1
|
Alharbi HO, Sugden PH, Clerk A. Mitogen-activated protein kinase signalling in rat hearts during postnatal development: MAPKs, MAP3Ks, MAP4Ks and DUSPs. Cell Signal 2024; 124:111397. [PMID: 39251052 DOI: 10.1016/j.cellsig.2024.111397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Mammalian cardiomyocytes become terminally-differentiated during the perinatal period. In rodents, cytokinesis ceases after a final division cycle immediately after birth. Nuclear division continues and most cardiomyocytes become binucleated by ∼11 days. Subsequent growth results from an increase in cardiomyocyte size. The mechanisms involved remain under investigation. Mitogen-activated protein kinases (MAPKs) regulate cell growth/death: extracellular signal-regulated kinases 1/2 (ERK1/2) promote proliferation, whilst c-Jun N-terminal kinases (JNKs) and p38-MAPKs respond to cellular stresses. We assessed their regulation in rat hearts during postnatal development (2, 7, 14, and 28 days, 12 weeks) during which time there was rapid, substantial downregulation of mitosis/cytokinesis genes (Cenpa/e/f, Aurkb, Anln, Cdca8, Orc6) with lesser downregulation of DNA replication genes (Orcs1-5, Mcms2-7). MAPK activation was assessed by immunoblotting for total and phosphorylated (activated) kinases. Total ERK1/2 was downregulated, but not JNKs or p38-MAPKs, whilst phosphorylation of all MAPKs increased relative to total protein albeit transiently for JNKs. These profiles differed from activation of Akt (also involved in cardiomyocyte growth). Dual-specificity phosphatases, upstream MAPK kinase kinases (MAP3Ks), and MAP3K kinases (MAP4Ks) identified in neonatal rat cardiomyocytes by RNASeq were differentially regulated during postnatal cardiac development. The MAP3Ks that we could assess by immunoblotting (RAF kinases and Map3k3) showed greater downregulation of the protein than mRNA. MAP3K2/MAP3K3/MAP4K5 were upregulated in human failing heart samples and may be part of the "foetal gene programme" of re-expressed genes in disease. Thus, MAPKs, along with kinases and phosphatases that regulate them, potentially play a significant role in postnatal remodelling of the heart.
Collapse
Affiliation(s)
- Hajed O Alharbi
- Department of Medical Laboratory, College of Applied Medical Sciences, Quassim University, Buraydah, Saudi Arabia; School of Biological Sciences, University of Reading, Reading, UK
| | - Peter H Sugden
- School of Biological Sciences, University of Reading, Reading, UK
| | - Angela Clerk
- School of Biological Sciences, University of Reading, Reading, UK.
| |
Collapse
|
2
|
Zych MG, Contreras M, Vashisth M, Mammel AE, Ha G, Hatch EM. RCC1 depletion drives protein transport defects and rupture in micronuclei. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611299. [PMID: 39282444 PMCID: PMC11398501 DOI: 10.1101/2024.09.04.611299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Micronuclei (MN) are a commonly used marker of chromosome instability that form when missegregated chromatin recruits its own nuclear envelope (NE) after mitosis. MN frequently rupture, which results in genome instability, upregulation of metastatic genes, and increased immune signaling. MN rupture is linked to NE defects, but the cause of these defects is poorly understood. Previous work from our lab found that chromosome identity correlates with rupture timing for small MN, i.e. MN containing a short chromosome, with more euchromatic chromosomes forming more stable MN with fewer nuclear lamina gaps. Here we demonstrate that histone methylation promotes rupture and nuclear lamina defects in small MN. This correlates with increased MN size, and we go on to find that all MN have a constitutive nuclear export defect that drives MN growth and nuclear lamina gap expansion, making the MN susceptible to rupture. We demonstrate that these export defects arise from decreased RCC1 levels in MN and that additional loss of RCC1 caused by low histone methylation in small euchromatic MN results in additional import defects that suppress nuclear lamina gaps and MN rupture. Through analysis of mutational signatures associated with early and late rupturing chromosomes in the Pan-Cancer Analysis of Whole Genomes (PCAWG) dataset, we identify an enrichment of APOBEC and DNA polymerase E hypermutation signatures in chromothripsis events on early and mid rupturing chromosomes, respectively, suggesting that MN rupture timing could determine the landscape of structural variation in chromothripsis. Our study defines a new model of MN rupture where increased MN growth, caused by defects in protein export, drives gaps in nuclear lamina organization that make the MN susceptible to membrane rupture with long-lasting effects on genome architecture.
Collapse
Affiliation(s)
- Molly G Zych
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Maya Contreras
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Manasvita Vashisth
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Anna E Mammel
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Gavin Ha
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Emily M Hatch
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
3
|
Moreno-Andrés D, Holl K, Antonin W. The second half of mitosis and its implications in cancer biology. Semin Cancer Biol 2023; 88:1-17. [PMID: 36436712 DOI: 10.1016/j.semcancer.2022.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
The nucleus undergoes dramatic structural and functional changes during cell division. With the entry into mitosis, in human cells the nuclear envelope breaks down, chromosomes rearrange into rod-like structures which are collected and segregated by the spindle apparatus. While these processes in the first half of mitosis have been intensively studied, much less is known about the second half of mitosis, when a functional nucleus reforms in each of the emerging cells. Here we review our current understanding of mitotic exit and nuclear reformation with spotlights on the links to cancer biology.
Collapse
Affiliation(s)
- Daniel Moreno-Andrés
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany.
| | - Kristin Holl
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Wolfram Antonin
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
4
|
Lodde V, Garcia Barros R, Terzaghi L, Franciosi F, Luciano AM. Insights on the Role of PGRMC1 in Mitotic and Meiotic Cell Division. Cancers (Basel) 2022; 14:cancers14235755. [PMID: 36497237 PMCID: PMC9736406 DOI: 10.3390/cancers14235755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
During mitosis, chromosome missegregation and cytokinesis defects have been recognized as hallmarks of cancer cells. Cytoskeletal elements composing the spindle and the contractile ring and their associated proteins play crucial roles in the faithful progression of mitotic cell division. The hypothesis that PGRMC1, most likely as a part of a yet-to-be-defined complex, is involved in the regulation of spindle function and, more broadly, the cytoskeletal machinery driving cell division is particularly appealing. Nevertheless, more than ten years after the preliminary observation that PGRMC1 changes its localization dynamically during meiotic and mitotic cell division, this field of research has remained a niche and needs to be fully explored. To encourage research in this fascinating field, in this review, we will recap the current knowledge on PGRMC1 function during mitotic and meiotic cell division, critically highlighting the strengths and limitations of the experimental approaches used so far. We will focus on known interacting partners as well as new putative associated proteins that have recently arisen in the literature and that might support current as well as new hypotheses of a role for PGRMC1 in specific spindle subcompartments, such as the centrosome, kinetochores, and the midzone/midbody.
Collapse
|
5
|
Archambault V, Li J, Emond-Fraser V, Larouche M. Dephosphorylation in nuclear reassembly after mitosis. Front Cell Dev Biol 2022; 10:1012768. [PMID: 36268509 PMCID: PMC9576876 DOI: 10.3389/fcell.2022.1012768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
In most animal cell types, the interphase nucleus is largely disassembled during mitotic entry. The nuclear envelope breaks down and chromosomes are compacted into separated masses. Chromatin organization is also mostly lost and kinetochores assemble on centromeres. Mitotic protein kinases play several roles in inducing these transformations by phosphorylating multiple effector proteins. In many of these events, the mechanistic consequences of phosphorylation have been characterized. In comparison, how the nucleus reassembles at the end of mitosis is less well understood in mechanistic terms. In recent years, much progress has been made in deciphering how dephosphorylation of several effector proteins promotes nuclear envelope reassembly, chromosome decondensation, kinetochore disassembly and interphase chromatin organization. The precise roles of protein phosphatases in this process, in particular of the PP1 and PP2A groups, are emerging. Moreover, how these enzymes are temporally and spatially regulated to ensure that nuclear reassembly progresses in a coordinated manner has been partly uncovered. This review provides a global view of nuclear reassembly with a focus on the roles of dephosphorylation events. It also identifies important open questions and proposes hypotheses.
Collapse
Affiliation(s)
- Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Vincent Archambault,
| | - Jingjing Li
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Virginie Emond-Fraser
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Myreille Larouche
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
6
|
Song J, Zhou Y, Yakymovych I, Schmidt A, Li C, Heldin CH, Landström M. The ubiquitin-ligase TRAF6 and TGFβ type I receptor form a complex with Aurora kinase B contributing to mitotic progression and cytokinesis in cancer cells. EBioMedicine 2022; 82:104155. [PMID: 35853811 PMCID: PMC9386726 DOI: 10.1016/j.ebiom.2022.104155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022] Open
Abstract
Background Transforming growth factor β (TGFβ) is overexpressed in several advanced cancer types and promotes tumor progression. We have reported that the intracellular domain (ICD) of TGFβ receptor (TβR) I is cleaved by proteolytic enzymes in cancer cells, and then translocated to the nucleus in a manner dependent on the endosomal adaptor proteins APPL1/2, driving an invasiveness program. How cancer cells evade TGFβ-induced growth inhibition is unclear. Methods We performed microarray analysis to search for genes regulated by APPL1/2 proteins in castration-resistant prostate cancer (CRPC) cells. We investigated the role of TβRI and TRAF6 in mitosis in cancer cell lines cultured in 10% FBS in the absence of exogenous TGFβ. The molecular mechanism of the ubiquitination of AURKB by TRAF6 in mitosis and the formation of AURKB–TβRI complex in cancer cell lines and tissue microarrays was also studied. Findings During mitosis and cytokinesis, AURKB–TβRI complexes formed in midbodies in CRPC and KELLY neuroblastoma cells. TRAF6 induced polyubiquitination of AURKB on K85 and K87, protruding on the surface of AURKB to facilitate its activation. AURKB–TβRI complexes in patient's tumor tissue sections correlated with the malignancy of prostate cancer. Interpretation The AURKB–TβRI complex may become a prognostic biomarker for patients with risk of developing aggressive PC. Funding Swedish Medical Research Council (2019-01598, ML; 2015-02757 and 2020-01291, CHH), the Swedish Cancer Society (20 0964, ML), a regional agreement between Umeå University and Region Västerbotten (ALF; RV-939377, -967041, -970057, ML). The European Research Council (787472, CHH). KAW 2019.0345, and the Kempe Foundation SMK-1866; ML. National Microscopy Infrastructure (NMI VR-RFI 2016-00968).
Collapse
Affiliation(s)
- Jie Song
- Department of Medical Biosciences, Pathology, Umeå University, SE-901 85 Umeå, Sweden
| | - Yang Zhou
- Department of Medical Biosciences, Pathology, Umeå University, SE-901 85 Umeå, Sweden
| | - Ihor Yakymovych
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden
| | - Alexej Schmidt
- Department of Medical Biosciences, Pathology, Umeå University, SE-901 85 Umeå, Sweden
| | - Chunyan Li
- Department of Medical Biosciences, Pathology, Umeå University, SE-901 85 Umeå, Sweden
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden
| | - Maréne Landström
- Department of Medical Biosciences, Pathology, Umeå University, SE-901 85 Umeå, Sweden.
| |
Collapse
|
7
|
Moreno-Andrés D, Bhattacharyya A, Scheufen A, Stegmaier J. LiveCellMiner: A new tool to analyze mitotic progression. PLoS One 2022; 17:e0270923. [PMID: 35797385 PMCID: PMC9262191 DOI: 10.1371/journal.pone.0270923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/17/2022] [Indexed: 11/21/2022] Open
Abstract
Live-cell imaging has become state of the art to accurately identify the nature of mitotic and cell cycle defects. Low- and high-throughput microscopy setups have yield huge data amounts of cells recorded in different experimental and pathological conditions. Tailored semi-automated and automated image analysis approaches allow the analysis of high-content screening data sets, saving time and avoiding bias. However, they were mostly designed for very specific experimental setups, which restricts their flexibility and usability. The general need for dedicated experiment-specific user-annotated training sets and experiment-specific user-defined segmentation parameters remains a major bottleneck for fully automating the analysis process. In this work we present LiveCellMiner, a highly flexible open-source software tool to automatically extract, analyze and visualize both aggregated and time-resolved image features with potential biological relevance. The software tool allows analysis across high-content data sets obtained in different platforms, in a quantitative and unbiased manner. As proof of principle application, we analyze here the dynamic chromatin and tubulin cytoskeleton features in human cells passing through mitosis highlighting the versatile and flexible potential of this tool set.
Collapse
Affiliation(s)
- Daniel Moreno-Andrés
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
- * E-mail: (DMA), (JS)
| | - Anuk Bhattacharyya
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
| | - Anja Scheufen
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Johannes Stegmaier
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
- * E-mail: (DMA), (JS)
| |
Collapse
|
8
|
Orr B, De Sousa F, Gomes AM, Afonso O, Ferreira LT, Figueiredo AC, Maiato H. An anaphase surveillance mechanism prevents micronuclei formation from frequent chromosome segregation errors. Cell Rep 2021; 37:109783. [PMID: 34758324 PMCID: PMC8595644 DOI: 10.1016/j.celrep.2021.109783] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/15/2021] [Accepted: 08/26/2021] [Indexed: 12/25/2022] Open
Abstract
Micronuclei are a hallmark of cancer and several other human disorders. Recently, micronuclei were implicated in chromothripsis, a series of massive genomic rearrangements that may drive tumor evolution and progression. Here, we show that Aurora B kinase mediates a surveillance mechanism that integrates error correction during anaphase with spatial control of nuclear envelope reassembly to prevent micronuclei formation. Using high-resolution live-cell imaging of human cancer and non-cancer cells, we uncover that anaphase lagging chromosomes are more frequent than previously anticipated, yet they rarely form micronuclei. Micronuclei formation from anaphase lagging chromosomes is prevented by a midzone-based Aurora B phosphorylation gradient that stabilizes kinetochore-microtubule attachments and assists spindle forces required for anaphase error correction while delaying nuclear envelope reassembly on lagging chromosomes, independently of microtubule density. We propose that a midzone-based Aurora B phosphorylation gradient actively monitors and corrects frequent chromosome segregation errors to prevent micronuclei formation during human cell division. Anaphase lagging chromosomes are frequent but rarely form micronuclei A midzone Aurora B activity gradient prevents micronuclei from segregation errors Midzone Aurora B assists spindle forces at the kinetochores to correct errors Aurora B spatially regulates nuclear envelope reformation on lagging chromosomes
Collapse
Affiliation(s)
- Bernardo Orr
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Filipe De Sousa
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Ana Margarida Gomes
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Olga Afonso
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Luísa T Ferreira
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Ana C Figueiredo
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Helder Maiato
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Cell Division Group, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
| |
Collapse
|
9
|
The Aurora B gradient sustains kinetochore stability in anaphase. Cell Rep 2021; 37:109818. [PMID: 34758321 PMCID: PMC8595645 DOI: 10.1016/j.celrep.2021.109818] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/20/2021] [Accepted: 09/17/2021] [Indexed: 12/02/2022] Open
Abstract
Kinetochores assemble on chromosomes in mitosis to allow microtubules to attach and bring about accurate chromosome segregation. The kinases Cyclin B-Cdk1 and Aurora B are crucial for the formation of stable kinetochores. However, the activity of these two kinases appears to decline dramatically at centromeres during anaphase onset, precisely when microtubule attachments are required to move chromosomes toward opposite poles of the dividing cell. We find that, although Aurora B leaves centromeres at anaphase, a gradient of Aurora B activity centered on the central spindle is still able to phosphorylate kinetochore substrates such as Dsn1 to modulate kinetochore stability in anaphase and to regulate kinetochore disassembly as cells enter telophase. We provide a model to explain how Aurora B co-operates with Cyclin B-Cdk1 to maintain kinetochore function in anaphase. Central spindle Aurora B targets kinetochore substrates in anaphase Phosphorylation of Dsn1 by Aurora B stabilizes kinetochores in anaphase Dsn1 phosphorylation modulates chromosome movements in anaphase
Collapse
|
10
|
Ramkumar N, Patel JV, Anstatt J, Baum B. Aurora B-dependent polarization of the cortical actomyosin network during mitotic exit. EMBO Rep 2021; 22:e52387. [PMID: 34431205 PMCID: PMC8490981 DOI: 10.15252/embr.202152387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 01/16/2023] Open
Abstract
The isotropic metaphase actin cortex progressively polarizes as the anaphase spindle elongates during mitotic exit. This involves the loss of actomyosin cortex from opposing cell poles and the accumulation of an actomyosin belt at the cell centre. Although these spatially distinct cortical remodelling events are coordinated in time, here we show that they are independent of each other. Thus, actomyosin is lost from opposing poles in anaphase cells that lack an actomyosin ring owing to centralspindlin depletion. In examining potential regulators of this process, we identify a role for Aurora B kinase in actin clearance at cell poles. Upon combining Aurora B inhibition with centralspindlin depletion, cells exiting mitosis fail to change shape and remain completely spherical. Additionally, we demonstrate a requirement for Aurora B in the clearance of cortical actin close to anaphase chromatin in cells exiting mitosis with a bipolar spindle and in monopolar cells forced to divide while flat. Altogether, these data suggest a novel role for Aurora B activity in facilitating DNA-mediated polar relaxation at anaphase, polarization of the actomyosin cortex, and cell division.
Collapse
Affiliation(s)
- Nitya Ramkumar
- MRC LMCBUCLLondonUK
- Present address:
Duke UniversityDurhamNCUSA
| | | | | | - Buzz Baum
- MRC LMCBUCLLondonUK
- Present address:
MRC‐LMBCambridgeUK
| |
Collapse
|
11
|
Vukušić K, Tolić IM. Anaphase B: Long-standing models meet new concepts. Semin Cell Dev Biol 2021; 117:127-139. [PMID: 33849764 PMCID: PMC8406420 DOI: 10.1016/j.semcdb.2021.03.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/16/2022]
Abstract
Mitotic cell divisions ensure stable transmission of genetic information from a mother to daughter cells in a series of generations. To ensure this crucial task is accomplished, the cell forms a bipolar structure called the mitotic spindle that divides sister chromatids to the opposite sides of the dividing mother cell. After successful establishment of stable attachments of microtubules to chromosomes and inspection of connections between them, at the heart of mitosis, the cell starts the process of segregation. This spectacular moment in the life of a cell is termed anaphase, and it involves two distinct processes: depolymerization of microtubules bound to chromosomes, which is also known as anaphase A, and elongation of the spindle or anaphase B. Both processes ensure physical separation of disjointed sister chromatids. In this chapter, we review the mechanisms of anaphase B spindle elongation primarily in mammalian systems, combining different pioneering ideas and concepts with more recent findings that shed new light on the force generation and regulation of biochemical modules operating during spindle elongation. Finally, we present a comprehensive model of spindle elongation that includes structural, biophysical, and molecular aspects of anaphase B.
Collapse
Affiliation(s)
- Kruno Vukušić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Iva M Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
12
|
Abstract
During anaphase, a microtubule-containing structure called the midzone forms between the segregating chromosomes. The midzone is composed of an antiparallel array of microtubules and numerous microtubule-associated proteins that contribute to midzone formation and function. In many cells, the midzone is an important source of signals that specify the location of contractile ring assembly and constriction. The midzone also contributes to the events of anaphase by generating forces that impact chromosome segregation and spindle elongation; some midzone components contribute to both processes. The results of recent experiments have increased our understanding of the importance of the midzone, a microtubule array that has often been overlooked. This Journal of Cell Science at a Glance article will review, and illustrate on the accompanying poster, the organization, formation and dynamics of the midzone, and discuss open questions for future research.
Collapse
Affiliation(s)
- Patricia Wadsworth
- Department of Biology, Morrill Science Center, University of Massachusetts, 611 N. Pleasant Street, Amherst 01003, USA
| |
Collapse
|
13
|
Liu F, Zhang Y, Dong Y, Ning P, Zhang Y, Sun H, Li G. Knockdown of AURKA sensitizes the efficacy of radiation in human colorectal cancer. Life Sci 2021; 271:119148. [PMID: 33545203 DOI: 10.1016/j.lfs.2021.119148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 01/06/2023]
Abstract
AIMS Abnormally amplified expression of AURKA (aurora kinase A) is closely related to chemo-resistance in human colorectal cancer, lung cancer and leukemia. However, the biological role of AURKA in response to radio-sensitivity in human colorectal cancer is still unknown. Therefore, we evaluated the radio-sensitize ability of perturbation AURKA in human colorectal cancer. MAIN METHODS The knockdown effect of shAURKA was determined by western blot and qRT-PCR, respectively. Cell growth was determined by CCK-8 and clonogenic assay. Cell migration and metastasis was measured by wound healing assay and transwell invasive assay, respectively. Cell cycle and apoptosis was analyzed by flow cytometry. The alteration of down-stream targets was determined by western blot analysis. KEY FINDINGS We observed that high-level of AURKA expression is associated with poor prognosis in CRC patients receiving radiotherapy. Knockdown of AURKA significantly sensitizes the efficacy of radiation on the proliferation of HCT116 and HT-29 cells. The combination of AURKA inhibition and radiation could effectively suppress the ability of cell migration and metastasis, but also synergistically induce cellular apoptosis and arrest cell cycle at G2/M phase. Further studies demonstrated that knockdown AURKA markedly enhanced the efficacy of radiation through elevated PARP cleavage and induced AURKA-mediated pro-apoptosis factor BIM. Meanwhile, knockdown of AURKA in combination with radiation synergistically suppressed the regulator in blockage of G2/M phase, CDK2. SIGNIFICANCE Taken together, our results provide the evidence that targeted inhibition of AURKA could be a promising strategy for enhancing the efficacy of radiation for the treatment of human colorectal cancer.
Collapse
Affiliation(s)
- Fei Liu
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, China
| | - Yong Zhang
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, China
| | - Yue Dong
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, China
| | - Peifang Ning
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, China
| | - Yanni Zhang
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, China
| | - Han Sun
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, China
| | - Guang Li
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, China.
| |
Collapse
|
14
|
Molecular characterization of EhAK6, an endonuclease V domain-containing aurora kinase protein from Entamoeba histolytica: Protein-protein interaction, docking and functional aspect. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
15
|
Touati SA, Hofbauer L, Jones AW, Snijders AP, Kelly G, Uhlmann F. Cdc14 and PP2A Phosphatases Cooperate to Shape Phosphoproteome Dynamics during Mitotic Exit. Cell Rep 2020; 29:2105-2119.e4. [PMID: 31722221 PMCID: PMC6857435 DOI: 10.1016/j.celrep.2019.10.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 09/27/2019] [Accepted: 10/10/2019] [Indexed: 12/22/2022] Open
Abstract
Temporal control over protein phosphorylation and dephosphorylation is crucial for accurate chromosome segregation and for completion of the cell division cycle during exit from mitosis. In budding yeast, the Cdc14 phosphatase is thought to be a major regulator at this time, while in higher eukaryotes PP2A phosphatases take a dominant role. Here, we use time-resolved phosphoproteome analysis in budding yeast to evaluate the respective contributions of Cdc14, PP2ACdc55, and PP2ARts1. This reveals an overlapping requirement for all three phosphatases during mitotic progression. Our time-resolved phosphoproteome resource reveals how Cdc14 instructs the sequential pattern of phosphorylation changes, in part through preferential recognition of serine-based cyclin-dependent kinase (Cdk) substrates. PP2ACdc55 and PP2ARts1 in turn exhibit a broad substrate spectrum with some selectivity for phosphothreonines and a role for PP2ARts1 in sustaining Aurora kinase activity. These results illustrate synergy and coordination between phosphatases as they orchestrate phosphoproteome dynamics during mitotic progression. Cdc14, PP2ACdc55, and PP2ARts1 phosphatases cooperate during budding yeast mitosis Cdc14 targets serine Cdk motifs for rapid dephosphorylation PP2ACdc55 dephosphorylates Cdk and Plk substrates on threonine residues PP2ARts1 displays regulatory crosstalk with Aurora kinase
Collapse
Affiliation(s)
- Sandra A Touati
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| | - Lorena Hofbauer
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Andrew W Jones
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Ambrosius P Snijders
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Gavin Kelly
- Bioinformatics & Biostatistics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
16
|
Klotho Exerts an Emerging Role in Cytokinesis. Genes (Basel) 2020; 11:genes11091048. [PMID: 32899868 PMCID: PMC7565453 DOI: 10.3390/genes11091048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 11/23/2022] Open
Abstract
The Klotho gene functions as an anti-aging gene. A previous klotho-knockout mice study indicated that neither male nor female gametocytes could accomplish the first meiotic division. It suggested that Klotho might regulate cell division. In this study, we determined the roles of Klotho in cytokinesis in cultural human cells (HEK293 and HeLa) and in zebrafish embryos. Immunoprecipitation, mass spectrometry analysis, and a zebrafish model were used in this study. The results showed that Klotho is located in the midbody, which correlated with cytokinesis related kinases, Aurora kinase B and citron kinases, in the late stage of cytokinesis. There was a spatial correlation between the abscission site and the location of Klotho in the cytokinesis bridge. A three-dimensional structural reconstruction study demonstrated there was a spatial correlation among Klotho, Aurora kinase B, and citron kinases in the midbody. In addition, Klotho depletion inactivated Aurora kinases; it was also indicated that Klotho depletion caused aberrant cell cycle and delayed cytokinesis in a cell model. The study with zebrafish embryos suggested that klotho knockdown caused early embryo development abnormality due to dysregulated cytokinesis. In conclusion, Klotho might have a critical role in cytokinesis regulation by interacting with the cytokinesis related kinases.
Collapse
|
17
|
Guo X, Dai X, Wu X, Zhou T, Ni J, Xue J, Wang X. Understanding the birth of rupture-prone and irreparable micronuclei. Chromosoma 2020; 129:181-200. [PMID: 32671520 DOI: 10.1007/s00412-020-00741-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022]
Abstract
Micronuclei are extra-nuclear bodies mainly derived from ana-telophase lagging chromosomes/chromatins (LCs) that are not incorporated into primary nuclei at mitotic exit. Unlike primary nuclei, most micronuclei are enclosed by nuclear envelope (NE) that is highly susceptible to spontaneous and irreparable rupture. Ruptured micronuclei act as triggers of chromothripsis-like chaotic chromosomal rearrangements and cGAS-mediated innate immunity and inflammation, raising the view that micronuclei play active roles in human aging and tumorigenesis. Thus, understanding the ways in which micronuclear envelope (mNE) goes awry acquires increased importance. Here, we review the data to present a general framework for this question. We firstly describe NE reassembly after mitosis and NE repair during interphase. Simultaneously, we briefly discuss how mNE is organized and how mNE rupture controls the fate of micronuclei and micronucleated cells. As a focus of this review, we highlight current knowledge about why mNE is rupture-prone and irreparable. For this, we survey observations from a series of elegant studies to provide a systematic overview. We conclude that the birth of rupture-prone and irreparable micronuclei may be the cumulative effects of their intracellular geographic origins, biophysical properties, and specific mNE features. We propose that DNA damage and immunogenicity in micronuclei increase stepwise from altered mNE components, mNE rupture, and refractory to repair. Throughout our discussion, we note interesting issues in mNE fragility that have yet to be resolved.
Collapse
Affiliation(s)
- Xihan Guo
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, 650500, Yunnan, China
| | - Xueqin Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue Wu
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, 650500, Yunnan, China
| | - Tao Zhou
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, 650500, Yunnan, China
| | - Juan Ni
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, 650500, Yunnan, China
| | - Jinglun Xue
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Xu Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, 650500, Yunnan, China.
| |
Collapse
|
18
|
Abdelbaki A, Akman HB, Poteau M, Grant R, Gavet O, Guarguaglini G, Lindon C. AURKA destruction is decoupled from its activity at mitotic exit but is essential to suppress interphase activity. J Cell Sci 2020; 133:jcs243071. [PMID: 32393600 PMCID: PMC7328152 DOI: 10.1242/jcs.243071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/19/2020] [Indexed: 12/22/2022] Open
Abstract
Activity of AURKA is controlled through multiple mechanisms including phosphorylation, ubiquitin-mediated degradation and allosteric interaction with TPX2. Activity peaks at mitosis, before AURKA is degraded during and after mitotic exit in a process strictly dependent on the APC/C coactivator FZR1. We used FZR1 knockout cells (FZR1KO) and a novel FRET-based AURKA biosensor to investigate how AURKA activity is regulated in the absence of destruction. We found that AURKA activity in FZR1KO cells dropped at mitotic exit as rapidly as in parental cells, despite absence of AURKA destruction. Unexpectedly, TPX2 was degraded normally in FZR1KO cells. Overexpression of an N-terminal TPX2 fragment sufficient for AURKA binding, but that is not degraded at mitotic exit, caused delay in AURKA inactivation. We conclude that inactivation of AURKA at mitotic exit is determined not by AURKA degradation but by degradation of TPX2 and therefore is dependent on CDC20 rather than FZR1. The biosensor revealed that FZR1 instead suppresses AURKA activity in interphase and is critically required for assembly of the interphase mitochondrial network after mitosis.This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Ahmed Abdelbaki
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - H Begum Akman
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Marion Poteau
- Institut Gustave Roussy, UMR9019 - CNRS, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Rhys Grant
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Olivier Gavet
- Institut Gustave Roussy, UMR9019 - CNRS, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, CNR, Via degli Apuli 4, 00185 Roma, Italy
| | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| |
Collapse
|
19
|
Discovery of novel 2,4-disubstituted pyrimidines as Aurora kinase inhibitors. Bioorg Med Chem Lett 2020; 30:126885. [DOI: 10.1016/j.bmcl.2019.126885] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/18/2019] [Accepted: 12/03/2019] [Indexed: 12/25/2022]
|
20
|
Abstract
The notion that graded distributions of signals underlie the spatial organization of biological systems has long been a central pillar in the fields of cell and developmental biology. During morphogenesis, morphogens spread across tissues to guide development of the embryo. Similarly, a variety of dynamic gradients and pattern-forming networks have been discovered that shape subcellular organization. Here we discuss the principles of intracellular pattern formation by these intracellular morphogens and relate them to conceptually similar processes operating at the tissue scale. We will specifically review mechanisms for generating cellular asymmetry and consider how intracellular patterning networks are controlled and adapt to cellular geometry. Finally, we assess the general concept of intracellular gradients as a mechanism for positional control in light of current data, highlighting how the simple readout of fixed concentration thresholds fails to fully capture the complexity of spatial patterning processes occurring inside cells.
Collapse
Affiliation(s)
- Lars Hubatsch
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Nathan W Goehring
- The Francis Crick Institute, London, United Kingdom; Institute for the Physics of Living Systems, University College London, London, United Kingdom; MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom.
| |
Collapse
|
21
|
Komaravolu RK, Waltmann MD, Konaniah E, Jaeschke A, Hui DY. ApoER2 (Apolipoprotein E Receptor-2) Deficiency Accelerates Smooth Muscle Cell Senescence via Cytokinesis Impairment and Promotes Fibrotic Neointima After Vascular Injury. Arterioscler Thromb Vasc Biol 2019; 39:2132-2144. [PMID: 31412739 PMCID: PMC6761011 DOI: 10.1161/atvbaha.119.313194] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Genome-wide studies showed that mutation in apoER2 (apolipoprotein E receptor-2) is additive with ε4 polymorphism in the APOE gene on cardiovascular disease risk in humans. ApoE or apoER2 deficiency also accelerates atherosclerosis lesion necrosis in hypercholesterolemic mice and promotes neointima formation after vascular injury. This study tests the hypothesis that apoE and apoER2 modulate vascular occlusive diseases through distinct mechanisms. Approach and Results: Carotid endothelial denudation induced robust neointima formation in both apoE-/- and apoER2-deficient Lrp8-/- mice. The intima in apoE-/- mice was rich in smooth muscle cells, but the intima in Lrp8-/- mice was cell-poor and rich in extracellular matrix. Vascular smooth muscle cells isolated from apoE-/- mice were hyperplastic whereas Lrp8-/- smooth muscle cells showed reduced proliferation but responded robustly to TGF (transforming growth factor)-β-induced fibronectin synthesis indicative of a senescence-associated secretory phenotype, which was confirmed by increased β-galactosidase activity, p16INK4a immunofluorescence, and number of multinucleated cells. Western blot analysis of cell cycle-associated proteins showed that apoER2 deficiency promotes cell cycle arrest at the metaphase/anaphase. Coimmunoprecipitation experiments revealed that apoER2 interacts with the catalytic subunit of protein phosphatase 2A. In the absence of apoER2, PP2A-C (protein phosphatase 2A catalytic subunit) failed to interact with CDC20 (cell-division cycle protein 20) thus resulting in inactive anaphase-promoting complex and impaired cell cycle exit. CONCLUSIONS This study showed that apoER2 participates in APC (anaphase-promoting complex)/CDC20 complex formation during mitosis, and its absence impedes cytokinesis abscission thereby accelerating premature cell senescence and vascular disease. This mechanism is distinct from apoE deficiency, which causes smooth muscle cell hyperplasia to accelerate vascular disease.
Collapse
Affiliation(s)
- Ravi K. Komaravolu
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, OH 45237
| | - Meaghan D. Waltmann
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, OH 45237
| | - Eddy Konaniah
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, OH 45237
| | - Anja Jaeschke
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, OH 45237
| | - David Y. Hui
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, OH 45237
| |
Collapse
|
22
|
Vukušić K, Buđa R, Tolić IM. Force-generating mechanisms of anaphase in human cells. J Cell Sci 2019; 132:132/18/jcs231985. [DOI: 10.1242/jcs.231985] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
ABSTRACT
What forces drive chromosome segregation remains one of the most challenging questions in cell division. Even though the duration of anaphase is short, it is of utmost importance for genome fidelity that no mistakes are made. Seminal studies in model organisms have revealed different mechanisms operating during chromosome segregation in anaphase, but the translation of these mechanisms to human cells is not straightforward. Recent work has shown that kinetochore fiber depolymerization during anaphase A is largely motor independent, whereas spindle elongation during anaphase B is coupled to sliding of interpolar microtubules in human cells. In this Review, we discuss the current knowledge on the mechanisms of force generation by kinetochore, interpolar and astral microtubules. By combining results from numerous studies, we propose a comprehensive picture of the role of individual force-producing and -regulating proteins. Finally, by linking key concepts of anaphase to most recent data, we summarize the contribution of all proposed mechanisms to chromosome segregation and argue that sliding of interpolar microtubules and depolymerization at the kinetochore are the main drivers of chromosome segregation during early anaphase in human cells.
Collapse
Affiliation(s)
- Kruno Vukušić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Renata Buđa
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Iva M. Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
23
|
Afonso O, Castellani CM, Cheeseman LP, Ferreira JG, Orr B, Ferreira LT, Chambers JJ, Morais-de-Sá E, Maresca TJ, Maiato H. Spatiotemporal control of mitotic exit during anaphase by an aurora B-Cdk1 crosstalk. eLife 2019; 8:e47646. [PMID: 31424385 PMCID: PMC6706241 DOI: 10.7554/elife.47646] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/10/2019] [Indexed: 11/13/2022] Open
Abstract
According to the prevailing 'clock' model, chromosome decondensation and nuclear envelope reformation when cells exit mitosis are byproducts of Cdk1 inactivation at the metaphase-anaphase transition, controlled by the spindle assembly checkpoint. However, mitotic exit was recently shown to be a function of chromosome separation during anaphase, assisted by a midzone Aurora B phosphorylation gradient - the 'ruler' model. Here we found that Cdk1 remains active during anaphase due to ongoing APC/CCdc20- and APC/CCdh1-mediated degradation of B-type Cyclins in Drosophila and human cells. Failure to degrade B-type Cyclins during anaphase prevented mitotic exit in a Cdk1-dependent manner. Cyclin B1-Cdk1 localized at the spindle midzone in an Aurora B-dependent manner, with incompletely separated chromosomes showing the highest Cdk1 activity. Slowing down anaphase chromosome motion delayed Cyclin B1 degradation and mitotic exit in an Aurora B-dependent manner. Thus, a crosstalk between molecular 'rulers' and 'clocks' licenses mitotic exit only after proper chromosome separation.
Collapse
Affiliation(s)
- Olga Afonso
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
| | | | - Liam P Cheeseman
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
| | - Jorge G Ferreira
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- Cell Division Group, Experimental Biology Unit, Department of Biomedicine, Faculdade de MedicinaUniversidade do PortoPortoPortugal
| | - Bernardo Orr
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
| | - Luisa T Ferreira
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
| | - James J Chambers
- Institute for Applied Life SciencesUniversity of MassachusettsAmherstUnited States
| | - Eurico Morais-de-Sá
- Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- Epithelial Polarity & Cell Division Group, i3S - Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
| | - Thomas J Maresca
- Biology DepartmentUniversity of MassachusettsAmherstUnited States
- Molecular and Cellular Biology Graduate ProgramUniversity of MassachusettsAmherstUnited States
| | - Helder Maiato
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- Cell Division Group, Experimental Biology Unit, Department of Biomedicine, Faculdade de MedicinaUniversidade do PortoPortoPortugal
| |
Collapse
|
24
|
Shen S, Feng H, Le Y, Ni J, Yu L, Wu J, Bai M. RACK1 affects the progress of G2/M by regulating Aurora-A. Cell Cycle 2019; 18:2228-2238. [PMID: 31357906 DOI: 10.1080/15384101.2019.1642065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Aurora-A is a serine/threonine kinase, which is overexpressed in multiple human cancers and plays a key role in tumorigenesis and tumor development. In this study, we found that the receptor of activated C-kinase1 (RACK1), an important regulator of biological functions, interacted with Aurora-A and co-localized with Aurora-A at centrosomes. Moreover, RACK1 induces the auto-phosphorylation of Aurora-A in vitro and in vivo. Depletion of RACK1 impaired the activation of Aurora-A in late G2 phase, then inhibited the mitotic entry and leaded to multi-polarity, severe chromosome alignment defects, or centrosome amplification. Taken together, these results suggest that RACK1 is a new partner of Aurora-A and play a critical role in the regulation of the Aurora-A activity during mitosis, which may provide a basis for future anticancer studies targeting Aurora-A.
Collapse
Affiliation(s)
- Suqin Shen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University , Shanghai , P. R. China
| | - Huan Feng
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University , Shanghai , P. R. China
| | - Yichen Le
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University , Shanghai , P. R. China
| | - Jun Ni
- Department Oncology, Hutchison Medi Pharma , Shanghai , China
| | - Long Yu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University , Shanghai , P. R. China
| | - Jiaxue Wu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University , Shanghai , P. R. China
| | - Meirong Bai
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University , Shanghai , P. R. China.,Cardiovascular Research Institute and Department of Physiology, University of California San Francisco , San Francisco , CA , USA
| |
Collapse
|
25
|
Verma V, Mogilner A, Maresca TJ. Classical and Emerging Regulatory Mechanisms of Cytokinesis in Animal Cells. BIOLOGY 2019; 8:biology8030055. [PMID: 31357447 PMCID: PMC6784142 DOI: 10.3390/biology8030055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/05/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
The primary goal of cytokinesis is to produce two daughter cells, each having a full set of chromosomes. To achieve this, cells assemble a dynamic structure between segregated sister chromatids called the contractile ring, which is made up of filamentous actin, myosin-II, and other regulatory proteins. Constriction of the actomyosin ring generates a cleavage furrow that divides the cytoplasm to produce two daughter cells. Decades of research have identified key regulators and underlying molecular mechanisms; however, many fundamental questions remain unanswered and are still being actively investigated. This review summarizes the key findings, computational modeling, and recent advances in understanding of the molecular mechanisms that control the formation of the cleavage furrow and cytokinesis.
Collapse
Affiliation(s)
- Vikash Verma
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA.
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
- Department of Biology, New York University, New York, NY 10012, USA
| | - Thomas J Maresca
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
26
|
HIPK2 Phosphorylates the Microtubule-Severing Enzyme Spastin at S268 for Abscission. Cells 2019; 8:cells8070684. [PMID: 31284535 PMCID: PMC6678495 DOI: 10.3390/cells8070684] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/27/2022] Open
Abstract
Abscission is the final step of cell division, mediating the physical separation of the two daughter cells. A key player in this process is the microtubule-severing enzyme spastin that localizes at the midbody where its activity is crucial to cut microtubules and culminate the cytokinesis. Recently, we demonstrated that HIPK2, a multifunctional kinase involved in several cellular pathways, contributes to abscission and prevents tetraploidization. Here, we show that HIPK2 binds and phosphorylates spastin at serine 268. During cytokinesis, the midbody-localized spastin is phosphorylated at S268 in HIPK2-proficient cells. In contrast, no spastin is detectable at the midbody in HIPK2-depleted cells. The non-phosphorylatable spastin-S268A mutant does not localize at the midbody and cannot rescue HIPK2-depleted cells from abscission defects. In contrast, the phosphomimetic spastin-S268D mutant localizes at the midbody and restores successful abscission in the HIPK2-depleted cells. These results show that spastin is a novel target of HIPK2 and that HIPK2-mediated phosphorylation of spastin contributes to its midbody localization for successful abscission.
Collapse
|
27
|
Zhu Q, Luo M, Zhou C, Chen Z, Huang W, Huang J, Zhao S, Yu X. [Effect of danusertib on cell cycle, apoptosis and autophagy of hepatocellular carcinoma HepG2 cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 38:1476-1484. [PMID: 30613017 DOI: 10.12122/j.issn.1673-4254.2018.12.13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To investigate the effect of danusertib (Danu), an inhibitor of Aurora kinase, on the proliferation, cell cycle, apoptosis, and autophagy of hepatocellular carcinoma HepG2 cells and explore the underlying mechanisms. METHODS MTT assay was used to examine the effect of Danu on the viability of HepG2 cells to determine the IC50 of Danu. The effect of Danu on cell cycle distribution, apoptosis and autophagy were determined using flow cytometry. Western blotting was used to detect the expressions of the proteins related to cell cycle, apoptosis and autophagy. Chloroquine was used to suppress Danuinduced autophagy to test the apoptosis-inducing effect of Danu. RESULTS Danu significantly inhibited the proliferation of HepG2 cells with IC50 of 39.4 μmol and 14.4 μmol at 24 h and 48 h, respectively. Danu caused cell cycle arrest in G2/M phase in HepG2 cells and led to polyploidy accumulation via up-regulating the expressions of p53 and p21 and down-regulating the expressions of cyclin B1 and DC2. Danu also caused apoptosis of HepG2 cells through up-regulating the expressions of Bax, Puma, cleaved caspase-3, cleaved caspase-9, cleaved PARP and cytochrome C and down-regulating the expressions of Bcl-xl and Bcl-2. Danu induced autophagy via activating AMPK signaling and inhibiting PI3K/PTEN/AKT/mTOR axis, and inhibition of Danu-induced autophagy with chloroquine enhanced the pro-apoptotic effect of Danu. CONCLUSIONS Danu inhibits cell proliferation and induces cell cycle arrest in G2/M phase, apoptosis and cytoprotective autophagy in HepG2 cells.
Collapse
Affiliation(s)
- Qiaohua Zhu
- Department of Oncology, Shunde Hospital of Southern Medical University, Shunde 528308, China
| | - Meihua Luo
- Department of Oncology, Shunde Hospital of Southern Medical University, Shunde 528308, China
| | - Chengyu Zhou
- Department of Oncology, Shunde Hospital of Southern Medical University, Shunde 528308, China
| | - Zhixian Chen
- Department of Oncology, Shunde Hospital of Southern Medical University, Shunde 528308, China
| | - Wei Huang
- Department of Oncology, Shunde Hospital of Southern Medical University, Shunde 528308, China
| | - Jiangyuan Huang
- Department of Oncology, Shunde Hospital of Southern Medical University, Shunde 528308, China
| | - Shufeng Zhao
- Department of Oncology, Shunde Hospital of Southern Medical University, Shunde 528308, China
| | - Xinfa Yu
- Department of Oncology, Shunde Hospital of Southern Medical University, Shunde 528308, China
| |
Collapse
|
28
|
Magnaghi-Jaulin L, Eot-Houllier G, Gallaud E, Giet R. Aurora A Protein Kinase: To the Centrosome and Beyond. Biomolecules 2019; 9:biom9010028. [PMID: 30650622 PMCID: PMC6359016 DOI: 10.3390/biom9010028] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 12/25/2022] Open
Abstract
Accurate chromosome segregation requires the perfect spatiotemporal rearrangement of the cellular cytoskeleton. Isolated more than two decades ago from Drosophila, Aurora A is a widespread protein kinase that plays key roles during cell division. Numerous studies have described the localisation of Aurora A at centrosomes, the mitotic spindle, and, more recently, at mitotic centromeres. In this review, we will summarise the cytoskeletal rearrangements regulated by Aurora A during cell division. We will also discuss the recent discoveries showing that Aurora A also controls not only the dynamics of the cortical proteins but also regulates the centromeric proteins, revealing new roles for this kinase during cell division.
Collapse
Affiliation(s)
- Laura Magnaghi-Jaulin
- University of Rennes, CNRS UMR 6290, IGDR-Institute of Genetics and Development of Rennes, F-35000 Rennes, France.
| | - Grégory Eot-Houllier
- University of Rennes, CNRS UMR 6290, IGDR-Institute of Genetics and Development of Rennes, F-35000 Rennes, France.
| | - Emmanuel Gallaud
- University of Rennes, CNRS UMR 6290, IGDR-Institute of Genetics and Development of Rennes, F-35000 Rennes, France.
| | - Régis Giet
- University of Rennes, CNRS UMR 6290, IGDR-Institute of Genetics and Development of Rennes, F-35000 Rennes, France.
| |
Collapse
|
29
|
Garda T, Kónya Z, Freytag C, Erdődi F, Gonda S, Vasas G, Szücs B, M-Hamvas M, Kiss-Szikszai A, Vámosi G, Máthé C. Allyl-Isothiocyanate and Microcystin-LR Reveal the Protein Phosphatase Mediated Regulation of Metaphase-Anaphase Transition in Vicia faba. FRONTIERS IN PLANT SCIENCE 2018; 9:1823. [PMID: 30619398 PMCID: PMC6300510 DOI: 10.3389/fpls.2018.01823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/23/2018] [Indexed: 06/09/2023]
Abstract
Horseradish allyl isothiocyanate (AITC, a volatile oil) and cyanobacterial microcystin-LR (MCY-LR, a cyclic heptapeptide) affect eukaryotic cell cycle. MCY-LR inhibits protein phosphatases PP1 and PP2A. We aimed to reveal the mechanisms of their cellular effects in a model eukaryote, Vicia faba. We have shown for the first time that AITC had minor effects on PP1 and PP2A activities in vitro, but it inhibited significantly PP1 in vivo. The combination of 10 μM AITC with 10 μM MCY-LR induced metaphase arrest after short-term (12 h) treatments. 10 μM AITC, 0.2-10 μM MCY-LR and their combinations induced histone H3 hyperphosphorylation, associated with the regulation of metaphase-anaphase transition. This hyperphosphorylation event occurred at any treatment which led to the inhibition of PP1 activity. 10 μM AITC + 10 μM MCY-LR increased the frequency of metaphase spindle anomalies, associated with metaphase arrest. We provide new insights into the mechanisms of metaphase-anaphase transition. Metaphase arrest is induced at the concomitant hyperphosphorylation of histone H3, alteration of metaphase spindle assembly and strong inhibition of PP1 + PP2A activity. Near-complete blocking of metaphase-anaphase transition by rapid protein phosphatase inhibition is shown here for the first time in plants, confirming a crucial role of serine-threonine phosphatases in this checkpoint of cell cycle regulation. Tissue-dependent differences in PP1 and PP2A activities induced by AITC and MCY-LR suggest that mainly regulatory subunits are affected. AITC is a potential tool for the study of protein phosphatase function and regulation. We raise the possibility that one of the biochemical events occurring during AITC release upon wounding is the modulation of protein phosphatase dependent signal transduction pathways during the plant defense response.
Collapse
Affiliation(s)
- Tamás Garda
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Zoltán Kónya
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Csongor Freytag
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Ferenc Erdődi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Sándor Gonda
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Gábor Vasas
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Boglárka Szücs
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Márta M-Hamvas
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Attila Kiss-Szikszai
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Csaba Máthé
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
30
|
Long L, Wang YH, Zhuo JX, Tu ZC, Wu R, Yan M, Liu Q, Lu G. Structure-based drug design: Synthesis and biological evaluation of quinazolin-4-amine derivatives as selective Aurora A kinase inhibitors. Eur J Med Chem 2018; 157:1361-1375. [DOI: 10.1016/j.ejmech.2018.08.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 11/26/2022]
|
31
|
Molecular biology as a tool for the treatment of cancer. Clin Exp Med 2018; 18:457-464. [PMID: 30006681 DOI: 10.1007/s10238-018-0518-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/08/2018] [Indexed: 12/30/2022]
Abstract
Cancer is a genetic disease characterized by uncontrolled cell growth and metastasis. Cancer can have a number of causes, such the activation of oncogenes, the inactivation of tumor-suppressing genes, mutagenesis provoked by external factors, and epigenetic modifications. The development of diagnostic tools and treatments using a molecular biological approach permits the use of sensitive, low-cost, noninvasive tests for cancer patients. Biomarkers can be used to provide rapid, personalized oncology, in particular the molecular diagnosis of chronic myeloid leukemia, and gastric, colon, and breast cancers. Molecular tests based on DNA methylation can also be used to direct treatments or evaluate the toxic effects of chemotherapy. The adequate diagnosis, prognosis, and prediction of the response of cancer patients to treatment are essential to ensure the most effective therapy, reduce the damaging effects of treatment, and direct the therapy to specific targets, and in this context, molecular biology has become increasingly important in oncology. In this brief review, we will demonstrate the fundamental importance of molecular biology for the treatment of three types of cancer-chronic myeloid leukemia, hereditary diffuse gastric cancer, and astrocytomas (sporadic tumors of the central nervous system). In each of these three models, distinct biological mechanisms are involved in the transformation of the cells, but in all cases, molecular biology is fundamental to the development of personalized analyses for each patient and each type of neoplasia, and to guarantee the success of the treatment.
Collapse
|
32
|
DeLuca JG. Aurora A Kinase Function at Kinetochores. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2018; 82:91-99. [PMID: 29700233 DOI: 10.1101/sqb.2017.82.034991] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
One of the most important regulatory aspects of chromosome segregation is the ability of kinetochores to precisely control their attachment strength to spindle microtubules. Central to this regulation is Aurora B, a mitotic kinase that phosphorylates kinetochore substrates to promote microtubule turnover. A critical target of Aurora B is the kinetochore protein Ndc80/Hec1, which is a component of the NDC80 complex, the primary force-transducing link between kinetochores and microtubules. Although Aurora B is regarded as the "master regulator" of kinetochore-microtubule attachment, it is becoming clear that this kinase is not solely responsible for phosphorylating Hec1 and other kinetochore substrates to facilitate microtubule turnover. In particular, there is growing evidence that Aurora A kinase, whose activities at spindle poles have been extensively described, has additional roles at kinetochores in regulating the kinetochore-microtubule interface.
Collapse
Affiliation(s)
- Jennifer G DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870
| |
Collapse
|
33
|
Touati SA, Kataria M, Jones AW, Snijders AP, Uhlmann F. Phosphoproteome dynamics during mitotic exit in budding yeast. EMBO J 2018; 37:embj.201798745. [PMID: 29650682 PMCID: PMC5978319 DOI: 10.15252/embj.201798745] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/01/2018] [Accepted: 03/20/2018] [Indexed: 11/09/2022] Open
Abstract
The cell division cycle culminates in mitosis when two daughter cells are born. As cyclin-dependent kinase (Cdk) activity reaches its peak, the anaphase-promoting complex/cyclosome (APC/C) is activated to trigger sister chromatid separation and mitotic spindle elongation, followed by spindle disassembly and cytokinesis. Degradation of mitotic cyclins and activation of Cdk-counteracting phosphatases are thought to cause protein dephosphorylation to control these sequential events. Here, we use budding yeast to analyze phosphorylation dynamics of 3,456 phosphosites on 1,101 proteins with high temporal resolution as cells progress synchronously through mitosis. This reveals that successive inactivation of S and M phase Cdks and of the mitotic kinase Polo contributes to order these dephosphorylation events. Unexpectedly, we detect as many new phosphorylation events as there are dephosphorylation events. These correlate with late mitotic kinase activation and identify numerous candidate targets of these kinases. These findings revise our view of mitotic exit and portray it as a dynamic process in which a range of mitotic kinases contribute to order both protein dephosphorylation and phosphorylation.
Collapse
Affiliation(s)
- Sandra A Touati
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| | - Meghna Kataria
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| | - Andrew W Jones
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Ambrosius P Snijders
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
34
|
HIPK2 and extrachromosomal histone H2B are separately recruited by Aurora-B for cytokinesis. Oncogene 2018; 37:3562-3574. [PMID: 29563611 PMCID: PMC6021368 DOI: 10.1038/s41388-018-0191-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/24/2018] [Accepted: 02/05/2018] [Indexed: 11/09/2022]
Abstract
Cytokinesis, the final phase of cell division, is necessary to form two distinct daughter cells with correct distribution of genomic and cytoplasmic materials. Its failure provokes genetically unstable states, such as tetraploidization and polyploidization, which can contribute to tumorigenesis. Aurora-B kinase controls multiple cytokinetic events, from chromosome condensation to abscission when the midbody is severed. We have previously shown that HIPK2, a kinase involved in DNA damage response and development, localizes at the midbody and contributes to abscission by phosphorylating extrachromosomal histone H2B at Ser14. Of relevance, HIPK2-defective cells do not phosphorylate H2B and do not successfully complete cytokinesis leading to accumulation of binucleated cells, chromosomal instability, and increased tumorigenicity. However, how HIPK2 and H2B are recruited to the midbody during cytokinesis is still unknown. Here, we show that regardless of their direct (H2B) and indirect (HIPK2) binding of chromosomal DNA, both H2B and HIPK2 localize at the midbody independently of nucleic acids. Instead, by using mitotic kinase-specific inhibitors in a spatio-temporal regulated manner, we found that Aurora-B kinase activity is required to recruit both HIPK2 and H2B to the midbody. Molecular characterization showed that Aurora-B directly binds and phosphorylates H2B at Ser32 while indirectly recruits HIPK2 through the central spindle components MgcRacGAP and PRC1. Thus, among different cytokinetic functions, Aurora-B separately recruits HIPK2 and H2B to the midbody and these activities contribute to faithful cytokinesis.
Collapse
|
35
|
Martens S, Goossens V, Devisscher L, Hofmans S, Claeys P, Vuylsteke M, Takahashi N, Augustyns K, Vandenabeele P. RIPK1-dependent cell death: a novel target of the Aurora kinase inhibitor Tozasertib (VX-680). Cell Death Dis 2018; 9:211. [PMID: 29434255 PMCID: PMC5833749 DOI: 10.1038/s41419-017-0245-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/24/2017] [Accepted: 12/14/2017] [Indexed: 12/17/2022]
Abstract
The Aurora kinase family (Aurora A, B and C) are crucial regulators of several mitotic events, including cytokinesis. Increased expression of these kinases is associated with tumorigenesis and several compounds targeting Aurora kinase are under evaluation in clinical trials (a.o. AT9283, AZD1152, Danusertib, MLN8054). Here, we demonstrate that the pan-Aurora kinase inhibitor Tozasertib (VX-680 and MK-0457) not only causes cytokinesis defects through Aurora kinase inhibition, but is also a potent inhibitor of necroptosis, a cell death process regulated and executed by the RIPK1, RIPK3 and MLKL signalling axis. Tozasertib’s potency to inhibit RIPK1-dependent necroptosis and to block cytokinesis in cells is in the same concentration range, with an IC50 of 1.06 µM and 0.554 µM, respectively. A structure activity relationship (SAR) analysis of 67 Tozasertib analogues, modified at 4 different positions, allowed the identification of analogues that showed increased specificity for either cytokinesis inhibition or for necroptosis inhibition, reflecting more specific inhibition of Aurora kinase or RIPK1, respectively. These results also suggested that RIPK1 and Aurora kinases are functionally non-interacting targets of Tozasertib and its analogues. Indeed, more specific Aurora kinase inhibitors did not show any effect in necroptosis and Necrostatin-1s treatment did not result in cytokinesis defects, demonstrating that both cellular processes are not interrelated. Finally, Tozasertib inhibited recombinant human RIPK1, human Aurora A and human Aurora B kinase activity, but not RIPK3. The potency ranking of the newly derived Tozasertib analogues and their specificity profile, as observed in cellular assays, coincide with ADP-Glo recombinant kinase activity assays. Overall, we show that Tozasertib not only targets Aurora kinases but also RIPK1 independently, and that we could generate analogues with increased selectivity to RIPK1 or Aurora kinases, respectively.
Collapse
Affiliation(s)
- Sofie Martens
- Inflammation Research Center (IRC), VIB, Ghent, 9052, Belgium.,Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, 9052, Belgium
| | - Vera Goossens
- Inflammation Research Center (IRC), VIB, Ghent, 9052, Belgium.,Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, 9052, Belgium
| | - Lars Devisscher
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, 2610, Belgium
| | - Sam Hofmans
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, 2610, Belgium
| | - Polien Claeys
- Inflammation Research Center (IRC), VIB, Ghent, 9052, Belgium.,Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, 9052, Belgium
| | - Marnik Vuylsteke
- Inflammation Research Center (IRC), VIB, Ghent, 9052, Belgium.,Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, 9052, Belgium.,Gnomixx, Melle, 9090, Belgium
| | - Nozomi Takahashi
- Inflammation Research Center (IRC), VIB, Ghent, 9052, Belgium.,Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, 9052, Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, 2610, Belgium
| | - Peter Vandenabeele
- Inflammation Research Center (IRC), VIB, Ghent, 9052, Belgium. .,Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, 9052, Belgium.
| |
Collapse
|
36
|
Alexander KE, Rizkallah R. Aurora A Phosphorylation of YY1 during Mitosis Inactivates its DNA Binding Activity. Sci Rep 2017; 7:10084. [PMID: 28855673 PMCID: PMC5577188 DOI: 10.1038/s41598-017-10935-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/16/2017] [Indexed: 12/16/2022] Open
Abstract
Successful execution of mitotic cell division requires the tight synchronisation of numerous biochemical pathways. The underlying mechanisms that govern chromosome segregation have been thoroughly investigated. However, the mechanisms that regulate transcription factors in coordination with mitotic progression remain poorly understood. In this report, we identify the transcription factor YY1 as a novel mitotic substrate for the Aurora A kinase, a key regulator of critical mitotic events, like centrosome maturation and spindle formation. Using in vitro kinase assays, we show that Aurora A directly phosphorylates YY1 at serine 365 in the DNA-binding domain. Using a new phospho-specific antibody, we show that YY1 phosphorylation at serine 365 occurs during mitosis, and that this phosphorylation is significantly reduced upon inhibition of Aurora A. Furthermore, we show, using electrophoretic mobility shift and chromatin immunoprecipitation assays, that phosphorylation of YY1 at this site abolishes its DNA binding activity in vitro and in vivo. In conformity with this loss of binding activity, phosphorylated YY1 also loses its transctivation ability as demonstrated by a luciferase reporter assay. These results uncover a novel mechanism that implicates Aurora A in the mitotic inactivation of transcription factors.
Collapse
Affiliation(s)
- Karen E Alexander
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Raed Rizkallah
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America.
| |
Collapse
|
37
|
Kantarjian HM, Schuster MW, Jain N, Advani A, Jabbour E, Gamelin E, Rasmussen E, Juan G, Anderson A, Chow VF, Friberg G, Vogl FD, Sekeres MA. A phase 1 study of AMG 900, an orally administered pan-aurora kinase inhibitor, in adult patients with acute myeloid leukemia. Am J Hematol 2017; 92:660-667. [PMID: 28370201 PMCID: PMC5925751 DOI: 10.1002/ajh.24736] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 01/05/2023]
Abstract
Aurora kinases are involved in the pathophysiology of several cancers including acute myeloid leukemia (AML). In this phase 1 study, we investigated the safety and efficacy of AMG 900, an orally administered, highly potent, selective, small-molecule inhibitor of both Aurora kinase A and B, in patients with AML . Patients with pathologically documented AML who either declined standard treatments or had relapsed from or were refractory to previous therapies were enrolled. Two every-2-week dose-escalation schedules using a modified 3 + 3 + 3 design were evaluated AMG 900 given daily for 4 days with 10 days off (4/10 schedule), and AMG 900 given daily for 7 days with 7 days off (7/7 schedule). Thirty-five patients were enrolled at 9 different dose levels: 22 patients on the 4/10 schedule (doses from 15 to 100 mg daily), and 13 patients on the 7/7 schedule (doses from 30 to 50 mg daily). Both schedules were tolerated; nausea (31%), diarrhea (29%), febrile neutropenia (29%), and fatigue (23%) were the most common treatment-related adverse events. Three patients (9%) achieved complete response with incomplete count recovery. Patients with higher baseline expression of a set of specific pathway-related genes (BIRC5, AURKA, TTK, CDC2, and CCNB1) were more likely to respond in an exploratory biomarker analysis. AMG 900 was tolerated in a general AML population, and pathway-specific biomarkers identified a potential target population. Future research efforts will be directed toward further exploration of biomarkers of response and combination of AMG 900 with other anticancer agents.
Collapse
Affiliation(s)
- Hagop M. Kantarjian
- Department of Leukemia, MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | - Michael W. Schuster
- Medical Hematology/Oncology Stony Brook University School of Medicine, Stony Brook, New York, USA
| | - Nitin Jain
- Department of Leukemia, MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | - Anjali Advani
- Leukemia Program, Cleveland Clinic, Cleveland, Ohio, USA
| | - Elias Jabbour
- Department of Leukemia, MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | - Erick Gamelin
- Research and Development, Amgen Inc., Thousand Oaks, California, USA
| | - Erik Rasmussen
- Research and Development, Amgen Inc., Thousand Oaks, California, USA
| | - Gloria Juan
- Research and Development, Amgen Inc., Thousand Oaks, California, USA
| | - Abraham Anderson
- Research and Development, Amgen Inc., Thousand Oaks, California, USA
| | - Vincent F. Chow
- Research and Development, Amgen Inc., Thousand Oaks, California, USA
| | - Gregory Friberg
- Research and Development, Amgen Inc., Thousand Oaks, California, USA
| | - Florian D. Vogl
- Research and Development, Amgen Inc., Thousand Oaks, California, USA
| | | |
Collapse
|
38
|
Guo A, Huang S, Yu J, Wang H, Li H, Pei G, Shen L. Single-Cell Dynamic Analysis of Mitosis in Haploid Embryonic Stem Cells Shows the Prolonged Metaphase and Its Association with Self-diploidization. Stem Cell Reports 2017; 8:1124-1134. [PMID: 28457886 PMCID: PMC5425685 DOI: 10.1016/j.stemcr.2017.03.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 12/30/2022] Open
Abstract
The recent establishment of mammalian haploid embryonic stem cells (ESCs) provides new possibilities for genetic screening and for understanding genome evolution and function. However, the dynamics of mitosis in haploid ESCs is still unclear. Here, we report that the duration of mitosis in haploid ESCs, especially the metaphase, is significantly longer than that in diploid ESCs. Delaying mitosis by chemicals increased self-diploidization of haploid ESCs, while shortening mitosis stabilized haploid ESCs. Taken together, our study suggests that the delayed mitosis of haploid ESCs is associated with self-diploidization. Mitosis is prolonged in haploid ESCs, especially in metaphase Self-diploidization might be associated with the prolonged mitosis of haploid ESCs
Collapse
Affiliation(s)
- Ao Guo
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shichao Huang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiali Yu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huihan Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Haisen Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Gang Pei
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Li Shen
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
39
|
Liu W, Lu Y, Chai X, Liu X, Zhu T, Wu X, Fang Y, Liu X, Zhang X. Antitumor activity of TY-011 against gastric cancer by inhibiting Aurora A, Aurora B and VEGFR2 kinases. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:183. [PMID: 27887633 PMCID: PMC5124248 DOI: 10.1186/s13046-016-0464-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 11/22/2016] [Indexed: 12/13/2022]
Abstract
Background Overexpression of Aurora A and B has been reported in a wide range of tumor types, including gastric cancer. Anti-angiogenesis has been considered as an important therapeutic modality in advanced gastric cancer. Here we identified a novel compound TY-011 with promising antitumor activity by targeting mitotic kinases (Aurora A and B) and angiogenic receptor tyrosine kinase (VEGFR2). Methods HTRF® KinEASE™ assay was used to detect the effect of TY-011 against Aurora A, Aurora B and VEGFR2 activities. Docking simulation study was performed to predict the binding mode of TY-011 with Aurora A and B kinases. CCK-8 assay was used to test cell growth. Cell cycle and cell apoptosis was analyzed by flow cytometry. Gastric cancer cell xenograft mouse models were used for in vivo study. TUNEL kit was used to determine the apoptosis of tumor tissues. Immunohistochemistry analysis and HUVEC tube formation assay were performed to determine the anti-angiogenesis ability. Immunofluorescence and western blot were used to test protein expression. Results TY-011 was identified as a potential Aurora A and B inhibitor by HTRF® KinEASE™ assay. It effectively inhibited cellular Aurora A and B activities in a concentration-dependent manner. TY-011 occupied the ATP-binding site of both Aurora A and B kinases. TY-011 demonstrated prominent inhibitory effects on proliferation of gastric cancer cells. TY-011 treatment induced an obvious accumulation of cells at G2/M phase and a modest increase of cells with >4 N DNA content, which then underwent apoptosis. Meaningfully, orally administration of TY-011 demonstrated superior efficacy against the tumor growth in gastric cancer cell xenograft, with ~90% inhibition rate and 100% tumor regression at 9 mg/kg dose, and TY-011 did not affect the body weight of mice. Interestingly, we observed that TY-011 also antagonized tumor angiogenesis by targeting VEGFR2 kinase. Conclusions These results indicate that TY-011 is a well-tolerated, orally active compound that targets mitosis and angiogenesis in tumor growth, and provides strong preclinical support for use as a therapeutic for human gastric cancers. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0464-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wang Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Yu Lu
- Nanjing Tianyi Bioscience Co. Ltd, Nanjing, China
| | - Xiaoping Chai
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xiao Liu
- School of Physics and Materials Science, East China Normal University, Shanghai, China
| | - Tong Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xihan Wu
- Nanjing Tianyi Bioscience Co. Ltd, Nanjing, China
| | - Yanfen Fang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
| | - Xuan Liu
- Department of Cardiology, Shanghai Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Xiongwen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
| |
Collapse
|