1
|
Ghazanfar E, Marwat MA, Batool SA, Anwar A, Abdullah SM, Din ZU, Humayun M, Bououdina M, Abo-Elnasr AB, Ali HT. Electrophoretic deposition of polyvinyl alcohol, C-H NRs along with moringa on an SS substrate for orthopedic implant applications. RSC Adv 2024; 14:26775-26787. [PMID: 39184003 PMCID: PMC11342069 DOI: 10.1039/d4ra03931a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/17/2024] [Indexed: 08/27/2024] Open
Abstract
Metals are commonly used in bone implants due to their durability and load-bearing capabilities, yet they often suffer from biofilm growth and corrosion. To overcome these challenges, implants with enhanced biocompatibility, bioactivity, and antimicrobial properties are preferred. Stainless steel (SS) implants are widely favored in orthopedics for their mechanical strength and cost-effectiveness. To address the issues related to SS implants, we developed composite coatings using synthetic biopolymer polyvinyl alcohol (PVA), calcium hydrate (C-H) nanorods for improved bioactivity and antibacterial properties, and Moringa oleifera to enhance osteogenic induction. These coatings were deposited on 316L SS through electrophoretic deposition (EPD), providing protection against body fluids and enhancing the corrosion resistance of the SS. X-ray diffraction (XRD) confirmed the presence of the desired tobermorite crystal structure, while scanning electron microscopy (SEM) revealed nanorod-like C-H structures, a film thickness of 29 microns, and a hedgehog-like morphology in the composite particles. The coated sample demonstrated a contact angle of 64°, optimal for protein attachment and cellular uptake. Additionally, the coating exhibited strong adhesion with less than 5% damage observed in cross-cut hatch testing and appropriate surface roughness for protein attachment. Differential Scanning Calorimetry (DSC) and thermogravimetric analysis (TGA) assessed the thermal response of the materials. The coating also showed antibacterial activity against both Gram-negative and Gram-positive bacteria. Furthermore, the sample exhibited rapid bioactivity by forming a hydroxyapatite (HA) layer within 24 hours, with 35.4% degradability within 24 hours and 44.5% within 48 hours. These findings confirm that the composite film enhances the biocompatibility, bioactivity, and antibacterial properties of SS orthopedic implants in a cost-effective manner.
Collapse
Affiliation(s)
- Esha Ghazanfar
- Department of Materials Science and Engineering, Ghulam Ishaq Khan (GIK) Institute of Engineering Sciences and Technology Topi 23640 Pakistan +92-938-281032 +92-938-281026
| | - Mohsin Ali Marwat
- Department of Materials Science and Engineering, Ghulam Ishaq Khan (GIK) Institute of Engineering Sciences and Technology Topi 23640 Pakistan +92-938-281032 +92-938-281026
| | - Syeda Ammara Batool
- Materials Engineering Research Institute, Sheffield Hallam University Sheffield UK
| | - Areeb Anwar
- Skolkovo Institute of Science and Technology Moscow Russia
| | - Syed Muhammad Abdullah
- Department of Materials Science and Engineering, Ghulam Ishaq Khan (GIK) Institute of Engineering Sciences and Technology Topi 23640 Pakistan +92-938-281032 +92-938-281026
| | - Zia Ud Din
- Department of Materials Science and Engineering, Ghulam Ishaq Khan (GIK) Institute of Engineering Sciences and Technology Topi 23640 Pakistan +92-938-281032 +92-938-281026
| | - Muhammad Humayun
- Energy, Water, and Environment Lab, College of Humanities and Sciences, Prince Sultan University Riyadh 11586 Saudi Arabia
| | - Mohamed Bououdina
- Energy, Water, and Environment Lab, College of Humanities and Sciences, Prince Sultan University Riyadh 11586 Saudi Arabia
| | - Al-Badrawy Abo-Elnasr
- Department of Mechanical Engineering, College of Engineering, Taif University Kingdom of Saudi Arabia
| | - Hafiz Tauqeer Ali
- Department of Mechanical Engineering, College of Engineering, Taif University Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Akay S, Yaghmur A. Recent Advances in Antibacterial Coatings to Combat Orthopedic Implant-Associated Infections. Molecules 2024; 29:1172. [PMID: 38474684 DOI: 10.3390/molecules29051172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Implant-associated infections (IAIs) represent a major health burden due to the complex structural features of biofilms and their inherent tolerance to antimicrobial agents and the immune system. Thus, the viable options to eradicate biofilms embedded on medical implants are surgical operations and long-term and repeated antibiotic courses. Recent years have witnessed a growing interest in the development of robust and reliable strategies for prevention and treatment of IAIs. In particular, it seems promising to develop materials with anti-biofouling and antibacterial properties for combating IAIs on implants. In this contribution, we exclusively focus on recent advances in the development of modified and functionalized implant surfaces for inhibiting bacterial attachment and eventually biofilm formation on orthopedic implants. Further, we highlight recent progress in the development of antibacterial coatings (including self-assembled nanocoatings) for preventing biofilm formation on orthopedic implants. Among the recently introduced approaches for development of efficient and durable antibacterial coatings, we focus on the use of safe and biocompatible materials with excellent antibacterial activities for local delivery of combinatorial antimicrobial agents for preventing and treating IAIs and overcoming antimicrobial resistance.
Collapse
Affiliation(s)
- Seref Akay
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
3
|
Adhesion and Proliferation of Mesenchymal Stem Cells on Plasma-Coated Biodegradable Nanofibers. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6070193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Various biomedical applications of biodegradable nanofibers are a hot topic, as evidenced by the ever-increasing number of publications in this field. However, as-prepared nanofibers suffer from poor cell adhesion, so their surface is often modified. In this work, active polymeric surface layers with different densities of COOH groups from 5.1 to 14.4% were successfully prepared by Ar/CO2/C2H4 plasma polymerization. It has been shown that adhesion and proliferation of mesenchymal stem cells (MSCs) seeded onto plasma-modified PCL nanofibers are controlled by the CO2:C2H4 ratio. At a high CO2:C2H4 ratio, a well-defined network of actin microfilaments is observed in the MSCs. Nanofibers produced at a low CO2:C2H4 ratio showed poor cell adhesion and very poor survival. There were significantly fewer cells on the surface, they had a small spreading area, a poorly developed network of actin filaments, and there were almost no stress fibrils. The maximum percentage of proliferating cells was recorded at a CO2:C2H4 ratio of 35:15 compared with gaseous environments of 25:20 and 20:25 (24.1 ± 1.5; 8.4 ± 0.9, and 4.1 ± 0.4%, respectively). Interestingly, no differences were observed between the number of cells on the untreated surface and the plasma-polymerized surface at CO2:C2H4 = 20:25 (4.9 ± 0.6 and 4.1 ± 0.4, respectively). Thus, Ar/CO2/C2H4 plasma polymerization can be an excellent tool for regulating the viability of MSCs by simply adjusting the CO2:C2H4 ratio.
Collapse
|
4
|
Elsadek NE, Nagah A, Ibrahim TM, Chopra H, Ghonaim GA, Emam SE, Cavalu S, Attia MS. Electrospun Nanofibers Revisited: An Update on the Emerging Applications in Nanomedicine. MATERIALS 2022; 15:ma15051934. [PMID: 35269165 PMCID: PMC8911671 DOI: 10.3390/ma15051934] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023]
Abstract
Electrospinning (ES) has become a straightforward and customizable drug delivery technique for fabricating drug-loaded nanofibers (NFs) using various biodegradable and non-biodegradable polymers. One of NF's pros is to provide a controlled drug release through managing the NF structure by changing the spinneret type and nature of the used polymer. Electrospun NFs are employed as implants in several applications including, cancer therapy, microbial infections, and regenerative medicine. These implants facilitate a unique local delivery of chemotherapy because of their high loading capability, wide surface area, and cost-effectiveness. Multi-drug combination, magnetic, thermal, and gene therapies are promising strategies for improving chemotherapeutic efficiency. In addition, implants are recognized as an effective antimicrobial drug delivery system overriding drawbacks of traditional antibiotic administration routes such as their bioavailability and dosage levels. Recently, a sophisticated strategy has emerged for wound healing by producing biomimetic nanofibrous materials with clinically relevant properties and desirable loading capability with regenerative agents. Electrospun NFs have proposed unique solutions, including pelvic organ prolapse treatment, viable alternatives to surgical operations, and dental tissue regeneration. Conventional ES setups include difficult-assembled mega-sized equipment producing bulky matrices with inadequate stability and storage. Lately, there has become an increasing need for portable ES devices using completely available off-shelf materials to yield highly-efficient NFs for dressing wounds and rapid hemostasis. This review covers recent updates on electrospun NFs in nanomedicine applications. ES of biopolymers and drugs is discussed regarding their current scope and future outlook.
Collapse
Affiliation(s)
- Nehal E. Elsadek
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan;
| | - Abdalrazeq Nagah
- Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (A.N.); (G.A.G.)
| | - Tarek M. Ibrahim
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (T.M.I.); (S.E.E.)
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Ghada A. Ghonaim
- Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (A.N.); (G.A.G.)
| | - Sherif E. Emam
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (T.M.I.); (S.E.E.)
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
- Correspondence: (S.C.); (M.S.A.)
| | - Mohamed S. Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (T.M.I.); (S.E.E.)
- Correspondence: (S.C.); (M.S.A.)
| |
Collapse
|
5
|
Ribeiro JS, Bordini EAF, Pereira GKR, Polasani RR, Squarize CH, Kantorski KZ, Valandro LF, Bottino MC. Novel cinnamon-laden nanofibers as a potential antifungal coating for poly(methyl methacrylate) denture base materials. Clin Oral Investig 2022; 26:3697-3706. [PMID: 35028732 DOI: 10.1007/s00784-021-04341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/06/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To modify the surface of denture base material by coating it with cinnamon-laden nanofibers to reduce Candida albicans (C. albicans) adhesion and/or proliferation. MATERIALS AND METHODS Heat-cured poly(methyl methacrylate) (PMMA) specimens were processed and coated, or not, with cinnamon-laden polymeric nanofibers (20 or 40 wt.% of cinnamon relative to the total polymer weight). Scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) analyses of the nanofibers were performed. Antifungal activity was assessed through agar diffusion and colony-forming unit (CFU/mL) assays. Representative SEM morphological analysis was carried out to observe the presence/absence of C. albicans on the fibers. Alamar blue assay was used to determine cell toxicity. Analysis of variance and the Tukey's test were used to analyze the data (α = 0.05). RESULTS SEM imaging revealed nanofibers with adequate (i.e., bead-free) morphological characteristics and uniform microstructure. FTIR confirmed cinnamon incorporation. The cinnamon-laden nanofibers led to growth inhibition of C. albicans. Viable fungal counts support a significant reduction on CFU/mL also directly related to cinnamon concentration (40 wt.%: mean log 6.17 CFU/mL < 20 wt.%: mean log 7.12 CFU/mL), which agrees with the SEM images. Cinnamon-laden nanofibers at 40 wt.% led to increased cell death. CONCLUSIONS The deposition of 20 wt.% cinnamon-laden nanofibers onto PMMA surfaces led to a significant reduction of the adhesive and/or proliferative ability of C. albicans, while maintaining epithelial cells' viability. CLINICAL RELEVANCE The high recurrence rates of denture stomatitis are associated with patient non-adherence to treatments and contaminated prostheses use. Here, we provide the non-patients' cooperation sensible method, which possesses antifungal action, hence improving treatment effectiveness.
Collapse
Affiliation(s)
- Juliana Silva Ribeiro
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, 1011 N. University (Room 5223), Ann Arbor, MI, 48109, USA.,Department of Restorative Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Ester Alves Ferreira Bordini
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, 1011 N. University (Room 5223), Ann Arbor, MI, 48109, USA.,Department of Physiology and Pathology, University Estadual Paulista - UNESP, Araraquara, SP, Brazil
| | - Gabriel Kalil Rocha Pereira
- Post-Graduate Program in Oral Science, Faculty of Dentistry, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande Do Sul State, Brazil
| | - Rohitha Rao Polasani
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, 1011 N. University (Room 5223), Ann Arbor, MI, 48109, USA
| | - Cristiane Helena Squarize
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Karla Zanini Kantorski
- Post-Graduate Program in Oral Science, Faculty of Dentistry, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande Do Sul State, Brazil
| | - Luiz Felipe Valandro
- Post-Graduate Program in Oral Science, Faculty of Dentistry, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande Do Sul State, Brazil
| | - Marco Cícero Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, 1011 N. University (Room 5223), Ann Arbor, MI, 48109, USA.
| |
Collapse
|
6
|
Ueoka K, Kabata T, Tokoro M, Kajino Y, Inoue D, Takagi T, Ohmori T, Yoshitani J, Ueno T, Yamamuro Y, Taninaka A, Tsuchiya H. Antibacterial Activity in Iodine-coated Implants Under Conditions of Iodine Loss: Study in a Rat Model Plus In Vitro Analysis. Clin Orthop Relat Res 2021; 479:1613-1623. [PMID: 33847603 PMCID: PMC8208413 DOI: 10.1097/corr.0000000000001753] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/08/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND We developed iodine-coated titanium implants to suppress microbial activity and prevent periprosthetic joint infection (PJI); their efficacy was demonstrated in animal and in vitro models. The iodine content in iodine-coated implants naturally decreases in vivo. However, to our knowledge, the effect of reduced iodine content on the implant's antimicrobial activity has not been evaluated to date. QUESTIONS/PURPOSES (1) How much does the iodine content on the implant surface decrease after 4 and 8 weeks in vivo in a rat model? (2) What effect does the reduced iodine content have on the antimicrobial effect of the implant against multiple bacteria in an in vitro model? METHODS This experiment was performed in two parts: an in vivo experiment to determine attenuation of iodine levels over time in rats, and an in vitro experiment in which we sought to assess whether the reduced iodine content observed in the in vivo experiment was still sufficient to deliver antimicrobial activity against common pathogens seen in PJI. For the in vivo experiment, three types of titanium alloy washers were implanted in rats: untreated (Ti), surface-anodized to produce an oxide film (Ti-O), and with an iodine layer on the oxidation film (Ti-I). The attenuation of iodine levels in rats was measured over time using inductively coupled plasma-mass spectrometry. Herein, only the Ti-I washer was used, with five implanted in each rat that were removed after 4 or 8 weeks. For the 4- and 8-week models, two rats and 15 washers were used. For the in vitro study, to determine the antibacterial effect, three types of washers (Ti, Ti-O, and Ti-I) (nine washers in total) were implanted in each rat. Then, the washers were removed and the antibacterial effect of each washer was examined on multiple bacterial species using the spread plate method and fluorescence microscopy. For the spread plate method, six rats were used, and five rats were used for the observation using fluorescence microscopy; further, 4- and 8-week models were made for each method. Thus, a total of 22 rats and 198 washers were used. Live and dead bacteria in the biofilm were stained, and the biofilm coverage percentage for quantitative analysis was determined using fluorescence microscopy in a nonblinded manner. Ti-I was used as the experimental group, and Ti and Ti-O were used as control groups. The total number of rats and washers used throughout this study was 24 and 213, respectively. RESULTS Iodine content in rats implanted with Ti-I samples decreased to 72% and 65% after the in vivo period of 4 and 8 weeks, respectively (p = 0.001 and p < 0.001, respectively). In the in vitro experiment, the Ti-I implants demonstrated a stronger antimicrobial activity than Ti and Ti-O implants in the 4- and 8-week models. Both the median number of bacterial colonies and the median biofilm coverage percentage with live bacteria on Ti-I were lower than those on Ti or Ti-O implants for each bacterial species in the 4- and 8-week models. There was no difference in the median biofilm coverage percentage of dead bacteria. In the 8-week model, the antibacterial activity using the spread plate method had median (interquartile range) numbers of bacteria on the Ti, Ti-O, and Ti-I implants of 112 (104 to 165) × 105, 147 (111 to 162) × 105, and 55 (37 to 67) × 105 of methicillin-sensitive Staphylococcus aureus (Ti-I versus Ti, p = 0.026; Ti-I versus Ti-O, p = 0.009); 71 (39 to 111) × 105, 50 (44 to 62) × 105, and 26 (9 to 31)× 105 CFU of methicillin-resistant S. aureus (Ti-I versus Ti, p = 0.026; Ti-I versus Ti-O, p = 0.034); and 77 (74 to 83) × 106, 111 (95 to 117) × 106, and 30 (21 to 45) × 106 CFU of Pseudomonas aeruginosa (Ti-I versus Ti, p = 0.004; Ti-I versus Ti-O, p = 0.009). Despite the decrease in the iodine content of Ti-I after 8 weeks, it demonstrated better antibacterial activity against all tested bacteria than the Ti and Ti-O implants. CONCLUSION Iodine-coated implants retained their iodine content and antibacterial activity against methicillin-sensitive S. aureus, methicillin-resistant S. aureus, and P. aeruginosa for 8 weeks in vivo in rats. To evaluate the longer-lasting antibacterial efficacy, further research using larger infected animal PJI models with implants in the joints of both males and females is desirable. CLINICAL RELEVANCE Iodine-coated titanium implants displayed an antibacterial activity for 8 weeks in rats in vivo. Although the findings in a rat model do not guarantee efficacy in humans, they represent an important step toward clinical application.
Collapse
Affiliation(s)
- Ken Ueoka
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Tamon Kabata
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masaharu Tokoro
- Department of Parasitology, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Japan
| | - Yoshitomo Kajino
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Daisuke Inoue
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Tomoharu Takagi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takaaki Ohmori
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Junya Yoshitani
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takuro Ueno
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yuki Yamamuro
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Atsushi Taninaka
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
7
|
Aydemir T, Liverani L, Pastore JI, Ceré SM, Goldmann WH, Boccaccini AR, Ballarre J. Functional behavior of chitosan/gelatin/silica-gentamicin coatings by electrophoretic deposition on surgical grade stainless steel. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111062. [DOI: 10.1016/j.msec.2020.111062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/18/2020] [Accepted: 05/05/2020] [Indexed: 02/08/2023]
|
8
|
Jahanmard F, Croes M, Castilho M, Majed A, Steenbergen MJ, Lietaert K, Vogely HC, van der Wal BCH, Stapels DAC, Malda J, Vermonden T, Amin Yavari S. Bactericidal coating to prevent early and delayed implant-related infections. J Control Release 2020; 326:38-52. [PMID: 32580041 DOI: 10.1016/j.jconrel.2020.06.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/22/2020] [Accepted: 06/14/2020] [Indexed: 01/01/2023]
Abstract
The occurrence of an implant-associated infection (IAI) with the formation of a persisting bacterial biofilm remains a major risk following orthopedic biomaterial implantation. Yet, progress in the fabrication of tunable and durable implant coatings with sufficient bactericidal activity to prevent IAI has been limited. Here, an electrospun composite coating was optimized for the combinatorial and sustained delivery of antibiotics. Antibiotics-laden poly(ε-caprolactone) (PCL) and poly`1q`(lactic-co glycolic acid) (PLGA) nanofibers were electrospun onto lattice structured titanium (Ti) implants. In order to achieve tunable and independent delivery of vancomycin (Van) and rifampicin (Rif), we investigated the influence of the specific drug-polymer interaction and the nanofiber coating composition on the drug release profile and durability of the polymer-Ti interface. We found that a bi-layered nanofiber structure, produced by electrospinning of an inner layer of [PCL/Van] and an outer layer of [PLGA/Rif], yielded the optimal combinatorial drug release profile. This resulted in markedly enhanced bactericidal activity against planktonic and adherent Staphylococcus aureus for 6 weeks as compared to single drug delivery. Moreover, after 6 weeks, synergistic bacterial killing was observed as a result of sustained Van and Rif release. The application of a nanofiber-filled lattice structure successfully prevented the delamination of the multi-layer coating after press-fit cadaveric bone implantation. This new lattice design, in conjunction with the multi-layer nanofiber structure, can be applied to develop tunable and durable coatings for various metallic implantable devices. This is particularly appealing to tune the release of multiple antimicrobial agents over a period of weeks to prevent early and delayed onset IAI.
Collapse
Affiliation(s)
- F Jahanmard
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - M Croes
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - M Castilho
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - A Majed
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - M J Steenbergen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
| | - K Lietaert
- 3D Systems - LayerWise NV, Leuven, Belgium; Department of Metallurgy and Materials Engineering, KU Leuven, Leuven, Belgium
| | - H C Vogely
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - B C H van der Wal
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - D A C Stapels
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - J Malda
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - T Vermonden
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
| | - S Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
9
|
Sumathra M, Rajan M. Pulsed Electrodeposition of HAP/CPG-BSA/CUR Nanocomposite on Titanium Metal for Potential Bone Regeneration. ACS APPLIED BIO MATERIALS 2019; 2:4756-4768. [DOI: 10.1021/acsabm.9b00494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Murugan Sumathra
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| |
Collapse
|
10
|
Liu F, Wang X, Chen T, Zhang N, Wei Q, Tian J, Wang Y, Ma C, Lu Y. Hydroxyapatite/silver electrospun fibers for anti-infection and osteoinduction. J Adv Res 2019; 21:91-102. [PMID: 32071777 PMCID: PMC7015467 DOI: 10.1016/j.jare.2019.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/19/2019] [Accepted: 10/06/2019] [Indexed: 11/28/2022] Open
Abstract
Bone implant materials cause the most common complication of bone infections in orthopedic surgery, resulting in implant failure. Antibiotic treatment of bone infections leads to problems such as bacterial resistance and reduced osteogenic capacity. In this study, dopamine (DA) was self-polymerized on the surface of Polylactic acid (PLLA)/Hydroxyapatite (HA) nanowire composite fibers to form an adhesive polydopamine (PDA) membrane, and a stable silver-nanoparticles (Ag-NPs) coating layer was constructed on it by electrochemically driven Ag+ coordination and chelation through Polypyrrole (PPy) mediation, achieving steady and slow release of Ag-NPs. With optimized DA soaking time of 24 h and soaking concentration of 0.5 g·L-1, nanoparticles were uniformly distributed on PLLA/HA/PDA/PPy/Ag composite fibers and the hydrophilicity of the composite fibers was well-behaved. Besides, the composite fibers possessed good physiological stability and 100% antibacterial rate against Escherichia coli (E. coli) as well as Staphylococcus aureus (S. aureus). In addition, the composite fibers had promoted apatite nucleation and growth on surface and good cytocompatibility with osteoblasts, indicating ability of inducing osteogenic differentiation. In summary, a multi-functional PLLA/HA/PDA/PPy/Ag composite fiber with long-term antibacterial property, bioactivity and osteoinductivity was successfully constructed by electrospinning and electrochemical deposition.
Collapse
Affiliation(s)
- Feifei Liu
- College of Chemical Engineering, Xinjiang Normal University, Urumqi 830054, Xinjiang, PR China
| | - Xiaohui Wang
- College of Chemical Engineering, Xinjiang Normal University, Urumqi 830054, Xinjiang, PR China
| | - Tongtong Chen
- Radiology Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Naiyin Zhang
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Xiasha Higher Education Zone, Hangzhou, Zhejiang 310018, PR China
| | - Qin Wei
- Animal Laboratory Center, Xinjiang Medical University, 393 Xinyi Road, Urumqi 830054, PR China
| | - Juling Tian
- Laboratory Department of the First People's Hospital of Urumqi, 1 Jiankang Road, Urumqi 830002, PR China
| | - Yingbo Wang
- College of Chemical Engineering, Xinjiang Normal University, Urumqi 830054, Xinjiang, PR China
| | - Chuang Ma
- Department of Orthopedics Center, the First Affiliated Hospital of Xinjiang Medical University, 393 Xinyi Road, Urumqi 830054, PR China
| | - Yong Lu
- Radiology Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| |
Collapse
|
11
|
Kharaghani D, Gitigard P, Ohtani H, Kim KO, Ullah S, Saito Y, Khan MQ, Kim IS. Design and characterization of dual drug delivery based on in-situ assembled PVA/PAN core-shell nanofibers for wound dressing application. Sci Rep 2019; 9:12640. [PMID: 31477774 PMCID: PMC6718412 DOI: 10.1038/s41598-019-49132-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/09/2019] [Indexed: 01/09/2023] Open
Abstract
Core-shell nanofibers with the ability to carry multiple drugs are attracting the attention to develop appropriate drug delivery systems for wounds dressing applications. In this study, biocompatible core-shell nanofibers have been designed as a promising dual-drug carrier with the capability of delivering both water-soluble and organic solvent-soluble drugs simultaneously. With the aim of fabricating the core-shell nanofibers, the dipping method has been employed. For this propose, core nanofibers made from polyvinyl alcohol (PVA) were immersed in various concentrations of polyacrylonitrile (PAN) and cross-linked by dipping into ethanol. Diclofenac sodium salt (DSs) and gentamicin sulfate (GENs) have been loaded into the core and shell nanofibers as models of the drug, respectively. The morphology study of core-shell nanofibers showed that the concentrations between 1% w/w up to 2% w/w PAN/GENs, with deep penetration into the internal layers of PAV/DSs nanofibers could lead to the core-shell structure. The cytotoxicity results showed the competency of designed core-shell nanofibers for wound dressing application. Also, the release profile exhibits the controllable behavior of drug release.
Collapse
Affiliation(s)
- Davood Kharaghani
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering (IFES-, Interdisciplinary Cluster for Cutting Edge Research) ICCER, Shinshu University, Tokida 3-15-1, Ueda, Nagano, 386-8567, Japan
| | - Parastoo Gitigard
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering (IFES-, Interdisciplinary Cluster for Cutting Edge Research) ICCER, Shinshu University, Tokida 3-15-1, Ueda, Nagano, 386-8567, Japan
| | - Hijiri Ohtani
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering (IFES-, Interdisciplinary Cluster for Cutting Edge Research) ICCER, Shinshu University, Tokida 3-15-1, Ueda, Nagano, 386-8567, Japan
| | - Kyu Oh Kim
- Department of Fiber System Engineering, Dankook University, Gyeonggi-do, Republic of Korea
| | - Sana Ullah
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering (IFES-, Interdisciplinary Cluster for Cutting Edge Research) ICCER, Shinshu University, Tokida 3-15-1, Ueda, Nagano, 386-8567, Japan
| | - Yusuke Saito
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering (IFES-, Interdisciplinary Cluster for Cutting Edge Research) ICCER, Shinshu University, Tokida 3-15-1, Ueda, Nagano, 386-8567, Japan
| | - Muhammad Qamar Khan
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering (IFES-, Interdisciplinary Cluster for Cutting Edge Research) ICCER, Shinshu University, Tokida 3-15-1, Ueda, Nagano, 386-8567, Japan
| | - Ick Soo Kim
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering (IFES-, Interdisciplinary Cluster for Cutting Edge Research) ICCER, Shinshu University, Tokida 3-15-1, Ueda, Nagano, 386-8567, Japan.
| |
Collapse
|
12
|
Barik A, Chakravorty N. Targeted Drug Delivery from Titanium Implants: A Review of Challenges and Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1251:1-17. [PMID: 31768968 DOI: 10.1007/5584_2019_447] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Titanium implants are considered the gold standard of treatment for dental and orthopedic applications. Biocompatibility, low elasticity, and corrosion resistance are some of the key properties of these metallic implants. Nonetheless, a long-term clinical failure of implants may occur due to inadequate osseointegration. Poor osseointegration induces mobility, inflammation, increased bone resorption, and osteolysis; hence, it may result in painful revision surgeries. Topographical modifications, improvement in hydrophilicity, and the development of controlled-release drug-loading systems have shown to improve cellular adhesion, proliferation, and differentiation. Surface modifications, along with drug coating, undoubtedly demonstrate better osseointegration, especially in challenged degenerative conditions, such as osteoporosis, osteoarthritis, and osteogenesis imperfecta. Anabolic bone-acting drugs, such as parathyroid hormone peptides, simvastatin, prostaglandin-EP4-receptor antagonist, vitamin D, strontium ranelate, and anti-catabolic bone-acting drugs, such as calcitonin, bisphosphonates, and selective estrogen receptor modulators, expedite the process of osseointegration. In addition, various proteins, peptides, and growth factors may accessorize the idea of localized therapy. Loading these substances on modified titanium surfaces is achieved commonly by mechanisms such as direct coating, adsorption, and incorporating in biodegradable polymers. The primary approach toward the optimum drug loading is a critical trade-off between factors preventing release of a drug immediately and those allowing slow and sustained release. Recent advances broaden the understanding of the efficacy of adsorption, hydrogel coating, and electrospinning layer-by-layer coating facilitated by differential charge on metallic surface. This review discusses the existing approaches and challenges for the development of stable and sustained drug delivery systems on titanium implants, which would promote faster and superior osseointegration.
Collapse
Affiliation(s)
- Anwesha Barik
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, Paschim Medinipur, West Bengal, India
| | - Nishant Chakravorty
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, Paschim Medinipur, West Bengal, India.
| |
Collapse
|
13
|
Preparation of gentamicin sulfate eluting fiber mats by emulsion and by suspension electrospinning. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 94:86-93. [PMID: 30423773 DOI: 10.1016/j.msec.2018.09.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 08/20/2018] [Accepted: 09/06/2018] [Indexed: 12/22/2022]
Abstract
This work investigates the immobilization of the antibiotic gentamicin sulfate (GS) in electrospun fiber mats composed of poly(lactic acid) (PLA), poly(ε-caprolactone) (PCL) and the copolymer poly(lactic-co-glycolic acid) (PLGA). Since GS is highly water soluble but weakly soluble in the organic solvents commonly used in the electrospinning process, two methods of immobilization were investigated: by suspension electrospinning, in which GS particles were directly dispersed in the polymeric organic solutions, and by emulsion electrospinning, in which GS was solubilized in an aqueous phase that was then dispersed in the organic polymeric solution containing the surfactant SPAN80. Fibers with distinct diameters and morphologies were obtained for the different methods and compositions. Contrary to the fibers prepared by suspension electrospinning, emulsion electrospinning based fibers exhibited an excellent wettability, allegedly due to the effect of the surfactant SPAN80. Despite the differences between both methods the produced mats presented similar GS release profiles, with a considerable burst release in the first 8 h followed by a gradual release of the remaining drug during the next 4-6 days. Finally, all GS loaded fiber mats proved to have an antibacterial effect against the bacterial strain Staphylococcus aureus.
Collapse
|
14
|
Wang Y, Yan L, Cheng R, Muhtar M, Shan X, Xiang Y, Cui W. Multifunctional HA/Cu nano-coatings on titanium using PPy coordination and doping via pulse electrochemical polymerization. Biomater Sci 2018; 6:575-585. [DOI: 10.1039/c7bm01104k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An anti-wear and antibacterial hydroxyapatite nanoparticle bioactive coating on a titanium matrix is fabricated through hydroxyapatite/copper nanoparticle co-deposition.
Collapse
Affiliation(s)
- Yingbo Wang
- College of Chemical Engineering
- Xinjiang Normal University
- Xinjiang
- China
| | - Ling Yan
- College of Chemical Engineering
- Xinjiang Normal University
- Xinjiang
- China
| | - Ruoyu Cheng
- Shanghai Institute of Traumatology and Orthopaedics
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Mirigul Muhtar
- College of Chemical Engineering
- Xinjiang Normal University
- Xinjiang
- China
| | - Xinxin Shan
- College of Chemical Engineering
- Xinjiang Normal University
- Xinjiang
- China
| | - Yi Xiang
- Shanghai Institute of Traumatology and Orthopaedics
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Wenguo Cui
- Shanghai Institute of Traumatology and Orthopaedics
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| |
Collapse
|
15
|
Göke K, Lorenz T, Repanas A, Schneider F, Steiner D, Baumann K, Bunjes H, Dietzel A, Finke JH, Glasmacher B, Kwade A. Novel strategies for the formulation and processing of poorly water-soluble drugs. Eur J Pharm Biopharm 2017; 126:40-56. [PMID: 28532676 DOI: 10.1016/j.ejpb.2017.05.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 12/31/2022]
Abstract
Low aqueous solubility of active pharmaceutical ingredients presents a serious challenge in the development process of new drug products. This article provides an overview on some of the current approaches for the formulation of poorly water-soluble drugs with a special focus on strategies pursued at the Center of Pharmaceutical Engineering of the TU Braunschweig. These comprise formulation in lipid-based colloidal drug delivery systems and experimental as well as computational approaches towards the efficient identification of the most suitable carrier systems. For less lipophilic substances the preparation of drug nanoparticles by milling and precipitation is investigated for instance by means of microsystem-based manufacturing techniques and with special regard to the preparation of individualized dosage forms. Another option to overcome issues with poor drug solubility is the incorporation into nanospun fibers.
Collapse
Affiliation(s)
- Katrin Göke
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie, Mendelssohnstr. 1, 38106 Braunschweig, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Thomas Lorenz
- Technische Universität Braunschweig, Institut für Mikrotechnik, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Alexandros Repanas
- Leibniz Universität Hannover, Institut für Mehrphasenprozesse, Callinstr. 36, 30167 Hannover, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Frederic Schneider
- Technische Universität Braunschweig, Institut für Medizinische und Pharmazeutische Chemie, Beethovenstr. 55, 38106 Braunschweig, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Denise Steiner
- Technische Universität Braunschweig, Institut für Partikeltechnik, Volkmaroder Str. 5, 38104 Braunschweig, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Knut Baumann
- Technische Universität Braunschweig, Institut für Medizinische und Pharmazeutische Chemie, Beethovenstr. 55, 38106 Braunschweig, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Heike Bunjes
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie, Mendelssohnstr. 1, 38106 Braunschweig, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Andreas Dietzel
- Technische Universität Braunschweig, Institut für Mikrotechnik, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Jan H Finke
- Technische Universität Braunschweig, Institut für Partikeltechnik, Volkmaroder Str. 5, 38104 Braunschweig, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Birgit Glasmacher
- Leibniz Universität Hannover, Institut für Mehrphasenprozesse, Callinstr. 36, 30167 Hannover, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Arno Kwade
- Technische Universität Braunschweig, Institut für Partikeltechnik, Volkmaroder Str. 5, 38104 Braunschweig, Germany; Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| |
Collapse
|
16
|
Yan L, Xiang Y, Yu J, Wang Y, Cui W. Fabrication of Antibacterial and Antiwear Hydroxyapatite Coatings via In Situ Chitosan-Mediated Pulse Electrochemical Deposition. ACS APPLIED MATERIALS & INTERFACES 2017; 9:5023-5030. [PMID: 28133966 DOI: 10.1021/acsami.6b15979] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Although bioinert titanium has been widely applied in orthopedics and related fields, its usage is limited by its unsatisfying osteoinductivity, anti-infection capability, and wear-resistance. Osteoinductive apatite coating can be fabricated on a titanium surface by electrochemical methods, but this causes bacterial adhesion and poor wear-resistance. On the basis of pulse electrochemical technology, a wear-resistance and antibacterial osteoinductive coating was fabricated through codeposition of hydroxyapatite (HA) and nano-Ag effectuated by the cohybridization ofchitosan (CS) with Ag+ and Ca2+. A composite coating formed with uniformly dispersed spherical nanoparticles was obtained at optimized deposition potential, Ag concentration, and apatite concentration. The nanocomposite coating shows excellent bioinductive activity; it promotes preferential growth on the (002) face, and needle-like ordered arrangement of apatite. Due to the mediation of CS hybridization, a compact structure is achieved in the HA/Ag composite coating which significantly enhances the wear-resistance of the coating and reduces the release of Ca2+ and Ag+. The antibacterial rate of the coating on Escherichia coli and Staphylococcus aureus is up to 99% according to the antibacterial test. In conclusion, a wear-resistant and long-term antibacterial bioactive nanocomposite coating is successfully fabricated on titanium surface through the strategy established in this study.
Collapse
Affiliation(s)
- Ling Yan
- College of Chemical Engineering, Xinjiang Normal University , Urumqi, 830054, Xinjiang China
| | - Yi Xiang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University , 708 Renmin Road, Suzhou, Jiangsu 215006, P.R. China
| | - Jia Yu
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University , 708 Renmin Road, Suzhou, Jiangsu 215006, P.R. China
| | - Yingbo Wang
- College of Chemical Engineering, Xinjiang Normal University , Urumqi, 830054, Xinjiang China
| | - Wenguo Cui
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University , 708 Renmin Road, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
17
|
Shahi RG, Albuquerque MTP, Münchow EA, Blanchard SB, Gregory RL, Bottino MC. Novel bioactive tetracycline-containing electrospun polymer fibers as a potential antibacterial dental implant coating. Odontology 2016; 105:354-363. [PMID: 27585669 DOI: 10.1007/s10266-016-0268-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 07/25/2016] [Indexed: 11/28/2022]
Abstract
The purpose of this investigation was to determine the ability of tetracycline-containing fibers to inhibit biofilm formation of peri-implantitis-associated pathogens [i.e., Porphyromonas gingivalis (Pg), Fusobacterium nucleatum (Fn), Prevotella intermedia (Pi), and Aggregatibacter actinomycetemcomitans (Aa)]. Tetracycline hydrochloride (TCH) was added to a poly(DL-lactide) [PLA], poly(ε-caprolactone) [PCL], and gelatin [GEL] polymer blend solution at distinct concentrations to obtain the following fibers: PLA:PCL/GEL (TCH-free, control), PLA:PCL/GEL + 5 % TCH, PLA:PCL/GEL + 10 % TCH, and PLA:PCL/GEL + 25 % TCH. The inhibitory effect of TCH-containing fibers on biofilm formation was assessed by colony-forming units (CFU/mL). Qualitative analysis of biofilm inhibition was done via scanning electron microscopy (SEM). Statistical significance was reported at p < 0.05. Complete inhibition of biofilm formation on the fibers was observed in groups containing TCH at 10 and 25 wt%. Fibers containing TCH at 5 wt% demonstrated complete inhibition of Aa biofilm. Even though a marked reduction in CFU/mL was observed with an increase in TCH concentration, Pi proved to be the most resilient microorganism. SEM images revealed the absence of or a notable decrease in bacterial biofilm on the TCH-containing nanofibers. Collectively, our data suggest that tetracycline-containing fibers hold great potential as an antibacterial dental implant coating.
Collapse
Affiliation(s)
- R G Shahi
- Division of Dental Biomaterials, Department of Biomedical and Applied Sciences, Indiana University School of Dentistry (IUSD), 1121 W. Michigan St. (DS270B), Indianapolis, IN, 46202, USA.,Department of Periodontics and Allied Dental Programs, IUSD, Indianapolis, IN, 46202, USA
| | - M T P Albuquerque
- Division of Dental Biomaterials, Department of Biomedical and Applied Sciences, Indiana University School of Dentistry (IUSD), 1121 W. Michigan St. (DS270B), Indianapolis, IN, 46202, USA
| | - E A Münchow
- Division of Dental Biomaterials, Department of Biomedical and Applied Sciences, Indiana University School of Dentistry (IUSD), 1121 W. Michigan St. (DS270B), Indianapolis, IN, 46202, USA
| | - S B Blanchard
- Department of Periodontics and Allied Dental Programs, IUSD, Indianapolis, IN, 46202, USA
| | - R L Gregory
- Division of Dental Biomaterials, Department of Biomedical and Applied Sciences, Indiana University School of Dentistry (IUSD), 1121 W. Michigan St. (DS270B), Indianapolis, IN, 46202, USA
| | - M C Bottino
- Division of Dental Biomaterials, Department of Biomedical and Applied Sciences, Indiana University School of Dentistry (IUSD), 1121 W. Michigan St. (DS270B), Indianapolis, IN, 46202, USA. .,Department of Biomedical Engineering, Indiana University Purdue University, Indianapolis, IN, 46202, USA. .,Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
18
|
Bottino MC, Münchow EA, Albuquerque MTP, Kamocki K, Shahi R, Gregory RL, Chu TMG, Pankajakshan D. Tetracycline-incorporated polymer nanofibers as a potential dental implant surface modifier. J Biomed Mater Res B Appl Biomater 2016; 105:2085-2092. [PMID: 27405272 DOI: 10.1002/jbm.b.33743] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/13/2016] [Accepted: 06/20/2016] [Indexed: 12/27/2022]
Abstract
This study investigated the antimicrobial and osteogenic properties of titanium (Ti) disks superficially modified with tetracycline (TCH)-incorporated polymer nanofibers. The experiments were carried out in two phases. The first phase dealt with the synthesis and characterization (i.e., morphology, mechanical strength, drug release, antimicrobial activity, and cytocompatibility) of TCH-incorporated fibers. The second phase was dedicated to evaluating both the antimicrobial and murine-derived osteoprecursor cell (MC3T3-E1) response of Ti-modified with TCH-incorporated fibers. TCH was successfully incorporated into the submicron-sized and cytocompatible fibers. All TCH-incorporated mats presented significant antimicrobial activity against periodontal pathogens. The antimicrobial potential of the TCH-incorporated fibers-modified Ti was influenced by both the TCH concentration and bacteria tested. At days 5 and 7, a significant increase in MC3T3-E1 cell number was observed for TCH-incorporated nanofibers-modified Ti disks when compared to that of TCH-free nanofibers-modified Ti-disks and bare Ti. A significant increase in alkaline phosphatase (ALP) levels on the Ti disks modified with TCH-incorporated nanofiber on days 7 and 14 was seen, suggesting that the proposed surface promotes early osteogenic differentiation. Collectively, the data suggest that TCH-incorporated nanofibers could function as an antimicrobial surface modifier and osteogenic inducer for Ti dental implants. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2085-2092, 2017.
Collapse
Affiliation(s)
- Marco C Bottino
- Department of Biomedical and Applied Sciences, Division of Dental Biomaterials, Indiana University School of Dentistry (IUSD), Indianapolis, Indiana, 46202.,Department of Biomedical Engineering, Indiana University Purdue University, Indianapolis, Indiana, 46202.,Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | - Eliseu A Münchow
- Department of Biomedical and Applied Sciences, Division of Dental Biomaterials, Indiana University School of Dentistry (IUSD), Indianapolis, Indiana, 46202
| | - Maria T P Albuquerque
- Department of Biomedical and Applied Sciences, Division of Dental Biomaterials, Indiana University School of Dentistry (IUSD), Indianapolis, Indiana, 46202
| | - Krzysztof Kamocki
- Department of Biomedical and Applied Sciences, Division of Dental Biomaterials, Indiana University School of Dentistry (IUSD), Indianapolis, Indiana, 46202
| | - Rana Shahi
- Department of Biomedical and Applied Sciences, Division of Dental Biomaterials, Indiana University School of Dentistry (IUSD), Indianapolis, Indiana, 46202
| | - Richard L Gregory
- Department of Biomedical and Applied Sciences, Division of Dental Biomaterials, Indiana University School of Dentistry (IUSD), Indianapolis, Indiana, 46202
| | - Tien-Min G Chu
- Department of Biomedical and Applied Sciences, Division of Dental Biomaterials, Indiana University School of Dentistry (IUSD), Indianapolis, Indiana, 46202
| | - Divya Pankajakshan
- Department of Biomedical and Applied Sciences, Division of Dental Biomaterials, Indiana University School of Dentistry (IUSD), Indianapolis, Indiana, 46202
| |
Collapse
|
19
|
Nie B, Ao H, Zhou J, Tang T, Yue B. Biofunctionalization of titanium with bacitracin immobilization shows potential for anti-bacteria, osteogenesis and reduction of macrophage inflammation. Colloids Surf B Biointerfaces 2016; 145:728-739. [PMID: 27289314 DOI: 10.1016/j.colsurfb.2016.05.089] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/10/2016] [Accepted: 05/28/2016] [Indexed: 12/21/2022]
Abstract
Titanium has been widely used in the orthopedic and dental fields, however, the inert nature of Ti makes it unsuitable for application in promoting bone cell growth,osteogenic differentiation and antibacterial ability. The aims of the current study were to investigate the antimicrobial activity and biofunction of the polypeptide antibiotic bacitracin, and obtain a multi-biofunctional titanium implant by covalently-immobilizing titanium with the bacitracin. The results showed that the bacitracin possessed low minimum inhibitory concentration (MIC) to both Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus (MRSA), with the non-cytotoxicity concentration up to 500μg/mL to human bone marrow mesenchymal stem cells (hBMSCs), furthermore, the bacitracin could improve the osteogenic differentiation of hBMSCs. The results of Scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) indicated that bacitracin had been covalently immobilized on the surface of titanium. Immobilized bacitracin could improve the hydrophilic of immobilized titanium. The results of antimicrobial assay demonstrated that the covalently-immobilized bacitracin also had excellent antimicrobial property, and the bacitracin immobilized titanium could inhibit bacterial adhesion and colonization. The results of cell biology experiments proved that the bacitracin immobilized titanium could improve hBMSCs' adhesion, proliferation and osteogenic differentiation. We also found that the macrophages were difficult to spread or activate on the surface of bacitracin immobilized titanium, and the secretion of inflammatory factors had been inhibited. In conclusion, the novel bacitracin immobilized titanium has multi-biofunctions including outstanding antibacterial properties, excellent cell biology performance, and restraining inflammation, which has exciting application prospect.
Collapse
Affiliation(s)
- Bin'en Nie
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, PR China
| | - Haiyong Ao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, PR China
| | - Jianliang Zhou
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, PR China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, PR China
| | - Bing Yue
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, PR China.
| |
Collapse
|
20
|
Repanas A, Andriopoulou S, Glasmacher B. The significance of electrospinning as a method to create fibrous scaffolds for biomedical engineering and drug delivery applications. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2015.12.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
New Ti-Alloys and Surface Modifications to Improve the Mechanical Properties and the Biological Response to Orthopedic and Dental Implants: A Review. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2908570. [PMID: 26885506 PMCID: PMC4738729 DOI: 10.1155/2016/2908570] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/30/2015] [Indexed: 12/14/2022]
Abstract
Titanium implants are widely used in the orthopedic and dentistry fields for many decades, for joint arthroplasties, spinal and maxillofacial reconstructions, and dental prostheses. However, despite the quite satisfactory survival rates failures still exist. New Ti-alloys and surface treatments have been developed, in an attempt to overcome those failures. This review provides information about new Ti-alloys that provide better mechanical properties to the implants, such as superelasticity, mechanical strength, and corrosion resistance. Furthermore, in vitro and in vivo studies, which investigate the biocompatibility and cytotoxicity of these new biomaterials, are introduced. In addition, data regarding the bioactivity of new surface treatments and surface topographies on Ti-implants is provided. The aim of this paper is to discuss the current trends, advantages, and disadvantages of new titanium-based biomaterials, fabricated to enhance the quality of life of many patients around the world.
Collapse
|
22
|
Zhang L, Yan J, Yin Z, Tang C, Guo Y, Li D, Wei B, Xu Y, Gu Q, Wang L. Electrospun vancomycin-loaded coating on titanium implants for the prevention of implant-associated infections. Int J Nanomedicine 2014; 9:3027-36. [PMID: 25028544 PMCID: PMC4077604 DOI: 10.2147/ijn.s63991] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The objectives of this work were to develop an antibiotic coating on the surface of a titanium plate to determine its antibacterial properties in vitro and in vivo. To prepare vancomycin-coated titanium implants, we adopted the electrospinning nanotechnique. The surface structure of the coating implants was observed using a scanning electron microscope. An elution method and a high-pressure liquid chromatography assay were used to characterize the release behavior of vancomycin from the coating. The antibacterial efficacy and the cytotoxicity of the coated titanium implants on osteoblasts were investigated in vitro. In addition, X-ray, white blood cell count, C-reactive protein, erythrocyte sedimentation rate, and pathological examination were performed to validate its antimicrobial efficacy in vivo. The antibiotic coating released 82.7% (approximately 528.2 μg) of total vancomycin loading in the coating in vitro. The release behavior of vancomycin from nanofiber coatings exhibited a biphasic release pattern with an initial burst on day 1, followed by a slow and controlled release over 28 days. There was no cytotoxicity observed in vitro for the vancomycin-loaded coating. The vancomycin-coated titanium implants were active in treating implant-associated infection in vivo. Thus, vancomycin-coated titanium implants may be a promising approach to prevent and treat implant-associated infections.
Collapse
Affiliation(s)
- Li Zhang
- Orthopedic Laboratory of Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Junwei Yan
- Orthopedic Laboratory of Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhaowei Yin
- Orthopedic Laboratory of Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Cheng Tang
- Orthopedic Laboratory of Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yang Guo
- Orthopedic Laboratory of Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Dong Li
- Orthopedic Laboratory of Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Bo Wei
- Orthopedic Laboratory of Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yan Xu
- Orthopedic Laboratory of Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Qiangrong Gu
- Orthopedic Laboratory of Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Liming Wang
- Orthopedic Laboratory of Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
23
|
Xie CM, Lu X, Wang KF, Meng FZ, Jiang O, Zhang HP, Zhi W, Fang LM. Silver nanoparticles and growth factors incorporated hydroxyapatite coatings on metallic implant surfaces for enhancement of osteoinductivity and antibacterial properties. ACS APPLIED MATERIALS & INTERFACES 2014; 6:8580-8589. [PMID: 24720634 DOI: 10.1021/am501428e] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Research on incorporation of both growth factors and silver (Ag) into hydroxyapatite (HA) coatings on metallic implant surfaces for enhancing osteoinductivity and antibacterial properties is a challenging work. Generally, Ag nanoparticles are easy to agglomerate and lead to a large increase in local Ag concentration, which could potentially affect cell activity. On the other hand, growth factors immobilization requires mild processing conditions so as to maintain their activities. In this study, bone morphology protein-2 (BMP-2) and Ag nanoparticle contained HA coatings were prepared on Ti surfaces by combining electrochemical deposition (ED) of Ag and electrostatic immobilization of BMP-2. During the ED process, chitosan (CS) was selected as the stabilizing agent to chelate Ag ions and generate Ag nanoparticles that are uniformly distributed in the coatings. CS also reduces Ag toxicity while retaining its antibacterial activity. Afterwards, a BMP/heparin solution was absorbed on the CS/Ag/HA coatings. Consequently, BMP-2 was immobilized on the coatings by the electrostatic attraction between CS, heparin, and BMP-2. Sustained release of BMP-2 and Ag ions from HA coatings was successfully demonstrated for a long period. Results of antibacterial tests indicate that the CS/Ag/HA coatings have high antibacterial properties against both Staphylococcus epidermidis and Escherichia coli. Osteoblasts (OB) culture reveals that the CS/Ag/HA coatings exhibit good biocompatibility. Bone marrow stromal cells (BMSCs) culture indicates that the BMP/CS/Ag/HA coatings have good osteoinductivity and promote the differentiation of BMSCs. Ti bars with BMP/CS/Ag/HA coatings were implanted into the femur of rabbits to evaluate the osteoinductivity of the coatings. Results indicate that BMP/CS/Ag/HA coatings favor bone formation in vivo. In summary, this study presents a convenient and effective method for the incorporation of growth factors and antibacterial agents into HA coatings. This method can be utilized to modify a variety of metallic implant surfaces.
Collapse
Affiliation(s)
- Chao-Ming Xie
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu, Sichuan 610031, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Periprosthetic Joint Infection: What is on the Horizon? Int J Artif Organs 2012; 35:935-50. [DOI: 10.5301/ijao.5000145] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2012] [Indexed: 01/08/2023]
Abstract
Periprosthetic joint infection (PJI) will emerge as one of the most important issues for both orthopedic surgeons and researchers active in the field over the coming decades. Although the rate of PJI has not changed significantly over the past decade, the affected patients (hosts) being treated often present with more comorbidities than in the past, and the organisms responsible for these infections are evolving to become more difficult to treat. Fortunately, though, major strides in basic, translational, and clinical research have occurred in recent years that have armed the clinician with an armamentarium of techniques and technologies to better diagnose, prevent, and treat PJI. Advances in diagnostics, including refinements in established biomarkers, the introduction of point of service tests, developments in molecular techniques, and new techniques in advanced imaging will allow us to correctly identify the infecting pathogens and their virulence factors. Utilizing developed risk indexes to stratify and medically optimize our patients, modifying implants to incorporate antimicrobial and anti-biofilm properties, and developing clinically applicable vaccines and biofilm inhibiting enzymes will address our struggles in preventing PJI. Success of our future treatment strategies will hinge on refining the indications and technique of our current surgical procedures as well as the rational use of biofilm disrupting technologies and photodynamic therapy. Finally, the field of metabolomics, though still relatively in its infancy, likely holds the key to a novel diagnostic and treatment approach to infection and a more profound understanding of the pathophysiology of PJI on the human body.
Collapse
|