School of Medical Science
| | - Yoshinobu TAKAHASHI
- Department of Neurosurgery, Kyoto Prefectural University Graduate School of Medical Science
| | - Seisuke TANIGAWA
- Department of Neurosurgery, Kyoto Prefectural University Graduate School of Medical Science
| | - Takanari OKAMOTO
- Department of Neurosurgery, Kyoto Prefectural University Graduate School of Medical Science
| | - Yoshinori KODAMA
- Division of Pathology Network, Kobe University Graduate School of Medicine
| | - Yukiko SHISHIDO-HARA
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University Graduate School of Medical Science
| | - Ema YOSHIOKA
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital
| | - Tomoko SHOFUDA
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital
| | - Yonehiro KANEMURA
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital
| | - Eiichi KONISHI
- Department of Pathology, Kyoto Prefectural University Graduate School of Medical Science
| | - Naoya HASHIMOTO
- Department of Neurosurgery, Kyoto Prefectural University Graduate School of Medical Science
| |
Collapse
|
48
|
Wang C, Wang D, Pan C, Zhang J, Cheng C, Zhai Y, Yu M, Wang Z, Li G, Zhang W. Clinical characteristics and survival of glioblastoma complicated with non-central nervous system tumors. Chin Neurosurg J 2022; 8:43. [PMID: 36575552 PMCID: PMC9793540 DOI: 10.1186/s41016-022-00312-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Diagnosis and treatment of patients with glioblastoma (GBM) who are also diagnosed with primary non-central nervous system (CNS) tumors remain a challenge, yet little is known about the clinical characteristics and prognosis of these patients. The data presented here compared the clinical and pathological features between glioblastoma patients with or without primary non-CNS tumors, trying to further explore this complex situation. METHODS Statistical analysis was based on the clinical and pathological data of 45 patients who were diagnosed with isocitrate dehydrogenase (IDH) wild-type glioblastoma accompanied by non-CNS tumors between January 2019 and February 2022 in Beijing Tiantan Hospital. Univariate COX proportional hazard regression model was used to determine risk factors for overall survival. RESULTS It turned out to be no significant difference in the overall survival (OS) of the 45 patients with IDH-wild-type GBM plus non-CNS tumors, compared with the 112 patients who were only diagnosed with IDH-wild-type GBM. However, there was a significant difference in OS of GBM patients with benign tumors compared to those with malignant tumors. CONCLUSIONS Implications for the non-central nervous system tumors on survival of glioblastomas were not found in this research. However, glioblastomas complicated with other malignant tumors still showed worse clinical outcomes.
Collapse
Affiliation(s)
- Chen Wang
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring Western Road, Fengtai District, Beijing, China
| | - Di Wang
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring Western Road, Fengtai District, Beijing, China
| | - Changqing Pan
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring Western Road, Fengtai District, Beijing, China
| | - Jiazheng Zhang
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring Western Road, Fengtai District, Beijing, China
| | - Cheng Cheng
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring Western Road, Fengtai District, Beijing, China
| | - You Zhai
- grid.411617.40000 0004 0642 1244Beijing Neurosurgical Institute, Capital Medical University, No. 119 South Fourth Ring Western Road, Fengtai District, Beijing, China
| | - Mingchen Yu
- grid.411617.40000 0004 0642 1244Beijing Neurosurgical Institute, Capital Medical University, No. 119 South Fourth Ring Western Road, Fengtai District, Beijing, China
| | - Zhiliang Wang
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring Western Road, Fengtai District, Beijing, China
| | - Guanzhang Li
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring Western Road, Fengtai District, Beijing, China ,grid.411617.40000 0004 0642 1244Beijing Neurosurgical Institute, Capital Medical University, No. 119 South Fourth Ring Western Road, Fengtai District, Beijing, China ,Chinese Glioma Genome Atlas (CGGA), Beijing, China
| | - Wei Zhang
- grid.411617.40000 0004 0642 1244Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring Western Road, Fengtai District, Beijing, China ,grid.411617.40000 0004 0642 1244Beijing Neurosurgical Institute, Capital Medical University, No. 119 South Fourth Ring Western Road, Fengtai District, Beijing, China ,grid.24696.3f0000 0004 0369 153XCenter of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China ,grid.411617.40000 0004 0642 1244China National Clinical Research Center for Neurological Diseases, Beijing, China ,Chinese Glioma Genome Atlas (CGGA), Beijing, China
| |
Collapse
|
49
|
Tran S, Bielle F. WHO 2021 and beyond: new types, molecular markers and tools for brain tumor classification. Curr Opin Oncol 2022; 34:670-675. [PMID: 36093875 DOI: 10.1097/cco.0000000000000903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The fifth edition of the WHO classification of central nervous system tumors was published in 2021. It implemented major advances in the current diagnostic practice such as DNA methylation profiling. The review addresses how our understanding of the diversity of brain tumors has recently much improved through omics analysis and derived molecular biomarkers. RECENT FINDINGS Latest impactful studies identifying new diagnostic or prognostic biomarkers in frequent tumors and describing new rare tumor types are summarized about adult and pediatric gliomas, rare neuroepithelial tumors, ependymomas, medulloblastomas and meningiomas. Some controversies are debated. The role of methylation classes and surrogate immunohistochemical markers is highlighted. SUMMARY New diagnostic criteria and better definitions of tumor types aim at improving the management of brain tumor patients and at better evaluating new treatments in clinical trials. The rapidly evolving field of brain tumor classification opens exciting perspectives and many challenges to integrate clinical, radiological, histological and molecular information into a framework relevant for care and research.
Collapse
Affiliation(s)
- Suzanne Tran
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire La Pitié Salpêtrière, DMU Neurosciences, Department of Neuropathology
| | - Franck Bielle
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Universitaire La Pitié Salpêtrière, DMU Neurosciences, Department of Neuropathology
- Sorbonne Université, AP-HP, SIRIC CURAMUS, Paris, France
| |
Collapse
|
50
|
Zhou W, Lovasz D, Zizzo Z, He Q, Coughlan C, Kowalski RG, Kennedy PGE, Graner AN, Lillehei KO, Ormond DR, Youssef AS, Graner MW, Yu X. Phenotype and Neuronal Cytotoxic Function of Glioblastoma Extracellular Vesicles. Biomedicines 2022; 10:biomedicines10112718. [PMID: 36359238 PMCID: PMC9688005 DOI: 10.3390/biomedicines10112718] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive and lethal form of brain tumor. Extracellular vesicles (EVs) released by tumor cells play a critical role in cellular communication in the tumor microenvironment promoting tumor progression and invasion. We hypothesized that GBM EVs possess unique characteristics which exert effects on endogenous CNS cells including neurons, producing dose-dependent neuronal cytotoxicity. We purified EVs from the plasma of 20 GBM patients, 20 meningioma patients, and 21 healthy controls, and characterized EV phenotypes by electron microscopy, nanoparticle tracking analysis, protein concentration, and proteomics. We evaluated GBM EV functions by determining their cytotoxicity in primary neurons and the neuroblastoma cell line SH-SY5Y. In addition, we determined levels of IgG antibodies in the plasma in GBM (n = 82), MMA (n = 83), and controls (non-tumor CNS disorders and healthy donors, n = 50) with capture ELISA. We discovered that GBM plasma EVs are smaller in size and had no relationship between size and concentration. Importantly, GBM EVs purified from both plasma and tumor cell lines produced IgG-mediated, complement-dependent apoptosis and necrosis in primary human neurons, mouse brain slices, and neuroblastoma cells. The unique phenotype of GBM EVs may contribute to its neuronal cytotoxicity, providing insight into its role in tumor pathogenesis.
Collapse
Affiliation(s)
- Wenbo Zhou
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (W.Z.); (D.L.); (Z.Z.); (Q.H.); (R.G.K.); (A.N.G.); (K.O.L.); (D.R.O.); (A.S.Y.); (M.W.G.)
| | - Daniel Lovasz
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (W.Z.); (D.L.); (Z.Z.); (Q.H.); (R.G.K.); (A.N.G.); (K.O.L.); (D.R.O.); (A.S.Y.); (M.W.G.)
| | - Zoë Zizzo
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (W.Z.); (D.L.); (Z.Z.); (Q.H.); (R.G.K.); (A.N.G.); (K.O.L.); (D.R.O.); (A.S.Y.); (M.W.G.)
| | - Qianbin He
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (W.Z.); (D.L.); (Z.Z.); (Q.H.); (R.G.K.); (A.N.G.); (K.O.L.); (D.R.O.); (A.S.Y.); (M.W.G.)
| | - Christina Coughlan
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Robert G. Kowalski
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (W.Z.); (D.L.); (Z.Z.); (Q.H.); (R.G.K.); (A.N.G.); (K.O.L.); (D.R.O.); (A.S.Y.); (M.W.G.)
| | - Peter G. E. Kennedy
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Arin N. Graner
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (W.Z.); (D.L.); (Z.Z.); (Q.H.); (R.G.K.); (A.N.G.); (K.O.L.); (D.R.O.); (A.S.Y.); (M.W.G.)
| | - Kevin O. Lillehei
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (W.Z.); (D.L.); (Z.Z.); (Q.H.); (R.G.K.); (A.N.G.); (K.O.L.); (D.R.O.); (A.S.Y.); (M.W.G.)
| | - D. Ryan Ormond
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (W.Z.); (D.L.); (Z.Z.); (Q.H.); (R.G.K.); (A.N.G.); (K.O.L.); (D.R.O.); (A.S.Y.); (M.W.G.)
| | - A. Samy Youssef
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (W.Z.); (D.L.); (Z.Z.); (Q.H.); (R.G.K.); (A.N.G.); (K.O.L.); (D.R.O.); (A.S.Y.); (M.W.G.)
| | - Michael W. Graner
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (W.Z.); (D.L.); (Z.Z.); (Q.H.); (R.G.K.); (A.N.G.); (K.O.L.); (D.R.O.); (A.S.Y.); (M.W.G.)
| | - Xiaoli Yu
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (W.Z.); (D.L.); (Z.Z.); (Q.H.); (R.G.K.); (A.N.G.); (K.O.L.); (D.R.O.); (A.S.Y.); (M.W.G.)
- Correspondence:
| |
Collapse
|