1
|
Johnson D, Li HH, Kimler BF. Dosimetry: Was and Is an Absolute Requirement for Quality Radiation Research. Radiat Res 2024; 202:102-129. [PMID: 38954476 DOI: 10.1667/rade-24-00107.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/09/2024] [Indexed: 07/04/2024]
Abstract
This review aims to trace the evolution of dosimetry, highlight its significance in the advancement of radiation research, and identify the current trends and methodologies in the field. Key historical milestones, starting with the first publications in the journal in 1954, will be synthesized before addressing contemporary practices in radiation medicine and radiobiological investigation. Finally, possibilities for future opportunities in dosimetry will be offered. The overarching goal is to emphasize the indispensability of accurate and reproducible dosimetry in enhancing the quality of radiation research and practical applications of ionizing radiation.
Collapse
Affiliation(s)
- Daniel Johnson
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas 66160-7321
| | - H Harold Li
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas 66160-7321
| | - Bruce F Kimler
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas 66160-7321
| |
Collapse
|
2
|
Hassan A, Atkinson KD. Saccharomyces Cerevisiae as a Model Organism for Retrospective Impedance Biodosimetry. HEALTH PHYSICS 2024; 126:272-279. [PMID: 38526245 DOI: 10.1097/hp.0000000000001815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
ABSTRACT Previous studies have shown that measuring changes in electrical impedance that follow radiation-induced suppression of metabolic activity in irradiated yeast cells can be used to determine radiation dose. The current work investigates the radiation response of Saccharomyces cerevisiae cells by using metabolic activity of cells as a damage indicator. Impedance biodosimetry was examined as a method to evaluate the radiation response of yeast cells. Active lab-grade dry yeast cells were used as the biological material as these samples are simple to handle and have a long shelf-life. A novel dosimeter design has been developed with a strict fabrication method and measurement procedure to ensure reproducible measurements are possible. Prepared yeast samples were irradiated to doses from 0.5 to 8 Gy using a 137Cs source, and a dose response curve was developed that showed a linear relationship of dose with changes in impedance measurements. Fading of the impedance signal was also investigated, and it was shown that there was no noticeable fading of the impedance signal over a period of 7 mo. Finally, the lowest detectable limit measured using this methodology was determined to be 300 mGy. This work presents an alternative retrospective dosimetry technique that can be used at a high scale and low cost following large-scale radiological accidents.
Collapse
Affiliation(s)
- Amna Hassan
- Ontario Tech University, Department of Energy and Nuclear Engineering, 2000 Simcoe St. N., Oshawa, ON, Canada
| | | |
Collapse
|
3
|
Marciniak A, Juniewicz M, Ciesielski B, Prawdzik-Dampc A, Karczewski J. Comparison of three methods of EPR retrospective dosimetry in watch glass. Front Public Health 2022; 10:1063769. [PMID: 36466521 PMCID: PMC9714545 DOI: 10.3389/fpubh.2022.1063769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022] Open
Abstract
In this article we present results of our follow-up studies of samples of watch glass obtained and examined within a framework of international intercomparison dosimetry project RENEB ILC 2021. We present three methods of dose reconstruction based on EPR measurements of these samples: calibration method (CM), added dose method (ADM) and added dose&heating method (ADHM). The study showed that the three methods of dose reconstruction gave reliable and similar results in 0.5-6.0 Gy dose range, with accuracy better than 10%. The ADHM is the only one applicable in a real scenario, when sample-specific background spectrum is not available; therefore, a positive verification of this method is important for future use of EPR dosimetry in glass in potential radiation accidents.
Collapse
Affiliation(s)
- Agnieszka Marciniak
- Department of Physics and Biophysics, Medical University of Gdańsk, Gdańsk, Poland,*Correspondence: Agnieszka Marciniak
| | - Małgorzata Juniewicz
- Department of Physics and Biophysics, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Anita Prawdzik-Dampc
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | - Jakub Karczewski
- Institute of Nanotechnology and Materials Engineering, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
4
|
Waldner L, Bernhardsson C, Woda C, Trompier F, Van Hoey O, Kulka U, Oestreicher U, Bassinet C, Rääf C, Discher M, Endesfelder D, Eakins JS, Gregoire E, Wojcik A, Ristic Y, Kim H, Lee J, Yu H, Kim MC, Abend M, Ainsbury E. The 2019-2020 EURADOS WG10 and RENEB Field Test of Retrospective Dosimetry Methods in a Small-Scale Incident Involving Ionizing Radiation. Radiat Res 2021; 195:253-264. [PMID: 33347576 DOI: 10.1667/rade-20-00243.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/23/2020] [Indexed: 11/03/2022]
Abstract
With the use of ionizing radiation comes the risk of accidents and malevolent misuse. When unplanned exposures occur, there are several methods which can be used to retrospectively reconstruct individual radiation exposures; biological methods include analysis of aberrations and damage of chromosomes and DNA, while physical methods rely on luminescence (TL/OSL) or EPR signals. To ensure the quality and dependability of these methods, they should be evaluated under realistic exposure conditions. In 2019, EURADOS Working Group 10 and RENEB organized a field test with the purpose of evaluating retrospective dosimetry methods as carried out in potential real-life exposure scenarios. A 1.36 TBq 192Ir source was used to irradiate anthropomorphic phantoms in different geometries at doses of several Gy in an outdoor open-air geometry. Materials intended for accident dosimetry (including mobile phones and blood) were placed on the phantoms together with reference dosimeters (LiF, NaCl, glass). The objective was to estimate radiation exposures received by individuals as measured using blood and fortuitous materials, and to evaluate these methods by comparing the estimated doses to reference measurements and Monte Carlo simulations. Herein we describe the overall planning, goals, execution and preliminary outcomes of the 2019 field test. Such field tests are essential for the development of new and existing methods. The outputs from this field test include useful experience in terms of planning and execution of future exercises, with respect to time management, radiation protection, and reference dosimetry to be considered to obtain relevant data for analysis.
Collapse
Affiliation(s)
- L Waldner
- Lund University, Department of Translational Medicine, Medical Radiation Physics, Malmö, Sweden
| | - C Bernhardsson
- Lund University, Department of Translational Medicine, Medical Radiation Physics, Malmö, Sweden
| | - C Woda
- Helmholtz Zentrum München, Institute of Radiation Medicine, Neuherberg, Germany
| | - F Trompier
- Lund University, Department of Translational Medicine, Medical Radiation Physics, Malmö, Sweden
| | - O Van Hoey
- Institute for Environment, Health and Safety, Belgian Nuclear Research Center (SCK•CEN), Belgium
| | - U Kulka
- Bundesamt für Strahlenschutz, BfS, Department of Radiation Protection and Health, Oberschleissheim, Germany
| | - U Oestreicher
- Bundesamt für Strahlenschutz, BfS, Department of Radiation Protection and Health, Oberschleissheim, Germany
| | - C Bassinet
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - C Rääf
- Lund University, Department of Translational Medicine, Medical Radiation Physics, Malmö, Sweden
| | - M Discher
- Paris-Lodron-University of Salzburg, Department of Geography and Geology, Salzburg, Austria
| | - D Endesfelder
- Lund University, Department of Translational Medicine, Medical Radiation Physics, Malmö, Sweden
| | - J S Eakins
- Public Health England, CRCE, Chilton, Didcot, Oxon, United Kingdom
| | - E Gregoire
- Lund University, Department of Translational Medicine, Medical Radiation Physics, Malmö, Sweden
| | - A Wojcik
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, Sweden and Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Y Ristic
- Lund University, Department of Translational Medicine, Medical Radiation Physics, Malmö, Sweden
| | - H Kim
- Korea Atomic Energy Research Institute, Division of Radiation Safety Management, Daejeon, South Korea
| | - J Lee
- Korea Atomic Energy Research Institute, Division of Radiation Safety Management, Daejeon, South Korea
| | - H Yu
- Korea Institute of Nuclear Safety, Department of Radiological Emergency Preparedness, Daejeon, South Korea
| | - M C Kim
- Korea Atomic Energy Research Institute, Division of Radiation Safety Management, Daejeon, South Korea
| | - M Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - E Ainsbury
- Public Health England, CRCE, Chilton, Didcot, Oxon, United Kingdom
| |
Collapse
|
5
|
Alves JG, Fantuzzi E, Rühm W, Gilvin P, Vargas A, Tanner R, Rabus H, Lopez MA, Breustedt B, Harrison R, Stolarczyk L, Fattibene P, Woda C, Caresana M, Knežević Ž, Bottollier-Depois JF, Clairand I, Mayer S, Miljanic S, Olko P, Schuhmacher H, Stadtmann H, Vanhavere F. EURADOS education and training activities. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2019; 39:R37-R50. [PMID: 31307030 DOI: 10.1088/1361-6498/ab3256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This paper provides a summary of the Education and Training (E&T) activities that have been developed and organised by the European Radiation Dosimetry Group (EURADOS) in recent years and in the case of Training Courses over the last decade. These E&T actions include short duration Training Courses on well-established topics organised within the activity of EURADOS Working Groups (WGs), or one-day events integrated in the EURADOS Annual Meeting (workshops, winter schools, the intercomparison participants' sessions and the learning network, among others). Moreover, EURADOS has recently established a Young Scientist Grant and a Young Scientist Award. The Grant supports young scientists by encouraging them to perform research projects at other laboratories of the EURADOS network. The Award is given in recognition of excellent work developed within the WGs' work programme. Additionally, EURADOS supports the dissemination of knowledge in radiation dosimetry by promoting and endorsing conferences such as the individual monitoring (IM) series, the neutron and ion dosimetry symposia (NEUDOS) and contributions to E&T sessions at specific events.
Collapse
Affiliation(s)
- J G Alves
- EURADOS, EURADOS e.V. Postfach 1129, D-85758 Neuherberg, Germany. Universidade de Lisboa (UL), Instituto Superior Técnico (IST), Laboratório de Proteção e Segurança Radiológica (LPSR), Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal. Departamento de Engenharia e Ciências Nucleares (DECN), Centro de Ciências e Tecnologias Nucleares (C2TN), do IST, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Savenkov S, Priezzhev A, Oberemok Y, Sholom S, Kolomiets I, Chunikhina K. Characterization of natural and irradiated nails by means of the depolarization metrics. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:71108. [PMID: 26927390 DOI: 10.1117/1.jbo.21.7.071108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/04/2016] [Indexed: 06/05/2023]
Abstract
Mueller polarimetry is applied to study the samples of nails: natural (or reference) and irradiated to 2 Gy ionizing radiation dose. We measure the whole Mueller matrices of the samples as a function of the scattering angle at a wavelength of 632.8 nm. We apply depolarization analysis to measured Mueller matrices by calculating the depolarization metrics [depolarization index, Q(M)-metric, first and second Lorenz indices, Cloude and Lorenz entropy] to quantify separability of the different samples of nails under study based on differences in their Mueller matrix. The results show that nail samples strongly depolarize the output light in backscattering, and irradiation in all cases results in increasing of depolarization. Most sensitive among depolarization metrics are the Lorenz entropy and Q(M)-metric.
Collapse
Affiliation(s)
- Sergey Savenkov
- Taras Shevchenko National University of Kyiv, Faculty of Radio Physics, Electronics and Computer Systems, Vladimirskaya Street 64, Kiev 01033, Ukraine
| | - Alexander Priezzhev
- Lomonosov Moscow State University, Department of Physics and International Laser Center, Vorobiovy Gory, Moscow 119992, Russia
| | - Yevgen Oberemok
- Taras Shevchenko National University of Kyiv, Faculty of Radio Physics, Electronics and Computer Systems, Vladimirskaya Street 64, Kiev 01033, Ukraine
| | - Sergey Sholom
- Oklahoma State University, Department of Physics, 145 Physical Sciences Building, Stillwater, Oklahoma 74078, United States
| | - Ivan Kolomiets
- Taras Shevchenko National University of Kyiv, Faculty of Radio Physics, Electronics and Computer Systems, Vladimirskaya Street 64, Kiev 01033, Ukraine
| | - Kateryna Chunikhina
- Taras Shevchenko National University of Kyiv, Faculty of Radio Physics, Electronics and Computer Systems, Vladimirskaya Street 64, Kiev 01033, Ukraine
| |
Collapse
|
7
|
Desmet CM, Djurkin A, Dos Santos-Goncalvez AM, Dong R, Kmiec MM, Kobayashi K, Rychert K, Beun S, Leprince JG, Leloup G, Levêque P, Gallez B. Tooth Retrospective Dosimetry Using Electron Paramagnetic Resonance: Influence of Irradiated Dental Composites. PLoS One 2015; 10:e0131913. [PMID: 26125565 PMCID: PMC4488324 DOI: 10.1371/journal.pone.0131913] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/08/2015] [Indexed: 11/25/2022] Open
Abstract
In the aftermath of a major radiological accident, the medical management of overexposed individuals will rely on the determination of the dose of ionizing radiations absorbed by the victims. Because people in the general population do not possess conventional dosimeters, after the fact dose reconstruction methods are needed. Free radicals are induced by radiations in the tooth enamel of victims, in direct proportion to dose, and can be quantified using Electron Paramagnetic Resonance (EPR) spectrometry, a technique that was demonstrated to be very appropriate for mass triage. The presence of dimethacrylate based restorations on teeth can interfere with the dosimetric signal from the enamel, as free radicals could also be induced in the various composites used. The aim of the present study was to screen irradiated composites for a possible radiation-induced EPR signal, to characterize it, and evaluate a possible interference with the dosimetric signal of the enamel. We investigated the most common commercial composites, and experimental compositions, for a possible class effect. The effect of the dose was studied between 10 Gy and 100 Gy using high sensitivity X-band spectrometer. The influence of this radiation-induced signal from the composite on the dosimetric signal of the enamel was also investigated using a clinical L-Band EPR spectrometer, specifically developed in the EPR center at Dartmouth College. In X-band, a radiation-induced signal was observed for high doses (25-100 Gy); it was rapidly decaying, and not detected after only 24h post irradiation. At 10 Gy, the signal was in most cases not measurable in the commercial composites tested, with the exception of 3 composites showing a significant intensity. In L-band study, only one irradiated commercial composite influenced significantly the dosimetric signal of the tooth, with an overestimation about 30%. In conclusion, the presence of the radiation-induced signal from dental composites should not significantly influence the dosimetry for early dose assessment.
Collapse
Affiliation(s)
- Céline M. Desmet
- Biomedical Magnetic Resonance Research group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Andrej Djurkin
- School of Dentistry and Stomatology, Université catholique de Louvain, Brussels, Belgium
| | - Ana Maria Dos Santos-Goncalvez
- Advanced Drug Delivery and Biomaterials Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Ruhong Dong
- EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH, United States of America
| | - Maciej M. Kmiec
- EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH, United States of America
| | - Kyo Kobayashi
- EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH, United States of America
| | - Kevin Rychert
- EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH, United States of America
| | - Sébastien Beun
- School of Dentistry and Stomatology, Université catholique de Louvain, Brussels, Belgium
| | - Julian G. Leprince
- Advanced Drug Delivery and Biomaterials Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- Center for Research and Engineering on Biomaterials CRIBIO, Université catholique de Louvain, Brussels, Belgium
| | - Gaëtane Leloup
- Advanced Drug Delivery and Biomaterials Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- Center for Research and Engineering on Biomaterials CRIBIO, Université catholique de Louvain, Brussels, Belgium
| | - Philippe Levêque
- Biomedical Magnetic Resonance Research group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Research group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- Center for Research and Engineering on Biomaterials CRIBIO, Université catholique de Louvain, Brussels, Belgium
- * E-mail:
| |
Collapse
|
8
|
Bassinet C, Woda C, Bortolin E, Della Monaca S, Fattibene P, Quattrini M, Bulanek B, Ekendahl D, Burbidge C, Cauwels V, Kouroukla E, Geber-Bergstrand T, Mrozik A, Marczewska B, Bilski P, Sholom S, McKeever S, Smith R, Veronese I, Galli A, Panzeri L, Martini M. Retrospective radiation dosimetry using OSL of electronic components: Results of an inter-laboratory comparison. RADIAT MEAS 2014. [DOI: 10.1016/j.radmeas.2014.03.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Wieser A, Darroudi F. EPRBioDose 2013: EPR applications and biological dosimetry. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:217-220. [PMID: 24643278 DOI: 10.1007/s00411-014-0535-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 02/27/2014] [Indexed: 06/03/2023]
Affiliation(s)
- A Wieser
- Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Radiation Protection, 85764, Neuherberg, Germany,
| | | |
Collapse
|