1
|
Zhou Y, Lin G, Chen W, Chen Y, Shi C, Peng Z, Chen L, Cai S, Pan Y, Chen M, Lu C, Ji J, Chen S. Multiparametric MRI-based Interpretable Machine Learning Radiomics Model for Distinguishing Between Luminal and Non-luminal Tumors in Breast Cancer: A Multicenter Study. Acad Radiol 2025:S1076-6332(25)00207-7. [PMID: 40175203 DOI: 10.1016/j.acra.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 04/04/2025]
Abstract
RATIONALE AND OBJECTIVES To construct and validate an interpretable machine learning (ML) radiomics model derived from multiparametric magnetic resonance imaging (MRI) images to differentiate between luminal and non-luminal breast cancer (BC) subtypes. METHODS This study enrolled 1098 BC participants from four medical centers, categorized into a training cohort (n = 580) and validation cohorts 1-3 (n = 252, 89, and 177, respectively). Multiparametric MRI-based radiomics features, including T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), apparent diffusion coefficient (ADC), and dynamic contrast-enhanced (DCE) imaging, were extracted. Five ML algorithms were applied to develop various radiomics models, from which the best performing model was identified. A ML-based combined model including optimal radiomics features and clinical predictors was constructed, with performance assessed through receiver operating characteristic (ROC) analysis. The Shapley additive explanation (SHAP) method was utilized to assess model interpretability. RESULTS Tumor size and MR-reported lymph node status were chosen as significant clinical variables. Thirteen radiomics features were identified from multiparametric MRI images. The extreme gradient boosting (XGBoost) radiomics model performed the best, achieving area under the curves (AUCs) of 0.941, 0.903, 0.862, and 0.894 across training and validation cohorts 1-3, respectively. The XGBoost combined model showed favorable discriminative power, with AUCs of 0.956, 0.912, 0.894, and 0.906 in training and validation cohorts 1-3, respectively. The SHAP visualization facilitated global interpretation, identifying "ADC_wavelet-HLH_glszm_ZoneEntropy" and "DCE_wavelet-HLL_gldm_DependenceVariance" as the most significant features for the model's predictions. CONCLUSION The XGBoost combined model derived from multiparametric MRI may proficiently differentiate between luminal and non-luminal BC and aid in treatment decision-making. CRITICAL RELEVANCE STATEMENT An interpretable machine learning radiomics model can preoperatively predict luminal and non-luminal subtypes in breast cancer, thereby aiding therapeutic decision-making.
Collapse
Affiliation(s)
- Yi Zhou
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Department of Breast Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Guihan Lin
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Weiyue Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Yongjun Chen
- Department of Radiology, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Changsheng Shi
- Department of Interventional Vascular Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Zhiyi Peng
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ling Chen
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Shibin Cai
- Department of Breast Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Ying Pan
- Department of Breast Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Minjiang Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Chenying Lu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Jiansong Ji
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Shuzheng Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Department of Breast Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China.
| |
Collapse
|
2
|
Mo S, Luo H, Wang M, Li G, Kong Y, Tian H, Wu H, Tang S, Pan Y, Wang Y, Xu J, Huang Z, Dong F. Machine learning radiomics based on intra and peri tumor PA/US images distinguish between luminal and non-luminal tumors in breast cancers. PHOTOACOUSTICS 2024; 40:100653. [PMID: 39399393 PMCID: PMC11467668 DOI: 10.1016/j.pacs.2024.100653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE This study aimed to evaluate a radiomics model using Photoacoustic/ultrasound (PA/US) imaging at intra and peri-tumoral area to differentiate Luminal and non-Luminal breast cancer (BC) and to determine the optimal peritumoral area for accurate classification. MATERIALS AND METHODS From February 2022 to April 2024, this study continuously collected 322 patients at Shenzhen People's Hospital, using standardized conditions for PA/US imaging of BC. Regions of interest were delineated using ITK-SNAP, with peritumoral regions of 2 mm, 4 mm, and 6 mm automatically expanded using code from the Pyradiomic package. Feature extraction was subsequently performed using Pyradiomics. The study employed Z-score normalization, Spearman correlation for feature correlation, and LASSO regression for feature selection, validated through 10-fold cross-validation. The radiomics model integrated intra and peri-tumoral area, evaluated by receiver operating characteristic curve(ROC), Calibration and Decision Curve Analysis(DCA). RESULTS We extracted and selected features from intratumoral and peritumoral PA/US images regions at 2 mm, 4 mm, and 6 mm. The comprehensive radiomics model, integrating these regions, demonstrated enhanced diagnostic performance, especially the 4 mm model which showed the highest area under the curve(AUC):0.898(0.78-1.00) and comparably high accuracy (0.900) and sensitivity (0.937). This model outperformed the standalone clinical model and combined clinical-radiomics model in distinguishing between Luminal and non-Luminal BC, as evidenced in the test set results. CONCLUSION This study developed a radiomics model integrating intratumoral and peritumoral at 4 mm region PA/US model, enhancing the differentiation of Luminal from non-Luminal BC. It demonstrated the diagnostic utility of peritumoral characteristics, reducing the need for invasive biopsies and aiding chemotherapy planning, while emphasizing the importance of optimizing tumor surrounding size for improved model accuracy.
Collapse
Affiliation(s)
- Sijie Mo
- Department of Ultrasound, The Second Clinical Medical College, Jinan University, Guangdong 518020, China
- Department of Ultrasound, Shenzhen People’s Hospital, Guangdong 518020, China
| | - Hui Luo
- Department of Ultrasound, The Second Clinical Medical College, Jinan University, Guangdong 518020, China
- Department of Ultrasound, Shenzhen People’s Hospital, Guangdong 518020, China
| | - Mengyun Wang
- Department of Ultrasound, The Second Clinical Medical College, Jinan University, Guangdong 518020, China
- Department of Ultrasound, Shenzhen People’s Hospital, Guangdong 518020, China
| | - Guoqiu Li
- Department of Ultrasound, The Second Clinical Medical College, Jinan University, Guangdong 518020, China
- Department of Ultrasound, Shenzhen People’s Hospital, Guangdong 518020, China
| | - Yao Kong
- Department of Ultrasound, The Second Clinical Medical College, Jinan University, Guangdong 518020, China
- Department of Ultrasound, Shenzhen People’s Hospital, Guangdong 518020, China
| | - Hongtian Tian
- Department of Ultrasound, The Second Clinical Medical College, Jinan University, Guangdong 518020, China
- Department of Ultrasound, Shenzhen People’s Hospital, Guangdong 518020, China
| | - Huaiyu Wu
- Department of Ultrasound, The Second Clinical Medical College, Jinan University, Guangdong 518020, China
- Department of Ultrasound, Shenzhen People’s Hospital, Guangdong 518020, China
| | - Shuzhen Tang
- Department of Ultrasound, The Second Clinical Medical College, Jinan University, Guangdong 518020, China
- Department of Ultrasound, Shenzhen People’s Hospital, Guangdong 518020, China
| | - Yinhao Pan
- Mindray Bio-Medical Electronics Co.,Ltd., ShenZhen 518057,China
| | - Youping Wang
- Department of Clinical and Research, Shenzhen Mindray Bio-medical Electronics Co., Ltd., Shenzhen, China
| | - Jinfeng Xu
- Department of Ultrasound, The Second Clinical Medical College, Jinan University, Guangdong 518020, China
- Department of Ultrasound, Shenzhen People’s Hospital, Guangdong 518020, China
| | - Zhibin Huang
- Department of Ultrasound, The Second Clinical Medical College, Jinan University, Guangdong 518020, China
- Department of Ultrasound, Shenzhen People’s Hospital, Guangdong 518020, China
| | - Fajin Dong
- Department of Ultrasound, The Second Clinical Medical College, Jinan University, Guangdong 518020, China
- Department of Ultrasound, Shenzhen People’s Hospital, Guangdong 518020, China
- Department of Ultrasound, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
| |
Collapse
|
3
|
Zhang X, Wu S, Zu X, Li X, Zhang Q, Ren Y, Qian X, Tong S, Li H. Ultrasound-based radiomics nomogram for predicting HER2-low expression breast cancer. Front Oncol 2024; 14:1438923. [PMID: 39359429 PMCID: PMC11445231 DOI: 10.3389/fonc.2024.1438923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Purpose Accurate preoperative identification of Human epidermal growth factor receptor 2 (HER2) low expression breast cancer (BC) is critical for clinical decision-making. Our aim was to use machine learning methods to develop and validate an ultrasound-based radiomics nomogram for predicting HER2-low expression in BC. Methods In this retrospective study, 222 patients (108 HER2-0 expression and 114 HER2-low expression) with BC were included. The enrolled patients were randomly divided into a training cohort and a test cohort with a ratio of 8:2. The tumor region of interest was manually delineated from ultrasound image, and radiomics features were subsequently extracted. The features underwent dimension reduction using the least absolute shrinkage and selection operator (LASSO) algorithm, and rad-score were calculated. Five machine learning algorithms were applied for training, and the algorithm demonstrating the best performance was selected to construct a radiomics (USR) model. Clinical risk factors were integrated with rad-score to construct the prediction model, and a nomogram was plotted. The performance of the nomogram was assessed using receiver operating characteristic curve and decision curve analysis. Results A total of 480 radiomics features were extracted, out of which 11 were screened out. The majority of the extracted features were wavelet features. Subsequently, the USR model was established, and rad-scores were computed. The nomogram, incorporating rad-score, tumor shape, border, and microcalcification, achieved the best performance in both the training cohort (AUC 0.89; 95%CI 0.836-0.936) and the test cohort (AUC 0.84; 95%CI 0.722-0.958), outperforming both the USR model and clinical model. The calibration curves showed satisfactory consistency, and DCA confirmed the clinical utility of the nomogram. Conclusion The nomogram model based on ultrasound radiomics exhibited high prediction value for HER2-low BC.
Collapse
Affiliation(s)
- Xueling Zhang
- Department of Ultrasound Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Ultrasound Medicine, Jiangsu University Affiliated People’s Hospital, Zhenjiang, China
| | - Shaoyou Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, China
| | - Xiao Zu
- Department of Ultrasound Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaojing Li
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qing Zhang
- Department of Ultrasound Medicine, Jiangsu University Affiliated People’s Hospital, Zhenjiang, China
| | - Yongzhen Ren
- Department of Ultrasound Medicine, Jiangsu University Affiliated People’s Hospital, Zhenjiang, China
| | - Xiaoqin Qian
- Department of Ultrasound Medicine, Jiangsu University Affiliated People’s Hospital, Zhenjiang, China
| | - Shan Tong
- Department of Ultrasound Medicine, Jiangsu University Affiliated People’s Hospital, Zhenjiang, China
| | - Hongbo Li
- Department of Ultrasound Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Ultrasound Medicine, People’s Hospital of Longhua, Shenzhen, China
| |
Collapse
|
4
|
Tajima CC, Arruda FPSG, Mineli VC, Ferreira JM, Bettim BB, Osório CABDT, Sonagli M, Bitencourt AGV. MRI features of breast cancer immunophenotypes with a focus on luminal estrogen receptor low positive invasive carcinomas. Sci Rep 2024; 14:19305. [PMID: 39164330 PMCID: PMC11336205 DOI: 10.1038/s41598-024-69778-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024] Open
Abstract
To compare the magnetic resonance imaging (MRI) features of different immunophenotypes of breast carcinoma of no special type (NST), with special attention to estrogen receptor (ER)-low-positive breast cancer. This retrospective, single-centre, Institutional Review Board (IRB)-approved study included 398 patients with invasive breast carcinoma. Breast carcinomas were classified as ER-low-positive when there was ER staining in 1-10% of tumour cells. Pretreatment MRI was reviewed to assess the tumour imaging features according to the 5th edition of the Breast Imaging Reporting and Data System (BI-RADS) lexicon. Of the 398 cases, 50 (12.6%) were luminal A, 191 (48.0%) were luminal B, 26 (6.5%) were luminal ER-low positive, 64 (16.1%) were HER2-overexpressing, and 67 (16.8%) were triple negative. Correlation analysis between MRI features and tumour immunophenotype showed statistically significant differences in mass shape, margins, internal enhancement and the delayed phase of the kinetic curve. An oval or round shape and rim enhancement were most frequently observed in triple-negative and luminal ER-low-positive tumours. Spiculated margins were most common in luminal A and luminal B tumours. A persistent kinetic curve was more frequent in luminal A tumours, while a washout curve was more common in the triple-negative, HER2-overexpressing and luminal ER-low-positive immunophenotypes. Multinomial regression analysis showed that luminal ER-low-positive tumours had similar results to triple-negative tumours for almost all variables. Luminal ER-low-positive tumours present with similar MRI findings to triple-negative tumours, which suggests that MRI can play a fundamental role in adequate radiopathological correlation and therapeutic planning in these patients.
Collapse
Affiliation(s)
- Carla Chizuru Tajima
- Imaging Department, Graduate Program of A.C.Camargo Cancer Center, São Paulo, SP, Brazil.
- Imaging Department, A Beneficência Portuguesa de São Paulo, São Paulo, Brazil.
| | | | - Victor Chequer Mineli
- Imaging Department, Graduate Program of A.C.Camargo Cancer Center, São Paulo, SP, Brazil
| | | | | | | | - Marina Sonagli
- Department of Breast Surgery, A.C. Camargo Cancer Center, São Paulo, Brazil
| | | |
Collapse
|
5
|
Wu J, Ge L, Guo Y, Zhao A, Yao J, Wang Z, Xu D. Predicting hormone receptor status in invasive breast cancer through radiomics analysis of long-axis and short-axis ultrasound planes. Sci Rep 2024; 14:16503. [PMID: 39080346 PMCID: PMC11289262 DOI: 10.1038/s41598-024-67145-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
The hormone receptor (HR) status plays a significant role in breast cancer, serving as the primary guide for treatment decisions and closely correlating with prognosis. This study aims to investigate the predictive value of radiomics analysis in long-axis and short-axis ultrasound planes for distinguishing between HR-positive and HR-negative breast cancers. A cohort of 505 patients from two hospitals was stratified into discovery (Institute 1, 416 patients) and validation (Institute 2, 89 patients) cohorts. A comprehensive set of 788 ultrasound radiomics features was extracted from both long-axis and short-axis ultrasound planes, respectively. Utilizing least absolute shrinkage and selection operator (LASSO) regression analysis, distinct models were constructed for the long-axis and short-axis data. Subsequently, radiomics scores (Rad-scores) were computed for each patient. Additionally, a combined model was formulated by integrating data from long-axis and short-axis Rad-scores along with clinical factors. The diagnostic efficacy of all models was evaluated by the area under the receiver operating characteristic (ROC) curve (AUC). The long-axis and short-axis models, consisting of 11 features and 15 features, respectively, were established, yielding AUCs of 0.743 and 0.751 in the discovery cohort, and 0.795 and 0.744 in the validation cohort. The calculated long-axis and short-axis Rad-scores exhibited significant differences between HR-positive and HR-negative groups across all cohorts (all p < 0.001). Univariate analysis identified ultrasound-reported tumor size as an independent predictor. The combined model, incorporating long-axis and short-axis Rad-scores along with tumor size, achieved superior AUCs of 0.788 and 0.822 in the discovery and validation cohorts, respectively. The combined model effectively distinguishes between HR-positive and HR-negative breast cancers based on ultrasound radiomics features and tumor size, which may offer a valuable tool to facilitate treatment decision making and prognostic assessment.
Collapse
Affiliation(s)
- Jiangfeng Wu
- Department of Ultrasonography, Dongyang People's Hospital, No. 60 Wuning West Road, Dongyang, Zhejiang, China.
| | - Lifang Ge
- Department of Ultrasonography, Dongyang People's Hospital, No. 60 Wuning West Road, Dongyang, Zhejiang, China
| | - Yinghong Guo
- Department of Ultrasonography, Dongyang People's Hospital, No. 60 Wuning West Road, Dongyang, Zhejiang, China
| | - Anli Zhao
- Department of Ultrasonography, Dongyang People's Hospital, No. 60 Wuning West Road, Dongyang, Zhejiang, China
| | - Jincao Yao
- Department of Ultrasonography, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Zhengping Wang
- Department of Ultrasonography, Dongyang People's Hospital, No. 60 Wuning West Road, Dongyang, Zhejiang, China
| | - Dong Xu
- Department of Ultrasonography, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.
| |
Collapse
|
6
|
Makhlouf S, Althobiti M, Toss M, Muftah AA, Mongan NP, Lee AHS, Green AR, Rakha EA. The Clinical and Biological Significance of Estrogen Receptor-Low Positive Breast Cancer. Mod Pathol 2023; 36:100284. [PMID: 37474005 DOI: 10.1016/j.modpat.2023.100284] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/05/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Estrogen receptor (ER) status in breast cancer (BC) is determined using immunohistochemistry (IHC) with nuclear expression in ≥1% of cells defined as ER-positive. BC with 1%-9% expression (ER-low-positive), is a clinically and biologically unique subgroup. In this study, we hypothesized that ER-low-positive BC represents a heterogeneous group with a mixture of ER-positive and ER-negative tumor, which may explain their divergent clinical behavior. A large BC cohort (n = 8171) was investigated and categorized into 3 groups: ER-low-positive (1%-9%), ER-positive (≥10%), and ER-negative (<1%) where clinicopathological and outcome characteristics were compared. A subset of ER-low-positive cases was further evaluated using IHC, RNAscope, and RT-qPCR. PAM50 subtyping and ESR1 mRNA expression levels were assessed in ER-low-positive cases within The Cancer Genome Atlas data set. The reliability of image analysis software in assessment of ER expression in the ER-low-positive category was also assessed. ER-low-positive tumors constituted <2% of BC cases examined and showed significant clinicopathological similarity to ER-negative tumors. Most of these tumors were nonluminal types showing low ESR1 mRNA expression. Further validation of ER status revealed that 45% of these tumors were ER-negative with repeated IHC staining and confirmed by RNAscope and RT-qPCR. ER-low-positive tumors diagnosed on needle core biopsy were enriched with false-positive ER staining. BCs with 10% ER behaved similar to ER-positive, rather than ER-negative or low-positive BCs. Moderate concordance was found in assessment of ER-low-positive tumors, and this was not improved by image analysis. Routinely diagnosed ER-low-positive BC includes a proportion of ER-negative cases. We recommend repeat testing of BC showing 1%-9% ER expression and using a cutoff ≥10% expression to define ER positivity to help better inform treatment decisions.
Collapse
Affiliation(s)
- Shorouk Makhlouf
- Nottingham Breast Cancer Research Centre, Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Maryam Althobiti
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Michael Toss
- Nottingham Breast Cancer Research Centre, Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Department of Histopathology, Sheffield Teaching Hospitals NHS Trust, Sheffield, United Kingdom
| | - Abir A Muftah
- Department of Pathology, Faculty of Medicine, University of Benghazi, Benghazi, Libya
| | - Nigel P Mongan
- Biodiscovery Institute, School of Veterinary Medicine and Sciences, University of Nottingham, Nottingham, United Kingdom; Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Andrew H S Lee
- Department of Histopathology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Department of Histopathology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom; Department of Pathology, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
7
|
Huang Y, Yao Z, Li L, Mao R, Huang W, Hu Z, Hu Y, Wang Y, Guo R, Tang X, Yang L, Wang Y, Luo R, Yu J, Zhou J. Deep learning radiopathomics based on preoperative US images and biopsy whole slide images can distinguish between luminal and non-luminal tumors in early-stage breast cancers. EBioMedicine 2023; 94:104706. [PMID: 37478528 PMCID: PMC10393555 DOI: 10.1016/j.ebiom.2023.104706] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND For patients with early-stage breast cancers, neoadjuvant treatment is recommended for non-luminal tumors instead of luminal tumors. Preoperative distinguish between luminal and non-luminal cancers at early stages will facilitate treatment decisions making. However, the molecular immunohistochemical subtypes based on biopsy specimens are not always consistent with final results based on surgical specimens due to the high intra-tumoral heterogeneity. Given that, we aimed to develop and validate a deep learning radiopathomics (DLRP) model to preoperatively distinguish between luminal and non-luminal breast cancers at early stages based on preoperative ultrasound (US) images, and hematoxylin and eosin (H&E)-stained biopsy slides. METHODS This multicentre study included three cohorts from a prospective study conducted by our team and registered on the Chinese Clinical Trial Registry (ChiCTR1900027497). Between January 2019 and August 2021, 1809 US images and 603 H&E-stained whole slide images (WSIs) from 603 patients with early-stage breast cancers were obtained. A Resnet18 model pre-trained on ImageNet and a multi-instance learning based attention model were used to extract the features of US and WSIs, respectively. An US-guided Co-Attention module (UCA) was designed for feature fusion of US and WSIs. The DLRP model was constructed based on these three feature sets including deep learning US feature, deep learning WSIs feature and UCA-fused feature from a training cohort (1467 US images and 489 WSIs from 489 patients). The DLRP model's diagnostic performance was validated in an internal validation cohort (342 US images and 114 WSIs from 114 patients) and an external test cohort (270 US images and 90 WSIs from 90 patients). We also compared diagnostic efficacy of the DLRP model with that of deep learning radiomics model and deep learning pathomics model in the external test cohort. FINDINGS The DLRP yielded high performance with area under the curve (AUC) values of 0.929 (95% CI 0.865-0.968) in the internal validation cohort, and 0.900 (95% CI 0.819-0.953) in the external test cohort. The DLRP also outperformed deep learning radiomics model based on US images only (AUC 0.815 [0.719-0.889], p = 0.027) and deep learning pathomics model based on WSIs only (AUC 0.802 [0.704-0.878], p = 0.013) in the external test cohort. INTERPRETATION The DLRP can effectively distinguish between luminal and non-luminal breast cancers at early stages before surgery based on pretherapeutic US images and biopsy H&E-stained WSIs, providing a tool to facilitate treatment decision making in early-stage breast cancers. FUNDING Natural Science Foundation of Guangdong Province (No. 2023A1515011564), and National Natural Science Foundation of China (No. 91959127; No. 81971631).
Collapse
Affiliation(s)
- Yini Huang
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhao Yao
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Lingling Li
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Rushuang Mao
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Weijun Huang
- Division of Interventional Ultrasound, Department of Medical Ultrasonics, Foshan First People's Hospital, Foshan, Guangdong, China
| | - Zhengming Hu
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yixin Hu
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yun Wang
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ruohan Guo
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xiaofeng Tang
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Liang Yang
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yuanyuan Wang
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Rongzhen Luo
- Department of Pathology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Jinhua Yu
- School of Information Science and Technology, Fudan University, Shanghai, China.
| | - Jianhua Zhou
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
8
|
Wei W, Ji Y, Tang Z, Huang X, Zhang W, Luo N. Breast Magnetic Resonance Imaging Can Predict Ki67 Discordance Between Core Needle Biopsy and Surgical Samples. J Magn Reson Imaging 2023; 57:85-94. [PMID: 35648113 DOI: 10.1002/jmri.28231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Disagreement in assessments of Ki67 expression based on core-needle biopsy and matched surgical samples complicates decisions in the treatment of breast cancer. PURPOSE To examine whether preoperative breast MRI could be useful in predicting Ki67 discordance between core-needle biopsy and surgical samples. STUDY TYPE Retrospective. POPULATION Three hundred and sixty-five breast cancer patients with MRI scans and having both core-needle biopsy and surgical samples from 2017 to 2019. FIELD STRENGTH/SEQUENCE 3.0 T, T2-weighted iterative decomposition of water and fat with echo asymmetry and least squares estimation sequence, diffusion-weighted sequence using b-values 0/1000, dynamic contrast enhanced image by volume imaged breast assessme NT. ASSESSMENT We collected clinicopathologic variables and preoperative MRI features (tumor size, lesion type, shape of mass, spiculated margin, internal enhancement, peri-tumoral edema, intra-tumoral necrosis, multifocal/multicentric, apparent diffusion coefficient [ADC] minimum, ADC mean, ADC maximum, ADC difference). STATISTICAL TESTS K-means clustering, multivariable logistic regression, receiver operating characteristic curve. RESULTS Sixty-one patients showed Ki67 discordance and 304 patients show Ki67 concordance according to our definition using K-means clustering. Multivariable regression analysis showed that the following parameters were independently associated with Ki67 discordance: peri-tumoral edema, odds ratio (OR) 2.662, 95% confidence interval (CI) 1.432-4.948; ADCmin ≤ 0.829 × 10-3 mm2 /sec, OR 2.180, 95% CI 1.075-4.418; and ADCdiff > 0.317 × 10-3 mm2 /sec, OR 3.365, 95% CI 1.698-6.669. This multivariable model resulted in an AUC of 0.758 (95% CI 0.711-0.802) with sensitivity and specificity being 0.803 and 0.621, respectively. CONCLUSION Presence of peri-tumoral edema, smaller ADCmin and greater ADCdiff in preoperative breast MRI may indicate high risk of Ki67 discordance between core-needle biopsy and surgical samples. For patients with these MRI-based risk factors, clinicians should not rely on Ki67 assessment only from core-needle biopsy.
Collapse
Affiliation(s)
- Wenjuan Wei
- Department of Radiology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, People's Republic of China
| | - Yinan Ji
- Department of Radiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China
| | - Zhi Tang
- Department of Radiology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, People's Republic of China
| | - Xiangyang Huang
- Department of Radiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China
| | - Wei Zhang
- Department of Radiology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, People's Republic of China
| | - Ningbin Luo
- Department of Radiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
9
|
Acs B, Leung SCY, Kidwell KM, Arun I, Augulis R, Badve SS, Bai Y, Bane AL, Bartlett JMS, Bayani J, Bigras G, Blank A, Buikema H, Chang MC, Dietz RL, Dodson A, Fineberg S, Focke CM, Gao D, Gown AM, Gutierrez C, Hartman J, Kos Z, Lænkholm AV, Laurinavicius A, Levenson RM, Mahboubi-Ardakani R, Mastropasqua MG, Nofech-Mozes S, Osborne CK, Penault-Llorca FM, Piper T, Quintayo MA, Rau TT, Reinhard S, Robertson S, Salgado R, Sugie T, van der Vegt B, Viale G, Zabaglo LA, Hayes DF, Dowsett M, Nielsen TO, Rimm DL. Systematically higher Ki67 scores on core biopsy samples compared to corresponding resection specimen in breast cancer: a multi-operator and multi-institutional study. Mod Pathol 2022; 35:1362-1369. [PMID: 35729220 PMCID: PMC9514990 DOI: 10.1038/s41379-022-01104-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/11/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023]
Abstract
Ki67 has potential clinical importance in breast cancer but has yet to see broad acceptance due to inter-laboratory variability. Here we tested an open source and calibrated automated digital image analysis (DIA) platform to: (i) investigate the comparability of Ki67 measurement across corresponding core biopsy and resection specimen cases, and (ii) assess section to section differences in Ki67 scoring. Two sets of 60 previously stained slides containing 30 core-cut biopsy and 30 corresponding resection specimens from 30 estrogen receptor-positive breast cancer patients were sent to 17 participating labs for automated assessment of average Ki67 expression. The blocks were centrally cut and immunohistochemically (IHC) stained for Ki67 (MIB-1 antibody). The QuPath platform was used to evaluate tumoral Ki67 expression. Calibration of the DIA method was performed as in published studies. A guideline for building an automated Ki67 scoring algorithm was sent to participating labs. Very high correlation and no systematic error (p = 0.08) was found between consecutive Ki67 IHC sections. Ki67 scores were higher for core biopsy slides compared to paired whole sections from resections (p ≤ 0.001; median difference: 5.31%). The systematic discrepancy between core biopsy and corresponding whole sections was likely due to pre-analytical factors (tissue handling, fixation). Therefore, Ki67 IHC should be tested on core biopsy samples to best reflect the biological status of the tumor.
Collapse
Affiliation(s)
- Balazs Acs
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden.
| | | | - Kelley M Kidwell
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Indu Arun
- Tata Medical Center, Kolkata, West Bengal, India
| | - Renaldas Augulis
- Vilnius University Faculty of Medicine and National Center of Pathology, Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania
| | - Sunil S Badve
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Yalai Bai
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Anita L Bane
- Juravinski Hospital and Cancer Centre, McMaster University, Hamilton, ON, Canada
| | - John M S Bartlett
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Edinburgh Cancer Research Centre, Western General Hospital, Edinburgh, United Kingdom
| | - Jane Bayani
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Gilbert Bigras
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Annika Blank
- Institute of Pathology, University of Bern, Bern, Switzerland
- Institute of Pathology, Triemli Hospital Zurich, Zurich, Switzerland
| | - Henk Buikema
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martin C Chang
- Department of Pathology & Laboratory Medicine, University of Vermont Medical Center, Burlington, VT, USA
| | - Robin L Dietz
- Department of Pathology, Olive View-UCLA Medical Center, Los Angeles, CA, USA
| | - Andrew Dodson
- UK NEQAS for Immunocytochemistry and In-Situ Hybridisation, London, United Kingdom
| | - Susan Fineberg
- Montefiore Medical Center and the Albert Einstein College of Medicine, Bronx, NY, USA
| | - Cornelia M Focke
- Dietrich-Bonhoeffer Medical Center, Neubrandenburg, Mecklenburg-Vorpommern, Germany
| | - Dongxia Gao
- University of British Columbia, Vancouver, BC, Canada
| | | | - Carolina Gutierrez
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Johan Hartman
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Zuzana Kos
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Anne-Vibeke Lænkholm
- Department of Surgical Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Arvydas Laurinavicius
- Vilnius University Faculty of Medicine and National Center of Pathology, Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania
| | - Richard M Levenson
- Department of Medical Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| | - Rustin Mahboubi-Ardakani
- Department of Medical Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| | | | - Sharon Nofech-Mozes
- University of Toronto Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - C Kent Osborne
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Frédérique M Penault-Llorca
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, Clermont-Ferrand, France
- Service de Pathologie, Centre Jean PERRIN, Clermont-Ferrand, France
| | - Tammy Piper
- Edinburgh Cancer Research Centre, Western General Hospital, Edinburgh, United Kingdom
| | | | - Tilman T Rau
- Institute of Pathology, University of Bern, Bern, Switzerland
- Institute of Pathology, Heinrich Heine University and University Hospital of Duesseldorf, Duesseldorf, Germany
| | - Stefan Reinhard
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Stephanie Robertson
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Roberto Salgado
- Department of Pathology, GZA-ZNA, Antwerp, Belgium
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia
| | | | - Bert van der Vegt
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Giuseppe Viale
- European Institute of Oncology, Milan, Italy
- European Institute of Oncology IRCCS, and University of Milan, Milan, Italy
| | - Lila A Zabaglo
- The Institute of Cancer Research, London, United Kingdom
| | - Daniel F Hayes
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Mitch Dowsett
- The Institute of Cancer Research, London, United Kingdom
| | | | - David L Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| | | |
Collapse
|