1
|
Chun MK, Kim D, Han J, Choi SJ, Lee JY, Lee JS, Ryu JM, Park JS. Point-of-care ultrasound as the first imaging strategy in young infants aged under 90 days presenting with gastrointestinal manifestations at the emergency department. Medicine (Baltimore) 2024; 103:e41114. [PMID: 39969312 PMCID: PMC11688003 DOI: 10.1097/md.0000000000041114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/10/2024] [Indexed: 02/20/2025] Open
Abstract
This study compared the emergency department (ED) flow of young infants under 90 days old presenting with gastrointestinal symptoms who underwent point-of-care ultrasound (POCUS) versus X-ray (XR) as their primary imaging test. The study retrospectively enrolled infants under 90 days old with gastrointestinal (GI) symptoms who visited a tertiary university-affiliated hospital ED from January 2019 to September 2022. The patients were divided into 2 groups based on whether they received XR or POCUS as their first imaging test. Out of 440 patients, 352 (80%) were enrolled in the XR-first group and 88 (20%) in the POCUS-first group. No significant differences exist in demographics, clinical characteristics, or the prevalence of surgical abdomen between the groups. The time-to-disposition and ED length of stay (EDLOS) were significantly shorter in the POCUS-first group as compared to those in the XR-first group (86 min vs 127 min, P = .013; 121 min vs 157 min, P = .049; respectively). In the POCUS-first group, only 30.7% of the cases required an additional XR. The performance of POCUS in screening for surgical abdomen showed a sensitivity and specificity of 95.8% and 95.3%, respectively. In young infants under 90 days presenting with GI symptoms at the ED, using POCUS as the first imaging test instead of XR can shorten time-to-disposition and EDLOS, improving ED flow with acceptable screening performance for surgical emergencies.
Collapse
Affiliation(s)
- Min Kyo Chun
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dahyun Kim
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeeho Han
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung Jun Choi
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeong-Yong Lee
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jong Seung Lee
- Department of Emergency Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeong-Min Ryu
- Department of Emergency Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jun Sung Park
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Sadeghi H, Seif F, Farahani EH, Khanmohammadi S, Nahidinezhad S. Utilizing patient data: A tutorial on predicting second cancer with machine learning models. Cancer Med 2024; 13:e70231. [PMID: 39300964 PMCID: PMC11413496 DOI: 10.1002/cam4.70231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND The article explores the potential risk of secondary cancer (SC) due to radiation therapy (RT) and highlights the necessity for new modeling techniques to mitigate this risk. METHODS By employing machine learning (ML) models, specifically decision trees, in the research process, a practical framework is established for forecasting the occurrence of SC using patient data. RESULTS & DISCUSSION This framework aids in categorizing patients into high-risk or low-risk groups, thereby enabling personalized treatment plans and interventions. The paper also underscores the many factors that contribute to the likelihood of SC, such as radiation dosage, patient age, and genetic predisposition, while emphasizing the limitations of current models in encompassing all relevant parameters. These limitations arise from the non-linear dependencies between variables and the failure to consider factors such as genetics, hormones, lifestyle, radiation from secondary particles, and imaging dosage. To instruct and assess ML models for predicting the occurrence of SC based on patient data, the paper utilizes a dataset consisting of instances and attributes. CONCLUSION The practical implications of this research lie in enhancing our understanding and prediction of SC following RT, facilitating personalized treatment approaches, and establishing a framework for leveraging patient data within the realm of ML models.
Collapse
Affiliation(s)
- Hossein Sadeghi
- Department of Physics, Faculty of SciencesArak UniversityArakIran
| | - Fatemeh Seif
- Department of Radiotherapy and Medical PhysicsArak University of Medical Sciences & Khansari HospitalArakIran
| | | | | | | |
Collapse
|
3
|
Behmadi M, Toossi MTB, Nasseri S, Ravari ME, Momennezhad M, Gholamhosseinian H, Mohammadi M, Mdletshe S. Calculation of Organ Dose Distribution (in-field and Out-of-field) in Breast Cancer Radiotherapy on RANDO Phantom Using GEANT4 Application for Tomographic Emission (Gate) Monte Carlo Simulation. JOURNAL OF MEDICAL SIGNALS & SENSORS 2024; 14:18. [PMID: 39100743 PMCID: PMC11296572 DOI: 10.4103/jmss.jmss_25_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 02/02/2024] [Accepted: 03/05/2024] [Indexed: 08/06/2024]
Abstract
Introduction Organ dose distribution calculation in radiotherapy and knowledge about its side effects in cancer etiology is the most concern for medical physicists. Calculation of organ dose distribution for breast cancer treatment plans with Monte Carlo (MC) simulation is the main goal of this study. Materials and Methods Elekta Precise linear accelerator (LINAC) photon mode was simulated and verified using the GEANT4 application for tomographic emission. Eight different radiotherapy treatment plans on RANDO's phantom left breast were produced with the ISOgray treatment planning system (TPS). The simulated plans verified photon dose distribution in clinical tumor volume (CTV) with TPS dose volume histogram (DVH) and gamma index tools. To verify photon dose distribution in out-of-field organs, the point dose measurement results were compared with the same point doses in the MC simulation. Eventually, the DVHs for out-of-field organs that were extracted from the TPS and MC simulation were compared. Results Based on the implementation of gamma index tools with 2%/2 mm criteria, the simulated LINAC output demonstrated high agreement with the experimental measurements. Plan simulation for in-field and out-of-field organs had an acceptable agreement with TPS and experimental measurement, respectively. There was a difference between DVHs extracted from the TPS and MC simulation for out-of-field organs in low-dose parts. This difference is due to the inability of the TPS to calculate dose distribution in out-of-field organs. Conclusion and Discussion Based on the results, it was concluded that the treatment plans with the MC simulation have a high accuracy for the calculation of out-of-field dose distribution and could play a significant role in evaluating the important role of dose distribution for second primary cancer estimation.
Collapse
Affiliation(s)
- Marziyeh Behmadi
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Physics, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohammad Taghi Bahreyni Toossi
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahrokh Nasseri
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ehsan Ravari
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Physics, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahdi Momennezhad
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Gholamhosseinian
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mohammadi
- Department of Medical Physics, Royal Adelaide Hospital, Adelaide, Australia
| | - Sibusiso Mdletshe
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Stokkevåg CH, Journy N, Vogelius IR, Howell RM, Hodgson D, Bentzen SM. Radiation Therapy Technology Advances and Mitigation of Subsequent Neoplasms in Childhood Cancer Survivors. Int J Radiat Oncol Biol Phys 2024; 119:681-696. [PMID: 38430101 DOI: 10.1016/j.ijrobp.2024.01.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/17/2023] [Accepted: 01/13/2024] [Indexed: 03/03/2024]
Abstract
PURPOSE In this Pediatric Normal Tissue Effects in the Clinic (PENTEC) vision paper, challenges and opportunities in the assessment of subsequent neoplasms (SNs) from radiation therapy (RT) are presented and discussed in the context of technology advancement. METHODS AND MATERIALS The paper discusses the current knowledge of SN risks associated with historic, contemporary, and future RT technologies. Opportunities for research and SN mitigation strategies in pediatric patients with cancer are reviewed. RESULTS Present experience with radiation carcinogenesis is from populations exposed during widely different scenarios. Knowledge gaps exist within clinical cohorts and follow-up; dose-response and volume effects; dose-rate and fractionation effects; radiation quality and proton/particle therapy; age considerations; susceptibility of specific tissues; and risks related to genetic predisposition. The biological mechanisms associated with local and patient-level risks are largely unknown. CONCLUSIONS Future cancer care is expected to involve several available RT technologies, necessitating evidence and strategies to assess the performance of competing treatments. It is essential to maximize the utilization of existing follow-up while planning for prospective data collection, including standardized registration of individual treatment information with linkage across patient databases.
Collapse
Affiliation(s)
- Camilla H Stokkevåg
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway; Department of Physics and Technology, University of Bergen, Bergen, Norway.
| | - Neige Journy
- French National Institute of Health and Medical Research (INSERM) Unit 1018, Centre for Research in Epidemiology and Population Health, Paris Saclay University, Gustave Roussy, Villejuif, France
| | - Ivan R Vogelius
- Department of Clinical Oncology, Centre for Cancer and Organ Diseases and University of Copenhagen, Copenhagen, Denmark
| | - Rebecca M Howell
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas
| | - David Hodgson
- Department of Radiation Oncology, University of Toronto, Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Søren M Bentzen
- Department of Epidemiology and Public Health, University of Maryland, Baltimore, Maryland
| |
Collapse
|
5
|
Little MP, Eidemüller M, Kaiser JC, Apostoaei AI. Minimum latency effects for cancer associated with exposures to radiation or other carcinogens. Br J Cancer 2024; 130:819-829. [PMID: 38212483 PMCID: PMC10912293 DOI: 10.1038/s41416-023-02544-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND In estimating radiation-associated cancer risks a fixed period for the minimum latency is often assumed. Two empirical latency functions have been used to model latency, continuously increasing from 0. A stochastic biologically-based approach yields a still more plausible way of describing latency and can be directly estimated from clinical data. METHODS We derived the parameters for a stochastic biologically-based model from tumour growth data for various cancers, and least-squares fitted the two types of empirical latency function to the stochastic model-predicted cumulative probability. RESULTS There is wide variation in growth rates among tumours, particularly slow for prostate and thyroid cancer and particularly fast for leukaemia. The slow growth rate for prostate and thyroid tumours implies that the number of tumour cells required for clinical detection cannot greatly exceed 106. For all tumours, both empirical latency functions closely approximated the predicted biological model cumulative probability. CONCLUSIONS Our results, illustrating use of a stochastic biologically-based model using clinical data not tied to any particular carcinogen, have implications for estimating latency associated with any mutagen. They apply to tumour growth in general, and may be useful for example, in planning screenings for cancer using imaging techniques.
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD, 20892-9778, USA.
- Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, UK.
| | - Markus Eidemüller
- Federal Office for Radiation Protection, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - J Christian Kaiser
- Federal Office for Radiation Protection, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | | |
Collapse
|
6
|
Poignant F, Pariset E, Plante I, Ponomarev AL, Evain T, Viger L, Slaba TC, Blattnig SR, Costes SV. DNA break clustering as a predictor of cell death across various radiation qualities: influence of cell size, cell asymmetry, and beam orientation. Integr Biol (Camb) 2024; 16:zyae015. [PMID: 39299711 DOI: 10.1093/intbio/zyae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Cosmic radiation, composed of high charge and energy (HZE) particles, causes cellular DNA damage that can result in cell death or mutation that can evolve into cancer. In this work, a cell death model is applied to several cell lines exposed to HZE ions spanning a broad range of linear energy transfer (LET) values. We hypothesize that chromatin movement leads to the clustering of multiple double strand breaks (DSB) within one radiation-induced foci (RIF). The survival probability of a cell population is determined by averaging the survival probabilities of individual cells, which is function of the number of pairwise DSB interactions within RIF. The simulation code RITCARD was used to compute DSB. Two clustering approaches were applied to determine the number of RIF per cell. RITCARD outputs were combined with experimental data from four normal human cell lines to derive the model parameters and expand its predictions in response to ions with LET ranging from ~0.2 keV/μm to ~3000 keV/μm. Spherical and ellipsoidal nuclear shapes and two ion beam orientations were modeled to assess the impact of geometrical properties on cell death. The calculated average number of RIF per cell reproduces the saturation trend for high doses and high-LET values that is usually experimentally observed. The cell survival model generates the recognizable bell shape of LET dependence for the relative biological effectiveness (RBE). At low LET, smaller nuclei have lower survival due to increased DNA density and DSB clustering. At high LET, nuclei with a smaller irradiation area-either because of a smaller size or a change in beam orientation-have a higher survival rate due to a change in the distribution of DSB/RIF per cell. If confirmed experimentally, the geometric characteristics of cells would become a significant factor in predicting radiation-induced biological effects. Insight Box: High-charge and energy (HZE) ions are characterized by dense linear energy transfer (LET) that induce unique spatial distributions of DNA damage in cell nuclei that result in a greater biological effect than sparsely ionizing radiation like X-rays. HZE ions are a prominent component of galactic cosmic ray exposure during human spaceflight and specific ions are being used for radiotherapy. Here, we model DNA damage clustering at sub-micrometer scale to predict cell survival. The model is in good agreement with experimental data for a broad range of LET. Notably, the model indicates that nuclear geometry and ion beam orientation affect DNA damage clustering, which reveals their possible role in mediating cell radiosensitivity.
Collapse
Affiliation(s)
- Floriane Poignant
- Analytical Mechanics Associates Inc., 21 Enterprise Parkway, Hampton, VA 23666, United States
| | - Eloise Pariset
- NASA Ames Research Center, MS:288/2, Mountain View, CA 94035, United States
- Universities Space Research Association, 615 National Avenue, Mountain View, CA 94043, United States
| | - Ianik Plante
- KBR, 2400 NASA Parkway, Houston, TX 77058, United States
| | | | - Trevor Evain
- Life Sciences Division, Lawrence Berkeley National Laboratory, 717 Potter Street, Berkeley, CA 94720, United States
| | - Louise Viger
- Life Sciences Division, Lawrence Berkeley National Laboratory, 717 Potter Street, Berkeley, CA 94720, United States
| | - Tony C Slaba
- NASA Langley Research Center, 1 Nasa Drive, Hampton, VA 23666, United States
| | - Steve R Blattnig
- NASA Langley Research Center, 1 Nasa Drive, Hampton, VA 23666, United States
| | - Sylvain V Costes
- NASA Ames Research Center, MS:288/2, Mountain View, CA 94035, United States
| |
Collapse
|
7
|
Pazzaglia S, Eidemüller M, Lumniczky K, Mancuso M, Ramadan R, Stolarczyk L, Moertl S. Out-of-field effects: lessons learned from partial body exposure. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:485-504. [PMID: 36001144 PMCID: PMC9722818 DOI: 10.1007/s00411-022-00988-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/03/2022] [Indexed: 05/27/2023]
Abstract
Partial body exposure and inhomogeneous dose delivery are features of the majority of medical and occupational exposure situations. However, mounting evidence indicates that the effects of partial body exposure are not limited to the irradiated area but also have systemic effects that are propagated outside the irradiated field. It was the aim of the "Partial body exposure" session within the MELODI workshop 2020 to discuss recent developments and insights into this field by covering clinical, epidemiological, dosimetric as well as mechanistic aspects. Especially the impact of out-of-field effects on dysfunctions of immune cells, cardiovascular diseases and effects on the brain were debated. The presentations at the workshop acknowledged the relevance of out-of-field effects as components of the cellular and organismal radiation response. Furthermore, their importance for the understanding of radiation-induced pathologies, for the discovery of early disease biomarkers and for the identification of high-risk organs after inhomogeneous exposure was emphasized. With the rapid advancement of clinical treatment modalities, including new dose rates and distributions a better understanding of individual health risk is urgently needed. To achieve this, a deeper mechanistic understanding of out-of-field effects in close connection to improved modelling was suggested as priorities for future research. This will support the amelioration of risk models and the personalization of risk assessments for cancer and non-cancer effects after partial body irradiation.
Collapse
Affiliation(s)
- S. Pazzaglia
- Laboratory of Biomedical Technologies, ENEA CR-Casaccia, Via Anguillarese 301, 00123 Rome, Italy
| | - M. Eidemüller
- Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - K. Lumniczky
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, Albert Florian u. 2-6, 1097 Budapest, Hungary
| | - M. Mancuso
- Laboratory of Biomedical Technologies, ENEA CR-Casaccia, Via Anguillarese 301, 00123 Rome, Italy
| | - R. Ramadan
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - L. Stolarczyk
- Danish Centre for Particle Therapy, Palle Juul-Jensens Boulevard 25, 8200 Aarhus N, Denmark
| | - S. Moertl
- Federal Office for Radiation Protection, Ingolstädter Landstr. 1, 85764 Oberschleißheim, Germany
| |
Collapse
|
8
|
Zhou R, Zhao D, Beeraka NM, Wang X, Lu P, Song R, Chen K, Liu J. Novel Implications of Nanoparticle-Enhanced Radiotherapy and Brachytherapy: Z-Effect and Tumor Hypoxia. Metabolites 2022; 12:943. [PMID: 36295845 PMCID: PMC9612299 DOI: 10.3390/metabo12100943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 10/29/2023] Open
Abstract
Radiotherapy and internal radioisotope therapy (brachytherapy) induce tumor cell death through different molecular signaling pathways. However, these therapies in cancer patients are constrained by dose-related adverse effects and local discomfort due to the prolonged exposure to the surrounding tissues. Technological advancements in nanotechnology have resulted in synthesis of high atomic elements such as nanomaterials, which can be used as radiosensitizers due to their photoelectric characteristics. The aim of this review is to elucidate the effects of novel nanomaterials in the field of radiation oncology to ameliorate dose-related toxicity through the application of ideal nanoparticle-based radiosensitizers such as Au (gold), Bi (bismuth), and Lu (Lutetium-177) for enhancing cytotoxic effects of radiotherapy via the high-Z effect. In addition, we discuss the role of nanoparticle-enhanced radiotherapy in alleviating tumor hypoxia through the nanodelivery of genes/drugs and other functional anticancer molecules. The implications of engineered nanoparticles in preclinical and clinical studies still need to be studied in order to explore potential mechanisms for radiosensitization by minimizing tumor hypoxia, operational/logistic complications and by overcoming tumor heterogeneity in radiotherapy/brachytherapy.
Collapse
Affiliation(s)
- Runze Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Di Zhao
- Endocrinology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Narasimha M. Beeraka
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- Department of Pharmaceutical Chemistry, Jagadguru Sri Shivarathreeswara Academy of Higher Education and Research (JSS AHER), Jagadguru Sri Shivarathreeswara College of Pharmacy, Mysuru 570015, India
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| | - Xiaoyan Wang
- Endocrinology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Pengwei Lu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Ruixia Song
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Kuo Chen
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
9
|
Fornalski KW, Adamowski Ł, Bugała E, Jarmakiewicz R, Kirejczyk M, Kopyciński J, Krasowska J, Kukulski P, Piotrowski Ł, Ponikowska J, Reszczyńska J, Słonecka I, Wysocki P, Dobrzyński L. Biophysical Modeling of the Ionizing Radiation Influence on Cells Using the Stochastic (Monte Carlo) and Deterministic (Analytical) Approaches. Dose Response 2022; 20:15593258221138506. [PMID: 36458282 PMCID: PMC9706082 DOI: 10.1177/15593258221138506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/26/2022] [Indexed: 09/10/2024] Open
Abstract
This review article describes our simplified biophysical model for the response of a group of cells to ionizing radiation. The model, which is a product of 10 years of studies, acts as (a) a comprehensive stochastic approach based on the Monte Carlo simulation with a probability tree and (b) the thereof derived detailed deterministic models describing the selected biophysical and radiobiological phenomena in an analytical manner. Specifically, the presented model describes effects such as the risk of neoplastic transformation of cells relative to the absorbed radiation dose, the dynamics of tumor development, the priming dose effect (also called the Raper-Yonezawa effect) based on the introduced adaptive response approach, and the bystander effect. The model is also modifiable depending on users' potential needs.
Collapse
Affiliation(s)
- Krzysztof W. Fornalski
- Faculty of Physics, Warsaw University
of Technology (WF PW), Poland
- National Centre for Nuclear
Research (NCBJ), Poland
| | | | - Ernest Bugała
- Faculty of Physics, Warsaw University
of Technology (WF PW), Poland
| | | | | | - Jakub Kopyciński
- Center for Theoretical
Physics, Polish Academy of Sciences (CFT
PAN), Poland
| | | | - Piotr Kukulski
- Department of Mechanical, Aerospace
and Civil Engineering, University of Manchester (MACE
UoM), United Kingdom
| | | | - Julia Ponikowska
- Faculty of Physics, Warsaw University
of Technology (WF PW), Poland
| | - Joanna Reszczyńska
- Mossakowski Medical Research
Institute,
Polish Academy
of Sciences (IMDiK PAN), Poland
| | - Iwona Słonecka
- Faculty of Physics, Warsaw University
of Technology (WF PW), Poland
| | - Paweł Wysocki
- Faculty of Physics, Warsaw University
of Technology (WF PW), Poland
| | | |
Collapse
|
10
|
Wakeford R, Hauptmann M. The risk of cancer following high, and very high, doses of ionising radiation. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:020518. [PMID: 35671754 DOI: 10.1088/1361-6498/ac767b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
It is established that moderate-to-high doses of ionising radiation increase the risk of subsequent cancer in the exposed individual, but the question arises as to the risk of cancer from higher doses, such as those delivered during radiotherapy, accidents, or deliberate acts of malice. In general, the cumulative dose received during a course of radiation treatment is sufficiently high that it would kill a person if delivered as a single dose to the whole body, but therapeutic doses are carefully fractionated and high/very high doses are generally limited to a small tissue volume under controlled conditions. The very high cumulative doses delivered as fractions during radiation treatment are designed to inactivate diseased cells, but inevitably some healthy cells will also receive high/very high doses. How the doses (ranging from <1 Gy to tens of Gy) received by healthy tissues during radiotherapy affect the risk of second primary cancer is an increasingly important issue to address as more cancer patients survive the disease. Studies show that, except for a turndown for thyroid cancer, a linear dose-response for second primary solid cancers seems to exist over a cumulative gamma radiation dose range of tens of gray, but with a gradient of excess relative risk per Gy that varies with the type of second cancer, and which is notably shallower than that found in the Japanese atomic bomb survivors receiving a single moderate-to-high acute dose. The risk of second primary cancer consequent to high/very high doses of radiation is likely to be due to repopulation of heavily irradiated tissues by surviving stem cells, some of which will have been malignantly transformed by radiation exposure, although the exact mechanism is not known, and various models have been proposed. It is important to understand the mechanisms that lead to the raised risk of second primary cancers consequent to the receipt of high/very high doses, in particular so that the risks associated with novel radiation treatment regimens-for example, intensity modulated radiotherapy and volumetric modulated arc therapy that deliver high doses to the target volume while exposing relatively large volumes of healthy tissue to low/moderate doses, and treatments using protons or heavy ions rather than photons-may be properly assessed.
Collapse
Affiliation(s)
- Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Michael Hauptmann
- Institute of Biostatistics and Registry Research, Brandenburg Medical School, Fehrbelliner Strasse 38, 16816 Neuruppin, Germany
| |
Collapse
|
11
|
Schneider U, Besserer J. Tumour volume distribution can yield information on tumour growth and tumour control. Z Med Phys 2022; 32:143-148. [PMID: 34119384 PMCID: PMC9948830 DOI: 10.1016/j.zemedi.2021.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/15/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND It is shown that tumour volume distributions can yield information on two aspects of cancer research: tumour induction and tumour control. MATERIALS AND METHODS From the hypothesis that the intrinsic distribution of breast cancer volumes follows an exponential distribution, firstly the probability density function of tumour growth time was deduced via a mathematical transformation of the probability density functions of tumour volumes. In a second step, the distribution of tumour volumes was used to model the variation of the clonogenic cell number between patients in order to determine tumour control probabilities for radiotherapy patients. RESULTS Distribution of lag times, i.e. the time from the appearance of the first fully malignant cell until a clinically observable cancer, can be used to deduce the probability of tumour induction as a function of patient age. The integration of the volume variation with a Poisson-TCP model results in a logistic function which explains population-averaged survival data of radiotherapy patients. CONCLUSIONS The inclusion of tumour volume distributions into the TCP formalism enables a direct link to be deduced between a cohort TCP model (logistic) and a TCP model for individual patients (Poisson). The TCP model can be applied to non-uniform tumour dose distributions.
Collapse
Affiliation(s)
- Uwe Schneider
- Department of Physics, Science Faculty, University of Zürich, Zürich, Switzerland; Radiotherapy Hirslanden, Witellikerstrasse 40, CH-8032 Zürich, Switzerland.
| | - Jürgen Besserer
- Department of Physics, Science Faculty, University of Zürich, Zürich, Switzerland; Radiotherapy Hirslanden, Witellikerstrasse 40, CH-8032 Zürich, Switzerland
| |
Collapse
|
12
|
Simonetto C, Wollschläger D, Kundrát P, Ulanowski A, Becker J, Castelletti N, Güthlin D, Shemiakina E, Eidemüller M. Estimating long-term health risks after breast cancer radiotherapy: merging evidence from low and high doses. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2021; 60:459-474. [PMID: 34275005 PMCID: PMC8310522 DOI: 10.1007/s00411-021-00924-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/05/2021] [Indexed: 05/03/2023]
Abstract
In breast cancer radiotherapy, substantial radiation exposure of organs other than the treated breast cannot be avoided, potentially inducing second primary cancer or heart disease. While distant organs and large parts of nearby ones receive doses in the mGy-Gy range, small parts of the heart, lung and bone marrow often receive doses as high as 50 Gy. Contemporary treatment planning allows for considerable flexibility in the distribution of this exposure. To optimise treatment with regards to long-term health risks, evidence-based risk estimates are required for the entire broad range of exposures. Here, we thus propose an approach that combines data from medical and epidemiological studies with different exposure conditions. Approximating cancer induction as a local process, we estimate organ cancer risks by integrating organ-specific dose-response relationships over the organ dose distributions. For highly exposed organ parts, specific high-dose risk models based on studies with medical exposure are applied. For organs or their parts receiving relatively low doses, established dose-response models based on radiation-epidemiological data are used. Joining the models in the intermediate dose range leads to a combined, in general non-linear, dose response supported by data over the whole relevant dose range. For heart diseases, a linear model consistent with high- and low-dose studies is presented. The resulting estimates of long-term health risks are largely compatible with rate ratios observed in randomised breast cancer radiotherapy trials. The risk models have been implemented in a software tool PASSOS that estimates long-term risks for individual breast cancer patients.
Collapse
Affiliation(s)
- Cristoforo Simonetto
- Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Daniel Wollschläger
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center Mainz, Obere Zahlbacher Str. 69, 55131, Mainz, Germany
| | - Pavel Kundrát
- Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, Na Truhlářce 39/64, 180 00, Prague 8, Czech Republic
| | - Alexander Ulanowski
- Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- IAEA Environment Laboratories, International Atomic Energy Agency, 2444, Seibersdorf, Austria
| | - Janine Becker
- Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Noemi Castelletti
- Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80802, Munich, Germany
| | - Denise Güthlin
- Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Department of Radiation Protection and Health, Federal Office for Radiation Protection, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Elena Shemiakina
- Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Markus Eidemüller
- Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
| |
Collapse
|
13
|
Pollul G, Bostel T, Grossmann S, Akbaba S, Karle H, Stockinger M, Schmidberger H. Pediatric craniospinal irradiation with a short partial-arc VMAT technique for medulloblastoma tumors in dosimetric comparison. Radiat Oncol 2020; 15:256. [PMID: 33153495 PMCID: PMC7643335 DOI: 10.1186/s13014-020-01690-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/20/2020] [Indexed: 12/26/2022] Open
Abstract
Background This study aimed to contrast four different irradiation methods for pediatric medulloblastoma tumors in a dosimetric comparison regarding planning target volume (PTV) coverage and sparing of organs at risk (OARs). Methods In sum 24 treatment plans for 6 pediatric patients were realized. Besides the clinical standard of a 3D-conformal radiotherapy (3D-CRT) treatment plan taken as a reference, volumetric modulated arc therapy (VMAT) treatment plans (“VMAT_AVD” vs. “noAVD” vs. “FullArc”) were optimized and calculated for each patient. For the thoracic and abdominal region, the short partial-arc VMAT_AVD technique uses an arc setup with reduced arc-length by 100°, using posterior and lateral beam entries. The noAVD uses a half 180° (posterior to lateral directions) and the FullArc uses a full 360° arc setup arrangement. The prescription dose was set to 35.2 Gy. Results We identified a more conformal dose coverage for PTVs and a better sparing of OARs with used VMAT methods. For VMAT_AVD mean dose reductions in organs at risk can be realized, from 16 to 6.6 Gy, from 27.1 to 8.7 Gy and from 8.0 to 1.9 Gy for the heart, the thyroid and the gonads respectively, compared to the 3D-CRT treatment method. In addition we have found out a superiority of VMAT_AVD compared to the noAVD and FullArc trials with lower exposure to low-dose radiation to the lungs and breasts. Conclusions With the short partial-arc VMAT_AVD technique, dose exposures to radiosensitive OARS like the heart, the thyroid or the gonads can be reduced and therefore, maybe the occurrence of late sequelae is less likely. Furthermore the PTV conformity is increased. The advantages of the VMAT_AVD have to be weighed against the potentially risks induced by an increased low dose exposure compared to the 3D-CRT method.
Collapse
Affiliation(s)
- Gerhard Pollul
- Department of Radiation Oncology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany.
| | - Tilman Bostel
- Department of Radiation Oncology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Sascha Grossmann
- Department of Radiation Oncology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Sati Akbaba
- Department of Radiation Oncology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Heiko Karle
- Department of Radiation Oncology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Marcus Stockinger
- Department of Radiation Oncology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Heinz Schmidberger
- Department of Radiation Oncology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| |
Collapse
|
14
|
Haciislamoglu E, Gungor G, Aydin G, Canyilmaz E, Guler OC, Zengin AY, Yenice KM. Estimation of secondary cancer risk after radiotherapy in high-risk prostate cancer patients with pelvic irradiation. J Appl Clin Med Phys 2020; 21:82-89. [PMID: 32671989 PMCID: PMC7497909 DOI: 10.1002/acm2.12972] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/13/2020] [Accepted: 06/22/2020] [Indexed: 12/21/2022] Open
Abstract
We aimed to estimate the risk of secondary cancer after radiotherapy (RT) in high‐risk prostate cancer (HRPC) patients with pelvic irradiation. Computed tomography data of five biopsy‐proven HRPC patients were selected for this study. Two different planning target volumes (PTV1 and PTV2) were contoured for each patient. The PTV1 included the prostate, seminal vesicles, and pelvic lymphatics, while the PTV2 included only the prostate and seminal vesicles. The prescribed dose was 54 Gy for the PTV1 with a sequential boost (24 Gy for the PTV2). Intensity‐modulated RT (IMRT) and volumetric modulated arc therapy (VMAT) techniques were used to generate treatment plans with 6 and 10 MV photon energies with the flattening filter (FF) or flattening filter‐free (FFF) irradiation mode. The excess absolute risks (EARs) were calculated and compared for the bladder, rectum, pelvic bone, and soft tissue based on the linear‐exponential, plateau, full mechanistic, and specific mechanistic sarcoma dose‐response model. According to the models, all treatment plans resulted in similar risks of secondary bladder or rectal cancer and pelvic bone or soft tissue sarcoma except for the estimated risk of the bladder according to the full mechanistic model using IMRT(6MV;FF) technique compared with VMAT techniques with FFF options. The overall estimation of EAR indicated that the radiation‐induced cancer risk due to RT in HRPC was lower for bladder than the rectum. EAR values ranged from 1.47 to 5.82 for bladder and 6.36 to 7.94 for rectum, depending on the dose–response models used. The absolute risks of the secondary pelvic bone and soft tissue sarcoma were small for the plans examined. We theoretically predicted the radiation‐induced secondary cancer risk in HRPC patients with pelvic irradiation. Nevertheless, prospective clinical trials, with larger patient cohorts with a long‐term follow‐up, are needed to validate these model predictions.
Collapse
Affiliation(s)
- Emel Haciislamoglu
- Department of Radiation Oncology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Gorkem Gungor
- Department of Radiation Oncology, Acibadem University, Istanbul, Turkey
| | - Gokhan Aydin
- Department of Radiation Oncology, Acibadem University, Istanbul, Turkey
| | - Emine Canyilmaz
- Department of Radiation Oncology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Ozan Cem Guler
- Department of Radiation Oncology, Faculty of Medicine, Baskent University, Adana, Turkey
| | - Ahmet Yasar Zengin
- Department of Radiation Oncology, Kanuni Research and Education Hospital, Trabzon, Turkey
| | - Kamil Mehmet Yenice
- Department of Radiation and Cellular Oncology, University of Chicago Medicine, Chicago, IL, USA
| |
Collapse
|
15
|
Irazola L, Sánchez-Nieto B, García-Hernández MT, Terrón JA, Roselló J, Ortiz-Seidel M, Béjar MJ, Linares R, Vélazquez S, Sánchez-Doblado F. 10-MV SBRT FFF IRRADIATION TECHNIQUE IS ASSOCIATED TO THE LOWEST PERIPHERAL DOSE: THE OUTCOME OF 142 TREATMENT PLANS FOR THE 10 MOST COMMON TUMOUR LOCATIONS. RADIATION PROTECTION DOSIMETRY 2019; 185:183-195. [PMID: 30649534 DOI: 10.1093/rpd/ncy292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 12/06/2018] [Accepted: 12/30/2018] [Indexed: 06/09/2023]
Abstract
There is a growing interest in the combined use of Stereotactic Body Radiation Therapy (SBRT) with Flattening Filter Free (FFF) due to the high local control rates and reduced treatment times, compared to conventionally fractionated treatments. It has been suggested that they may also provide a better radiation protection to radiotherapy patients as a consequence of the expected decrease in peripheral doses. This work aims to determine this reduction in unattended out-of-field regions, where no CT information is available but an important percentage of second primary cancers occur. For that purpose, ten different cases suitable for SBRT were chosen. Thus, 142 different treatment plans including SBRT, as well as 3D-CRT, IMRT and VMAT (with standard fractionation) in low and high energies for Varian (FF and FFF), Siemens and Elekta machines were created. Then, photon and neutron peripheral dose in 14 organs were assessed and compared using two analytical models. For the prostate case, uncomplicated and cancer free control probability estimation was also carried out. As a general behavior, SBRT plans led to the lowest peripheral doses followed by 3D-CRT, VMAT and IMRT, in this order. Unflattened beams proved to be the most effective in reducing peripheral doses, especially for 10 MV. The obtained results suggest that FFF beams for SBRT with 10 MV represent the best compromise between dose delivery efficiency and peripheral dose reduction.
Collapse
Affiliation(s)
- L Irazola
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
- Servicio de Radiofísica, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - B Sánchez-Nieto
- Instituto de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - J A Terrón
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
- Servicio de Radiofísica, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - J Roselló
- Servicio de Radiofísica ERESA, Hospital General Universitario, Valencia, Spain
| | - M Ortiz-Seidel
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
- Servicio de Radiofísica, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - M J Béjar
- Servicio de Radiofísica, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - R Linares
- Servicio de Radiofísica, Hospital Infanta Luisa, Sevilla, Spain
| | - S Vélazquez
- Servicio de Radiofísica, Hospital Universitario Virgen del Rocío, Sevilla Spain
| | - F Sánchez-Doblado
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
- Servicio de Radiofísica, Hospital Universitario Virgen Macarena, Sevilla, Spain
| |
Collapse
|
16
|
Shuryak I. Enhancing low-dose risk assessment using mechanistic mathematical models of radiation effects. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2019; 39:S1-S13. [PMID: 31292290 DOI: 10.1088/1361-6498/ab3101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mechanistic mathematical modeling of ionizing radiation (IR) effects has a long history spanning several decades. Models that mathematically represent current knowledge and hypotheses about how radiation damages cells and organs, leading to deleterious outcomes such as carcinogenesis, are particularly useful for estimating radiation risks at doses that are relevant for radiation protection, but are too low to provide a strong 'signal-to-noise ratio' in epidemiological or experimental studies with realistic sample sizes. Here, I discuss examples of models in several relevant areas, including radionuclide biokinetics, non-targeted IR effects, DNA double-strand break (DSB) rejoining and radiation carcinogenesis. I do not provide a detailed review of the vast modeling literature in these fields, but focus on concepts that we have implemented, such as using continuous probability distributions of exponential rates to model radionuclide biokinetics and DSB rejoining, and combining short and long time scales in carcinogenesis models. Improvements in models, including the ability to generate new hypotheses based on model predictions, may come from the introduction of additional novel concepts and from integrating multiple data types.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University, New York, NY, United States of America
| |
Collapse
|
17
|
Fakir H, Chen J, Sachs RK. Hypo-fractionated boost in locally advanced non-small cell lung cancer: temporal distribution of boost fractions. Phys Med Biol 2018; 63:235018. [PMID: 30484435 DOI: 10.1088/1361-6560/aaee24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To propose new schemas for radiation boosting of primary tumors, in locally advanced non-small cell lung cancers (NSCLC), in conjunction with standard chemoradiotherapy. To investigate the effect of temporal distributions of the boost fractions on tumor control. NSCLC cases, previously treated with 60 Gy in 30 fractions, were retrospectively planned by adding a radiation boost (25 Gy in 5 fractions) to the primary tumor. Several integrated and sequential boosting schedules were considered. Biological doses were calculated for targets and organs at risk (OAR). Tumor control probabilities (TCP) were calculated using an empirical model and a stochastic model that accounts more systematically for tumor growth kinetics and cell kill. For heterogeneous patient populations, the TCPs for different boost schedules ranged from 82% to 84% and from 73% to 74% for integrated and sequential boosting respectively. For individual tumors with specific growth parameters, the TCP varied by up to 19% between the different schedules. The TCP for sequential boosting was expected to be up to 67% lower than front integrated boosting. The gap in TCP between schedules was higher for tumors with higher clonogenic cell numbers, lower radio-sensitivity, shorter doubling times and lower cell loss. The proposed boosting schemas are dosimetrically feasible and biologically effective. We suggest that the boosts are most effective when given during the first week of treatment and least effective when given sequentially after the end of treatment. The effect of boost scheduling and the effectiveness of front boosting are expected to be most significant for tumors with high clonogenic cell numbers, fast growing rates, low cell loss and low radio-sensitivity. Ultimately, animal studies and clinical trials, guided by biology modeling as presented in the present work, will be needed to verify the effectiveness of fine tuning temporal distributions of radiotherapy fractions.
Collapse
Affiliation(s)
- H Fakir
- Department of Physics and Engineering, London Health Sciences Centre, London, Ontario, Canada. Department of Medical Biophysics, Western University, London, Ontario, Canada. Author to whom any correspondence should be addressed
| | | | | |
Collapse
|
18
|
Journy N, Mansouri I, Allodji RS, Demoor-Goldschmidt C, Ghazi D, Haddy N, Rubino C, Veres C, Zrafi WS, Rivera S, Diallo I, De Vathaire F. Volume effects of radiotherapy on the risk of second primary cancers: A systematic review of clinical and epidemiological studies. Radiother Oncol 2018; 131:150-159. [PMID: 30316563 DOI: 10.1016/j.radonc.2018.09.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 12/11/2022]
Abstract
As modern radiotherapy, including intensity-modulated techniques, is associated with high dose gradients to normal tissues and large low-to-moderate dose volumes, the assessment of second primary cancer (SPC) risks requires quantification of dose-volume effects. We conducted a systematic review of clinical and epidemiological studies investigating the effect of the irradiated volume or dose-volume distribution to the remaining volume at risk (RVR) on SPC incidence. We identified eighteen studies comparing SPC risks according to the irradiated volume (i.e., in most studies, the size or number of fields used), and four studies reporting risk estimates according to the dose distribution to the RVR (after whole-body dose reconstruction). An increased risk of SPCs (mainly breast and lung cancers) with extended radiotherapy was observed among patients treated for Hodgkin lymphoma or childhood cancers. However, normal tissue dose distribution was not estimated, limiting the interpretation of those results in terms of volume effects on organs at risk. Studies considering whole-body exposures quantified dose-response relationships for point dose estimates, without accounting for dose-volume distributions. Therefore, they disregarded possible tissue effects (e.g. bystander and abscopal effects, stem cell repopulation) which may play a role in the induction of SPCs. Currently, there is no clinical or epidemiological information about a possible role of high dose gradients in surrounding organs, or increasing volumes of distant tissues exposed to low doses, in the risk of SPCs. Opportunities for future research nevertheless now exist, since methods and tools for estimating individual whole-body dose-volume distributions in large patient populations have been developed.
Collapse
Affiliation(s)
- Neige Journy
- INSERM U1018, Paris-Sud XI University, Paris-Saclay University, Centre for Research in Epidemiology and Population Health (CESP), "Cancer & Radiations" Group, Gustave Roussy Cancer Campus, Villejuif, France.
| | - Imène Mansouri
- INSERM U1018, Paris-Sud XI University, Paris-Saclay University, Centre for Research in Epidemiology and Population Health (CESP), "Cancer & Radiations" Group, Gustave Roussy Cancer Campus, Villejuif, France
| | - Rodrigue S Allodji
- INSERM U1018, Paris-Sud XI University, Paris-Saclay University, Centre for Research in Epidemiology and Population Health (CESP), "Cancer & Radiations" Group, Gustave Roussy Cancer Campus, Villejuif, France
| | - Charlotte Demoor-Goldschmidt
- INSERM U1018, Paris-Sud XI University, Paris-Saclay University, Centre for Research in Epidemiology and Population Health (CESP), "Cancer & Radiations" Group, Gustave Roussy Cancer Campus, Villejuif, France; Department of Pediatric Onco-hematology, CHU Angers, Angers, France
| | - Debiche Ghazi
- INSERM U1018, Paris-Sud XI University, Paris-Saclay University, Centre for Research in Epidemiology and Population Health (CESP), "Cancer & Radiations" Group, Gustave Roussy Cancer Campus, Villejuif, France
| | - Nadia Haddy
- INSERM U1018, Paris-Sud XI University, Paris-Saclay University, Centre for Research in Epidemiology and Population Health (CESP), "Cancer & Radiations" Group, Gustave Roussy Cancer Campus, Villejuif, France
| | - Carole Rubino
- INSERM U1018, Paris-Sud XI University, Paris-Saclay University, Centre for Research in Epidemiology and Population Health (CESP), "Cancer & Radiations" Group, Gustave Roussy Cancer Campus, Villejuif, France
| | - Cristina Veres
- INSERM U1018, Paris-Sud XI University, Paris-Saclay University, Centre for Research in Epidemiology and Population Health (CESP), "Cancer & Radiations" Group, Gustave Roussy Cancer Campus, Villejuif, France
| | - Wael Salem Zrafi
- INSERM U1018, Paris-Sud XI University, Paris-Saclay University, Centre for Research in Epidemiology and Population Health (CESP), "Cancer & Radiations" Group, Gustave Roussy Cancer Campus, Villejuif, France
| | - Sofia Rivera
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France; INSERM 1030 Molecular Radiotherapy, Villejuif, France; Paris-Saclay University, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
| | - Ibrahima Diallo
- INSERM U1018, Paris-Sud XI University, Paris-Saclay University, Centre for Research in Epidemiology and Population Health (CESP), "Cancer & Radiations" Group, Gustave Roussy Cancer Campus, Villejuif, France
| | - Florent De Vathaire
- INSERM U1018, Paris-Sud XI University, Paris-Saclay University, Centre for Research in Epidemiology and Population Health (CESP), "Cancer & Radiations" Group, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
19
|
Iezzi R, Larici AR, Franchi P, Marano R, Magarelli N, Posa A, Merlino B, Manfredi R, Colosimo C. Tailoring protocols for chest CT applications: when and how? Diagn Interv Radiol 2018; 23:420-427. [PMID: 29097345 DOI: 10.5152/dir.2017.16615] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the medical era of early detection of diseases and tailored therapies, an accurate characterization and staging of the disease is pivotal for treatment planning. The widespread use of computed tomography (CT)-often with the use of contrast material (CM)-probably represents the most important advance in diagnostic radiology. The result is a marked increase in radiation exposure of the population for medical purposes, with its intrinsic carcinogenic potential, and CM affecting kidney function. The radiologists should aim to minimize patient's risk by reducing radiation exposure and CM amount, while maintaining the highest image quality. To achieve this goal, it is necessary to perform "patient-centric imaging". The purpose of this review is to provide radiologists with "tips and tricks" to control radiation dose at CT, summarizing technical artifices in order to reduce image noise and increase image contrast. Also chest CT tailored protocols are supplied, with particular attention to three most common thoracic CT protocols: aortic/cardiac CT angiography (CTA), pulmonary CTA, and routine chest CT.
Collapse
Affiliation(s)
- Roberto Iezzi
- Institute of Radiology, Department of Radiological Sciences, Università Cattolica del Sacro Cuore, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sánchez-Nieto B, Romero-Expósito M, Terrón JA, Irazola L, Paiusco M, Cagni E, Ghetti C, Filice S, Sánchez-Doblado F. Intensity-modulated radiation therapy and volumetric modulated arc therapy versus conventional conformal techniques at high energy: Dose assessment and impact on second primary cancer in the out-of-field region. Rep Pract Oncol Radiother 2018; 23:251-259. [PMID: 29991929 PMCID: PMC6035902 DOI: 10.1016/j.rpor.2018.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 01/19/2018] [Accepted: 04/12/2018] [Indexed: 12/22/2022] Open
Abstract
The aim of this work was to estimate peripheral neutron and photon doses associated with the conventional 3D conformal radiotherapy techniques in comparison to modern ones such as Intensity modulated radiation therapy and volumetric modulated arc therapy. Assessment in terms of second cancer incidence ought to peripheral doses was also considered. For that, a dosimetric methodology proposed by the authors has been applied beyond the region where there is no CT information and, thus, treatment planning systems do not calculate and where, nonetheless, about one third of second primary cancers occurs.
Collapse
Affiliation(s)
- Beatriz Sánchez-Nieto
- Instituto de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center UC Investigation in Oncology at Pontificia Universidad Católica de Chile, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - José Antonio Terrón
- Servicio de Radiofísica, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Leticia Irazola
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla, Spain
| | - Marta Paiusco
- Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| | | | - Caterina Ghetti
- Servizio di Fisica Sanitaria, Azienda Ospedaliera Universitaria di Parma, Italy
| | - Silvano Filice
- Servizio di Fisica Sanitaria, Azienda Ospedaliera Universitaria di Parma, Italy
| | - Francisco Sánchez-Doblado
- Servicio de Radiofísica, Hospital Universitario Virgen Macarena, Sevilla, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
21
|
Jalali R, Chilukuri S. Risk of second malignancy after modern conformal and proton beam radiotherapy-Minimizing risks, improving survivorshipInstructions to authors and other literary works of fiction. Indian J Cancer 2018; 55:316-317. [DOI: 10.4103/ijc.ijc_549_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
22
|
Dasu A, Toma-Dasu I. Models for the risk of secondary cancers from radiation therapy. Phys Med 2017; 42:232-238. [DOI: 10.1016/j.ejmp.2017.02.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/10/2017] [Accepted: 02/15/2017] [Indexed: 11/25/2022] Open
|
23
|
Predicting Organ-Specific Risk Interactions between Radiation and Chemotherapy in Secondary Cancer Survivors. Cancers (Basel) 2017; 9:cancers9090119. [PMID: 28878202 PMCID: PMC5615334 DOI: 10.3390/cancers9090119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/29/2017] [Accepted: 09/04/2017] [Indexed: 01/09/2023] Open
Abstract
Several studies have shown that pediatric patients have an increased risk of developing a secondary malignancy several decades after treatment with radiotherapy and chemotherapy. In this work, we use a biologically motivated mathematical formalism to estimate the relative risks of breast, lung and thyroid cancers in childhood cancer survivors due to concurrent therapy regimen. This model specifically includes possible organ-specific interaction between radiotherapy and chemotherapy. The model predicts relative risks for developing secondary cancers after chemotherapy in breast, lung and thyroid tissues, and compared with the epidemiological data. For a concurrent therapy protocol, our model predicted relative risks of 3.2, 9.3, 4.5 as compared to the clinical data, i.e., 1.4, 8.0, 2.3 for secondary breast, lung and thyroid cancer risks, respectively. The extracted chemotherapy mutation induction rates for breast, lung and thyroid are 10−9, 0.5 × 10−6, 0.9 × 10−7 respectively. We found that there exists no synergistic interaction between radiation and chemotherapy for neither mutation induction nor cell kill in lung tissue, but there is an interaction in cell kill for the breast and thyroid organs. These findings help understand the risks of current clinical protocols and might provide rational guidance to develop future multi-modality treatment protocols to minimize secondary cancer risks.
Collapse
|
24
|
Ho ESQ, Barrett SA, Mullaney LM. A review of dosimetric and toxicity modeling of proton versus photon craniospinal irradiation for pediatrics medulloblastoma. Acta Oncol 2017; 56:1031-1042. [PMID: 28509599 DOI: 10.1080/0284186x.2017.1324207] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Craniospinal irradiation (CSI) is the standard radiation therapy treatment for medulloblastoma. Conventional CSI photon therapy (Photon-CSI) delivers significant dose to surrounding normal tissue (NT). Research into pediatric CSI with proton therapy (Proton-CSI) has increased, with the aim of exploiting the potential to reduce NT dose and associated post-treatment complications. This review aims to compare treatment outcomes of pediatric medulloblastoma patients between Proton- and Photon-CSI treatments. MATERIAL AND METHODS A search and review of studies published between 1990 and 2016 comparing pediatric (2-18 years) medulloblastoma Proton- and Photon-CSI in three aspects - normal organ sparing and target coverage; normal organ dysfunction and second malignancy risks - was completed. RESULTS Fifteen studies were selected for review and the results were directly compared. Proton-CSI reported improved out-of-field organ sparing while target coverage improvements were inconsistent. Normal organ dysfunction risks were predicted to be lower following Proton-CSI. Secondary malignancy risks (SMRs) were generally lower with Proton-CSI based on several different risk models. CONCLUSIONS Proton-CSI conferred better treatment outcomes than Photon-CSI for pediatric medulloblastoma patients. This review serves to compare the current literature in the absence of long-term data from prospective studies.
Collapse
Affiliation(s)
- Evangeline S. Q. Ho
- Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Sarah A. Barrett
- Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Laura M. Mullaney
- Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
25
|
Rühm W, Eidemüller M, Kaiser JC. Biologically-based mechanistic models of radiation-related carcinogenesis applied to epidemiological data. Int J Radiat Biol 2017; 93:1093-1117. [DOI: 10.1080/09553002.2017.1310405] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Werner Rühm
- Department of Radiation Sciences, Helmholtz Center München, Institute of Radiation Protection, Neuherberg, Germany
| | - Markus Eidemüller
- Department of Radiation Sciences, Helmholtz Center München, Institute of Radiation Protection, Neuherberg, Germany
| | - Jan Christian Kaiser
- Department of Radiation Sciences, Helmholtz Center München, Institute of Radiation Protection, Neuherberg, Germany
| |
Collapse
|
26
|
Sánchez-Nieto B, Romero-Expósito M, Terrón JA, Sánchez-Doblado F. Uncomplicated and Cancer-Free Control Probability (UCFCP): A new integral approach to treatment plan optimization in photon radiation therapy. Phys Med 2017; 42:277-284. [PMID: 28392313 DOI: 10.1016/j.ejmp.2017.03.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/24/2017] [Accepted: 03/29/2017] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Biological treatment plan evaluation does not currently consider second cancer induction from peripheral doses associated to photon radiotherapy. The aim is to propose a methodology to characterize the therapeutic window by means of an integral radiobiological approach, which considers not only Tumour Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) but also Secondary Cancer Probability (SCP). METHODS Uncomplicated and Cancer-Free Control Probability (UCFCP) function has been proposed assuming a statistically uncorrelated response for tumour and normal tissues. The Poisson's and Lyman's models were chosen for TCP and NTCP calculations, respectively. SCP was modelled as the summation of risks associated to photon and neutron irradiation of radiosensitive organs. For the medium (>4Gy) and low dose regions, mechanistic and linear secondary cancer risks models were used, respectively. Two conformal and intensity-modulated prostate plans at 15MV (same prescription dose) were selected to illustrate the UCFCP features. RESULTS UCFCP exhibits a bell-shaped behaviour with its maximum inside the therapeutic window. SCP values were not different for the plans analysed (∼2.4%) and agreed with published epidemiological results. Therefore, main differences in UCFCP came from differences in rectal NTCP (18% vs 9% for 3D-CRT and IMRT, respectively). According to UCFCP values, the evaluated IMRT plan ranked first. CONCLUSIONS The level of SCP was found to be similar to that of NTCP complications which reinforces the importance of considering second cancer risks as part of the possible late sequelae due to treatment. Previous concerns about the effect of peripheral radiation, especially neutrons, in the induction of secondary cancers can be evaluated by quantifying the UCFCP.
Collapse
Affiliation(s)
- Beatriz Sánchez-Nieto
- Instituto de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4880, Macul, Santiago, Chile.
| | - Maite Romero-Expósito
- Departament de Física, Universitat Autònoma de Barcelona, Edifici C, Campus UAB E-08193, Bellaterra, Spain.
| | - José A Terrón
- Servicio de Radiofísica, Hospital Universitario Virgen Macarena, Av. Doctor Fedriani, 3, 41009 Sevilla, Spain.
| | - Francisco Sánchez-Doblado
- Servicio de Radiofísica, Hospital Universitario Virgen Macarena, Av. Doctor Fedriani, 3, 41009 Sevilla, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Av. Doctor Fedriani S/N, 41009 Sevilla, Spain.
| |
Collapse
|
27
|
Holmes JA, Chera BS, Brenner DJ, Shuryak I, Wilson AK, Lehman-Davis M, Fried DV, Somasundaram V, Lian J, Cullip T, Marks LB. Estimating the excess lifetime risk of radiation induced secondary malignancy (SMN) in pediatric patients treated with craniospinal irradiation (CSI): Conventional radiation therapy versus helical intensity modulated radiation therapy. Pract Radiat Oncol 2017; 7:35-41. [DOI: 10.1016/j.prro.2016.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/08/2016] [Accepted: 07/05/2016] [Indexed: 11/30/2022]
|
28
|
Hiller J, Vallejo C, Betthauser L, Keesling J. Characteristic patterns of cancer incidence: Epidemiological data, biological theories, and multistage models. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 124:41-48. [PMID: 27836510 DOI: 10.1016/j.pbiomolbio.2016.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/05/2016] [Indexed: 02/07/2023]
Abstract
We investigate and classify several patterns in cancer incidence and relative risk data which persist across different countries and multiple published studies. We then explore biological hypotheses as well as many mathematical models in the literature that attempt to explain these patterns. A general modeling framework is presented which is general enough to model most of observed behaviors. It is our belief that this model has sufficient flexibility to be adapted to new information as it is discovered. As one application of this framework, we give a model for the effect of aging on the process of carcinogenesis.
Collapse
Affiliation(s)
- Josh Hiller
- Department of Mathematics, University of Florida, USA.
| | | | | | | |
Collapse
|
29
|
Santos AMC, Marcu LG, Wong CM, Bezak E. Risk estimation of second primary cancers after breast radiotherapy. Acta Oncol 2016; 55:1331-1337. [PMID: 27379458 DOI: 10.1080/0284186x.2016.1185150] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AIMS There is evidence towards the induction of second primary cancers (SPCs) after breast radiotherapy (RT). Organs, such as the lungs and the esophagus, have been identified as common sites for SPC formation. As a result, the current study investigated the risk of secondary carcinogenesis associated with particular RT techniques for breast cancer; including whole breast, segmented breast, partial breast and mammosite brachytherapy. METHODS In this study, seven breast cancer patients had all major organs contoured on their planning computed tomography (CT) images. Whole breast, segmented breast, accelerated partial breast irradiation (APBI) and mammosite boost treatment plans were generated for each patient using Pinnacle3 treatment planning system. Differential dose-volume histograms were generated for a number of critical structures: bladder, brain and central nervous system (CNS), breast, colon, liver, lung, mouth and pharynx, esophagus, ovary, salivary gland, small intestine, stomach, and uterus. The lifetime attributed risk (LAR) of cancer induction was estimated using the Schneider et al. excess absolute risk models and dose-volume histograms for the above organs. RESULTS The sites with the highest LAR estimates were the ipsilateral and contralateral lungs, and contralateral breast for all treatment techniques. For all sites, the LAR estimates for the segmented breast and mammosite treatments were lower than those for the whole breast and APBI treatments. For right-sided target volumes the liver also resulted in high LAR estimates, with all techniques having a LAR greater than 20 per 10 000 person-years (PY), except for mammosite with a mean LAR estimate of 13.2 per 10 000 PY. For left-sided target volumes the stomach also resulted in high LAR estimates, with both whole breast and APBI having a LAR greater than 20 per 10 000 PY, and mammosite the lowest with a LAR of 8.3 per 10 000 PY. CONCLUSION It is concluded that the lungs and contralateral breast showed high LAR estimates.
Collapse
Affiliation(s)
- Alexandre M. C. Santos
- School of Physical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Department of Medical Physics, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Loredana G. Marcu
- School of Physical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Faculty of Science, University of Oradea, Oradea, Romania
| | - Chia M. Wong
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Eva Bezak
- School of Physical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- International Centre for Allied Health Evidence and Sansom Institute for Health Research, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
30
|
Dobrzyński L, Fornalski KW, Socol Y, Reszczyńska JM. Modeling of Irradiated Cell Transformation: Dose- and Time-Dependent Effects. Radiat Res 2016; 186:396-406. [DOI: 10.1667/rr14302.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Schneider U, Hälg RA, Baiocco G, Lomax T. Neutrons in proton pencil beam scanning: parameterization of energy, quality factors and RBE. Phys Med Biol 2016; 61:6231-42. [DOI: 10.1088/0031-9155/61/16/6231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
32
|
Chen KT, Hu YW. Risk of Breast Cancer in Patients with Thyroid Cancer Receiving 131I Treatment: Is There an Immortal Time Bias? J Nucl Med 2016; 57:1324. [DOI: 10.2967/jnumed.116.173641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
33
|
Eley JG, Friedrich T, Homann KL, Howell RM, Scholz M, Durante M, Newhauser WD. Comparative Risk Predictions of Second Cancers After Carbon-Ion Therapy Versus Proton Therapy. Int J Radiat Oncol Biol Phys 2016; 95:279-286. [PMID: 27084647 DOI: 10.1016/j.ijrobp.2016.02.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 02/02/2016] [Accepted: 02/09/2016] [Indexed: 02/08/2023]
Abstract
PURPOSE This work proposes a theoretical framework that enables comparative risk predictions for second cancer incidence after particle beam therapy for different ion species for individual patients, accounting for differences in relative biological effectiveness (RBE) for the competing processes of tumor initiation and cell inactivation. Our working hypothesis was that use of carbon-ion therapy instead of proton therapy would show a difference in the predicted risk of second cancer incidence in the breast for a sample of Hodgkin lymphoma (HL) patients. METHODS AND MATERIALS We generated biologic treatment plans and calculated relative predicted risks of second cancer in the breast by using two proposed methods: a full model derived from the linear quadratic model and a simpler linear-no-threshold model. RESULTS For our reference calculation, we found the predicted risk of breast cancer incidence for carbon-ion plans-to-proton plan ratio, <Rc/Rp>, to be 0.75 ± 0.07 but not significantly smaller than 1 (P=.180). CONCLUSIONS Our findings suggest that second cancer risks are, on average, comparable between proton therapy and carbon-ion therapy.
Collapse
Affiliation(s)
- John G Eley
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas; University of Texas Graduate School of Biomedical Sciences, Houston, Texas; Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland.
| | - Thomas Friedrich
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Kenneth L Homann
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas; University of Texas Graduate School of Biomedical Sciences, Houston, Texas
| | - Rebecca M Howell
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas; University of Texas Graduate School of Biomedical Sciences, Houston, Texas
| | - Michael Scholz
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Wayne D Newhauser
- Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, Louisiana; Mary Bird Perkins Cancer Center, Baton Rouge, Louisiana
| |
Collapse
|
34
|
Weisenthal SJ, Folio L, Kovacs W, Seff A, Derderian V, Summers RM, Yao J. Open-Source Radiation Exposure Extraction Engine (RE3) with Patient-Specific Outlier Detection. J Digit Imaging 2015; 29:406-19. [PMID: 26644157 DOI: 10.1007/s10278-015-9852-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We present an open-source, picture archiving and communication system (PACS)-integrated radiation exposure extraction engine (RE3) that provides study-, series-, and slice-specific data for automated monitoring of computed tomography (CT) radiation exposure. RE3 was built using open-source components and seamlessly integrates with the PACS. RE3 calculations of dose length product (DLP) from the Digital imaging and communications in medicine (DICOM) headers showed high agreement (R (2) = 0.99) with the vendor dose pages. For study-specific outlier detection, RE3 constructs robust, automatically updating multivariable regression models to predict DLP in the context of patient gender and age, scan length, water-equivalent diameter (D w), and scanned body volume (SBV). As proof of concept, the model was trained on 811 CT chest, abdomen + pelvis (CAP) exams and 29 outliers were detected. The continuous variables used in the outlier detection model were scan length (R (2) = 0.45), D w (R (2) = 0.70), SBV (R (2) = 0.80), and age (R (2) = 0.01). The categorical variables were gender (male average 1182.7 ± 26.3 and female 1047.1 ± 26.9 mGy cm) and pediatric status (pediatric average 710.7 ± 73.6 mGy cm and adult 1134.5 ± 19.3 mGy cm).
Collapse
Affiliation(s)
- Samuel J Weisenthal
- National Institutes of Health, Clinical Center, Radiology and Imaging Sciences, Clinical Image Processing Service (CIPS), 10 Center Drive, Bethesda, MD, 20892-1182, USA.,University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Les Folio
- National Institutes of Health, Clinical Center, Radiology and Imaging Sciences, Clinical Image Processing Service (CIPS), 10 Center Drive, Bethesda, MD, 20892-1182, USA
| | - William Kovacs
- National Institutes of Health, Clinical Center, Radiology and Imaging Sciences, Clinical Image Processing Service (CIPS), 10 Center Drive, Bethesda, MD, 20892-1182, USA
| | - Ari Seff
- National Institutes of Health, Clinical Center, Radiology and Imaging Sciences, Clinical Image Processing Service (CIPS), 10 Center Drive, Bethesda, MD, 20892-1182, USA
| | - Vana Derderian
- National Institutes of Health, Clinical Center, Radiology and Imaging Sciences, Clinical Image Processing Service (CIPS), 10 Center Drive, Bethesda, MD, 20892-1182, USA
| | - Ronald M Summers
- National Institutes of Health, Clinical Center, Radiology and Imaging Sciences, Clinical Image Processing Service (CIPS), 10 Center Drive, Bethesda, MD, 20892-1182, USA
| | - Jianhua Yao
- National Institutes of Health, Clinical Center, Radiology and Imaging Sciences, Clinical Image Processing Service (CIPS), 10 Center Drive, Bethesda, MD, 20892-1182, USA.
| |
Collapse
|
35
|
Schneider U, Walsh L. Age at exposure and attained age variations of cancer risk in the Japanese A-bomb and radiotherapy cohorts. Med Phys 2015; 42:4755-61. [DOI: 10.1118/1.4927062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
36
|
Barcellos-Hoff MH, Blakely EA, Burma S, Fornace AJ, Gerson S, Hlatky L, Kirsch DG, Luderer U, Shay J, Wang Y, Weil MM. Concepts and challenges in cancer risk prediction for the space radiation environment. LIFE SCIENCES IN SPACE RESEARCH 2015; 6:92-103. [PMID: 26256633 DOI: 10.1016/j.lssr.2015.07.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 06/04/2023]
Abstract
Cancer is an important long-term risk for astronauts exposed to protons and high-energy charged particles during travel and residence on asteroids, the moon, and other planets. NASA's Biomedical Critical Path Roadmap defines the carcinogenic risks of radiation exposure as one of four type I risks. A type I risk represents a demonstrated, serious problem with no countermeasure concepts, and may be a potential "show-stopper" for long duration spaceflight. Estimating the carcinogenic risks for humans who will be exposed to heavy ions during deep space exploration has very large uncertainties at present. There are no human data that address risk from extended exposure to complex radiation fields. The overarching goal in this area to improve risk modeling is to provide biological insight and mechanistic analysis of radiation quality effects on carcinogenesis. Understanding mechanisms will provide routes to modeling and predicting risk and designing countermeasures. This white paper reviews broad issues related to experimental models and concepts in space radiation carcinogenesis as well as the current state of the field to place into context recent findings and concepts derived from the NASA Space Radiation Program.
Collapse
Affiliation(s)
| | | | - Sandeep Burma
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | - Lynn Hlatky
- Center of Cancer Systems Biology, Tufts University, Boston, MA, USA
| | | | | | - Jerry Shay
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ya Wang
- Emory University, Atlanta, GA, USA
| | | |
Collapse
|
37
|
Rechner LA, Eley JG, Howell RM, Zhang R, Mirkovic D, Newhauser WD. Risk-optimized proton therapy to minimize radiogenic second cancers. Phys Med Biol 2015; 60:3999-4013. [PMID: 25919133 PMCID: PMC4443860 DOI: 10.1088/0031-9155/60/10/3999] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proton therapy confers substantially lower predicted risk of second cancer compared with photon therapy. However, no previous studies have used an algorithmic approach to optimize beam angle or fluence-modulation for proton therapy to minimize those risks. The objectives of this study were to demonstrate the feasibility of risk-optimized proton therapy and to determine the combination of beam angles and fluence weights that minimizes the risk of second cancer in the bladder and rectum for a prostate cancer patient. We used 6 risk models to predict excess relative risk of second cancer. Treatment planning utilized a combination of a commercial treatment planning system and an in-house risk-optimization algorithm. When normal-tissue dose constraints were incorporated in treatment planning, the risk model that incorporated the effects of fractionation, initiation, inactivation, repopulation and promotion selected a combination of anterior and lateral beams, which lowered the relative risk by 21% for the bladder and 30% for the rectum compared to the lateral-opposed beam arrangement. Other results were found for other risk models.
Collapse
Affiliation(s)
- Laura A. Rechner
- The University of Texas Health Science Center Houston, Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
- Present Address: Department of Radiation Oncology, Rigshospitalet, Blegdamsvej 9, 2100 København Ø, Denmark
| | - John G. Eley
- The University of Texas Health Science Center Houston, Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Rebecca M. Howell
- The University of Texas Health Science Center Houston, Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Rui Zhang
- The University of Texas Health Science Center Houston, Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
- Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, LA 70803, USA
| | - Dragan Mirkovic
- The University of Texas Health Science Center Houston, Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Wayne D. Newhauser
- The University of Texas Health Science Center Houston, Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
- Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, LA 70803, USA
- Department of Medical Physics, Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA 70809, USA
| |
Collapse
|
38
|
Zhang R, Mirkovic D, Newhauser WD. Visualization of risk of radiogenic second cancer in the organs and tissues of the human body. Radiat Oncol 2015; 10:107. [PMID: 25927490 PMCID: PMC4422483 DOI: 10.1186/s13014-015-0404-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 04/11/2015] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Radiogenic second cancer is a common late effect in long term cancer survivors. Currently there are few methods or tools available to visually evaluate the spatial distribution of risks of radiogenic late effects in the human body. We developed a risk visualization method and demonstrated it for radiogenic second cancers in tissues and organs of one patient treated with photon volumetric modulated arc therapy and one patient treated with proton craniospinal irradiation. METHODS Treatment plans were generated using radiotherapy treatment planning systems (TPS) and dose information was obtained from TPS. Linear non-threshold risk coefficients for organs at risk of second cancer incidence were taken from the Biological Effects of Ionization Radiation VII report. Alternative risk models including linear exponential model and linear plateau model were also examined. The predicted absolute lifetime risk distributions were visualized together with images of the patient anatomy. RESULTS The risk distributions of second cancer for the two patients were visually presented. The risk distributions varied with tissue, dose, dose-risk model used, and the risk distribution could be similar to or very different from the dose distribution. CONCLUSIONS Our method provides a convenient way to directly visualize and evaluate the risks of radiogenic second cancer in organs and tissues of the human body. In the future, visual assessment of risk distribution could be an influential determinant for treatment plan scoring.
Collapse
Affiliation(s)
- Rui Zhang
- Mary Bird Perkins Cancer Center, LA, Baton Rouge, USA.
- Medical Physics Program, Department of Physics and Astronomy, Louisiana State University, LA, Baton Rouge, USA.
| | - Dragan Mirkovic
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Wayne D Newhauser
- Mary Bird Perkins Cancer Center, LA, Baton Rouge, USA.
- Medical Physics Program, Department of Physics and Astronomy, Louisiana State University, LA, Baton Rouge, USA.
| |
Collapse
|
39
|
Kaveh K, Manem VSK, Kohandel M, Sivaloganathan S. Modeling age-dependent radiation-induced second cancer risks and estimation of mutation rate: an evolutionary approach. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2015; 54:25-36. [PMID: 25404281 DOI: 10.1007/s00411-014-0576-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 11/08/2014] [Indexed: 06/04/2023]
Abstract
Although the survival rate of cancer patients has significantly increased due to advances in anti-cancer therapeutics, one of the major side effects of these therapies, particularly radiotherapy, is the potential manifestation of radiation-induced secondary malignancies. In this work, a novel evolutionary stochastic model is introduced that couples short-term formalism (during radiotherapy) and long-term formalism (post-treatment). This framework is used to estimate the risks of second cancer as a function of spontaneous background and radiation-induced mutation rates of normal and pre-malignant cells. By fitting the model to available clinical data for spontaneous background risk together with data of Hodgkin's lymphoma survivors (for various organs), the second cancer mutation rate is estimated. The model predicts a significant increase in mutation rate for some cancer types, which may be a sign of genomic instability. Finally, it is shown that the model results are in agreement with the measured results for excess relative risk (ERR) as a function of exposure age and that the model predicts a negative correlation of ERR with increase in attained age. This novel approach can be used to analyze several radiotherapy protocols in current clinical practice and to forecast the second cancer risks over time for individual patients.
Collapse
Affiliation(s)
- Kamran Kaveh
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - Venkata S K Manem
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Mohammad Kohandel
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Center for Mathematical Medicine, Fields Institute for Research in Mathematical Sciences, Toronto, ON, M5T 3J1, Canada
| | - Siv Sivaloganathan
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Center for Mathematical Medicine, Fields Institute for Research in Mathematical Sciences, Toronto, ON, M5T 3J1, Canada
| |
Collapse
|
40
|
Murray LJ, Thompson CM, Lilley J, Cosgrove V, Franks K, Sebag-Montefiore D, Henry AM. Radiation-induced second primary cancer risks from modern external beam radiotherapy for early prostate cancer: impact of stereotactic ablative radiotherapy (SABR), volumetric modulated arc therapy (VMAT) and flattening filter free (FFF) radiotherapy. Phys Med Biol 2015; 60:1237-57. [DOI: 10.1088/0031-9155/60/3/1237] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
41
|
Nguyen J, Moteabbed M, Paganetti H. Assessment of uncertainties in radiation-induced cancer risk predictions at clinically relevant doses. Med Phys 2015; 42:81-9. [PMID: 25563249 PMCID: PMC4272381 DOI: 10.1118/1.4903272] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 10/28/2014] [Accepted: 11/06/2014] [Indexed: 01/12/2023] Open
Abstract
PURPOSE Theoretical dose-response models offer the possibility to assess second cancer induction risks after external beam therapy. The parameters used in these models are determined with limited data from epidemiological studies. Risk estimations are thus associated with considerable uncertainties. This study aims at illustrating uncertainties when predicting the risk for organ-specific second cancers in the primary radiation field illustrated by choosing selected treatment plans for brain cancer patients. METHODS A widely used risk model was considered in this study. The uncertainties of the model parameters were estimated with reported data of second cancer incidences for various organs. Standard error propagation was then subsequently applied to assess the uncertainty in the risk model. Next, second cancer risks of five pediatric patients treated for cancer in the head and neck regions were calculated. For each case, treatment plans for proton and photon therapy were designed to estimate the uncertainties (a) in the lifetime attributable risk (LAR) for a given treatment modality and (b) when comparing risks of two different treatment modalities. RESULTS Uncertainties in excess of 100% of the risk were found for almost all organs considered. When applied to treatment plans, the calculated LAR values have uncertainties of the same magnitude. A comparison between cancer risks of different treatment modalities, however, does allow statistically significant conclusions. In the studied cases, the patient averaged LAR ratio of proton and photon treatments was 0.35, 0.56, and 0.59 for brain carcinoma, brain sarcoma, and bone sarcoma, respectively. Their corresponding uncertainties were estimated to be potentially below 5%, depending on uncertainties in dosimetry. CONCLUSIONS The uncertainty in the dose-response curve in cancer risk models makes it currently impractical to predict the risk for an individual external beam treatment. On the other hand, the ratio of absolute risks between two modalities is less sensitive to the uncertainties in the risk model and can provide statistically significant estimates.
Collapse
Affiliation(s)
- J Nguyen
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts 02114 and Department of Physics, Ruprecht-Karls-Universität Heidelberg, Heidelberg 69117, Germany
| | - M Moteabbed
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts 02114 and Harvard Medical School, Boston, Massachusetts 02114
| | - H Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts 02114 and Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
42
|
Abstract
Secondary cancer risk following radiotherapy is an increasingly important topic in clinical oncology with impact on treatment decision making and on patient management. Much of the evidence that underlies our understanding of secondary cancer risks and our risk estimates are derived from large epidemiologic studies and predictive models of earlier decades with large uncertainties. The modern era is characterized by more conformal radiotherapy technologies, molecular and genetic marker approaches, genome-wide studies and risk stratifications, and sophisticated biologically based predictive models of the carcinogenesis process. Four key areas that have strong evidence toward affecting secondary cancer risks are 1) the patient age at time of radiation treatment, 2) genetic risk factors, 3) the organ and tissue site receiving radiation, and 4) the dose and volume of tissue being irradiated by a particular radiation technology. This review attempts to summarize our current understanding on the impact on secondary cancer risks for each of these known risk factors. We review the recent advances in genetic studies and carcinogenesis models that are providing insight into the biologic processes that occur from tissue irradiation to the development of a secondary malignancy. Finally, we discuss current approaches toward minimizing the risk of radiation-associated secondary malignancies, an important goal of clinical radiation oncology.
Collapse
Affiliation(s)
- John Ng
- Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY, USA
| | - Igor Shuryak
- Center for Radiologic Research, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
43
|
Radivoyevitch T, Li H, Sachs RK. Etiology and treatment of hematological neoplasms: stochastic mathematical models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 844:317-46. [PMID: 25480649 DOI: 10.1007/978-1-4939-2095-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Leukemias are driven by stemlike cancer cells (SLCC), whose initiation, growth, response to treatment, and posttreatment behavior are often "stochastic", i.e., differ substantially even among very similar patients for reasons not observable with present techniques. We review the probabilistic mathematical methods used to analyze stochastics and give two specific examples. The first example concerns a treatment protocol, e.g., for acute myeloid leukemia (AML), where intermittent cytotoxic drug dosing (e.g., once each weekday) is used with intent to cure. We argue mathematically that, if independent SLCC are growing stochastically during prolonged treatment, then, other things being equal, front-loading doses are more effective for tumor eradication than back loading. We also argue that the interacting SLCC dynamics during treatment is often best modeled by considering SLCC in microenvironmental niches, with SLCC-SLCC interactions occurring only among SLCC within the same niche, and we present a stochastic dynamics formalism, involving "Poissonization," applicable in such situations. Interactions at a distance due to partial control of total cell numbers are also considered. The second half of this chapter concerns chromosomal aberrations, lesions known to cause some leukemias. A specific example is the induction of a Philadelphia chromosome by ionizing radiation, subsequent development of chronic myeloid leukemia (CML), CML treatment, and treatment outcome. This time evolution involves a coordinated sequence of > 10 steps, each stochastic in its own way, at the subatomic, molecular, macromolecular, cellular, tissue, and population scales, with corresponding time scales ranging from picoseconds to decades. We discuss models of these steps and progress in integrating models across scales.
Collapse
Affiliation(s)
- Tomas Radivoyevitch
- Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA,
| | | | | |
Collapse
|
44
|
Zhang R, Howell RM, Taddei PJ, Giebeler A, Mahajan A, Newhauser WD. A comparative study on the risks of radiogenic second cancers and cardiac mortality in a set of pediatric medulloblastoma patients treated with photon or proton craniospinal irradiation. Radiother Oncol 2014; 113:84-8. [PMID: 25128084 PMCID: PMC4256116 DOI: 10.1016/j.radonc.2014.07.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 12/30/2022]
Abstract
PURPOSE To compare the risks of radiogenic second cancers and cardiac mortality in 17 pediatric medulloblastoma patients treated with passively scattered proton or field-in-field photon craniospinal irradiation (CSI). MATERIAL/METHODS Standard of care photon or proton CSI treatment plans were created for all 17 patients in a commercial treatment planning system (TPS) (Eclipse version 8.9; Varian Medical Systems, Palo Alto, CA) and prescription dose was 23.4 or 23.4 Gy (RBE) to the age specific target volume at 1.8 Gy/fraction. The therapeutic doses from proton and photon CSI plans were estimated from TPS. Stray radiation doses were determined from Monte Carlo simulations for proton CSI and from measurements and TPS for photon CSI. The Biological Effects of Ionization Radiation VII report and a linear model based on childhood cancer survivor data were used for risk predictions of second cancer and cardiac mortality, respectively. RESULTS The ratios of lifetime attributable risk (RLARs) (proton/photon) ranged from 0.10 to 0.22 for second cancer incidence and ranged from 0.20 to 0.53 for second cancer mortality, respectively. The ratio of relative risk (RRR) (proton/photon) of cardiac mortality ranged from 0.12 to 0.24. The RLARs of both cancer incidence and mortality decreased with patient's age at exposure (e), while the RRRs of cardiac mortality increased with e. Girls had a significantly higher RLAR of cancer mortality than boys. CONCLUSION Passively scattered proton CSI provides superior predicted outcomes by conferring lower predicted risks of second cancer and cardiac mortality than field-in-field photon CSI for all medulloblastoma patients in a large clinically representative sample in the United States, but the magnitude of superiority depends strongly on the patients' anatomical development status.
Collapse
Affiliation(s)
- Rui Zhang
- The University of Texas Graduate School of Biomedical Sciences at Houston, USA; Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Rebecca M Howell
- The University of Texas Graduate School of Biomedical Sciences at Houston, USA; Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Phillip J Taddei
- The University of Texas Graduate School of Biomedical Sciences at Houston, USA; Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, USA; Department of Radiation Oncology, American University of Beirut Medical Center, Lebanon
| | - Annelise Giebeler
- The University of Texas Graduate School of Biomedical Sciences at Houston, USA; Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, USA; Current address is: Scripps Proton Therapy Center, San Diego, CA, USA
| | - Anita Mahajan
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Wayne D Newhauser
- The University of Texas Graduate School of Biomedical Sciences at Houston, USA; Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, USA; Medical Physics Program, Department of Physics and Astronomy, Louisiana State University, Baton Rouge, USA.
| |
Collapse
|
45
|
Fakir H, Hlatky L, Li H, Sachs R. Repopulation of interacting tumor cells during fractionated radiotherapy: stochastic modeling of the tumor control probability. Med Phys 2014; 40:121716. [PMID: 24320502 DOI: 10.1118/1.4829495] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Optimal treatment planning for fractionated external beam radiation therapy requires inputs from radiobiology based on recent thinking about the "five Rs" (repopulation, radiosensitivity, reoxygenation, redistribution, and repair). The need is especially acute for the newer, often individualized, protocols made feasible by progress in image guided radiation therapy and dose conformity. Current stochastic tumor control probability (TCP) models incorporating tumor repopulation effects consider "stem-like cancer cells" (SLCC) to be independent, but the authors here propose that SLCC-SLCC interactions may be significant. The authors present a new stochastic TCP model for repopulating SLCC interacting within microenvironmental niches. Our approach is meant mainly for comparing similar protocols. It aims at practical generalizations of previous mathematical models. METHODS The authors consider protocols with complete sublethal damage repair between fractions. The authors use customized open-source software and recent mathematical approaches from stochastic process theory for calculating the time-dependent SLCC number and thereby estimating SLCC eradication probabilities. As specific numerical examples, the authors consider predicted TCP results for a 2 Gy per fraction, 60 Gy protocol compared to 64 Gy protocols involving early or late boosts in a limited volume to some fractions. RESULTS In sample calculations with linear quadratic parameters α = 0.3 per Gy, α∕β = 10 Gy, boosting is predicted to raise TCP from a dismal 14.5% observed in some older protocols for advanced NSCLC to above 70%. This prediction is robust as regards: (a) the assumed values of parameters other than α and (b) the choice of models for intraniche SLCC-SLCC interactions. However, α = 0.03 per Gy leads to a prediction of almost no improvement when boosting. CONCLUSIONS The predicted efficacy of moderate boosts depends sensitively on α. Presumably, the larger values of α are the ones appropriate for individualized treatment protocols, with the smaller values relevant only to protocols for a heterogeneous patient population. On that assumption, boosting is predicted to be highly effective. Front boosting, apart from practical advantages and a possible advantage as regards iatrogenic second cancers, also probably gives a slightly higher TCP than back boosting. If the total number of SLCC at the start of treatment can be measured even roughly, it will provide a highly sensitive way of discriminating between various models and parameter choices. Updated mathematical methods for calculating repopulation allow credible generalizations of earlier results.
Collapse
Affiliation(s)
- Hatim Fakir
- London Health Sciences Center, London, Ontario N6A 5W9, Canada
| | | | | | | |
Collapse
|
46
|
Murray L, Henry A, Hoskin P, Siebert FA, Venselaar J. Second primary cancers after radiation for prostate cancer: a review of data from planning studies. Radiat Oncol 2013; 8:172. [PMID: 23835163 PMCID: PMC3724744 DOI: 10.1186/1748-717x-8-172] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 06/23/2013] [Indexed: 11/29/2022] Open
Abstract
A review of planning studies was undertaken to evaluate estimated risks of radiation induced second primary cancers (RISPC) associated with different prostate radiotherapy techniques for localised prostate cancer. A total of 83 publications were identified which employed a variety of methods to estimate RISPC risk. Of these, the 16 planning studies which specifically addressed absolute or relative second cancer risk using dose-response models were selected for inclusion within this review. There are uncertainties and limitations related to all the different methods for estimating RISPC risk. Whether or not dose models include the effects of the primary radiation beam, as well as out-of-field regions, influences estimated risks. Regarding the impact of IMRT compared to 3D-CRT, at equivalent energies, several studies suggest an increase in risk related to increased leakage contributing to out-of-field RISPC risk, although in absolute terms this increase in risk may be very small. IMRT also results in increased low dose normal tissue irradiation, but the extent to which this has been estimated to contribute to RISPC risk is variable, and may also be very small. IMRT is often delivered using 6MV photons while conventional radiotherapy often requires higher energies to achieve adequate tissue penetration, and so comparisons between IMRT and older techniques should not be restricted to equivalent energies. Proton and brachytherapy planning studies suggest very low RISPC risks associated with these techniques. Until there is sufficient clinical evidence regarding RISPC risks associated with modern irradiation techniques, the data produced from planning studies is relevant when considering which patients to irradiate, and which technique to employ.
Collapse
Affiliation(s)
- Louise Murray
- St James’s Institute of Oncology, Beckett St, Leeds LS9 7TF, UK
- University of Leeds, Leeds, UK
| | - Ann Henry
- St James’s Institute of Oncology, Beckett St, Leeds LS9 7TF, UK
- University of Leeds, Leeds, UK
| | - Peter Hoskin
- Mount Vernon Cancer Centre, Northwood, London, UK
| | | | | |
Collapse
|
47
|
Cella L, Conson M, Pressello MC, Molinelli S, Schneider U, Donato V, Orecchia R, Salvatore M, Pacelli R. Hodgkin's lymphoma emerging radiation treatment techniques: trade-offs between late radio-induced toxicities and secondary malignant neoplasms. Radiat Oncol 2013; 8:22. [PMID: 23360559 PMCID: PMC3641014 DOI: 10.1186/1748-717x-8-22] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 01/20/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Purpose of this study is to explore the trade-offs between radio-induced toxicities and second malignant neoplasm (SMN) induction risk of different emerging radiotherapy techniques for Hodgkin's lymphoma (HL) through a comprehensive dosimetric analysis on a representative clinical model. METHODS Three different planning target volume (PTVi) scenarios of a female patient with supradiaphragmatic HL were used as models for the purpose of this study. Five treatment radiation techniques were simulated: an anterior-posterior parallel-opposed (AP-PA), a forward intensity modulated (FIMRT), an inverse intensity modulated (IMRT), a Tomotherapy (TOMO), a proton (PRO) technique. A radiation dose of 30 Gy or CGE was prescribed. Dose-volume histograms of PTVs and organs-at-risk (OARs) were calculated and related to available dose-volume constraints. SMN risk for breasts, thyroid, and lungs was estimated through the Organ Equivalent Dose model considering cell repopulation and inhomogeneous organ doses. RESULTS With similar level of PTVi coverage, IMRT, TOMO and PRO plans generally reduced the OARs' dose and accordingly the related radio-induced toxicities. However, only TOMO and PRO plans were compliant with all constraints in all scenarios. For the IMRT and TOMO plans an increased risk of development of breast, and lung SMN compared with AP-PA and FIMRT techniques was estimated. Only PRO plans seemed to reduce the risk of predicted SMN compared with AP-PA technique. CONCLUSIONS Our model-based study supports the use of advanced RT techniques to successfully spare OARs and to reduce the risk of radio-induced toxicities in HL patients. However, the estimated increase of SMNs' risk inherent to TOMO and IMRT techniques should be carefully considered in the evaluation of a risk-adapted therapeutic strategy.
Collapse
Affiliation(s)
- Laura Cella
- Institute of Biostructures and Bioimaging, National Council of Research (CNR), Napoli, Italy
- Department of Diagnostic Imaging and Radiation Oncology, University “Federico II” of Napoli, Napoli, Italy
| | - Manuel Conson
- Department of Diagnostic Imaging and Radiation Oncology, University “Federico II” of Napoli, Napoli, Italy
| | | | - Silvia Molinelli
- Unit of Medical Physics, Centro Nazionale di Adroterapia Oncologica Foundation, Pavia, Italy
| | - Uwe Schneider
- Vetsussie Faculty, University of Zürich and Radiotherapy, Hirslanden, Aarau, Switzerland
| | - Vittorio Donato
- Department of Radiation Oncology, S. Camillo-Forlanini Hospital, Roma, Italy
| | - Roberto Orecchia
- Advanced Radiotherapy Center, European Institute of Oncology, Milano, Italy
| | - Marco Salvatore
- Department of Diagnostic Imaging and Radiation Oncology, University “Federico II” of Napoli, Napoli, Italy
| | - Roberto Pacelli
- Institute of Biostructures and Bioimaging, National Council of Research (CNR), Napoli, Italy
- Department of Diagnostic Imaging and Radiation Oncology, University “Federico II” of Napoli, Napoli, Italy
| |
Collapse
|
48
|
Beheshti A, Sachs RK, Peluso M, Rietman E, Hahnfeldt P, Hlatky L. Age and space irradiation modulate tumor progression: implications for carcinogenesis risk. Radiat Res 2013; 179:208-20. [PMID: 23289386 DOI: 10.1667/rr3100.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Age plays a major role in tumor incidence and is an important consideration when modeling the carcinogenesis process or estimating cancer risks. Epidemiological data show that from adolescence through middle age, cancer incidence increases with age. This effect is commonly attributed to a lifetime accumulation of cellular, particularly DNA, damage. However, during middle age the incidence begins to decelerate and, for many tumor sites, it actually decreases at sufficiently advanced ages. We investigated if the observed deceleration and potential decrease in incidence could be attributed to a decreased capacity of older hosts to support tumor progression, and whether HZE [high atomic number (Z), high energy (E)] radiation differentially modulates tumor progression in young vs. middle-age hosts, issues that are relevant to estimating carcinogenesis risk for astronauts. Lewis lung carcinoma (LLC) cells were injected into syngeneic mice (143 and 551 days old), which were then subject to whole-body (56)Fe irradiation (1 GeV/amu). Three findings emerged: (1) among unirradiated animals, substantial inhibition of tumor progression and significantly decreased tumor growth rates were seen for middle-aged mice compared to young mice, (2) whole-body (56)Fe irradiation inhibited tumor progression in both young and middle-aged mice (with greater suppression seen in case of young animals), with little effect on tumor growth rates, and (3) (56)Fe irradiation suppressed tumor progression in young mice to a degree that was not significantly different than transiting from young to middle-aged. Thus, (56)Fe irradiation acted similar to aging with respect to tumor progression. We further investigated the molecular underpinnings driving the radiation modulation of tumor dynamics in young and middle-aged mice. Through global gene expression analysis, the key players, FASN, AKT1 and the CXCL12/CXCR4 complex, were determined to be contributory. In sum, these findings demonstrated a reduced capacity of middle-aged hosts to support the progression phase of carcinogenesis and identify molecular factors that contribute to HZE radiation modulation of tumor progression as a function of age.
Collapse
Affiliation(s)
- Afshin Beheshti
- Center of Cancer Systems Biology, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, USA
| | | | | | | | | | | |
Collapse
|
49
|
Schneider U, Schäfer B. Model of accelerated carcinogenesis based on proliferative stress and inflammation for doses relevant to radiotherapy. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2012; 51:451-456. [PMID: 22899337 DOI: 10.1007/s00411-012-0433-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 07/31/2012] [Indexed: 06/01/2023]
Abstract
Recent findings demonstrate that accelerated carcinogenesis following liver regeneration is associated with chronic inflammation-induced double-strand DNA breaks in cells, which escaped apoptosis due to proliferative stress. In this work, proliferative stress and inflammation-based carcinogenesis at large dose were included in a cancer induction model considering fractionation. At large dose, tissue injury due to irradiation could be so severe that under the regenerative proliferative stress induced by cell loss, the genomic unstable cells generated during irradiation and/or inflammation escape senescence or apoptosis and reenter the cell cycle, triggering enhanced carcinogenesis. This acceleration-modeled to be proportional to the number of repopulated cells-is only significant, however, when tissue injury is severe and thus proportional to the cell loss in the tissue. The general solutions to the resulting differential equations for carcinoma induction were computed. In case of full repopulation or acute low-dose irradiation, the acceleration term disappears from the equation describing cancer induction. The acceleration term is affecting the dose-response curve for carcinogenesis only at large doses. An example for bladder cancer is shown. An existing model for cancer induction after fractionated radiotherapy which is based on cell mutations was extended here by including the effects of inflammation and proliferative stress, and an additional model parameter was established which describes acceleration. The new acceleration parameter affects the dose-response model only at large dose and is only effective when the tissue is not capable of fully repopulating between dose fractions.
Collapse
Affiliation(s)
- Uwe Schneider
- Radiotherapy Hirslanden AG, Institute for Radiotherapy, Rain 34, 5001, Aarau, Switzerland,
| | | |
Collapse
|
50
|
Paganetti H, Athar BS, Moteabbed M, A Adams J, Schneider U, Yock TI. Assessment of radiation-induced second cancer risks in proton therapy and IMRT for organs inside the primary radiation field. Phys Med Biol 2012; 57:6047-61. [DOI: 10.1088/0031-9155/57/19/6047] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|