1
|
Abstract
Innate immunity serves as a first line of defense against infectious agents, and germ-line-encoded pattern recognition receptors detect stressed and infected cells and elicit potent effector activities that accomplish efficient microbe containment. Recent evidence demonstrates that these pattern-sensing systems are also applicable to the recognition of tumor-derived stress-related factors. In particular, toll-like receptors and cytosolic sensors for DNA and RNA recognition utilize endogenous host elements containing microbial components, danger-associated molecules, and/or nucleic acids to stimulate innate signaling pathways and generate protective immune responses against nascent tumors in animal models and humans. In this review, we describe recent advances and perspectives about antitumor mechanisms and clinical application of innate immune signals and pathways.
Collapse
Affiliation(s)
- Masahisa Jinushi
- Research Center for Infection-Associated Cancer; Institute for Genetic Medicine; Hokkaido University; Sapporo, Hokkaido, Japan
| |
Collapse
|
2
|
Szabo A, Fekete T, Koncz G, Kumar BV, Pazmandi K, Foldvari Z, Hegedus B, Garay T, Bacsi A, Rajnavolgyi E, Lanyi A. RIG-I inhibits the MAPK-dependent proliferation of BRAF mutant melanoma cells via MKP-1. Cell Signal 2016; 28:335-347. [PMID: 26829212 DOI: 10.1016/j.cellsig.2016.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/22/2016] [Accepted: 01/28/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND BRAF-mutant melanoma is characterized by aggressive metastatic potential and therapeutic resistance. The innate immune receptor RIG-I has emerged as a potential target in melanoma therapies but the contributing pathways involved in anti-cancer activity are poorly characterized. METHODS Baseline and ATRA-induced expression of RIG-I in nine (3 wild type and 6 BRAF-mutant) melanoma cell lines was measured with Q-PCR and Western blot. Ligand-specific stimulation of RIG-I was detected by Q-PCR and ELISA. Activation of the RIG-I-coupled IRF3, NF-κB and MAPK pathways was tested with protein array and Western blot. Cell proliferation and apoptosis was monitored by flow cytometry and cell counting. Down modulation of MKP-1 expression in melanoma cells was performed by specific siRNA. RESULTS Short-term ATRA pre-treatment increases the expression of RIG-I in BRAF-mutant melanoma cells. Specific activation of RIG-I by 5'ppp-dsRNA leads to increased activity of the IRF3-IFNβ pathway but does not influence NF-κB signaling. RIG-I mediates the targeted dephosphorylation of several MAPKs (p38, RSK1, GSK-3α/β, HSP27) via the endogenous regulator MKP-1 resulting in decreased melanoma cell proliferation. CONCLUSION RIG-I has the potential to exert anticancer activity in BRAF-mutant melanoma via controlling IFNβ production and MAPK signaling. This is the first study showing that RIG-I activation results in MKP-1-mediated inhibition of cell proliferation via controlling the p38-HSP27, c-Jun and rpS6 pathways thus identifying RIG-I and MKP-1 as novel and promising therapeutical targets.
Collapse
Affiliation(s)
- Attila Szabo
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Sapientia Hungarian University of Transylvania, Department of Bioengineering, Miercurea-Ciuc, Romania.
| | - Tunde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Sapientia Hungarian University of Transylvania, Department of Bioengineering, Miercurea-Ciuc, Romania
| | - Brahma V Kumar
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Kitti Pazmandi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsofia Foldvari
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balazs Hegedus
- 2nd Institute of Pathology, Semmelweis University, Budapest, Hungary; MTA-SE Molecular Oncology Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tamas Garay
- 2nd Institute of Pathology, Semmelweis University, Budapest, Hungary; MTA-SE Molecular Oncology Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Attila Bacsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Sapientia Hungarian University of Transylvania, Department of Bioengineering, Miercurea-Ciuc, Romania
| | - Eva Rajnavolgyi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Sapientia Hungarian University of Transylvania, Department of Bioengineering, Miercurea-Ciuc, Romania
| | - Arpad Lanyi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Sapientia Hungarian University of Transylvania, Department of Bioengineering, Miercurea-Ciuc, Romania
| |
Collapse
|
3
|
di Masi A, Leboffe L, De Marinis E, Pagano F, Cicconi L, Rochette-Egly C, Lo-Coco F, Ascenzi P, Nervi C. Retinoic acid receptors: from molecular mechanisms to cancer therapy. Mol Aspects Med 2015; 41:1-115. [PMID: 25543955 DOI: 10.1016/j.mam.2014.12.003] [Citation(s) in RCA: 271] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023]
Abstract
Retinoic acid (RA), the major bioactive metabolite of retinol or vitamin A, induces a spectrum of pleiotropic effects in cell growth and differentiation that are relevant for embryonic development and adult physiology. The RA activity is mediated primarily by members of the retinoic acid receptor (RAR) subfamily, namely RARα, RARβ and RARγ, which belong to the nuclear receptor (NR) superfamily of transcription factors. RARs form heterodimers with members of the retinoid X receptor (RXR) subfamily and act as ligand-regulated transcription factors through binding specific RA response elements (RAREs) located in target genes promoters. RARs also have non-genomic effects and activate kinase signaling pathways, which fine-tune the transcription of the RA target genes. The disruption of RA signaling pathways is thought to underlie the etiology of a number of hematological and non-hematological malignancies, including leukemias, skin cancer, head/neck cancer, lung cancer, breast cancer, ovarian cancer, prostate cancer, renal cell carcinoma, pancreatic cancer, liver cancer, glioblastoma and neuroblastoma. Of note, RA and its derivatives (retinoids) are employed as potential chemotherapeutic or chemopreventive agents because of their differentiation, anti-proliferative, pro-apoptotic, and anti-oxidant effects. In humans, retinoids reverse premalignant epithelial lesions, induce the differentiation of myeloid normal and leukemic cells, and prevent lung, liver, and breast cancer. Here, we provide an overview of the biochemical and molecular mechanisms that regulate the RA and retinoid signaling pathways. Moreover, mechanisms through which deregulation of RA signaling pathways ultimately impact on cancer are examined. Finally, the therapeutic effects of retinoids are reported.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Loris Leboffe
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Elisabetta De Marinis
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Francesca Pagano
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Laura Cicconi
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy
| | - Cécile Rochette-Egly
- Department of Functional Genomics and Cancer, IGBMC, CNRS UMR 7104 - Inserm U 964, University of Strasbourg, 1 rue Laurent Fries, BP10142, Illkirch Cedex F-67404, France.
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy.
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, Roma I-00146, Italy.
| | - Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100.
| |
Collapse
|
4
|
Li XY, Guo HZ, Zhu J. Tumor suppressor activity of RIG-I. Mol Cell Oncol 2014; 1:e968016. [PMID: 27308362 PMCID: PMC4905202 DOI: 10.4161/23723548.2014.968016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/07/2014] [Accepted: 08/18/2014] [Indexed: 11/19/2022]
Abstract
Retinoic acid inducible gene-I (RIG-I), named for the observation that its mRNA expression is highly upregulated in the progression of all-trans retinoic acid (ATRA)-induced maturation of acute promyelocytic leukemia (APL) cells, has been well documented as a pivotal virus-associated molecular pattern recognition receptor (PRR) responsible for triggering innate immunity. Upon recognizing viral RNA ligands, RIG-I experiences a series of programmed conformational changes and modifications that unleash its activity through the formation of complexes with various binding partners. Such partners include the mitochondria membrane-anchored protein IPS-1 (also named MAVS/VISA/Cardif) that activates both the IRF3/7 and NF-κB pathways. These partnerships and resulting pathway activations underlie the synthesis of type I interferon and other inflammatory factors. Recent studies have demonstrated that RIG-I is also involved in the regulation of basic cellular processes outside of innate immunity against viral infections, such as hematopoietic proliferation and differentiation, maintenance of leukemic stemness, and tumorigenesis of hepatocellular carcinoma. In this review, we will highlight recent studies leading up to the recognition that RIG-I performs an essential function as a tumor suppressor and try to reconcile this activity of RIG-I with its well-known role in protecting cells against viral infection.
Collapse
Affiliation(s)
- Xian-Yang Li
- State Key Laboratory for Medical Genomics and Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology; Rui-Jin Hospital; Shanghai Jiao-Tong University School of Medicine Shanghai, People's Republic of China; Department of Laboratory Medicine; Shanghai First People's Hospital; Shanghai Jiao-Tong University; Shanghai, People's Republic of China
| | - He-Zhou Guo
- State Key Laboratory for Medical Genomics and Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology; Rui-Jin Hospital; Shanghai Jiao-Tong University School of Medicine Shanghai, People's Republic of China
| | - Jiang Zhu
- State Key Laboratory for Medical Genomics and Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology; Rui-Jin Hospital; Shanghai Jiao-Tong University School of Medicine Shanghai, People's Republic of China
| |
Collapse
|
5
|
Wanka L, Iqbal K, Schreiner PR. The lipophilic bullet hits the targets: medicinal chemistry of adamantane derivatives. Chem Rev 2013; 113:3516-604. [PMID: 23432396 PMCID: PMC3650105 DOI: 10.1021/cr100264t] [Citation(s) in RCA: 464] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lukas Wanka
- Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany; Fax +49(641)9934309
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314-6399, USA
| | - Khalid Iqbal
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314-6399, USA
| | - Peter R. Schreiner
- Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany; Fax +49(641)9934309
| |
Collapse
|
6
|
Hyter S, Indra AK. Nuclear hormone receptor functions in keratinocyte and melanocyte homeostasis, epidermal carcinogenesis and melanomagenesis. FEBS Lett 2013; 587:529-41. [PMID: 23395795 PMCID: PMC3670764 DOI: 10.1016/j.febslet.2013.01.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 12/12/2012] [Accepted: 01/18/2013] [Indexed: 12/19/2022]
Abstract
Skin homeostasis is maintained, in part, through regulation of gene expression orchestrated by type II nuclear hormone receptors in a cell and context specific manner. This group of transcriptional regulators is implicated in various cellular processes including epidermal proliferation, differentiation, permeability barrier formation, follicular cycling and inflammatory responses. Endogenous ligands for the receptors regulate actions during skin development and maintenance of tissue homeostasis. Type II nuclear receptor signaling is also important for cellular crosstalk between multiple cell types in the skin. Overall, these nuclear receptors are critical players in keratinocyte and melanocyte biology and present targets for cutaneous disease management.
Collapse
Affiliation(s)
- Stephen Hyter
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, USA
| | - Arup K Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, USA
- Environmental Health Science Center, Oregon State University, Corvallis, Oregon, USA
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
7
|
Carratù MR, Marasco C, Mangialardi G, Vacca A. Retinoids: novel immunomodulators and tumour-suppressive agents? Br J Pharmacol 2013; 167:483-92. [PMID: 22577845 DOI: 10.1111/j.1476-5381.2012.02031.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Retinoids play important roles in the transcriptional activity of normal, degenerative and tumour cells. Retinoid analogues may be promising therapeutic agents for the treatment of immune disorders as different as type I diabetes and systemic lupus erythematosus. In addition, the use of retinoids in cancer treatment has progressed significantly in the last two decades; thus, numerous retinoid compounds have been synthesized and tested. In this paper, the actual or potential use of retinoids as immunomodulators or tumour-suppressive agents is discussed.
Collapse
Affiliation(s)
- M R Carratù
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | | | | | | |
Collapse
|
8
|
Asdonk T, Motz I, Werner N, Coch C, Barchet W, Hartmann G, Nickenig G, Zimmer S. Endothelial RIG-I activation impairs endothelial function. Biochem Biophys Res Commun 2012; 420:66-71. [PMID: 22402283 DOI: 10.1016/j.bbrc.2012.02.116] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 02/18/2012] [Indexed: 12/25/2022]
Abstract
BACKGROUND Endothelial dysfunction is a crucial part of the chronic inflammatory atherosclerotic process and is mediated by innate and acquired immune mechanisms. Recent studies suggest that pattern recognition receptors (PRR) specialized in immunorecognition of nucleic acids may play an important role in endothelial biology in a proatherogenic manner. Here, we analyzed the impact of endothelial retinoic acid inducible gene I (RIG-I) activation upon vascular endothelial biology. METHODS AND RESULTS Wild type mice were injected intravenously with 32.5 μg of the RIG-ligand 3pRNA (RNA with triphosphate at the 5'end) or polyA control every other day for 7 days. In 3pRNA-treated mice, endothelium-depended vasodilation was significantly impaired, vascular oxidative stress significantly increased and circulating endothelial microparticle (EMP) numbers significantly elevated compared to controls. To gain further insight in RIG-I dependent endothelial biology, cultured human coronary endothelial cells (HCAEC) and endothelial progenitor cells (EPC) were stimulated in vitro with 3pRNA. Both cells types express RIG-I and react with receptor upregulation upon stimulation. Reactive oxygen species (ROS) formation is enhanced in both cell types, whereas apoptosis and proliferation is not significantly affected in HCAEC. Importantly, HCAEC release significant amounts of proinflammatory cytokines in response to RIG-I stimulation. CONCLUSION This study shows that activation of the cytoplasmatic nucleic acid receptor RIG-I leads to endothelial dysfunction. RIG-I induced endothelial damage could therefore be an important pathway in atherogenesis.
Collapse
Affiliation(s)
- Tobias Asdonk
- Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Balkan W, Rodríguez-Gonzalez M, Pang M, Fernandez I, Troen BR. Retinoic acid inhibits NFATc1 expression and osteoclast differentiation. J Bone Miner Metab 2011; 29:652-61. [PMID: 21384111 DOI: 10.1007/s00774-011-0261-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 01/10/2011] [Indexed: 10/18/2022]
Abstract
Ingestion of excess vitamin A appears to correlate with an increased fracture risk, an outcome that is likely mediated by retinoic acids (RAs); these are vitamin A metabolites that have dramatic effects on skeletal development. We studied the impacts of RA and isoform-specific RA receptor (RAR) agonists (α, β, and γ) on osteoclast formation (osteoclastogenesis) in two model systems: RAW264.7 cells and murine bone marrow-derived monocytes. The pan-RAR agonists, all-trans and 9-cis RA, inhibited receptor activator of nuclear factor kappa B ligand (RANKL)-mediated osteoclast differentiation in a concentration-dependent manner. Isoform-specific RAR agonists (α, β, and γ) also inhibited osteoclastogenesis, with the RARα agonist producing the most consistent reductions in both osteoclast number and size and total area covered. Inhibition of osteoclastogenesis correlated with reductions in expression, DNA binding, and nuclear abundance of nuclear factor of activated T cells c1 (NFATc1), a transcription factor critical for osteoclastogenesis. The upregulation of three NFATc1-responsive genes, cathepsin K, dendritic cell-specific transmembrane protein and osteoclast-associated receptor were similarly reduced following RA or RAR agonist exposure. These results suggest that RA blocks in vitro RANKL-mediated osteoclastogenesis by decreasing NFATc1 function.
Collapse
Affiliation(s)
- Wayne Balkan
- Geriatric Research, Education, and Clinical Center and Research Service, Bruce W. Carter Veterans Affairs Healthcare System, Miami, FL 33125, USA.
| | | | | | | | | |
Collapse
|
10
|
Liu F, Gu J. Retinoic acid inducible gene-I, more than a virus sensor. Protein Cell 2011; 2:351-7. [PMID: 21626268 PMCID: PMC4875335 DOI: 10.1007/s13238-011-1045-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 04/11/2011] [Indexed: 12/24/2022] Open
Abstract
Retinoic acid inducible gene-I (RIG-I) is a caspase recruitment domain (CARD) containing protein that acts as an intracellular RNA receptor and senses virus infection. After binding to double stranded RNA (dsRNA) or 5'-triphosphate single stranded RNA (ssRNA), RIG-I transforms into an open conformation, translocates onto mitochondria, and interacts with the downstream adaptor mitochondrial antiviral signaling (MAVS) to induce the production of type I interferon and inflammatory factors via IRF3/7 and NF-κB pathways, respectively. Recently, accumulating evidence suggests that RIG-I could function in non-viral systems and participate in a series of biological events, such as inflammation and inflammation related diseases, cell proliferation, apoptosis and even senescence. Here we review recent advances in antiviral study of RIG-I as well as the functions of RIG-I in other fields.
Collapse
Affiliation(s)
- Feng Liu
- National Key Laboratory of Protein Engineering and Plant Gene Engineering, LSC, Peking University, Beijing, 100871 China
| | - Jun Gu
- National Key Laboratory of Protein Engineering and Plant Gene Engineering, LSC, Peking University, Beijing, 100871 China
| |
Collapse
|
11
|
Barral PM, Sarkar D, Su ZZ, Barber GN, DeSalle R, Racaniello VR, Fisher PB. Functions of the cytoplasmic RNA sensors RIG-I and MDA-5: key regulators of innate immunity. Pharmacol Ther 2009; 124:219-34. [PMID: 19615405 PMCID: PMC3165056 DOI: 10.1016/j.pharmthera.2009.06.012] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 06/22/2009] [Indexed: 12/13/2022]
Abstract
The innate immune system responds within minutes of infection to produce type I interferons and pro-inflammatory cytokines. Interferons induce the synthesis of cell proteins with antiviral activity, and also shape the adaptive immune response by priming T cells. Despite the discovery of interferons over 50 years ago, only recently have we begun to understand how cells sense the presence of a virus infection. Two families of pattern recognition receptors have been shown to distinguish unique molecules present in pathogens, such as bacterial and fungal cell wall components, viral RNA and DNA, and lipoproteins. The first family includes the membrane-bound toll-like receptors (TLRs). Studies of the signaling pathways that lead from pattern recognition to cytokine induction have revealed extensive and overlapping cascades that involve protein-protein interactions and phosphorylation, and culminate in activation of transcription proteins that control the transcription of genes encoding interferons and other cytokines. A second family of pattern recognition receptors has recently been identified, which comprises the cytoplasmic sensors of viral nucleic acids, including MDA-5, RIG-I, and LGP2. In this review we summarize the discovery of these cytoplasmic sensors, how they recognize nucleic acids, the signaling pathways leading to cytokine synthesis, and viral countermeasures that have evolved to antagonize the functions of these proteins. We also consider the function of these cytoplasmic sensors in apoptosis, development and differentiation, and diabetes.
Collapse
Affiliation(s)
- Paola M Barral
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA
| | - Zao-zhong Su
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA
| | - Glen N. Barber
- Department of Microbiology and Immunology, UM/Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, FL
| | | | - Vincent R Racaniello
- Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, NY
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA
| |
Collapse
|
12
|
Zitvogel L, Kroemer G. Anticancer immunochemotherapy using adjuvants with direct cytotoxic effects. J Clin Invest 2009; 119:2127-30. [PMID: 19620780 PMCID: PMC2719931 DOI: 10.1172/jci39991] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Conventional chemotherapeutics may induce immunogenic cancer cell death or stimulate immune effectors via so-called off-target effects. The study by Besch et al. in this issue of the JCI now demonstrates that agents designed to stimulate the innate immune system by activating intracellular pattern recognition receptors can kill cancer cells in a direct, cell-autonomous fashion (see the related article beginning on page 2399). The authors show that ligation of viral RNA sensors, such as RIG-I or MDA-5, by viral RNA mimetics triggers mitochondrial apoptosis in human melanoma cells in an IFN-independent fashion. The data suggest that tumor cell killing and immunostimulation may synergize for optimal anticancer immunochemotherapy.
Collapse
Affiliation(s)
- Laurence Zitvogel
- INSERM U805, Villejuif, France.
CIC BT507, Villejuif, France.
Institut Gustave Roussy, Villejuif, France.
Faculté Paris Sud—Université Paris 11, Kremlin-Bicêtre, France.
INSERM U848, Villejuif, France
| | - Guido Kroemer
- INSERM U805, Villejuif, France.
CIC BT507, Villejuif, France.
Institut Gustave Roussy, Villejuif, France.
Faculté Paris Sud—Université Paris 11, Kremlin-Bicêtre, France.
INSERM U848, Villejuif, France
| |
Collapse
|