1
|
Aakel N, Mohammed R, Fathima A, Kerzabi R, Abdallah A, Ibrahim WN. Role of Exosome in Solid Cancer Progression and Its Potential Therapeutics in Cancer Treatment. Cancer Med 2025; 14:e70941. [PMID: 40344389 PMCID: PMC12063069 DOI: 10.1002/cam4.70941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/14/2025] [Accepted: 04/28/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Exosomes are extracellular vesicles ranging from 40 to 100 nm in diameter that mediate intercellular communication by transferring proteins, lipids, nucleic acids, and other metabolites. In the context of cancer, exosomes influence the tumor microenvironment by carrying regulatory RNAs such as miRNA, circRNA, and lncRNA. They originate from various cells, including adipocytes, fibroblasts, and hepatocellular carcinoma (HCC) cells, and can either promote or inhibit cancer progression through pathways like MAPK and PI3K-Akt. AIM This review aims to explore the role of exosomes in the progression of solid cancers, emphasizing their self-induced activation mechanisms and how they modulate tumor behavior. METHODOLOGY A comprehensive review of recent literature was conducted, focusing on studies that investigated the biological functions of exosomes in solid tumor progression, including their molecular cargo, cellular origin, and involvement in signaling pathways. RESULTS Findings from multiple studies indicate that cancer-derived exosomes contribute to tumor proliferation, metastasis, and therapy resistance by enhancing communication within the tumor microenvironment. These vesicles activate oncogenic pathways and can serve as biomarkers or therapeutic targets due to their role in disease modulation. CONCLUSION Exosomes play a pivotal role in solid cancer progression and offer significant potential in advancing our understanding of tumor biology. Their capacity to influence key signaling pathways and facilitate intercellular communication makes them promising candidates for novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Nada Aakel
- Department of Biomedical ScienceCollege of Health Sciences, QU Health, Qatar UniversityDohaQatar
| | - Rawdhah Mohammed
- Department of Biomedical ScienceCollege of Health Sciences, QU Health, Qatar UniversityDohaQatar
| | - Assela Fathima
- Department of Biomedical ScienceCollege of Health Sciences, QU Health, Qatar UniversityDohaQatar
| | - Rabia Kerzabi
- Department of Biomedical ScienceCollege of Health Sciences, QU Health, Qatar UniversityDohaQatar
| | - Atiyeh Abdallah
- Department of Biomedical ScienceCollege of Health Sciences, QU Health, Qatar UniversityDohaQatar
| | - Wisam Nabeel Ibrahim
- Department of Biomedical ScienceCollege of Health Sciences, QU Health, Qatar UniversityDohaQatar
| |
Collapse
|
2
|
Palideh A, Vaghari-Tabari M, Nosrati Andevari A, Qujeq D, Asemi Z, Alemi F, Rouhani Otaghsara H, Rafieyan S, Yousefi B. MicroRNAs and Periodontal Disease: Helpful Therapeutic Targets? Adv Pharm Bull 2023; 13:423-434. [PMID: 37646047 PMCID: PMC10460817 DOI: 10.34172/apb.2023.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 05/07/2022] [Accepted: 07/01/2022] [Indexed: 09/01/2023] Open
Abstract
Periodontal disease is the most common oral disease. This disease can be considered as an inflammatory disease. The immune response to bacteria accumulated in the gum line plays a key role in the pathogenesis of periodontal disease. In addition to immune cells, periodontal ligament cells and gingival epithelial cells are also involved in the pathogenesis of this disease. miRNAs which are small RNA molecules with around 22 nucleotides have a considerable relationship with the immune system affecting a wide range of immunological events. These small molecules are also in relation with periodontium tissues especially periodontal ligament cells. Extensive studies have been performed in recent years on the role of miRNAs in the pathogenesis of periodontal disease. In this review paper, we have reviewed the results of these studies and discussed the role of miRNAs in the immunopathogenesis of periodontal disease comprehensively. miRNAs play an important role in the pathogenesis of periodontal disease and maybe helpful therapeutic targets for the treatment of periodontal disease.
Collapse
Affiliation(s)
| | - Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Nosrati Andevari
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Forough Alemi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sona Rafieyan
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Yedigaryan L, Sampaolesi M. Extracellular vesicles and Duchenne muscular dystrophy pathology: Modulators of disease progression. Front Physiol 2023; 14:1130063. [PMID: 36891137 PMCID: PMC9987248 DOI: 10.3389/fphys.2023.1130063] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating disorder and is considered to be one of the worst forms of inherited muscular dystrophies. DMD occurs as a result of mutations in the dystrophin gene, leading to progressive muscle fiber degradation and weakness. Although DMD pathology has been studied for many years, there are aspects of disease pathogenesis and progression that have not been thoroughly explored yet. The underlying issue with this is that the development of further effective therapies becomes stalled. It is becoming more evident that extracellular vesicles (EVs) may contribute to DMD pathology. EVs are vesicles secreted by cells that exert a multitude of effects via their lipid, protein, and RNA cargo. EV cargo (especially microRNAs) is also said to be a good biomarker for identifying the status of specific pathological processes that occur in dystrophic muscle, such as fibrosis, degeneration, inflammation, adipogenic degeneration, and dilated cardiomyopathy. On the other hand, EVs are becoming more prominent vehicles for custom-engineered cargos. In this review, we will discuss the possible contribution of EVs to DMD pathology, their potential use as biomarkers, and the therapeutic efficacy of both, EV secretion inhibition and custom-engineered cargo delivery.
Collapse
Affiliation(s)
- Laura Yedigaryan
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Famta P, Shah S, Khatri DK, Guru SK, Singh SB, Srivastava S. Enigmatic role of exosomes in breast cancer progression and therapy. Life Sci 2022; 289:120210. [PMID: 34875250 DOI: 10.1016/j.lfs.2021.120210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022]
Abstract
Breast cancer (BC) is reported to be the leading cause of mortality in females worldwide. At the beginning of the year 2021, about 7.8 million women were diagnosed with BC in past 5 years. High prevalence and poor neoadjuvant chemotherapeutic efficacy has motivated the scientists around the globe to investigate alternative management strategies. In recent years, there has been an exponential rise in the scientific studies reporting the role of tumor derived exosomes (TDEs) in the BC pathophysiology and management. TDEs play an important role in the intercellular communication and transportation of biomolecules. This manuscript reviews the role of exosomes in the BC pathophysiology, diagnosis, and therapy. Role of TDEs in the mechanistic pathways of BC metastasis, immunosuppression, migration, dormancy and chemo-resistance is extensively reviewed. We have also highlighted the epigenetic modulations orchestrated by exosomal miRNAs and long noncoding RNAs (lnc RNAs) in the BC environment. Liquid biopsies analyzing blood circulating exosomes for early and accurate detection of the BC have been discussed. Characterization of exosomes, strategies to use them in BC chemotherapy, BC immunotherapy and potential challenges that will present themselves in translating exosomes based technologies to market are discussed.
Collapse
Affiliation(s)
- Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
5
|
Casali P, Li S, Morales G, Daw CC, Chupp DP, Fisher AD, Zan H. Epigenetic Modulation of Class-Switch DNA Recombination to IgA by miR-146a Through Downregulation of Smad2, Smad3 and Smad4. Front Immunol 2021; 12:761450. [PMID: 34868004 PMCID: PMC8635144 DOI: 10.3389/fimmu.2021.761450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/19/2021] [Indexed: 11/19/2022] Open
Abstract
IgA is the predominant antibody isotype at intestinal mucosae, where it plays a critical role in homeostasis and provides a first line of immune protection. Dysregulation of IgA production, however, can contribute to immunopathology, particularly in kidneys in which IgA deposition can cause nephropathy. Class-switch DNA recombination (CSR) to IgA is directed by TGF-β signaling, which activates Smad2 and Smad3. Activated Smad2/Smad3 dimers are recruited together with Smad4 to the IgH α locus Iα promoter to activate germline Iα-Cα transcription, the first step in the unfolding of CSR to IgA. Epigenetic factors, such as non-coding RNAs, particularly microRNAs, have been shown to regulate T cells, dendritic cells and other immune elements, as well as modulate the antibody response, including CSR, in a B cell-intrinsic fashion. Here we showed that the most abundant miRNA in resting B cells, miR-146a targets Smad2, Smad3 and Smad4 mRNA 3'UTRs and keeps CSR to IgA in check in resting B cells. Indeed, enforced miR-146a expression in B cells aborted induction of IgA CSR by decreasing Smad levels. By contrast, upon induction of CSR to IgA, as directed by TGF-β, B cells downregulated miR-146a, thereby reversing the silencing of Smad2, Smad3 and Smad4, which, once expressed, led to recruitment of Smad2, Smad3 and Smad4 to the Iα promoter for activation of germline Iα-Cα transcription. Deletion of miR-146a in miR-146a-/- mice significantly increased circulating levels of steady state total IgA, but not IgM, IgG or IgE, and heightened the specific IgA antibody response to OVA. In miR-146a-/- mice, the elevated systemic IgA levels were associated with increased IgA+ B cells in intestinal mucosae, increased amounts of fecal free and bacteria-bound IgA as well as kidney IgA deposition, a hallmark of IgA nephropathy. Increased germline Iα-Cα transcription and CSR to IgA in miR-146a-/- B cells in vitro proved that miR-146a-induced Smad2, Smad3 and Smad4 repression is B cell intrinsic. The B cell-intrinsic role of miR-146a in the modulation of CSR to IgA was formally confirmed in vivo by construction and OVA immunization of mixed bone marrow μMT/miR-146a-/- chimeric mice. Thus, by inhibiting Smad2, Smad3 and Smad4 expression, miR-146a plays an important and B cell intrinsic role in modulation of CSR to IgA and the IgA antibody response.
Collapse
Affiliation(s)
- Paolo Casali
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX, United States
| | | | | | | | | | | | - Hong Zan
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX, United States
| |
Collapse
|
6
|
Xia Y, Yu E, Li Z, Zhang K, Tian J, Wang G, Xie J, Gong W. Both TGF-β1 and Smad4 regulate type I collagen expression in the muscle of grass carp, Ctenopharyngodon idella. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:907-917. [PMID: 33813689 DOI: 10.1007/s10695-021-00941-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Type I collagen is proven to make an important contribution to fish muscle quality. Our previous study has shown the Smad4-dependent regulation of type I collagen expression in the muscle of crisp grass carp fed with faba bean. However, the regulatory roles of TGF-β1 or TGF-β1/Smad4 on type I collagen remain unclear in ordinary grass carp fed with normal diets or in other fish species. To clarify this point, the effect of TGF-β1 and Smad4 over-expression and RNAi knockdown on type I collagen (COL1-α1 and COL1-α2) expression were tested in vitro (zebrafish ZF4 cells) and in vivo (grass carp) along with the TGF-β1/Smad4 co-expression and co-knockdown. The mRNA levels of TGF-β1, Smad4, and type I collagen were upregulated in the groups with over-expressed TGF-β1 and Smad4 and downregulated in the groups of TGF-β1 and Smad4 RNAi in comparison to controls in vitro (P < 0.05). Similarly, in the in vivo experiment, the mRNA abundance of TGF-β1, Smad4, and type I collagen of over-expression group was higher than the controls at 36 h (P < 0.05). Co-injection of TGF-β1/Smad4 over-expression and RNAi vectors generally showed the higher efficacy. This study revealed that TGF-β1 and Smad4 genes regulated type I collagen expression in grass carp muscle and zebrafish. These findings will provide references for the collagen regulation of other freshwater fishes.
Collapse
Affiliation(s)
- Yun Xia
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Ermeng Yu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
| | - Zhifei Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Kai Zhang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Jingjing Tian
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Guangjun Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Jun Xie
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Wangbao Gong
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| |
Collapse
|
7
|
Su P, Qiao Q, Ji G, Zhang Z. CircAMD1 regulates proliferation and collagen synthesis via sponging miR-27a-3p in P63-mutant human dermal fibroblasts. Differentiation 2021; 119:10-18. [PMID: 33991897 DOI: 10.1016/j.diff.2021.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/20/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
Transcription factor p63 has critical functions in epidermal, hindgut/anorectal, and limb development. Human mutations in P63 correlate with congenital syndromes affecting the skin, anorectal, and limbs. Nevertheless, less are detected regarding networks and functions controlled by P63 mutations in dermal fibroblasts, which are closely related to skin physiology. To screen for new targets, we employed microarray technology to investigate the R226Q P63 mutation with regards to the resulting circular RNA (circRNA) profiles from P63 point mutations in human dermal fibroblasts (HDFs). In this study, we show that P63-mutant HDFs display reduced proliferation, collagen synthesis, and myofibroblast differentiation; circAMD1 was also downregulated in P63-mutant HDFs compared with wild-type HDFs. Furthermore, overexpressing circAMD1 rescued the functional and phenotypic alterations of p63-mutant HDFs. We as well determined that miR-27a-3p was circAMD1 target involved in effects of circAMD1 in P63-mutant HDFs. Collectively, our data show that circAMD1 functions as a miR-27a-3p sponge that inhibits the functional and phenotypical alteration of P63-mutant HDFs and may be a critical marker in pathogenesis regarding P63-associated traits.
Collapse
Affiliation(s)
- Pengjun Su
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Qi Qiao
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gengfeng Ji
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhibo Zhang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Pedrioli G, Piovesana E, Vacchi E, Balbi C. Extracellular Vesicles as Promising Carriers in Drug Delivery: Considerations from a Cell Biologist's Perspective. BIOLOGY 2021; 10:376. [PMID: 33925620 PMCID: PMC8145252 DOI: 10.3390/biology10050376] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022]
Abstract
The use of extracellular vesicles as cell-free therapy is a promising approach currently investigated in several disease models. The intrinsic capacity of extracellular vesicles to encapsulate macromolecules within their lipid bilayer membrane-bound lumen is a characteristic exploited in drug delivery to transport active pharmaceutical ingredients. Besides their role as biological nanocarriers, extracellular vesicles have a specific tropism towards target cells, which is a key aspect in precision medicine. However, the little knowledge of the mechanisms governing the release of a cargo macromolecule in recipient cells and the Good Manufacturing Practice (GMP) grade scale-up manufacturing of extracellular vesicles are currently slowing their application as drug delivery nanocarriers. In this review, we summarize, from a cell biologist's perspective, the main evidence supporting the role of extracellular vesicles as promising carriers in drug delivery, and we report five key considerations that merit further investigation before translating Extracellular Vesicles (EVs) to clinical applications.
Collapse
Affiliation(s)
- Giona Pedrioli
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, 6807 Taverne-Torricella, Switzerland; (G.P.); (E.P.); (E.V.)
| | - Ester Piovesana
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, 6807 Taverne-Torricella, Switzerland; (G.P.); (E.P.); (E.V.)
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Elena Vacchi
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, 6807 Taverne-Torricella, Switzerland; (G.P.); (E.P.); (E.V.)
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Carolina Balbi
- Laboratory of Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, 6807 Taverne-Torricella, Switzerland
- Center for Molecular Cardiology, University of Zurich, 8952 Schlieren, Zürich, Switzerland
| |
Collapse
|
9
|
Kucharski M, Mrowiec P, Ocłoń E. Current standards and pitfalls associated with the transfection of primary fibroblast cells. Biotechnol Prog 2021; 37:e3152. [PMID: 33774920 DOI: 10.1002/btpr.3152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/25/2022]
Abstract
Cultured fibroblast cells, especially dermal cells, are used for various types of scientific research, particularly within the medical field. Desirable features of the cells include their ease of isolation, rapid cellular growth, and high degree of robustness. Currently, fibroblasts are mainly used to obtain pluripotent cells via a reprogramming process. Dermal fibroblasts, are particularly useful for gene therapies used for promoting wound healing or minimizing skin aging. In recent years, fibroblast transfection efficiencies have significantly improved. In order to introduce molecules (most often DNA or RNA) into cells, viral-based systems (transduction) or non-viral methods (transfection) that include physical/mechanical processes or lipid reagents may be used. In this article, we describe critical points that should be considered when selecting a method for transfecting fibroblasts. The most effective methods used for the transfection of fibroblasts include both viral-based and non-viral nucleofection systems. These methods result in a high level of transgene expression and are superior in terms of transfection efficacy and viability.
Collapse
Affiliation(s)
- Mirosław Kucharski
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Krakow, Poland
| | - Patrycja Mrowiec
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, Krakow, Poland
| | - Ewa Ocłoń
- Centre for Experimental and Innovative Medicine, Laboratory of Recombinant Proteins Production, University of Agriculture in Krakow, Krakow, Poland
| |
Collapse
|
10
|
Wadhawan A, Reynolds MA, Makkar H, Scott AJ, Potocki E, Hoisington AJ, Brenner LA, Dagdag A, Lowry CA, Dwivedi Y, Postolache TT. Periodontal Pathogens and Neuropsychiatric Health. Curr Top Med Chem 2021; 20:1353-1397. [PMID: 31924157 DOI: 10.2174/1568026620666200110161105] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 02/08/2023]
Abstract
Increasing evidence incriminates low-grade inflammation in cardiovascular, metabolic diseases, and neuropsychiatric clinical conditions, all important causes of morbidity and mortality. One of the upstream and modifiable precipitants and perpetrators of inflammation is chronic periodontitis, a polymicrobial infection with Porphyromonas gingivalis (P. gingivalis) playing a central role in the disease pathogenesis. We review the association between P. gingivalis and cardiovascular, metabolic, and neuropsychiatric illness, and the molecular mechanisms potentially implicated in immune upregulation as well as downregulation induced by the pathogen. In addition to inflammation, translocation of the pathogens to the coronary and peripheral arteries, including brain vasculature, and gut and liver vasculature has important pathophysiological consequences. Distant effects via translocation rely on virulence factors of P. gingivalis such as gingipains, on its synergistic interactions with other pathogens, and on its capability to manipulate the immune system via several mechanisms, including its capacity to induce production of immune-downregulating micro-RNAs. Possible targets for intervention and drug development to manage distal consequences of infection with P. gingivalis are also reviewed.
Collapse
Affiliation(s)
- Abhishek Wadhawan
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States.,Department of Psychiatry, Saint Elizabeths Hospital, Washington, D.C. 20032, United States
| | - Mark A Reynolds
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore 21201, United States
| | - Hina Makkar
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States
| | - Alison J Scott
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, United States
| | - Eileen Potocki
- VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, United States
| | - Andrew J Hoisington
- Air Force Institute of Technology, Wright-Patterson Air Force Base, United States
| | - Lisa A Brenner
- Departments of Psychiatry, Neurology, and Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States
| | - Aline Dagdag
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States
| | - Christopher A Lowry
- Departments of Psychiatry, Neurology, and Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States.,Department of Integrative Physiology, Center for Neuroscience and Center for Microbial Exploration, University of Colorado Boulder, Boulder, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, United States
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Alabama, United States
| | - Teodor T Postolache
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States.,Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, United States
| |
Collapse
|
11
|
Milano G, Biemmi V, Lazzarini E, Balbi C, Ciullo A, Bolis S, Ameri P, Di Silvestre D, Mauri P, Barile L, Vassalli G. Intravenous administration of cardiac progenitor cell-derived exosomes protects against doxorubicin/trastuzumab-induced cardiac toxicity. Cardiovasc Res 2020; 116:383-392. [PMID: 31098627 DOI: 10.1093/cvr/cvz108] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/02/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022] Open
Abstract
AIMS Combined administration of anthracyclines (e.g. doxorubicin; Dox) and trastuzumab (Trz), a humanized anti-human epidermal growth factor receptor 2 (HER2; ErbB2), is an effective treatment for HER2-positive breast cancer. However, both agents are associated with cardiac toxicity. Human cardiac-resident mesenchymal progenitor cells (CPCs) secrete extracellular vesicles including nanosized exosomes which protect against myocardial ischaemia. Here, we investigated the effects of these exosomes using a novel model of Dox/Trz-mediated cardiotoxicity. METHODS AND RESULTS CPCs were derived from cardiac atrial appendage specimens from patients who underwent heart surgery for heart valve disease and/or ischaemic heart disease, and exosomes were purified from CPC conditioned media. Proteomics analyses revealed that CPC exosomes contained multiple proteins involved in redox processes. Dox/Trz induced a significant increase in reactive oxygen species (ROS) in rat cardiomyocytes, which was prevented by CPC exosomes. In vivo, rats received six doses of Dox (Days 1-11), followed by six doses of Trz (Days 19-28). Three doses of either exosomes or exosome suspension vehicle were injected intravenously on Days 5, 11, and 19 in the treatment and control groups, respectively. Dox/Trz induced myocardial fibrosis, CD68+ inflammatory cell infiltrates, inducible nitric oxide synthase expression, and left ventricular dysfunction. CPC exosomes prevented these effects. These vesicles were highly enriched in miR-146a-5p compared with human dermal fibroblast exosomes. Dox upregulated Traf6 and Mpo, two known miR-146a-5p target genes (which encode signalling mediators of inflammatory and cell death axes) in myocytes. CPC exosomes suppressed miR-146a-5p target genes Traf6, Smad4, Irak1, Nox4, and Mpo in Dox-treated cells. Specific silencing of miR-146a-5p abrogated exosome-mediated suppression of those genes leading to an increase in Dox-induced cell death. CONCLUSIONS Human CPC exosomes attenuate Dox-/Trz-induced oxidative stress in cardiomyocytes. Systemic administration of these vesicles prevents Dox/Trz cardiotoxicity in vivo. miR-146a-5p mediates some of the benefits of exosomes in this setting.
Collapse
Affiliation(s)
- Giuseppina Milano
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Foundation, 6900 Lugano, Switzerland.,Department of Cœur-Vaisseaux, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Vanessa Biemmi
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Foundation, 6900 Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Edoardo Lazzarini
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Foundation, 6900 Lugano, Switzerland.,Laboratory of Cardiovascular Biology, Department of Internal Medicine, University of Genova, Genova, Italy.,Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Carolina Balbi
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Foundation, 6900 Lugano, Switzerland
| | - Alessandra Ciullo
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Foundation, 6900 Lugano, Switzerland
| | - Sara Bolis
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Foundation, 6900 Lugano, Switzerland
| | - Pietro Ameri
- Laboratory of Cardiovascular Biology, Department of Internal Medicine, University of Genova, Genova, Italy.,Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Dario Di Silvestre
- Proteomics and Metabolomic Lab, ITB-CNR, Departent of Biomedicine, 20090 Segrate, Italy
| | - Pierluigi Mauri
- Proteomics and Metabolomic Lab, ITB-CNR, Departent of Biomedicine, 20090 Segrate, Italy
| | - Lucio Barile
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Foundation, 6900 Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Giuseppe Vassalli
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Foundation, 6900 Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland.,Center for Molecular Cardiology, University Hospital, Zürich, Switzerland
| |
Collapse
|
12
|
Rogers RG, Ciullo A, Marbán E, Ibrahim AG. Extracellular Vesicles as Therapeutic Agents for Cardiac Fibrosis. Front Physiol 2020; 11:479. [PMID: 32528309 PMCID: PMC7255103 DOI: 10.3389/fphys.2020.00479] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022] Open
Abstract
Heart disease remains an increasing major public health challenge in the United States and worldwide. A common end-organ feature in diseased hearts is myocardial fibrosis, which stiffens the heart and interferes with normal pump function, leading to pump failure. The development of cells for regenerative therapy has been met with many pitfalls on its path to clinical translation. Recognizing that regenerative cells secrete therapeutically bioactive vesicles has paved the way to circumvent many failures of cell therapy. In this review, we provide an overview of extracellular vesicles (EVs), with a focus on their utility as therapeutic agents for cardiac regeneration. We also highlight the engineering potential of EVs to enhance their therapeutic application.
Collapse
Affiliation(s)
| | | | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | | |
Collapse
|
13
|
Miguel V, Lamas S. Redox distress in organ fibrosis: The role of noncoding RNAs. OXIDATIVE STRESS 2020:779-820. [DOI: 10.1016/b978-0-12-818606-0.00037-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
14
|
Fussbroich D, Kohnle C, Schwenger T, Driessler C, Dücker RP, Eickmeier O, Gottwald G, Jerkic SP, Zielen S, Kreyenberg H, Beermann C, Chiocchetti AG, Schubert R. A combination of LCPUFAs regulates the expression of miRNA-146a-5p in a murine asthma model and human alveolar cells. Prostaglandins Other Lipid Mediat 2019; 147:106378. [PMID: 31698144 DOI: 10.1016/j.prostaglandins.2019.106378] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 08/14/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND LCPUFAs are suggestive of having beneficial effects on inflammatory diseases such as asthma. However, little is known about the modulative capacity of omega-(n)-3 and n-6 LCPUFAs within the epigenetic regulation of inflammatory processes. OBJECTIVE The aim of this study was to investigate whether a specific combined LCPUFA supplementation restores disease-dysregulated miRNA-profiles in asthmatic mice. In addition, we determined the effect of the LCPUFA supplementation on the interaction of the most regulated miRNA expression and oxygenase activity in vitro. METHODS Sequencing of miRNA was performed by NGS from lung tissue of asthmatic and control mice with normal diet, as well as of LCPUFA supplemented asthmatic mice. Network analysis and evaluation of the biological targets of the miRNAs were performed by DIANA- miRPath v.3 webserver software, TargetScanMouse 7.2, and tool String v.10, respectively. Expression of hsa-miRNA-146a-5p and activity of COX-2 and 5-LO in LCPUFA-treated A549 cells were assessed by qPCR and flow cytometry, respectively. RESULTS In total, 62 miRNAs were dysregulated significantly in murine allergic asthma. The LCPUFA combination restored 21 of these dysregulated miRNAs, of which eight (mmu-miR-146a-5p, -30a-3p, -139-5p, -669p-5p, -145a-5p, -669a-5p, -342-3p and -15b-5p) were even normalized compared to the control levels. Interestingly, six of the eight rescued miRNAs are functionally implicated in TGF-β signaling, ECM-receptor interaction and fatty acid biosynthesis. Furthermore, in vitro experiments demonstrated that upregulation of hsa-miRNA-146a-5p is accompanied by a reduction of COX-2 and 5-LO activity. Moreover, transfection experiments revealed that LCPUFAs inhibit 5-LO activity in the presence and absence of anti-miR-146a-5p. CONCLUSION Our results demonstrate the modulative capacity of LCPUFAs on dysregulated miRNA expression in asthma. In addition, we pointed out the high regulative potential of LCPUFAs on 5-LO regulation and provided evidence that miR-146a partly controls the regulation of 5-LO.
Collapse
Affiliation(s)
- D Fussbroich
- Department of Food Technology, University of Applied Sciences, Leipziger Str. 123, Fulda, Germany; Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Theodor-Stern-Kai 7, Frankfurt/Main, Germany; Faculty of Biological Sciences, Goethe University Frankfurt/Main, Max-von-Laue-Straße 9, Frankfurt/Main, Germany.
| | - C Kohnle
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Theodor-Stern-Kai 7, Frankfurt/Main, Germany
| | - T Schwenger
- Department of Food Technology, University of Applied Sciences, Leipziger Str. 123, Fulda, Germany
| | - C Driessler
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Theodor-Stern-Kai 7, Frankfurt/Main, Germany
| | - R P Dücker
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Theodor-Stern-Kai 7, Frankfurt/Main, Germany
| | - O Eickmeier
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Theodor-Stern-Kai 7, Frankfurt/Main, Germany
| | - G Gottwald
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Theodor-Stern-Kai 7, Frankfurt/Main, Germany
| | - S P Jerkic
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Theodor-Stern-Kai 7, Frankfurt/Main, Germany
| | - S Zielen
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Theodor-Stern-Kai 7, Frankfurt/Main, Germany
| | - H Kreyenberg
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents, University Hospital, Goethe University, Theodor-Stern-Kai 7, Frankfurt/Main, Germany
| | - C Beermann
- Department of Food Technology, University of Applied Sciences, Leipziger Str. 123, Fulda, Germany
| | - A G Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe University, Theodor-Stern-Kai 7, Frankfurt/Main, Germany
| | - R Schubert
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Theodor-Stern-Kai 7, Frankfurt/Main, Germany
| |
Collapse
|
15
|
Coentro JQ, Pugliese E, Hanley G, Raghunath M, Zeugolis DI. Current and upcoming therapies to modulate skin scarring and fibrosis. Adv Drug Deliv Rev 2019; 146:37-59. [PMID: 30172924 DOI: 10.1016/j.addr.2018.08.009] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/08/2018] [Accepted: 08/26/2018] [Indexed: 12/12/2022]
Abstract
Skin is the largest organ of the human body. Being the interface between the body and the outer environment, makes it susceptible to physical injury. To maintain life, nature has endowed skin with a fast healing response that invariably ends in the formation of scar at the wounded dermal area. In many cases, skin remodelling may be impaired, leading to local hypertrophic scars or keloids. One should also consider that the scarring process is part of the wound healing response, which always starts with inflammation. Thus, scarring can also be induced in the dermis, in the absence of an actual wound, during chronic inflammatory processes. Considering the significant portion of the population that is subject to abnormal scarring, this review critically discusses the state-of-the-art and upcoming therapies in skin scarring and fibrosis.
Collapse
Affiliation(s)
- João Q Coentro
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland; Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland
| | - Eugenia Pugliese
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland; Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland
| | - Geoffrey Hanley
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland; Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland
| | - Michael Raghunath
- Center for Cell Biology and Tissue Engineering, Institute for Chemistry and Biotechnology (ICBT), Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland; Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland.
| |
Collapse
|
16
|
Fuschi P, Maimone B, Gaetano C, Martelli F. Noncoding RNAs in the Vascular System Response to Oxidative Stress. Antioxid Redox Signal 2019; 30:992-1010. [PMID: 28683564 DOI: 10.1089/ars.2017.7229] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE Redox homeostasis plays a pivotal role in vascular cell function and its imbalance has a causal role in a variety of vascular diseases. Accordingly, the response of mammalian cells to redox cues requires precise transcriptional and post-transcriptional modulation of gene expression patterns. Recent Advances: Mounting evidence shows that nonprotein-coding RNAs (ncRNAs) are important for the functional regulation of most, if not all, cellular processes and tissues. Not surprisingly, a prominent role of ncRNAs has been identified also in the vascular system response to oxidative stress. CRITICAL ISSUES The highly heterogeneous family of ncRNAs has been divided into several groups. In this article we focus on two classes of regulatory ncRNAs: microRNAs and long ncRNAs (lncRNAs). Although knowledge in many circumstances, and especially for lncRNAs, is still fragmentary, ncRNAs are clinically interesting because of their diagnostic and therapeutic potential. We outline ncRNAs that are regulated by oxidative stress as well as ncRNAs that modulate reactive oxygen species production and scavenging. More importantly, we describe the role of these ncRNAs in vascular physiopathology and specifically in disease conditions wherein oxidative stress plays a crucial role, such as hypoxia and ischemia, ischemia reperfusion, inflammation, diabetes mellitus, and atherosclerosis. FUTURE DIRECTIONS The therapeutic potential of ncRNAs in vascular diseases and in redox homeostasis is discussed.
Collapse
Affiliation(s)
- Paola Fuschi
- 1 Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, Milan, Italy
| | - Biagina Maimone
- 1 Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, Milan, Italy
| | - Carlo Gaetano
- 2 Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main, Germany
| | - Fabio Martelli
- 1 Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, Milan, Italy
| |
Collapse
|
17
|
Zou Y, Li S, Li Z, Song D, Zhang S, Yao Q. MiR-146a attenuates liver fibrosis by inhibiting transforming growth factor-β1 mediated epithelial-mesenchymal transition in hepatocytes. Cell Signal 2019; 58:1-8. [PMID: 30711634 DOI: 10.1016/j.cellsig.2019.01.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/05/2019] [Accepted: 01/31/2019] [Indexed: 12/21/2022]
Abstract
Epithelial-mesenchymal transition (EMT) has emerged as a vital process in embryogenesis, carcinogenesis, and tissue fibrosis. Transforming growth factor-beta 1 (TGF-β1)-mediated signaling pathways play important roles in the EMT process. MicroRNA-146a (miR-146a) has been suggested as a significant regulatory molecule in fibrogenesis. Therefore, the present study aimed to evaluate the effect of miR-146a on the EMT of hepatocytes and to investigate the role of overexpressing miR-146a on rat hepatic fibrosis. The results showed that the miR-146a level decreased during the EMT process of L02 hepatocytes induced by TGF-β1 in vitro. Moreover, miR-146a overexpression led to significant reduction of EMT-related markers expression in hepatocytes. Subsequent experiments revealed that miR-146a attenuated the EMT process in hepatocytes by targeting small mothers against decapentaplegic (SMAD) 4. Meanwhile, restoration of SMAD4 expression rescued the inhibitory effect of miRNA-146a on EMT. Further in vivo studies revealed that intravenous injection of miR-146a-expressing adenovirus (Ad-miR-146a) successfully restored the miR-146a levels and mitigated fibrogenesis in the livers of CCl4-treated rats. More importantly, after Ad-miR-146a treatment, inhibition of both EMT traits and SMAD4 expression was observed. The results of the present study showed that miR-146a/SMAD4 is a key signaling cascade that inhibits hepatocyte EMT, and the introduction of miR-146a might present a promising therapeutic option for liver fibrosis.
Collapse
Affiliation(s)
- Yanting Zou
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, PR China; Shanghai Institute of Liver disease, Shanghai, PR China
| | - Shuyu Li
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, PR China; Shanghai Institute of Liver disease, Shanghai, PR China
| | - Zhengliang Li
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, PR China; Shanghai Institute of Liver disease, Shanghai, PR China
| | - Dongqiang Song
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Shuncai Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, PR China; Shanghai Institute of Liver disease, Shanghai, PR China.
| | - Qunyan Yao
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, PR China; Shanghai Institute of Liver disease, Shanghai, PR China.
| |
Collapse
|
18
|
Systems Analysis of Transcriptomic and Proteomic Profiles Identifies Novel Regulation of Fibrotic Programs by miRNAs in Pulmonary Fibrosis Fibroblasts. Genes (Basel) 2018; 9:genes9120588. [PMID: 30501089 PMCID: PMC6316743 DOI: 10.3390/genes9120588] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/23/2018] [Accepted: 11/23/2018] [Indexed: 01/10/2023] Open
Abstract
Fibroblasts/myofibroblasts are the key effector cells responsible for excessive extracellular matrix (ECM) deposition and fibrosis progression in both idiopathic pulmonary fibrosis (IPF) and systemic sclerosis (SSc) patient lungs, thus it is critical to understand the transcriptomic and proteomic programs underlying their fibrogenic activity. We conducted the first integrative analysis of the fibrotic programming in these cells at the levels of gene and microRNA (miRNA) expression, as well as deposited ECM protein to gain insights into how fibrotic transcriptional programs culminate in aberrant ECM protein production/deposition. We identified messenger RNA (mRNA), miRNA, and deposited matrisome protein signatures for IPF and SSc fibroblasts obtained from lung transplants using next-generation sequencing and mass spectrometry. SSc and IPF fibroblast transcriptional signatures were remarkably similar, with enrichment of WNT, TGF-β, and ECM genes. miRNA-seq identified differentially regulated miRNAs, including downregulation of miR-29b-3p, miR-138-5p and miR-146b-5p in disease fibroblasts and transfection of their mimics decreased expression of distinct sets of fibrotic signature genes as assessed using a Nanostring fibrosis panel. Finally, proteomic analyses uncovered a distinct "fibrotic" matrisome profile deposited by IPF and SSc fibroblasts compared to controls that highlights the dysregulated ECM production underlying their fibrogenic activities. Our comprehensive analyses of mRNA, miRNA, and matrisome proteomic profiles in IPF and SSc lung fibroblasts revealed robust fibrotic signatures at both the gene and protein expression levels and identified novel fibrogenesis-associated miRNAs whose aberrant downregulation in disease fibroblasts likely contributes to their fibrotic and ECM gene expression.
Collapse
|
19
|
Ghotloo S, Motedayyen H, Amani D, Saffari M, Sattari M. Assessment of microRNA-146a in generalized aggressive periodontitis and its association with disease severity. J Periodontal Res 2018; 54:27-32. [PMID: 30328616 DOI: 10.1111/jre.12538] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2018] [Indexed: 01/29/2023]
Abstract
BACKGROUND AND OBJECTIVE MicroRNA-146a (miR-146a) is a small noncoding RNA that plays a critical role in the negative regulation of the innate immune response, and the dysregulation of miR-146a has been associated with several inflammatory disorders. In generalized aggressive periodontitis (GAgP) the degree of clinical inflammation appears to be similar to that of chronic periodontitis, and, in this situation, age of onset and family history are important additional criteria for diagnosis. This study was performed to evaluate the level of miR-146a expressed in gingival tissues of patients with GAgP and its association with disease severity. MATERIAL AND METHODS Gingival samples from 18 patients with GAgP and 10 healthy subjects were collected and the level of miR-146a and its targets, including necrosis factor-alpha, interleukin-1beta, and interleukin-6, were assessed using real-time PCR. Clinical parameters, including probing depth and clinical attachment loss, were measured and their correlations with the level of miR-146a were determined. RESULTS Our results demonstrated an elevation in the level of miR-146a expressed in patients with GAgP compared with healthy controls (P < .001), which was directly associated with disease severity (P < .05). Overexpression of miR-146a was accompanied by a reduction in the levels of pro-inflammatory cytokines. CONCLUSIONS Our findings suggest that there is an association between miR-146a and GAgP and imply that miR-146a may serve as an indicator of periodontal disease severity. However, further studies and additional information are required to confirm this relationship and the precise role of miR-146a in the development and/or progression of periodontitis.
Collapse
Affiliation(s)
- S Ghotloo
- Department of Laboratory Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - H Motedayyen
- Department of Laboratory Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Department of Immunology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - D Amani
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Saffari
- Department of Microbiology and Laboratory Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - M Sattari
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Zhu D, Hu B, Zhou Y, Sun X, Chen J, Chen L, Ji Z, Zhu J, Duan Y. microRNA-146a is involved in rSjP40-inhibited activation of LX-2 cells by targeting Smad4 expression. J Cell Biochem 2018; 119:9249-9253. [PMID: 29953648 DOI: 10.1002/jcb.27193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 05/24/2018] [Indexed: 12/31/2022]
Abstract
Previous studies have demonstrated that the recombinant Schistosoma japonicum protein P40 (rSjP40) could inhibit activation of hepatic stellate cells (HSCs) through the TGF-β1/Smads signaling pathway. Since multiple microRNAs could play essential roles in HSC activation and in the process of hepatic fibrosis through targeting Smads, we attempted to seek the potential microRNAs that could be involved in rSjP40-induced inhibition of HSC activation. Using the method of quantitative real-time PCR, we found that rSjP40 could induce miR-146a expression in LX-2 cells. The down-regulated expression levels of Smad4 and α-SMA in LX-2 cells induced by rSjP40 were partially restored by an miR-146a inhibitor. miR-146a can be involved in rSjP40-induced inhibition of HSC activation through targeting Smad4. These findings provide us a new idea to explore the potential mechanisms by which rSjP40 could regulate the process of hepatic fibrosis.
Collapse
Affiliation(s)
- Dandan Zhu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Bin Hu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yonghua Zhou
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
| | - Xiaolei Sun
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Jinling Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Liuting Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Zhaodong Ji
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Jinhua Zhu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yinong Duan
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
21
|
Luo W, Chen J, Li L, Ren X, Cheng T, Lu S, Lawal RA, Nie Q, Zhang X, Hanotte O. c-Myc inhibits myoblast differentiation and promotes myoblast proliferation and muscle fibre hypertrophy by regulating the expression of its target genes, miRNAs and lincRNAs. Cell Death Differ 2018; 26:426-442. [PMID: 29786076 DOI: 10.1038/s41418-018-0129-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 12/11/2022] Open
Abstract
The transcription factor c-Myc is an important regulator of cellular proliferation, differentiation and embryogenesis. While c-Myc can inhibit myoblast differentiation, the underlying mechanisms remain poorly understood. Here, we found that c-Myc does not only inhibits myoblast differentiation but also promotes myoblast proliferation and muscle fibre hypertrophy. By performing chromatin immunoprecipitation and high-throughput sequencing (ChIP-seq), we identified the genome-wide binding profile of c-Myc in skeletal muscle cells. c-Myc achieves its regulatory effects on myoblast proliferation and differentiation by targeting the cell cycle pathway. Additionally, c-Myc can regulate cell cycle genes by controlling miRNA expression of which dozens of miRNAs can also be regulated directly by c-Myc. Among these c-Myc-associated miRNAs (CAMs), the roles played by c-Myc-induced miRNAs in skeletal muscle cells are similar to those played by c-Myc, whereas c-Myc-repressed miRNAs play roles that are opposite to those played by c-Myc. The cell cycle, ERK-MAPK and Akt-mediated pathways are potential target pathways of the CAMs during myoblast differentiation. Interestingly, we identified four CAMs that can directly bind to the c-Myc 3' UTR and inhibit c-Myc expression, suggesting that a negative feedback loop exists between c-Myc and its target miRNAs during myoblast differentiation. c-Myc also potentially regulates many long intergenic noncoding RNAs (lincRNAs). Linc-2949 and linc-1369 are directly regulated by c-Myc, and both lincRNAs are involved in the regulation of myoblast proliferation and differentiation by competing for the binding of muscle differentiation-related miRNAs. Our findings do not only provide a genome-wide overview of the role the c-Myc plays in skeletal muscle cells but also uncover the mechanism of how c-Myc and its target genes regulate myoblast proliferation and differentiation, and muscle fibre hypertrophy.
Collapse
Affiliation(s)
- Wen Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China
| | - Jiahui Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China
| | - Limin Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China
| | - Xueyi Ren
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China
| | - Tian Cheng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China
| | - Shiyi Lu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China
| | - Raman Akinyanju Lawal
- Cells, Organisms and Molecular Genetics Division, School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China. .,Cells, Organisms and Molecular Genetics Division, School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China. .,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China.
| | - Olivier Hanotte
- Cells, Organisms and Molecular Genetics Division, School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
22
|
Lee HJ, Jang YJ. Recent Understandings of Biology, Prophylaxis and Treatment Strategies for Hypertrophic Scars and Keloids. Int J Mol Sci 2018; 19:ijms19030711. [PMID: 29498630 PMCID: PMC5877572 DOI: 10.3390/ijms19030711] [Citation(s) in RCA: 313] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 02/06/2023] Open
Abstract
Hypertrophic scars and keloids are fibroproliferative disorders that may arise after any deep cutaneous injury caused by trauma, burns, surgery, etc. Hypertrophic scars and keloids are cosmetically problematic, and in combination with functional problems such as contractures and subjective symptoms including pruritus, these significantly affect patients’ quality of life. There have been many studies on hypertrophic scars and keloids; but the mechanisms underlying scar formation have not yet been well established, and prophylactic and treatment strategies remain unsatisfactory. In this review, the authors introduce and summarize classical concepts surrounding wound healing and review recent understandings of the biology, prevention and treatment strategies for hypertrophic scars and keloids.
Collapse
Affiliation(s)
- Ho Jun Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon 24253, Korea.
| | - Yong Ju Jang
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea.
| |
Collapse
|
23
|
Yan X, Xiong X, Chen YG. Feedback regulation of TGF-β signaling. Acta Biochim Biophys Sin (Shanghai) 2018; 50:37-50. [PMID: 29228156 DOI: 10.1093/abbs/gmx129] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor beta (TGF-β) is a multi-functional polypeptide that plays a critical role in regulating a broad range of cellular functions and physiological processes. Signaling is initiated when TGF-β ligands bind to two types of cell membrane receptors with intrinsic Ser/Thr kinase activity and transmitted by the intracellular Smad proteins, which act as transcription factors to regulate gene expression in the nucleus. Although it is relatively simple and straight-forward, this TGF-β/Smad pathway is regulated by various feedback loops at different levels, including the ligand, the receptor, Smads and transcription, and is thus fine-tuned in terms of signaling robustness, duration, specificity, and plasticity. The precise control gives rise to versatile and context-dependent pathophysiological functions. In this review, we firstly give an overview of TGF-β signaling, and then discuss how each step of TGF-β signaling is finely controlled by distinct modes of feedback mechanisms, involving both protein regulators and miRNAs.
Collapse
Affiliation(s)
- Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
24
|
Yao X, Cui X, Wu X, Xu P, Zhu W, Chen X, Zhao T. Tumor suppressive role of miR-1224-5p in keloid proliferation, apoptosis and invasion via the TGF-β1/Smad3 signaling pathway. Biochem Biophys Res Commun 2018; 495:713-720. [DOI: 10.1016/j.bbrc.2017.10.070] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/14/2017] [Indexed: 01/10/2023]
|
25
|
Barile L, Milano G, Vassalli G. Beneficial effects of exosomes secreted by cardiac-derived progenitor cells and other cell types in myocardial ischemia. Stem Cell Investig 2017; 4:93. [PMID: 29270419 DOI: 10.21037/sci.2017.11.06] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/01/2017] [Indexed: 12/15/2022]
Abstract
When injected into acutely infarcted rodent or pig hearts, naturally secreted nanovesicles known as exosomes from cardiac-derived progenitor cells (CPCs) reduce scar size and improve cardiac function. In this regard, exosomes fully mimic the benefits of injecting their parent cells. This recognition paves the way to the development of exosome-based, cell-free treatments for heart disease that could possibly supplant cell-based therapies. Mechanisms of benefit of these vesicles are incompletely understood but cytoprotection, stimulation of angiogenesis, induction of antifibrotic cardiac fibroblasts, and modulation of M1/M2 polarization of macrophages infiltrating the infarcted region can all play important roles. Accordingly, the beneficial molecules carried by CPC-secreted exosomes have been identified only in part but cytoprotective and proangiogenic microRNAs (miRNA) and proteins have been described. Besides CPC-secreted exosomes, vesicles released from other cell types including mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), and induced pluripotent stem cells (iSPCs) have also been associated with cardioprotection. This review aims to discuss recent advances in our understanding of the role of secreted vesicles in cardiac repair, with a focus on CPC-derived exosomes.
Collapse
Affiliation(s)
- Lucio Barile
- Laboratory of Cellular and Molecular Cardiology, Swiss Institute for Regenerative Medicine (SIRM) and Cardiocentro Ticino Foundation, Lugano, Switzerland
| | - Giuseppina Milano
- Laboratory of Cellular and Molecular Cardiology, Swiss Institute for Regenerative Medicine (SIRM) and Cardiocentro Ticino Foundation, Lugano, Switzerland.,Heart and Vessel Department, CHUV University of Lausanne Medical Center, Lausanne, Switzerland
| | - Giuseppe Vassalli
- Laboratory of Cellular and Molecular Cardiology, Swiss Institute for Regenerative Medicine (SIRM) and Cardiocentro Ticino Foundation, Lugano, Switzerland.,Heart and Vessel Department, CHUV University of Lausanne Medical Center, Lausanne, Switzerland.,Center for Molecular Cardiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
26
|
Kim SH, Bennett PR, Terzidou V. Advances in the role of oxytocin receptors in human parturition. Mol Cell Endocrinol 2017; 449:56-63. [PMID: 28119132 DOI: 10.1016/j.mce.2017.01.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/16/2017] [Accepted: 01/21/2017] [Indexed: 12/26/2022]
Abstract
Oxytocin (OT) is a neurohypophysial hormone which has been found to play a central role in the regulation of human parturition. The most established role of oxytocin/oxytocin receptor (OT/OTR) system in human parturition is the initiation of uterine contractions, however, recent evidence have demonstrated that it may have a more complex role including initiation of inflammation, regulation of miRNA expression, as well as mediation of other non-classical oxytocin actions via receptor crosstalk with other G protein-coupled receptors (GPCRs). In this review we highlight both established and newly emerging roles of OT/OTR system in human parturition and discuss the expanding potential for OTRs as pharmacological targets in the management of preterm labour.
Collapse
Affiliation(s)
- Sung Hye Kim
- Imperial College London, Parturition Research Group, Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, Du Cane Road, East Acton, London W12 0NN, UK
| | - Phillip R Bennett
- Imperial College London, Parturition Research Group, Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, Du Cane Road, East Acton, London W12 0NN, UK
| | - Vasso Terzidou
- Imperial College London, Parturition Research Group, Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, Du Cane Road, East Acton, London W12 0NN, UK; Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK.
| |
Collapse
|
27
|
Sun Y, Li Y, Wang H, Li H, Liu S, Chen J, Ying H. miR-146a-5p acts as a negative regulator of TGF-β signaling in skeletal muscle after acute contusion. Acta Biochim Biophys Sin (Shanghai) 2017; 49:628-634. [PMID: 28510617 DOI: 10.1093/abbs/gmx052] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Indexed: 02/05/2023] Open
Abstract
Growing evidence suggests the importance of microRNAs (miRNAs) in stress signaling pathways. Transforming growth factor-β (TGF-β) is a potent cytokine that promotes the development of skeletal muscle fibrosis after acute contusion. However, how miRNAs are involved in TGF-β signaling and confer the robustness of TGF-β-induced fibrotic response remains to be fully elucidated. Here, we demonstrated that miR-146a-5p (miR-146) levels were reduced in a fibrotic mouse model after acute muscle contusion. It was also found that TGF-β treatment decreased the expression of miR-146 in vitro in a dose- and time-dependent manner. In addition, overexpression of Smad3 and Samd4, two key players in TGF-β signaling, suppressed the expression of miR-146 in muscle cells. Overexpression of miR-146 inhibited the expressions of fibrosis markers both in vitro and in vivo. Moreover, increase in the expression of miR-146 in muscle cells was able to attenuate the effect of TGF-β on the expressions of fibrosis markers. Mechanistic analysis revealed that Smad4 is a direct target of miR-146 in muscle cells. Furthermore, the anti-fibrotic effect of miR-146 could be blocked by overexpression of Smad4 in vivo. These results suggest that Smad4 is down-regulated by miR-146 in skeletal muscle. Taken together, our results indicate that the anti-fibrotic miR-146 is a component of TGF-β signaling. It is down-regulated by Smad protein, and can inhibit the expression of Smad4. Our study suggests that miR-146 might have a therapeutic potential to reduce skeletal muscle fibrosis after injury.
Collapse
Affiliation(s)
- Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yan Li
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Wang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongyun Li
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shaohua Liu
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jiwu Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Hao Ying
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
28
|
Yang C, Zheng SD, Wu HJ, Chen SJ. Regulatory Mechanisms of the Molecular Pathways in Fibrosis Induced by MicroRNAs. Chin Med J (Engl) 2016; 129:2365-72. [PMID: 27647197 PMCID: PMC5040024 DOI: 10.4103/0366-6999.190677] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE MicroRNAs (miRNAs or miRs) play critical roles in the fibrotic process in different organs. We summarized the latest research progress on the roles and mechanisms of miRNAs in the regulation of the molecular signaling pathways involved in fibrosis. DATA SOURCES Papers published in English from January 2010 to August 2015 were selected from the PubMed and Web of Science databases using the search terms "microRNA", "miR", "transforming growth factor β", "tgf β", "mitogen-activated protein kinase", "mapk", "integrin", "p38", "c-Jun NH2-terminal kinase", "jnk", "extracellular signal-regulated kinase", "erk", and "fibrosis". STUDY SELECTION Articles were obtained and reviewed to analyze the regulatory effects of miRNAs on molecular signaling pathways involved in the fibrosis. RESULTS Recent evidence has shown that miRNAs are involved in regulating fibrosis by targeting different substrates in the molecular processes that drive fibrosis, such as immune cell sensitization, effector cell activation, and extracellular matrix remodeling. Moreover, several important molecular signaling pathways involve in fibrosis, such as the transforming growth factor-beta (TGF-β) pathway, mitogen-activated protein kinase (MAPK) pathways, and the integrin pathway are regulated by miRNAs. Third, regulation of the fibrotic pathways induced by miRNAs is found in many other tissues in addition to the heart, lung, liver, and kidney. Interestingly, the actions of many drugs on the human body are also induced by miRNAs. It is encouraging that the fibrotic process can be blocked or reversed by targeting specific miRNAs and their signaling pathways, thereby protecting the structures and functions of different organs. CONCLUSIONS miRNAs not only regulate molecular signaling pathways in fibrosis but also serve as potential targets of novel therapeutic interventions for fibrosing diseases.
Collapse
Affiliation(s)
- Cui Yang
- Department of Cardiology, Huairou Hospital of Traditional Chinese Medicine, Beijing 101400, China
| | - Si-Dao Zheng
- Department of Cardiology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing 100039, China
| | - Hong-Jin Wu
- Department of Cardiology, Beijing Haidian Hospital, Haidian Section of Peking University Third Hospital, Beijing 100191, China
| | - Shao-Jun Chen
- Department of Cardiology, Huairou Hospital of Traditional Chinese Medicine, Beijing 101400, China
| |
Collapse
|
29
|
Szűcs D, Béres NJ, Rokonay R, Boros K, Borka K, Kiss Z, Arató A, Szabó AJ, Vannay &A, Sziksz E, Bereczki C, Veres G. Increased duodenal expression of miR-146a and -155 in pediatric Crohn’s disease. World J Gastroenterol 2016; 22:6027-6035. [PMID: 27468194 PMCID: PMC4948267 DOI: 10.3748/wjg.v22.i26.6027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/02/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the role of microRNA (miR)-146a, -155 and -122 in the duodenal mucosa of pediatric patients with Crohn’s disease (CD) and the effect of transforming growth factor-β (TGF-β) on these miRs in duodenal epithelial and fibroblast cells.
METHODS: Formalin-fixed, paraffin-embedded biopsies derived from the macroscopically inflamed (CD inflamed: n = 10) and intact (CD intact: n = 10) duodenal mucosa of pediatric CD patients and control children (C: n = 10) were examined. Expression of miR-146a, -155 and -122 was determined by real-time polymerase-chain reaction (PCR). The expression of the above miRs was investigated in recombinant human TGF-β (1 nmol/L, 24 h) or vehicle treated small intestinal epithelial cells (CCL-241) and primary duodenal fibroblast cells derived from healthy children as well.
RESULTS: Expression of miR-146a was significantly higher in the inflamed duodenal mucosa compared to the intact duodenal mucosa of children with CD (CD inflamed: 3.21 ± 0.50 vs CD intact: 0.62 ± 0.26, P≤ 0.01) and to the control group (CD inflamed: 3.21 ± 0.50 vs C: 1.00 ± 0.33, P≤ 0.05). The expression of miR-155 was significantly increased in the inflamed region of the duodenum compared to the control group (CD inflamed: 4.87 ± 1.02 vs Control: 1.00 ± 0.40, P≤ 0.001). The expression of miR-122 was unchanged in the inflamed or intact mucosa of CD patients compared to controls. TGF-β treatment significantly decreased the expression of miR-155 in small intestinal epithelial cells (TGF-β: 0.7 ± 0.083 vs Control: 1 ± 0.09, P≤ 0.05) and also the expression of miR-146a (TGF-β: 0.67 ± 0.04 vs Control: 1 ± 0.15, P≤ 0.01) and miR-155 (TGF-β: 0.72 ± 0.09 vs Control: 1 ± 0.06, P≤ 0.05) in primary duodenal fibroblasts compared to corresponding vehicle treated controls. TGF-β treatment did not influence the expression of miR-122.
CONCLUSION: The elevated expression of miR-146a and -155 in the inflamed duodenal mucosa of CD patients suggests the role of these miRs in the pathomechanism of inflammatory bowel disease. Anti-inflammatory TGF-β plays an important role in the regulation of the expression of these miRs.
Collapse
|
30
|
Miguel V, Busnadiego O, Fierro-Fernández M, Lamas S. Protective role for miR-9-5p in the fibrogenic transformation of human dermal fibroblasts. FIBROGENESIS & TISSUE REPAIR 2016; 9:7. [PMID: 27274768 PMCID: PMC4891847 DOI: 10.1186/s13069-016-0044-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 05/04/2016] [Indexed: 01/09/2023]
Abstract
Background Excessive accumulation of extracellular matrix (ECM) proteins is the hallmark of fibrotic diseases, including skin fibrosis. This response relies on the activation of dermal fibroblasts that evolve into a pro-fibrogenic phenotype. One of the major players in this process is the cytokine transforming growth factor-β (TGF-β). MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression affecting a wide range of pathophysiological events including fibrogenesis. MicroRNA-9-5p (miR-9-5p) has been shown to exert a protective role in lung and peritoneal fibrosis. This study aimed to evaluate the role of miR-9-5p in skin fibrosis. Results miR-9-5p is up-regulated in TGF-β1-treated human dermal fibroblasts (HDFs). In silico identification of miR-9-5p targets spotted the type II TGF-β receptor (TGFBR2) as a potential TGF-β signaling-related effector for this miRNA. Consistently, over-expression of miR-9-5p in HDFs down-regulated TGFBR2 at both the mRNA and protein levels and reduced the phosphorylation of Smad2 and the translocation of Smad2/3 to the nucleus. In keeping, over-expression of miR-9-5p significantly delayed TGF-β1-dependent transformation of dermal fibroblasts, decreasing the expression of ECM protein collagen, type I, alpha 1 (Col1α1), and fibronectin (FN), the amount of secreted collagen proteins, and the expression of the archetypal myofibroblast marker alpha-smooth muscle actin (α-SMA). By contrast, specific inhibition of miR-9-5p resulted in enhanced presence of fibrosis markers. The expression of miR-9-5p was also detected in the skin and plasma in the mouse model of bleomycin-induced dermal fibrosis. Using lentiviral constructs, we demonstrated that miR-9-5p over-expression was also capable of deterring fibrogenesis in this same model. Conclusions miR-9-5p significantly prevents fibrogenesis in skin fibrosis. This is mediated by an abrogation of TGF-β-mediated signaling through the down-regulation of TGFBR2 expression in HDFs. These results may pave the way for future diagnostic or therapeutic developments for skin fibrosis based on miR-9-5p. Electronic supplementary material The online version of this article (doi:10.1186/s13069-016-0044-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Verónica Miguel
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Oscar Busnadiego
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Marta Fierro-Fernández
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Santiago Lamas
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| |
Collapse
|
31
|
Politano G, Orso F, Raimo M, Benso A, Savino A, Taverna D, Di Carlo S. CyTRANSFINDER: a Cytoscape 3.3 plugin for three-component (TF, gene, miRNA) signal transduction pathway construction. BMC Bioinformatics 2016; 17:157. [PMID: 27059647 PMCID: PMC4826505 DOI: 10.1186/s12859-016-0964-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/19/2016] [Indexed: 12/02/2022] Open
Abstract
Background Biological research increasingly relies on network models to study complex phenomena. Signal Transduction Pathways are molecular circuits that model how cells receive, process, and respond to information from the environment providing snapshots of the overall cell dynamics. Most of the attempts to reconstruct signal transduction pathways are limited to single regulator networks including only genes/proteins. However, networks involving a single type of regulator and neglecting transcriptional and post-transcriptional regulations mediated by transcription factors and microRNAs, respectively, may not fully reveal the complex regulatory mechanisms of a cell. We observed a lack of computational instruments supporting explorative analysis on this type of three-component signal transduction pathways. Results We have developed CyTRANSFINDER, a new Cytoscape plugin able to infer three-component signal transduction pathways based on user defined regulatory patterns and including miRNAs, TFs and genes. Since CyTRANSFINDER has been designed to support exploratory analysis, it does not rely on expression data. To show the potential of the plugin we have applied it in a study of two miRNAs that are particularly relevant in human melanoma progression, miR-146a and miR-214. Conclusions CyTRANSFINDER supports the reconstruction of small signal transduction pathways among groups of genes. Results obtained from its use in a real case study have been analyzed and validated through both literature data and preliminary wet-lab experiments, showing the potential of this tool when performing exploratory analysis. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-0964-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gianfranco Politano
- Department of Control and Computer Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
| | - Francesca Orso
- Molecular Biotechnology Center (MBC), Via Nizza, 52, Torino, 10126, Italy.,Dept. Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza, 52, Torino, 10126, Italy.,Center for Complex Systems in Molecular Biology and Medicine, Via Accademia Albertina, 13, Torino, 10123, Italy
| | - Monica Raimo
- Molecular Biotechnology Center (MBC), Via Nizza, 52, Torino, 10126, Italy.,Dept. Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza, 52, Torino, 10126, Italy
| | - Alfredo Benso
- Department of Control and Computer Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
| | - Alessandro Savino
- Department of Control and Computer Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
| | - Daniela Taverna
- Molecular Biotechnology Center (MBC), Via Nizza, 52, Torino, 10126, Italy.,Dept. Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza, 52, Torino, 10126, Italy.,Center for Complex Systems in Molecular Biology and Medicine, Via Accademia Albertina, 13, Torino, 10123, Italy
| | - Stefano Di Carlo
- Department of Control and Computer Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy.
| |
Collapse
|
32
|
Missing link between microRNA and prostate cancer. Tumour Biol 2016; 37:5683-704. [DOI: 10.1007/s13277-016-4900-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/20/2016] [Indexed: 12/12/2022] Open
|
33
|
Fierro-Fernández M, Miguel V, Lamas S. Role of redoximiRs in fibrogenesis. Redox Biol 2015; 7:58-67. [PMID: 26654978 PMCID: PMC4683389 DOI: 10.1016/j.redox.2015.11.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 02/06/2023] Open
Abstract
Fibrosis can be defined as an excessive accumulation of extracellular matrix (ECM) components, ultimately leading to stiffness, scarring and devitalized tissue. MicroRNAs (miRNAs) are short, 19-25 nucleotides (nt), non-coding RNAs involved in the post-transcriptional regulation of gene expression. Recently, miRNAs have also emerged as powerful regulators of fibrotic processes and have been termed "fibromiRs". Oxidative stress represents a self-perpetuating mechanism in fibrogenesis. MiRNAs can also influence the expression of genes responsible for the generation of reactive oxygen species (ROS) and antioxidant defence and are termed "redoximiRs". Here, we review the current knowledge of mechanisms by which "redoximiRs" regulate fibrogenesis. This new set of miRNAs may be called "redoxifibromiRs".
Collapse
Affiliation(s)
- Marta Fierro-Fernández
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain.
| | - Verónica Miguel
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Santiago Lamas
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain.
| |
Collapse
|
34
|
Motedayyen H, Ghotloo S, Saffari M, Sattari M, Amid R. Evaluation of MicroRNA-146a and Its Targets in Gingival Tissues of Patients With Chronic Periodontitis. J Periodontol 2015; 86:1380-5. [PMID: 26313020 DOI: 10.1902/jop.2015.150319] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are a group of small non-coding RNAs that play an important role in the regulation of gene expression. miRNA-146a (miR-146a), a member of the miR-146 family, is involved in the control of inflammation. Periodontitis is a set of chronic inflammatory disorders of the tissues surrounding the teeth that lead to the breakdown of alveolar bone and tooth loss. In this study, expression levels of miR-146a and its targets, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, are evaluated in human patients with chronic periodontitis (CP). METHODS The study population consisted of 10 healthy controls and 20 individuals with CP. For each participant, clinical parameters including probing depth and clinical attachment level were measured, and a gingival tissue sample was collected. Levels of miR-146a, TNF-α, IL-1β, and IL-6 were quantified using real-time polymerase chain reaction. RESULTS Levels of miR-146a were significantly higher in patients with CP (P <0.001). There was a positive correlation between levels of miR-146a and clinical parameters (P <0.05). Elevated miR-146a was accompanied by a significant reduction in TNF-α and IL-6 (P <0.001). CONCLUSIONS Patients with CP had higher levels of miR-146a than healthy individuals, accompanied by reduced levels of TNF-α and IL-6. A positive relationship between miR-146a levels and clinical parameters suggests a pathophysiologic role of miR-146a in CP.
Collapse
Affiliation(s)
- Hossein Motedayyen
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Ghotloo
- Department of Laboratory Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahmood Saffari
- Department of Microbiology and Laboratory Medicine, Kashan University of Medical Sciences
| | - Mandana Sattari
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Amid
- Periodontics Department, Dental School, Shahid Beheshti University of Medical Sciences
| |
Collapse
|
35
|
Miller KJ, Brown DA, Ibrahim MM, Ramchal TD, Levinson H. MicroRNAs in skin tissue engineering. Adv Drug Deliv Rev 2015; 88:16-36. [PMID: 25953499 DOI: 10.1016/j.addr.2015.04.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 04/04/2015] [Accepted: 04/25/2015] [Indexed: 01/08/2023]
Abstract
35.2 million annual cases in the U.S. require clinical intervention for major skin loss. To meet this demand, the field of skin tissue engineering has grown rapidly over the past 40 years. Traditionally, skin tissue engineering relies on the "cell-scaffold-signal" approach, whereby isolated cells are formulated into a three-dimensional substrate matrix, or scaffold, and exposed to the proper molecular, physical, and/or electrical signals to encourage growth and differentiation. However, clinically available bioengineered skin equivalents (BSEs) suffer from a number of drawbacks, including time required to generate autologous BSEs, poor allogeneic BSE survival, and physical limitations such as mass transfer issues. Additionally, different types of skin wounds require different BSE designs. MicroRNA has recently emerged as a new and exciting field of RNA interference that can overcome the barriers of BSE design. MicroRNA can regulate cellular behavior, change the bioactive milieu of the skin, and be delivered to skin tissue in a number of ways. While it is still in its infancy, the use of microRNAs in skin tissue engineering offers the opportunity to both enhance and expand a field for which there is still a vast unmet clinical need. Here we give a review of skin tissue engineering, focusing on the important cellular processes, bioactive mediators, and scaffolds. We further discuss potential microRNA targets for each individual component, and we conclude with possible future applications.
Collapse
|
36
|
Cook JR, MacIntyre DA, Samara E, Kim SH, Singh N, Johnson MR, Bennett PR, Terzidou V. Exogenous oxytocin modulates human myometrial microRNAs. Am J Obstet Gynecol 2015; 213:65.e1-65.e9. [PMID: 25757635 DOI: 10.1016/j.ajog.2015.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/16/2014] [Accepted: 03/04/2015] [Indexed: 12/01/2022]
Abstract
OBJECTIVE MicroRNAs (miRNAs) play a modulatory role in pathways that lead to labor onset, although oxytocin is known to modulate gene expression within the myometrium. We aimed to identify miRNAs whose expression is regulated by oxytocin in pregnant human myometrium. STUDY DESIGN Myometrial miRNA expression profiles were compared between samples collected from women at term before the onset of labor (no labor; n = 8) and after labor onset after early exogenous oxytocin treatment (n = 8). Multivariate modelling was used to assess differences in miRNA profiles. Biologic validation was undertaken on 3 independent patient cohorts (no labor, n = 10; labor induced with oxytocin, n = 8; and spontaneous labor with no oxytocin treatment, n = 10). In vitro studies that used primary myocytes were undertaken to assess target miRNA expression after oxytocin treatment. Target genes of candidate miRNAs were identified in silico and cross-referenced with genes that are known to be associated with labor or expressed in myometrium. RESULTS In total, 1309 miRNAs were analyzed by microarray, of which 494 were detected in human myometrium. Multivariate modeling identified 12 target miRNAs the differential expression of which was most responsible for the observed separation of the 2 patient populations in the primary discovery cohorts. Biologic validation in the independent secondary sample cohorts showed that oxytocin independently regulated 5 miRNAs (hsa-miR-146b-3p, hsa-miR-196b-3p, hsa-miR-223-3p, hsa-miR-873-5p, and hsa-miR-876-5p). Additionally, hsa-miR-146b-3p was increased both in labor that was induced with oxytocin and in myometrium from spontaneous labor with no oxytocin treatment compared with no labor samples. Four of the validated miRNAs (hsa-miR-146a-5p, hsa-miR-146b-3p, hsa-miR-196b-3p, and hsa-miR-876-5p) were expressed in primary human myocytes; oxytocin treatment of these cells replicated the directional changes that were observed in vivo. CONCLUSION Oxytocin alters the expression of a unique set of myometrial miRNAs. These results suggest a further role for oxytocin as a signaling molecule that is involved in the regulation of gene expression during parturition.
Collapse
Affiliation(s)
- Joanna R Cook
- Imperial College Parturition Research Group, Division of the Institute of Reproductive and Developmental Biology, Imperial College London, London, England, UK
| | - David A MacIntyre
- Imperial College Parturition Research Group, Division of the Institute of Reproductive and Developmental Biology, Imperial College London, London, England, UK
| | - Eleni Samara
- Imperial College Parturition Research Group, Division of the Institute of Reproductive and Developmental Biology, Imperial College London, London, England, UK
| | - Sung Hye Kim
- Imperial College Parturition Research Group, Division of the Institute of Reproductive and Developmental Biology, Imperial College London, London, England, UK
| | - Natasha Singh
- Imperial College Parturition Research Group, Division of the Institute of Reproductive and Developmental Biology, Imperial College London, London, England, UK; Academic Department of Obstetrics and Gynaecology, Chelsea and Westminster Hospital, London, England, UK
| | - Mark R Johnson
- Imperial College Parturition Research Group, Division of the Institute of Reproductive and Developmental Biology, Imperial College London, London, England, UK; Academic Department of Obstetrics and Gynaecology, Chelsea and Westminster Hospital, London, England, UK
| | - Phillip R Bennett
- Imperial College Parturition Research Group, Division of the Institute of Reproductive and Developmental Biology, Imperial College London, London, England, UK
| | - Vasso Terzidou
- Imperial College Parturition Research Group, Division of the Institute of Reproductive and Developmental Biology, Imperial College London, London, England, UK; Academic Department of Obstetrics and Gynaecology, Chelsea and Westminster Hospital, London, England, UK.
| |
Collapse
|
37
|
Roy S, Elgharably H, Sinha M, Ganesh K, Chaney S, Mann E, Miller C, Khanna S, Bergdall VK, Powell HM, Cook CH, Gordillo GM, Wozniak DJ, Sen CK. Mixed-species biofilm compromises wound healing by disrupting epidermal barrier function. J Pathol 2014; 233:331-343. [PMID: 24771509 PMCID: PMC4380277 DOI: 10.1002/path.4360] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/18/2014] [Accepted: 04/07/2014] [Indexed: 12/18/2022]
Abstract
In chronic wounds, biofilm infects host tissue for extended periods of time. This work establishes the first chronic preclinical model of wound biofilm infection aimed at addressing the long-term host response. Although biofilm-infected wounds did not show marked differences in wound closure, the repaired skin demonstrated compromised barrier function. This observation is clinically significant, because it leads to the notion that even if a biofilm infected wound is closed, as observed visually, it may be complicated by the presence of failed skin, which is likely to be infected and/or further complicated postclosure. Study of the underlying mechanisms recognized for the first time biofilm-inducible miR-146a and miR-106b in the host skin wound-edge tissue. These miRs silenced ZO-1 and ZO-2 to compromise tight junction function, resulting in leaky skin as measured by transepidermal water loss (TEWL). Intervention strategies aimed at inhibiting biofilm-inducible miRNAs may be productive in restoring the barrier function of host skin.
Collapse
Affiliation(s)
- Sashwati Roy
- Comprehensive Wound Center, Davis Heart & Lung Research Institute, Centers for Regenerative Medicine and Cell Based Therapies, The Ohio State University, Columbus, OH 43220 USA
- Department of Surgery, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43220 USA
| | - Haytham Elgharably
- Comprehensive Wound Center, Davis Heart & Lung Research Institute, Centers for Regenerative Medicine and Cell Based Therapies, The Ohio State University, Columbus, OH 43220 USA
- Department of Surgery, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43220 USA
| | - Mithun Sinha
- Comprehensive Wound Center, Davis Heart & Lung Research Institute, Centers for Regenerative Medicine and Cell Based Therapies, The Ohio State University, Columbus, OH 43220 USA
- Department of Surgery, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43220 USA
| | - Kasturi Ganesh
- Comprehensive Wound Center, Davis Heart & Lung Research Institute, Centers for Regenerative Medicine and Cell Based Therapies, The Ohio State University, Columbus, OH 43220 USA
- Department of Surgery, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43220 USA
| | - Sarah Chaney
- Microbial Interface Biology, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43220 USA
- Department of Microbial Infection and Immunity, Microbiology, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43220 USA
- Deparment of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43220 USA
| | - Ethan Mann
- Microbial Interface Biology, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43220 USA
- Department of Microbial Infection and Immunity, Microbiology, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43220 USA
| | - Christina Miller
- Department of Surgery, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43220 USA
| | - Savita Khanna
- Department of Surgery, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43220 USA
| | - Valerie K. Bergdall
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43220 USA
| | - Heather M. Powell
- Department of Materials Science and Engineering, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43220 USA
| | - Charles H. Cook
- Department of Surgery, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43220 USA
| | - Gayle M. Gordillo
- Comprehensive Wound Center, Davis Heart & Lung Research Institute, Centers for Regenerative Medicine and Cell Based Therapies, The Ohio State University, Columbus, OH 43220 USA
- Department of Plastic Surgery, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43220 USA
| | - Daniel J. Wozniak
- Microbial Interface Biology, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43220 USA
- Department of Microbial Infection and Immunity, Microbiology, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43220 USA
| | - Chandan K. Sen
- Comprehensive Wound Center, Davis Heart & Lung Research Institute, Centers for Regenerative Medicine and Cell Based Therapies, The Ohio State University, Columbus, OH 43220 USA
| |
Collapse
|
38
|
The role of microRNAs in skin fibrosis. Arch Dermatol Res 2014; 305:763-76. [PMID: 24022477 DOI: 10.1007/s00403-013-1410-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/19/2013] [Accepted: 08/27/2013] [Indexed: 12/13/2022]
Abstract
Fibrotic skin disorders may be debilitating and impair quality of life. There are few effective treatment options for cutaneous fibrotic diseases. In this review, we discuss our current understanding of the role of microRNAs (miRNAs) in skin fibrosis. miRNAs are a class of small, non-coding RNAs involved in skin fibrosis. These small RNAs range from 18 to 25 nucleotides in length and modify gene expression by binding to target messenger RNA (mRNA), causing degradation of the target mRNA or inhibiting the translation into proteins. We present an overview of the biogenesis, maturation and function of miRNAs. We highlight miRNA’s role in key skin fibrotic processes including: transforming growth factor-beta signaling, extracellular matrix deposition, and fibroblast proliferation and differentiation. Some miRNAs are profibrotic and their upregulation favors these processes contributing to fibrosis, while anti-fibrotic miRNAs inhibit these processes and may be reduced in fibrosis. Finally, we describe the diagnostic and therapeutic significance of miRNAs in the management of skin fibrosis. The discovery that miRNAs are detectable in serum, plasma, and other bodily fluids, and are relatively stable, suggests that miRNAs may serve as valuable biomarkers to monitor disease progression and response to treatment. In the treatment of skin fibrosis, antifibrotic miRNAs may be upregulated using mimics and viral vectors. Conversely, profibrotic miRNAs may be downregulated by employing anti-miRNAs, sponges, erasers and masks. We believe that miRNA-based therapies hold promise as important treatments and may transform the management of fibrotic skin diseases by physicians.
Collapse
|
39
|
Cheung KSC, Sposito N, Stumpf PS, Wilson DI, Sanchez-Elsner T, Oreffo ROC. MicroRNA-146a regulates human foetal femur derived skeletal stem cell differentiation by down-regulating SMAD2 and SMAD3. PLoS One 2014; 9:e98063. [PMID: 24892945 PMCID: PMC4043645 DOI: 10.1371/journal.pone.0098063] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/27/2014] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRs) play a pivotal role in a variety of biological processes including stem cell differentiation and function. Human foetal femur derived skeletal stem cells (SSCs) display enhanced proliferation and multipotential capacity indicating excellent potential as candidates for tissue engineering applications. This study has examined the expression and role of miRs in human foetal femur derived SSC differentiation along chondrogenic and osteogenic lineages. Cells isolated from the epiphyseal region of the foetal femur expressed higher levels of genes associated with chondrogenesis while cells from the foetal femur diaphyseal region expressed higher levels of genes associated with osteogenic differentiation. In addition to the difference in osteogenic and chondrogenic gene expression, epiphyseal and diaphyseal cells displayed distinct miRs expression profiles. miR-146a was found to be expressed by human foetal femur diaphyseal cells at a significantly enhanced level compared to epiphyseal populations and was predicted to target various components of the TGF-β pathway. Examination of miR-146a function in foetal femur cells confirmed regulation of protein translation of SMAD2 and SMAD3, important TGF-β and activin ligands signal transducers following transient overexpression in epiphyseal cells. The down-regulation of SMAD2 and SMAD3 following overexpression of miR-146a resulted in an up-regulation of the osteogenesis related gene RUNX2 and down-regulation of the chondrogenesis related gene SOX9. The current findings indicate miR-146a plays an important role in skeletogenesis through attenuation of SMAD2 and SMAD3 function and provide further insight into the role of miRs in human skeletal stem cell differentiation modulation with implications therein for bone reparation.
Collapse
Affiliation(s)
- Kelvin S. C. Cheung
- Bone and Joint Research Group, Institute of Developmental Sciences, Southampton General Hospital, Southampton, United Kingdom
- Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, University of Southampton, Southampton, United Kingdom
| | - Nunzia Sposito
- Bone and Joint Research Group, Institute of Developmental Sciences, Southampton General Hospital, Southampton, United Kingdom
- Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, University of Southampton, Southampton, United Kingdom
| | - Patrick S. Stumpf
- Bone and Joint Research Group, Institute of Developmental Sciences, Southampton General Hospital, Southampton, United Kingdom
- Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, University of Southampton, Southampton, United Kingdom
| | - David I. Wilson
- Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, University of Southampton, Southampton, United Kingdom
| | - Tilman Sanchez-Elsner
- Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom
| | - Richard O. C. Oreffo
- Bone and Joint Research Group, Institute of Developmental Sciences, Southampton General Hospital, Southampton, United Kingdom
- Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, University of Southampton, Southampton, United Kingdom
- * E-mail:
| |
Collapse
|
40
|
Ibrahim AGE, Cheng K, Marbán E. Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Reports 2014; 2:606-19. [PMID: 24936449 PMCID: PMC4050492 DOI: 10.1016/j.stemcr.2014.04.006] [Citation(s) in RCA: 660] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 12/17/2022] Open
Abstract
The CADUCEUS trial of cardiosphere-derived cells (CDCs) has shown that it may be possible to regenerate injured heart muscle previously thought to be permanently scarred. The mechanisms of benefit are known to be indirect, but the mediators have yet to be identified. Here we pinpoint exosomes secreted by human CDCs as critical agents of regeneration and cardioprotection. CDC exosomes inhibit apoptosis and promote proliferation of cardiomyocytes, while enhancing angiogenesis. Injection of exosomes into injured mouse hearts recapitulates the regenerative and functional effects produced by CDC transplantation, whereas inhibition of exosome production by CDCs blocks those benefits. CDC exosomes contain a distinctive complement of microRNAs, with particular enrichment of miR-146a. Selective administration of a miR-146a mimic reproduces some (but not all) of the benefits of CDC exosomes. The findings identify exosomes as key mediators of CDC-induced regeneration, while highlighting the potential utility of exosomes as cell-free therapeutic candidates. Cardiosphere-derived cells (CDCs) regenerate the heart by unclear indirect mechanisms Exosomes from CDCs promote angiogenesis, cardiomyocyte survival and proliferation CDC exosomes are necessary and sufficient to explain the therapeutic effects of CDCs MicroRNAs transferred by CDC exosomes at least partially mediate the benefits of CDCs
Collapse
Affiliation(s)
| | - Ke Cheng
- Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Eduardo Marbán
- Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
41
|
Yi L, Wang Y, Ma Z, Zhang H, Li Y, Zheng JX, Yang YC, Fan HJ, Lu CP. Biofilm Formation of Streptococcus equi ssp. zooepidemicus and Comparative Proteomic Analysis of Biofilm and Planktonic Cells. Curr Microbiol 2014; 69:227-33. [DOI: 10.1007/s00284-014-0574-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 02/08/2014] [Indexed: 10/25/2022]
|
42
|
Zago M, Rico de Souza A, Hecht E, Rousseau S, Hamid Q, Eidelman DH, Baglole CJ. The NF-κB family member RelB regulates microRNA miR-146a to suppress cigarette smoke-induced COX-2 protein expression in lung fibroblasts. Toxicol Lett 2014; 226:107-16. [PMID: 24472607 DOI: 10.1016/j.toxlet.2014.01.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 01/23/2023]
Abstract
Diseases due to cigarette smoke exposure, including chronic obstructive pulmonary disease (COPD) and lung cancer, are associated with chronic inflammation typified by the increased expression of cyclooxygenase-2 (COX-2) protein. RelB is an NF-κB family member that suppresses cigarette smoke induction of COX-2 through an unknown mechanism. The ability of RelB to regulate COX-2 expression may be via miR-146a, a miRNA that attenuates COX-2 in lung fibroblasts. In this study we tested whether RelB attenuation of cigarette smoke-induced COX-2 protein is due to miR-146a. Utilizing pulmonary fibroblasts deficient in RelB expression, together with siRNA knock-down of RelB, we show the essential role of RelB in diminishing smoke-induced COX-2 protein expression despite robust activation of the canonical NF-κB pathway and subsequent induction of Cox-2 mRNA. RelB did not regulate COX-2 protein expression at the level of mRNA stability. Basal levels of miR-146a were significantly lower in Relb-deficient cells and cigarette smoke increased miR-146a expression only in Relb-expressing cells. Inhibition of miR-146a had no effects on Relb expression or induction of Cox-2 mRNA by cigarette smoke but significantly increased COX-2 protein. These data highlight the potential of a RelB-miR-146a axis as a novel regulatory pathway that attenuates inflammation in response to respiratory toxicants.
Collapse
Affiliation(s)
- Michela Zago
- Department of Medicine, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada
| | - Angela Rico de Souza
- Research Institute of the McGill University Health Centre, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada
| | - Emelia Hecht
- Department of Medicine, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada
| | - Simon Rousseau
- Department of Medicine, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada; Research Institute of the McGill University Health Centre, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada
| | - Qutayba Hamid
- Department of Medicine, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada; Research Institute of the McGill University Health Centre, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada
| | - David H Eidelman
- Department of Medicine, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada; Research Institute of the McGill University Health Centre, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada
| | - Carolyn J Baglole
- Department of Medicine, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada; Research Institute of the McGill University Health Centre, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada.
| |
Collapse
|
43
|
Li MR, Lu LG, Bu P. Advances in research of epigenetic regulation in liver fibrosis. Shijie Huaren Xiaohua Zazhi 2013; 21:3499-3504. [DOI: 10.11569/wcjd.v21.i32.3499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a pathological repair process in response to chronic injury caused by various etiologies in the liver. Imbalance between the expression of pro-fibrosis genes and anti-fibrosis genes play a pivotal role in hepatic fibrosis. The important path of reversing liver fibrosis is the early diagnosis and effective treatment. Epigenetic modifications have been considered an initial event in the development of hepatic fibrosis. Epigenetic regulatory mechanisms in liver fibrosis are intricate, including DNA methylation, histone modification, and microRNAs (miRNAs). Recently, many researchers have studied the effect of fibrosis-related gene expression at the epigenetic level on hepatic stellate cell activation and myofibroblast differentiation in hepatic fibrosis. This review discusses the epigenetic regulation in liver fibrosis, with an aim to provide new insights into the early non-invasive diagnosis, condition assessment and targeted therapy of this disease.
Collapse
|
44
|
Olivieri F, Lazzarini R, Babini L, Prattichizzo F, Rippo MR, Tiano L, Di Nuzzo S, Graciotti L, Festa R, Brugè F, Orlando P, Silvestri S, Capri M, Palma L, Magnani M, Franceschi C, Littarru GP, Procopio AD. Anti-inflammatory effect of ubiquinol-10 on young and senescent endothelial cells via miR-146a modulation. Free Radic Biol Med 2013; 63:410-20. [PMID: 23727324 DOI: 10.1016/j.freeradbiomed.2013.05.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 04/12/2013] [Accepted: 05/22/2013] [Indexed: 01/31/2023]
Abstract
Clinical evidence demonstrates that ubiquinol-10, the reduced active form of coenzyme Q10 (CoQ10H₂), improves endothelial function through its antioxidant and probably its anti-inflammatory properties. We previously reported that a biomarker combination including miR-146a, its target protein IL-1 receptor-associated kinase (IRAK-1), and released interleukin (IL)-6, here collectively designated as MIRAKIL, indicates senescence-associated secretory phenotype (SASP) acquisition by primary human umbilical vein endothelial cells (HUVECs). We explore the ability of short- and long-term CoQ10H₂ supplementation to affect MIRAKIL in HUVECs, used as a model of vascular aging, during replicative senescence in the absence/presence of lipopolysaccharide (LPS), a proinflammatory stimulus. Senescent HUVECs had the same ability as young cells to internalize CoQ10 and exhibit an improved oxidative status. LPS-induced NF-κB activation diminished after CoQ10H₂ pretreatment in both young and senescent cells. However, short-term CoQ10H₂ supplementation attenuated LPS-induced MIRAKIL changes in young cells; in senescent cells CoQ10H₂ supplementation significantly attenuated LPS-induced miR-146a and IRAK-1 modulation but failed to curb IL-6 release. Similar results were obtained with long-term CoQ10H₂ incubation. These findings provide new insights into the molecular mechanisms by which CoQ10H₂ stems endothelial cell inflammatory responses and delays SASP acquisition. These phenomena may play a role in preventing the endothelial dysfunction associated with major age-related diseases.
Collapse
Affiliation(s)
- Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Olivieri F, Rippo MR, Monsurrò V, Salvioli S, Capri M, Procopio AD, Franceschi C. MicroRNAs linking inflamm-aging, cellular senescence and cancer. Ageing Res Rev 2013; 12:1056-68. [PMID: 23688930 DOI: 10.1016/j.arr.2013.05.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/30/2013] [Accepted: 05/08/2013] [Indexed: 01/01/2023]
Abstract
Epidemiological and experimental data demonstrate a strong correlation between age-related chronic inflammation (inflamm-aging) and cancer development. However, a comprehensive approach is needed to clarify the underlying molecular mechanisms. Chronic inflammation has mainly been attributed to continuous immune cells activation, but the cellular senescence process, which may involve acquisition of a senescence-associated secretory phenotype (SASP), can be another important contributor, especially in the elderly. MicroRNAs (miRs), a class of molecules involved in gene expression regulation, are emerging as modulators of some pathways, including NF-κB, mTOR, sirtuins, TGF-β and Wnt, that may be related to inflammation, cellular senescence and age-related diseases, cancer included. Interestingly, cancer development is largely avoided or delayed in centenarians, where changes in some miRs are found in plasma and leukocytes. We identified miRs that can be considered as senescence-associated (SA-miRs), inflammation-associated (inflamma-miRs) and cancer-associated (onco-miRs). Here we review recent findings concerning three of them, miR-21, -126 and -146a, which target mRNAs belonging to the NF-κB pathway; we discuss their ability to link cellular senescence, inflamm-aging and cancer and their changes in centenarians, and provide an update on the possibility of using miRs to block accumulation of senescent cells to prevent formation of a microenvironment favoring cancer development and progression.
Collapse
|
46
|
Li W, Zhou BR, Hua LJ, Guo Z, Luo D. Differential miRNA profile on photoaged primary human fibroblasts irradiated with ultraviolet A. Tumour Biol 2013; 34:3491-500. [DOI: 10.1007/s13277-013-0927-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 06/12/2013] [Indexed: 12/27/2022] Open
|
47
|
Olivieri F, Rippo MR, Procopio AD, Fazioli F. Circulating inflamma-miRs in aging and age-related diseases. Front Genet 2013; 4:121. [PMID: 23805154 PMCID: PMC3693036 DOI: 10.3389/fgene.2013.00121] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/06/2013] [Indexed: 12/21/2022] Open
Abstract
Evidence on circulating microRNAs (miRNAs) is indisputably opening a new era in systemic and tissue-specific biomarker research, highlighting new inter-cellular and inter-organ communication mechanisms. Circulating miRNAs might be active messengers eliciting a systemic response as well as non-specific "by-products" of cell activity and even of cell death; in either case they have the potential to be clinically relevant biomarkers for a number of physiopathological processes, including inflammatory responses and inflammation-related conditions. A large amount of evidence indicates that miRNAs can exert two opposite roles, activating as well as inhibiting inflammatory pathways. The inhibitory action probably relates to the need for activating anti-inflammatory mechanisms to counter potent proinflammatory signals, like the nuclear factor kappaB (NF-κB) pathway, to prevent cell and tissue destruction. MiRNA-based anti-inflammatory mechanisms may acquire a crucial role during aging, where a chronic, low-level proinflammatory status is likely sustained by the cell senescence secretome and by progressive activation of immune cells over time. This process entails age-related changes, especially in extremely old age, in those circulating miRNAs that are capable of modulating the inflammatory status (inflamma-miRs). Interestingly, a number of such circulating miRNAs seem to be promising biomarkers for the major age-related diseases that share a common chronic, low-level proinflammatory status, such as cardiovascular disease (CVD), type 2 diabetes mellitus (T2DM), Alzheimer Disease (AD), rheumatoid arthritis (RA), and cancers.
Collapse
Affiliation(s)
- Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche Ancona, Italy ; Center of Clinical Pathology and Innovative Therapy, I.N.R.C.A. National Institute Ancona, Italy
| | | | | | | |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW Interest in the myofibroblast as a key player in propagation of chronic progressive fibrosis continues to elicit many publications, with focus on its cellular origins and the mechanisms underpinning their differentiation and/or transition. The objective of the review is to highlight this recent progress. RECENT FINDINGS The epithelial origin of the myofibroblast in fibrosis has been challenged by recent studies, with the pericyte suggested as a possible precursor instead. Additional signaling pathways, including Notch, Wnt, and hedgehog, are implicated in myofibroblast differentiation. The importance of NADPH oxidase 4 was highlighted recently to suggest a potential link between cellular/oxidative stress and the genesis of the myofibroblast. Recent observations on the importance of lysophosphatidic acid in fibrosis suggest that this may be due, in part, to its ability to regulate myofibroblast differentiation. Finally, there is increasing evidence for the role of epigenetic mechanisms in regulating myofibroblast differentiation, including DNA methylation and miRNA regulation of gene expression. SUMMARY These recent discoveries open up a whole new array of potential targets for novel antifibrotic therapies. This is of special importance given the current bleak outlook for chronic progressive fibrotic diseases, such as scleroderma, due to lack of effective therapies.
Collapse
|
49
|
Mu J, Pang Q, Guo YH, Chen JG, Zeng W, Huang YJ, Zhang J, Feng B. Functional implications of microRNA-215 in TGF-β1-induced phenotypic transition of mesangial cells by targeting CTNNBIP1. PLoS One 2013; 8:e58622. [PMID: 23554908 PMCID: PMC3595285 DOI: 10.1371/journal.pone.0058622] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 02/05/2013] [Indexed: 12/29/2022] Open
Abstract
Mesangial cell (MC) phenotypic transition is crucial for the progression of diabetic nephropathy. A major stimulus mediating high glucose-induced MC phenotypic transition is TGF-β1. Our current study focuses on microRNA-215 (miR-215) and investigates its role in TGF-β1-mediated MC phenotypic transition. Using real-time quantitative PCR (qRT-PCR) and northern blotting, we determined that the miR-192/215 family is dramatically upregulated under diabetic conditions both in vitro and in vivo. Gain- and loss-of-function approaches demonstrated that miR-215 inhibition significantly inhibited TGF-β1-induced mouse mesangial cell (MMC) phenotypic transition, whereas miR-215 upregulation promoted MMC phenotypic transition. Interestingly, these changes were not detected in cells that were treated with TGF-β1 and miR-192 mimics or inhibitors. These results suggest that miR-215 participates in TGF-β1-induced MMC phenotypic transition. Luciferase reporter assays were used to identify whether catenin-beta interacting protein 1 (CTNNBIP1) is a direct target of miR-215, which was predicted by bioinformatic analysis. Mechanistic studies revealed that CTNNBIP1 suppresses Wnt/β-catenin signaling and that miR-215 promotes β-catenin activation and upregulates α-SMA and fibronectin expression in TGF-β1-treated MMCs by targeting CTNNBIP1. In addition, in vivo miR-215 silencing with a specific antagomir significantly increased CTNNBIP1 protein expression, resulting in reduced β-catenin activity and decreased α-SMA and fibronectin expression in db/db mouse kidney glomeruli. Taken together, our findings indicate that miR-215 plays an essential role in MC phenotypic transition by regulating the CTNNBIP1/β-catenin pathway, which is related to the pathogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
- Jiao Mu
- Institute of Nephrology of Chongqing and Department of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Qi Pang
- Institute of Nephrology of Chongqing and Department of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Yan-Hong Guo
- Institute of Nephrology of Chongqing and Department of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Ji-Gang Chen
- Institute of Nephrology of Chongqing and Department of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Wei Zeng
- Institute of Nephrology of Chongqing and Department of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Yong-Jun Huang
- Institute of Nephrology of Chongqing and Department of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Jun Zhang
- Institute of Nephrology of Chongqing and Department of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Bing Feng
- Institute of Nephrology of Chongqing and Department of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing, People’s Republic of China
- * E-mail: .
| |
Collapse
|
50
|
Farooqi AA, Nawaz A, Javed Z, Bhatti S, Ismail M. While at Rome miRNA and TRAIL do whatever BCR-ABL commands to do. Arch Immunol Ther Exp (Warsz) 2012; 61:59-74. [PMID: 23229677 DOI: 10.1007/s00005-012-0204-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 08/20/2012] [Indexed: 11/25/2022]
Abstract
It is a well-acclaimed fact that proteins expressed as a consequence of oncogenic fusions, mutations or amplifications can facilitate ectopic protein-protein interactions that re-wire signal dissemination pathways, in a manner that escalates malignancy. BCR-ABL-mediated signal transduction cascades in leukemic cells are assembled and modulated by a finely controlled network of protein-protein interactions, mediated by characteristic signaling domains and their respective binding motifs. BCR-ABL functions in a cell context-specific and cell type-specific manner to integrate signals that affect uncontrolled cellular proliferation. In this review, we draw attention to the recent progress made in outlining resistance against TRAIL-mediated apoptosis and diametrically opposed roles of miRNAs in BCR-ABL-positive leukemic cells. BCR-ABL governs carcinogenesis through well-organized web of antiapoptotic proteins and over-expressed oncomirs which target death receptors and pro-apoptotic genes. Set of oncomirs which inversely correlate with expression of TRAIL via suppression of SMAD is an important dimension which is gradually gaining attention of the researchers. Contrary to this, some current findings show a new role of BCR-ABL in nucleus with spotlight on apoptosis. It seems obvious that genetic heterogeneity of leukemias poses therapeutic challenges, and pharmacological agents that target components of the cancer promoting nano-machinery still need broad experimental validation to be considered competent as a component of the therapeutic arsenal for this group of diseases. Rapidly developing technologies are empowering us to explain the molecular "nature" of a patient and/or tumor and with this integration of personalized medicine, with maximized efficacy, cost effectiveness will hopefully improve survival chances of the patient.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College (RLMC), Lahore, Pakistan.
| | | | | | | | | |
Collapse
|