1
|
Jordi L, Isacson O. Neuronal threshold functions: Determining symptom onset in neurological disorders. Prog Neurobiol 2024; 242:102673. [PMID: 39389338 PMCID: PMC11809673 DOI: 10.1016/j.pneurobio.2024.102673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/18/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Synaptic networks determine brain function. Highly complex interconnected brain synaptic networks provide output even under fluctuating or pathological conditions. Relevant to the treatment of brain disorders, understanding the limitations of such functional networks becomes paramount. Here we use the example of Parkinson's Disease (PD) as a system disorder, with PD symptomatology emerging only when the functional reserves of neurons, and their interconnected networks, are unable to facilitate effective compensatory mechanisms. We have denoted this the "threshold theory" to account for how PD symptoms develop in sequence. In this perspective, threshold functions are delineated in a quantitative, synaptic, and cellular network context. This provides a framework to discuss the development of specific symptoms. PD includes dysfunction and degeneration in many organ systems and both peripheral and central nervous system involvement. The threshold theory accounts for and explains the reasons why parallel gradually emerging pathologies in brain and peripheral systems generate specific symptoms only when functional thresholds are crossed, like tipping points. New and mounting evidence demonstrate that PD and related neurodegenerative diseases are multisystem disorders, which transcends the traditional brain-centric paradigm. We believe that representation of threshold functions will be helpful to develop new medicines and interventions that are specific for both pre- and post-symptomatic periods of neurodegenerative disorders.
Collapse
Affiliation(s)
- Luc Jordi
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA 02478, USA.
| | - Ole Isacson
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA 02478, USA; Department of Neurology and Program in Neuroscience, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Mercado NM, Szarowicz C, Stancati JA, Sortwell CE, Boezwinkle SA, Collier TJ, Caulfield ME, Steece-Collier K. Advancing age and the rs6265 BDNF SNP are permissive to graft-induced dyskinesias in parkinsonian rats. NPJ Parkinsons Dis 2024; 10:163. [PMID: 39179609 PMCID: PMC11344059 DOI: 10.1038/s41531-024-00771-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024] Open
Abstract
The rs6265 single nucleotide polymorphism (SNP) in the gene for brain-derived neurotrophic factor is a common variant that alters therapeutic outcomes for individuals with Parkinson's disease (PD). We previously investigated the effects of this SNP on the experimental therapeutic approach of neural grafting, demonstrating that young adult parkinsonian rats carrying the variant Met allele exhibited enhanced graft function compared to wild-type rats and also exclusively developed aberrant graft-induced dyskinesias (GID). Aging is the primary risk factor for PD and reduces graft efficacy. Here we investigated whether aging interacts with this SNP to further alter cell transplantation outcomes. We hypothesized that aging would reduce enhancement of graft function associated with this genetic variant and exacerbate GID in all grafted subjects. Unexpectedly, beneficial graft function was maintained in aged rs6265 subjects. However, aging was permissive to GID induction, regardless of genotype, with the greatest incidence and severity found in rs6265-expressing animals.
Collapse
Affiliation(s)
- Natosha M Mercado
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Carlye Szarowicz
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Jennifer A Stancati
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Caryl E Sortwell
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, 49503, USA
| | - Samuel A Boezwinkle
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Timothy J Collier
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, 49503, USA
| | - Margaret E Caulfield
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Kathy Steece-Collier
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA.
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
3
|
Cai H, Wang Z, Tang W, Ke X, Zhao E. Recent advances of the mammalian target of rapamycin signaling in mesenchymal stem cells. Front Genet 2022; 13:970699. [PMID: 36110206 PMCID: PMC9468880 DOI: 10.3389/fgene.2022.970699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022] Open
Abstract
Mammalian target of rapamycin (mTOR) is a serine/threonine kinase involved in a variety of cellular functions, such as cell proliferation, metabolism, autophagy, survival and cytoskeletal organization. Furthermore, mTOR is made up of three multisubunit complexes, mTOR complex 1, mTOR complex 2, and putative mTOR complex 3. In recent years, increasing evidence has suggested that mTOR plays important roles in the differentiation and immune responses of mesenchymal stem cells (MSCs). In addition, mTOR is a vital regulator of pivotal cellular and physiological functions, such as cell metabolism, survival and ageing, where it has emerged as a novel therapeutic target for ageing-related diseases. Therefore, the mTOR signaling may develop a large impact on the treatment of ageing-related diseases with MSCs. In this review, we discuss prospects for future research in this field.
Collapse
Affiliation(s)
- Huarui Cai
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Zhongze Wang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Wenhan Tang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Xiaoxue Ke
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- *Correspondence: Xiaoxue Ke, ; Erhu Zhao,
| | - Erhu Zhao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- *Correspondence: Xiaoxue Ke, ; Erhu Zhao,
| |
Collapse
|
4
|
The BDNF Val66Met polymorphism (rs6265) enhances dopamine neuron graft efficacy and side-effect liability in rs6265 knock-in rats. Neurobiol Dis 2020; 148:105175. [PMID: 33188920 PMCID: PMC7855552 DOI: 10.1016/j.nbd.2020.105175] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 01/10/2023] Open
Abstract
Prevalent in approximately 20% of the worldwide human population, the
rs6265 (also called ‘Val66Met’) single nucleotide polymorphism
(SNP) in the gene for brain-derived neurotrophic factor (BDNF)
is a common genetic variant that can alter therapeutic responses in individuals
with Parkinson’s disease (PD). Possession of the variant Met allele
results in decreased activity-dependent release of BDNF. Given the resurgent
worldwide interest in neural transplantation for PD and the biological relevance
of BDNF, the current studies examined the effects of the rs6265 SNP on
therapeutic efficacy and side-effect development following primary dopamine (DA)
neuron transplantation. Considering the significant reduction in BDNF release
associated with rs6265, we hypothesized that rs6265-mediated dysfunctional BDNF
signaling contributes to the limited clinical benefit observed in a
subpopulation of PD patients despite robust survival of grafted DA neurons, and
further, that this mutation contributes to the development of aberrant
graft-induced dyskinesias (GID). To this end, we generated a CRISPR knock-in rat
model of the rs6265 BDNF SNP to examine for the first time the
influence of a common genetic polymorphism on graft survival, functional
efficacy, and side-effect liability, comparing these parameters between
wild-type (Val/Val) rats and those homozygous for the variant Met allele
(Met/Met). Counter to our hypothesis, the current research indicates that
Met/Met rats show enhanced graft-associated therapeutic efficacy and a
paradoxical enhancement of graft-derived neurite outgrowth compared to wild-type
rats. However, consistent with our hypothesis, we demonstrate that the rs6265
genotype in the host rat is strongly linked to development of GID, and that this
behavioral phenotype is significantly correlated with neurochemical signatures
of atypical glutamatergic neurotransmission by grafted DA neurons.
Collapse
|
5
|
Tomov N. Glial cells in intracerebral transplantation for Parkinson's disease. Neural Regen Res 2020; 15:1173-1178. [PMID: 31960796 PMCID: PMC7047789 DOI: 10.4103/1673-5374.270296] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/02/2019] [Accepted: 09/02/2019] [Indexed: 12/11/2022] Open
Abstract
In the last few decades, intracerebral transplantation has grown from a dubious neuroscientific topic to a plausible modality for treatment of neurological disorders. The possibility for cell replacement opens a new field of perspectives in the therapy of neurodegenerative disorders, ischemia, and neurotrauma, with the most lessons learned from intracerebral transplantation in Parkinson's disease. Multiple animal studies and a few small-scale clinical trials have proven the concept of intracerebral grafting, but still have to provide a uniform and highly efficient approach to the procedure, suitable for clinical application. The success of intracerebral transplantation is highly dependent on the integration of the grafted cells with the host brain. In this process, glial cells are clearly more than passive bystanders. They provide transplanted cells with mechanical support, trophics, mediate synapse formation, and participate in graft vascularization. At the same time, glial cells mediate scarring, graft rejection, and neuroinflammation, which can be detrimental. We can use this information to try to understand the mechanisms behind the glial reaction to intracerebral transplantation. Recognizing and utilizing glial reactivity can move translational research forward and provide an insight not only to post-transplantation events but also to mechanisms of neuronal death and degeneration. Knowledge about glial reactivity to transplanted cells could also be a key for optimization of transplantation protocols, which ultimately should contribute to greater patient benefit.
Collapse
Affiliation(s)
- Nikola Tomov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| |
Collapse
|
6
|
Harsanyiova J, Buday T, Kralova Trancikova A. Parkinson's Disease and the Gut: Future Perspectives for Early Diagnosis. Front Neurosci 2020; 14:626. [PMID: 32625058 PMCID: PMC7313629 DOI: 10.3389/fnins.2020.00626] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive degeneration of dopaminergic neurons, and at the cellular level by the formation of Lewy bodies in the central nervous system (CNS). However, the onset of the disease is believed to be localized to peripheral organs, particularly the gastrointestinal tract (GIT) and the olfactory bulb sooner before neuropathological changes occur in the CNS. Patients already in the pre-motor stage of PD suffer from various digestive problems and/or due to significant changes in the composition of the intestinal microbiome in this early stage of the disease. Detailed analyses of patient biopsies and autopsies as well as animal models of neuropathological changes characteristic of PD provided important information on the pathology or treatment of PD symptoms. However, presently is not clarified (i) the specific tissue in the GIT where the pathological processes associated with PD is initiated; (ii) the mechanism by which these processes are disseminated to the CNS or other tissues within the GIT; and (iii) which neuropathological changes could also serve as a reliable diagnostic marker of the premotor stages of PD, or (iv) which type of GIT tissue would be the most appropriate choice for routine examination of patient biopsies.
Collapse
Affiliation(s)
- Jana Harsanyiova
- Departmet of Pahophysiology, Jessenius Faculty of Medicine in Martin, Comenius University, Bratislava, Slovakia
| | - Tomas Buday
- Departmet of Pahophysiology, Jessenius Faculty of Medicine in Martin, Comenius University, Bratislava, Slovakia
| | - Alzbeta Kralova Trancikova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University, Bratislava, Slovakia
| |
Collapse
|
7
|
Gómez-Benito M, Granado N, García-Sanz P, Michel A, Dumoulin M, Moratalla R. Modeling Parkinson's Disease With the Alpha-Synuclein Protein. Front Pharmacol 2020; 11:356. [PMID: 32390826 PMCID: PMC7191035 DOI: 10.3389/fphar.2020.00356] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022] Open
Abstract
Alpha-synuclein (α-Syn) is a key protein involved in Parkinson's disease (PD) pathology. PD is characterized by the loss of dopaminergic neuronal cells in the substantia nigra pars compacta and the abnormal accumulation and aggregation of α-Syn in the form of Lewy bodies and Lewy neurites. More precisely, the aggregation of α-Syn is associated with the dysfunctionality and degeneration of neurons in PD. Moreover, mutations in the SNCA gene, which encodes α-Syn, cause familial forms of PD and are the basis of sporadic PD risk. Given the role of the α-Syn protein in the pathology of PD, animal models that reflect the dopaminergic neuronal loss and the widespread and progressive formation of α-Syn aggregates in different areas of the brain constitute a valuable tool. Indeed, animal models of PD are important for understanding the molecular mechanisms of the disease and might contribute to the development and validation of new therapies. In the absence of animal models that faithfully reproduce human PD, in recent years, numerous animal models of PD based on α-Syn have been generated. In this review, we summarize the main features of the α-Syn pre-formed fibrils (PFFs) model and recombinant adeno-associated virus vector (rAAV) mediated α-Syn overexpression models, providing a detailed comparative analysis of both models. Here, we discuss how each model has contributed to our understanding of PD pathology and the advantages and weakness of each of them.
Collapse
Affiliation(s)
- Mónica Gómez-Benito
- Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Noelia Granado
- Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia García-Sanz
- Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Anne Michel
- UCB Biopharma, Neuroscience TA, Braine L'Alleud, Belgium
| | - Mireille Dumoulin
- Centre of Protein Engineering, InBios, University of Liege, Liège, Belgium
| | - Rosario Moratalla
- Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Osborn TM, Hallett PJ, Schumacher JM, Isacson O. Advantages and Recent Developments of Autologous Cell Therapy for Parkinson's Disease Patients. Front Cell Neurosci 2020; 14:58. [PMID: 32317934 PMCID: PMC7147334 DOI: 10.3389/fncel.2020.00058] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/27/2020] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s Disease (PD) is a progressive degenerative disease characterized by tremor, bradykinesia, rigidity and postural instability. There are approximately 7–10 million PD patients worldwide. Currently, there are no biomarkers available or pharmaceuticals that can halt the dopaminergic neuron degeneration. At the time of diagnosis about 60% of the midbrain dopamine (mDA) neurons have already degenerated, resulting in a depletion of roughly 70% of striatal dopamine (DA) levels and synapses. Symptomatic treatment (e.g., with L-dopa) can initially restore DA levels and motor function, but with time often lead to side-effects like dyskinesia. Deep-brain-stimulation can alleviate these side-effects and some of the motor symptoms but requires repeat procedures and adds limitations for the patients. Restoration of dopaminergic synapses using neuronal cell replacement therapy has shown benefit in clinical studies using cells from fetal ventral midbrain. This approach, if done correctly, increases DA levels and restores synapses, allowing biofeedback regulation between the grafted cells and the host brain. Drawbacks are that it is not scalable for a large patient population and the patients require immunosuppression. Stem cells differentiated in vitro to mDA neurons or progenitors have shown promise in animal studies and is a scalable approach that allows for cryopreservation of transplantable cells and rigorous quality control prior to transplantation. However, all allogeneic grafts require immunosuppression. HLA-donor-matching, reduces, but does not completely eliminate, the need for immunosuppression, and is currently investigated in a clinical trial for PD in Japan. Since immune compatibility is very important in all areas of transplantation, these approaches may ultimately be of less benefit to the patients than an autologous approach. By using the patient’s own somatic cells, reprogrammed to induced pluripotent stem cells (iPSCs) and differentiated to mDA neurons immunosuppression is not required, and may also present with several biological and functional advantages in the patients, as described in this article. The proof-of-principle of autologous iPSC mDA restoration of function has been shown in parkinsonian non-human primates (NHPs), and this can now be investigated in clinical trials in addition to the allogeneic and HLA-matched approaches. In this review, we focus on the autologous approach of cell therapy for PD.
Collapse
Affiliation(s)
- Teresia M Osborn
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Belmont, MA, United States
| | - Penelope J Hallett
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Belmont, MA, United States
| | - James M Schumacher
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Belmont, MA, United States
| | - Ole Isacson
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Belmont, MA, United States
| |
Collapse
|
9
|
Abstract
For decades, clinicians have developed medications and therapies to alleviate the symptoms of Parkinson’s disease, but no treatment currently can slow or even stop the progression of this localized neurodegeneration. Fortunately, sparked by the genetic revolution, stem cell reprogramming research and the advancing capabilities of personalization in medicine enable forward-thinking to unprecedented patient-specific modeling and cell therapies for Parkinson’s disease using induced pluripotent stem cells (iPSCs). In addition to modeling Parkinson’s disease more accurately than chemically-induced animal models, patient-specific stem cell lines can be created, elucidating the effects of genetic susceptibility and sub-populations’ differing responses to in vitro treatments. Sourcing cell therapy with iPSC lines provides ethical advantages because these stem cell lines do not require the sacrifice of human zygotes and genetically-specific drug trails can be tested in vitro without lasting damage to patients. In hopes of finally slowing the progression of Parkinson’s disease or re-establishing function, iPSC lines can ultimately be corrected with gene therapy and used as cell sources for neural transplantation for Parkinson’s disease. With relatively localized neural degeneration, similar to spinal column injury, Parkinson’s disease presents a better candidacy for cell therapy when compared to other diffuse degeneration found in Alzheimer’s or Huntington’s Disease. Neurosurgical implantation of pluripotent cells poses the risk of an innate immune response and tumorigenesis. Precautions, therefore, must be taken to ensure cell line quality before transplantation. While cell quality can be quantified using a number of assays, a yielding a high percentage of therapeutically relevant dopaminergic neurons, minimal de novo genetic mutations, and standard chromosomal structure is of the utmost importance. Current techniques focus on iPSCs because they can be matched with donors using human leukocyte antigens, thereby reducing the severity and risk of immune rejection. In August of 2018, researchers in Kyoto, Japan embarked on the first human clinical trial using iPSC cell therapy transplantation for patients with moderate Parkinson’s disease. Transplantation of many cell sources has already proven to reduce Parkinson’s disease symptoms in mouse and primate models. Here we discuss the history and implications for cell therapy for Parkinson’s disease, as well as the necessary safety standards needed for using iPSC transplantation to slow or halt the progression of Parkinson’s disease.
Collapse
Affiliation(s)
- Theo Stoddard-Bennett
- Department of Cell Biology and Neurosciences; Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Renee Reijo Pera
- Department of Cell Biology and Neurosciences; Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| |
Collapse
|
10
|
Ghahari L, Safari M, Rahimi Jaberi K, Jafari B, Safari K, Madadian M. Mesenchymal Stem Cells with Granulocyte Colony-Stimulating Factor Reduce Stress Oxidative Factors in Parkinson's Disease. IRANIAN BIOMEDICAL JOURNAL 2019. [PMID: 31677610 PMCID: PMC6984711 DOI: 10.29252/ibj.24.2.89] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Recent studies have shown that BMSCs have a putative ability to promote neurogenesis and produce behavioral and functional improvement. Our previous study demonstrated that co-treatment of G-CSF and BMSCs have beneficial effects on Parkinson's models. The main purpose of this research was to investigate the effects of these two factors on oxidative stress factors in the brain of Parkinson's rat. Methods: Adult male Wistar rats (weighing 200–250 g) were used and randomly divided into five groups of seven each. To create the Parkinson's model, 6-OHDA was injected into the left SNpc. The BMSCs (2 × 106) and G-CSF (75 µg/kg) were used for treatment after creating the PD model. After four weeks, the brains of rats were removed and processed for immunohistochemical studies, such as TH-positive neurons as well as analysis of oxidative stress factors. Results: The results showed that the injected BMSCs could cross the BBB. The injected cells are also able to settle in different areas of the brain. Analyses of the brain oxidative stress factors showed that G-CSF and BMSCs reduced the expression of MDA and induced the activity of SOD, GSH-Px, and FRAP. Conclusion: Co-administration of G-CSF and BMSCs reduced the expression of pro-inflammatory cytokines and induced the activity of antioxidant enzymes; however, neurogenesis increased in the brain.
Collapse
Affiliation(s)
- Laya Ghahari
- Department of Anatomy, AJA University of Medical Sciences, Tehran, Iran
| | - Manouchehr Safari
- Nervous System Stem Cells Research Center, Semnan university of Medical Sciences, Semnan, Iran
| | - Khojaste Rahimi Jaberi
- Nervous System Stem Cells Research Center, Semnan university of Medical Sciences, Semnan, Iran
| | | | - Katayoun Safari
- Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mahmoodreza Madadian
- School of Pharmacology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
11
|
Zhang W, Wei X, Guo S, Wang J, Liu J, Wang H. Differential expression of EphA5 protein in gastric carcinoma and its clinical significance. Oncol Lett 2019; 17:5147-5153. [PMID: 31186729 DOI: 10.3892/ol.2019.10167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/12/2018] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to evaluate ephrin type-A receptor 5 (EphA5) expression and its clinicopathological significance in gastric cancer. Gastric cancer tissues were analyzed by immunohistochemistry. The association between EphA5 expression and clinicopathological parameters, human epidermal growth factor receptor 2 (HER2) status and Ki-67 proliferation index was statistically analyzed. EphA5 expression was detected in all non-tumor gastric epithelia but was differentially expressed among gastric cancer samples. EphA5 was negatively expressed in 30/110 (27.3%) and positively expressed in 80/110 (72.3%) samples from patients with gastric cancer. EphA5 expression was significantly associated with Lauren classification (P=0.032), lymph node metastasis (P<0.001), HER2 expression (P=0.020) and Ki-67 expression (P=0.005). No significant association was determined between EphA5 expression and age, sex, primary location, depth of invasion and Tumor-Node-Metastasis stage. The present data indicated that EphA5 is differentially expressed in gastric cancer. EphA5 may therefore be a potential therapeutic target and may have clinical utility as a marker for lymph node metastasis in gastric cancer.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pathology, Taixing People's Hospital, Taixing, Jiangsu 225400, P.R. China
| | - Xue Wei
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Shuwei Guo
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Jiandong Wang
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Jing Liu
- Department of Pathology, Taixing People's Hospital, Taixing, Jiangsu 225400, P.R. China
| | - Hai Wang
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China.,Center of Pathology and Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
12
|
Stoddard-Bennett T, Reijo Pera R. Treatment of Parkinson's Disease through Personalized Medicine and Induced Pluripotent Stem Cells. Cells 2019; 8:E26. [PMID: 30621042 PMCID: PMC6357081 DOI: 10.3390/cells8010026] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/28/2018] [Accepted: 12/30/2018] [Indexed: 12/18/2022] Open
Abstract
Parkinson's Disease (PD) is an intractable disease resulting in localized neurodegeneration of dopaminergic neurons of the substantia nigra pars compacta. Many current therapies of PD can only address the symptoms and not the underlying neurodegeneration of PD. To better understand the pathophysiological condition, researchers continue to seek models that mirror PD's phenotypic manifestations as closely as possible. Recent advances in the field of cellular reprogramming and personalized medicine now allow for previously unattainable cell therapies and patient-specific modeling of PD using induced pluripotent stem cells (iPSCs). iPSCs can be selectively differentiated into a dopaminergic neuron fate naturally susceptible to neurodegeneration. In iPSC models, unlike other artificially-induced models, endogenous cellular machinery and transcriptional feedback are preserved, a fundamental step in accurately modeling this genetically complex disease. In addition to accurately modeling PD, iPSC lines can also be established with specific genetic risk factors to assess genetic sub-populations' differing response to treatment. iPS cell lines can then be genetically corrected and subsequently transplanted back into the patient in hopes of re-establishing function. Current techniques focus on iPSCs because they are patient-specific, thereby reducing the risk of immune rejection. The year 2018 marked history as the year that the first human trial for PD iPSC transplantation began in Japan. This form of cell therapy has shown promising results in other model organisms and is currently one of our best options in slowing or even halting the progression of PD. Here, we examine the genetic contributions that have reshaped our understanding of PD, as well as the advantages and applications of iPSCs for modeling disease and personalized therapies.
Collapse
Affiliation(s)
- Theo Stoddard-Bennett
- Department of Cell Biology and Neurosciences, Montana State University, Bozeman, MT 59717, USA.
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Renee Reijo Pera
- Department of Cell Biology and Neurosciences, Montana State University, Bozeman, MT 59717, USA.
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
13
|
de Natale ER, Wilson H, Pagano G, Politis M. Imaging Transplantation in Movement Disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 143:213-263. [PMID: 30473196 DOI: 10.1016/bs.irn.2018.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell replacement therapy with graft transplantation has been tested as a disease-modifying treatment in neurodegenerative diseases characterized by the damage of a predominant cell type, such as substantia nigra dopaminergic neurons in Parkinson's disease (PD) or striatal medium spiny projection neurons in Huntington's disease (HD). The results of these trials are mixed with success in preclinical and pilot open-label trials, which were not consistently reproduced in randomized controlled trials. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) molecular imaging and functional magnetic resonance imaging allow the graft survival, and its relationship with the host tissues to be studied in vivo. In PD, PET with [18F]DOPA showed that graft survival does not necessarily correlate with the clinical improvement and PD patients with worse outcome had lower binding in the ventral striatum and a high serotonin ([11C]DASB PET) to dopamine ([18F]DOPA PET) ratio in the grafted neurons. In HD, PET with [11C]PK11195 showed the graft survival and the clinical responses may be related to the reactive activation of the host inflammatory/immune system. Findings from these studies have been used to refine study protocols and patient selection in current clinical trials, which includes identifying suitable candidates for transplantation using imaging markers and employing multiple and/or novel PET tracers to better assess graft functions and inflammatory responses to grafts.
Collapse
Affiliation(s)
- Edoardo Rosario de Natale
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Heather Wilson
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Gennaro Pagano
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Marios Politis
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom.
| |
Collapse
|
14
|
Hammond SL, Popichak KA, Li X, Hunt LG, Richman EH, Damale PU, Chong EKP, Backos DS, Safe S, Tjalkens RB. The Nurr1 Ligand,1,1-bis(3'-Indolyl)-1-( p-Chlorophenyl)Methane, Modulates Glial Reactivity and Is Neuroprotective in MPTP-Induced Parkinsonism. J Pharmacol Exp Ther 2018; 365:636-651. [PMID: 29626009 PMCID: PMC5941193 DOI: 10.1124/jpet.117.246389] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/04/2018] [Indexed: 11/22/2022] Open
Abstract
The orphan nuclear receptor Nurr1 (also called nuclear receptor-4A2) regulates inflammatory gene expression in glial cells, as well as genes associated with homeostatic and trophic function in dopaminergic neurons. Despite these known functions of Nurr1, an endogenous ligand has not been discovered. We postulated that the activation of Nurr1 would suppress the activation of glia and thereby protect against loss of dopamine (DA) neurons after subacute lesioning with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Our previous studies have shown that a synthetic Nurr1 ligand, 1,1-bis(3'-indolyl)-1-(p-chlorophenyl)methane (C-DIM12), suppresses inflammatory gene expression in primary astrocytes and induces a dopaminergic phenotype in neurons. Pharmacokinetic analysis of C-DIM12 in mice by liquid chromatography-mass spectrometry demonstrated that approximately three times more compound concentrated in the brain than in plasma. Mice treated with four doses of MPTP + probenecid over 14 days were monitored for neurobehavioral function, loss of dopaminergic neurons, and glial activation. C-DIM12 protected against the loss of DA neurons in the substantia nigra pars compacta and DA terminals in the striatum, maintained a ramified phenotype in microglia, and suppressed activation of astrocytes. In vitro reporter assays demonstrated that C-DIM12 was an effective activator of Nurr1 transcription in neuronal cell lines. Computational modeling of C-DIM12 binding to the three-dimensional structure of human Nurr1 identified a high-affinity binding interaction with Nurr1 at the coactivator domain. Taken together, these data suggest that C-DIM12 is an activator of Nurr1 that suppresses glial activation and neuronal loss in vivo after treatment with MPTP, and that this receptor could be an efficacious target for disease modification in individuals with Parkinson's disease and related disorders.
Collapse
Affiliation(s)
- Sean L Hammond
- Department of Environmental and Radiological Health Sciences (S.L.H., K.A.P., L.G.H., E.H.R., R.B.T.) and Department of Electrical and Computer Engineering (P.D., E.C.), Colorado State University, Fort Collins, Colorado; Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas (X.L., S.S.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (D.S.B.)
| | - Katriana A Popichak
- Department of Environmental and Radiological Health Sciences (S.L.H., K.A.P., L.G.H., E.H.R., R.B.T.) and Department of Electrical and Computer Engineering (P.D., E.C.), Colorado State University, Fort Collins, Colorado; Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas (X.L., S.S.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (D.S.B.)
| | - Xi Li
- Department of Environmental and Radiological Health Sciences (S.L.H., K.A.P., L.G.H., E.H.R., R.B.T.) and Department of Electrical and Computer Engineering (P.D., E.C.), Colorado State University, Fort Collins, Colorado; Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas (X.L., S.S.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (D.S.B.)
| | - Lindsay G Hunt
- Department of Environmental and Radiological Health Sciences (S.L.H., K.A.P., L.G.H., E.H.R., R.B.T.) and Department of Electrical and Computer Engineering (P.D., E.C.), Colorado State University, Fort Collins, Colorado; Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas (X.L., S.S.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (D.S.B.)
| | - Evan H Richman
- Department of Environmental and Radiological Health Sciences (S.L.H., K.A.P., L.G.H., E.H.R., R.B.T.) and Department of Electrical and Computer Engineering (P.D., E.C.), Colorado State University, Fort Collins, Colorado; Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas (X.L., S.S.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (D.S.B.)
| | - Pranav U Damale
- Department of Environmental and Radiological Health Sciences (S.L.H., K.A.P., L.G.H., E.H.R., R.B.T.) and Department of Electrical and Computer Engineering (P.D., E.C.), Colorado State University, Fort Collins, Colorado; Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas (X.L., S.S.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (D.S.B.)
| | - Edwin K P Chong
- Department of Environmental and Radiological Health Sciences (S.L.H., K.A.P., L.G.H., E.H.R., R.B.T.) and Department of Electrical and Computer Engineering (P.D., E.C.), Colorado State University, Fort Collins, Colorado; Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas (X.L., S.S.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (D.S.B.)
| | - Donald S Backos
- Department of Environmental and Radiological Health Sciences (S.L.H., K.A.P., L.G.H., E.H.R., R.B.T.) and Department of Electrical and Computer Engineering (P.D., E.C.), Colorado State University, Fort Collins, Colorado; Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas (X.L., S.S.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (D.S.B.)
| | - Stephen Safe
- Department of Environmental and Radiological Health Sciences (S.L.H., K.A.P., L.G.H., E.H.R., R.B.T.) and Department of Electrical and Computer Engineering (P.D., E.C.), Colorado State University, Fort Collins, Colorado; Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas (X.L., S.S.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (D.S.B.)
| | - Ronald B Tjalkens
- Department of Environmental and Radiological Health Sciences (S.L.H., K.A.P., L.G.H., E.H.R., R.B.T.) and Department of Electrical and Computer Engineering (P.D., E.C.), Colorado State University, Fort Collins, Colorado; Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas (X.L., S.S.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (D.S.B.)
| |
Collapse
|
15
|
Parkinson's Disease Is Not Simply a Prion Disorder. J Neurosci 2017; 37:9799-9807. [PMID: 29021297 DOI: 10.1523/jneurosci.1787-16.2017] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/09/2017] [Accepted: 06/17/2017] [Indexed: 12/31/2022] Open
Abstract
The notion that prion-like spreading of misfolded α-synuclein (α-SYN) causes Parkinson's disease (PD) has received a great deal of attention. Although attractive in its simplicity, the hypothesis is difficult to reconcile with postmortem analysis of human brains and connectome-mapping studies. An alternative hypothesis is that PD pathology is governed by regional or cell-autonomous factors. Although these factors provide an explanation for the pattern of neuronal loss in PD, they do not readily explain the apparently staged distribution of Lewy pathology in many PD brains, the feature of the disease that initially motivated the spreading hypothesis by Braak and colleagues. While each hypothesis alone has its shortcomings, a synthesis of the two can explain much of what we know about the etiopathology of PD.Dual Perspectives Companion Paper: Prying into the Prion Hypothesis for Parkinson's Disease, by Patrik Brundin and Ronald Melki.
Collapse
|
16
|
Engelender S, Isacson O. The Threshold Theory for Parkinson's Disease. Trends Neurosci 2016; 40:4-14. [PMID: 27894611 DOI: 10.1016/j.tins.2016.10.008] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 01/17/2023]
Abstract
Parkinson's disease (PD) is recognized by the accumulation of α-synuclein within neurons. In contrast to the current ascending theory where α-synuclein would propagate from neuron to neuron, we now propose the threshold theory for PD based on evidence of parallel degeneration of both central nervous system (CNS) and peripheral nervous system (PNS) in PD. The functional threshold is lower for the emergence of early symptoms before the classical motor symptoms of PD. This is due to the larger functional reserve of the midbrain dopamine and integrated basal ganglia motor systems to control movement. This threshold theory better accounts for the current neurobiology of PD symptom progression compared to the hypothesis that the disease ascends from the PNS to the CNS as proposed by Braak's hypothesis.
Collapse
Affiliation(s)
- Simone Engelender
- Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| | - Ole Isacson
- Neuroregeneration Research Institute, McLean Hospital, Belmont, MA 02478, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW We describe evidence supporting the hypothesis that α-synuclein has a prion-like role in Parkinson's disease and related α-synucleinopathies, and discuss how this novel thinking impacts the development of diagnostics and disease-modifying therapies. RECENT FINDINGS Observations that immature dopamine neurons grafted to Parkinson's disease patients can develop Lewy bodies triggered a surge of interest in the putative prion-like properties of α-synuclein. We recount results from experiments which confirm that misfolded α-synuclein can exhibit disease-propagating properties, and describe how they relate to the spreading of α-synuclein aggregates in α-synucleinopathies. We share insights into the underlying molecular mechanisms and their relevance to novel therapeutic targets. Finally, we discuss what the initial triggers of α-synuclein misfolding might be, where in the body the misfolding events might take place, and how this can instruct development of novel diagnostic tools. We speculate that differences in anatomical trigger sites and variability in α-synuclein fibril structure can contribute to clinical differences between α-synucleinopathies. SUMMARY The realization that α-synuclein pathology can propagate between brain regions in neurodegenerative diseases has deepened and expanded our understanding of potential pathogenic processes which can lead to the development of novel diagnostic tools as well as the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Patrik Brundin
- Translational Parkinson’s Disease Research, Van Andel Research Institute, 333 Bostwick Avenue N.E, Grand Rapids, MI 49503, USA
| | - Jiyan Ma
- Prion Mechanisms in Neurodegenerative Disease, Van Andel Research Institute, 333 Bostwick Avenue N.E, Grand Rapids, MI 49503, USA
| | - Jeffrey H Kordower
- Parkinson’s Disease: Pathogenesis and Experimental Therapeutics; Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Avenue N.E, Grand Rapids, MI 49503, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
18
|
Walsh DM, Selkoe DJ. A critical appraisal of the pathogenic protein spread hypothesis of neurodegeneration. Nat Rev Neurosci 2016; 17:251-60. [PMID: 26988744 DOI: 10.1038/nrn.2016.13] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There has been an explosion in the number of papers discussing the hypothesis of 'pathogenic spread' in neurodegenerative disease - the idea that abnormal forms of disease-associated proteins, such as tau or α-synuclein, physically move from neuron to neuron to induce disease progression. However, whether inter-neuronal spread of protein aggregates actually occurs in humans and, if so, whether it causes symptom onset remain uncertain. Even if pathogenic spread is proven in humans, it is unclear how much this would alter the specific therapeutic approaches that are in development. A critical appraisal of this increasingly popular hypothesis thus seems both important and timely.
Collapse
Affiliation(s)
- Dominic M Walsh
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
19
|
Xu X, Huang J, Li J, Liu L, Han C, Shen Y, Zhang G, Jiang H, Lin Z, Xiong N, Wang T. Induced pluripotent stem cells and Parkinson's disease: modelling and treatment. Cell Prolif 2016; 49:14-26. [PMID: 26748765 DOI: 10.1111/cpr.12229] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/23/2015] [Indexed: 02/06/2023] Open
Abstract
Many neurodegenerative disorders, such as Parkinson's disease (PD), are characterized by progressive neuronal loss in different regions of the central nervous system, contributing to brain dysfunction in the relevant patients. Stem cell therapy holds great promise for PD patients, including with foetal ventral mesencephalic cells, human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). Moreover, stem cells can be used to model neurodegenerative diseases in order to screen potential medication and explore their mechanisms of disease. However, related ethical issues, immunological rejection and lack of canonical grafting protocols limit common clinical use of stem cells. iPSCs, derived from reprogrammed somatic cells, provide new hope for cell replacement therapy. In this review, recent development in stem cell treatment for PD, using hiPSCs, as well as the potential value of hiPSCs in modelling for PD, have been summarized for application of iPSCs technology to clinical translation for PD treatment.
Collapse
Affiliation(s)
- Xiaoyun Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Han
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Shen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guoxin Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haiyang Jiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhicheng Lin
- Department of Psychiatry, Harvard Medical School, Division of Alcohol and Drug Abuse, Mailman Neuroscience Research Center, McLean Hospital, Belmont, MA, USA
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
20
|
Olszewska DA, Lynch T. Lewy Bodies' absence in grafted dopaminergic transplants in Parkinson's Disease. Mov Disord Clin Pract 2015; 2:369-370. [DOI: 10.1002/mdc3.12180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 03/13/2015] [Accepted: 03/20/2015] [Indexed: 11/10/2022] Open
Affiliation(s)
- Diana Angelika Olszewska
- Department of Neurology at the Dublin Neurological Institute; Mater Misericordiae University Hospital; Dublin Ireland
| | - Tim Lynch
- Department of Neurology at the Dublin Neurological Institute; Mater Misericordiae University Hospital; Dublin Ireland
| |
Collapse
|
21
|
Vermilyea SC, Emborg ME. α-Synuclein and nonhuman primate models of Parkinson's disease. J Neurosci Methods 2015; 255:38-51. [PMID: 26247888 PMCID: PMC4604057 DOI: 10.1016/j.jneumeth.2015.07.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 12/21/2022]
Abstract
Accumulation of α-synuclein (α-syn) leading to the formation of insoluble intracellular aggregates named Lewy bodies is proposed to have a significant role in Parkinson's disease (PD) pathology. Nonhuman primate (NHP) models of PD have proven essential for understanding the neurobiological basis of the disease and for the preclinical evaluation of first-in-class and invasive therapies. In addition to neurotoxin, aging and intracerebral gene transfer models, a new generation of models using inoculations of α-syn formulations, as well as transgenic methods is emerging. Understanding of their advantages and limitations will be essential when choosing a platform to evaluate α-syn-related pathology and interpreting the test results of new treatments targeting α-syn aggregation. In this review we aim to provide insight on this issue by critically analyzing the differences in endogenous α-syn, as well as α-syn pathology in PD and PD NHP models.
Collapse
Affiliation(s)
- Scott C Vermilyea
- Neuroscience Training Program, University of Wisconsin, Madison, United States; Wisconsin National Primate Research Center, University of Wisconsin, Madison, United States.
| | - Marina E Emborg
- Neuroscience Training Program, University of Wisconsin, Madison, United States; Wisconsin National Primate Research Center, University of Wisconsin, Madison, United States; Department of Medical Physics, University of Wisconsin, Madison, 1220 Capitol Court, Madison, WI 53715, United States.
| |
Collapse
|
22
|
Abstract
Stem cell-based therapies hold considerable promise for many currently devastating neurological disorders. Substantial progress has been made in the derivation of disease-relevant human donor cell populations. Behavioral data in relevant animal models of disease have demonstrated therapeutic efficacy for several cell-based approaches. Consequently, cGMP grade cell products are currently being developed for first in human clinical trials in select disorders. Despite the therapeutic promise, the presumed mechanism of action of donor cell populations often remains insufficiently validated. It depends greatly on the properties of the transplanted cell type and the underlying host pathology. Several new technologies have become available to probe mechanisms of action in real time and to manipulate in vivo cell function and integration to enhance therapeutic efficacy. Results from such studies generate crucial insight into the nature of brain repair that can be achieved today and push the boundaries of what may be possible in the future.
Collapse
|
23
|
Cicchetti F, Barker RA. The glial response to intracerebrally delivered therapies for neurodegenerative disorders: is this a critical issue? Front Pharmacol 2014; 5:139. [PMID: 25071571 PMCID: PMC4090753 DOI: 10.3389/fphar.2014.00139] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/24/2014] [Indexed: 12/20/2022] Open
Abstract
The role of glial cells in the pathogenesis of many neurodegenerative conditions of the central nervous system (CNS) is now well established (as is discussed in other reviews in this special issue of Frontiers in Neuropharmacology). What is less clear is whether there are changes in these same cells in terms of their behavior and function in response to invasive experimental therapeutic interventions for these diseases. This has, and will continue to become more of an issue as we enter a new era of novel treatments which require the agent to be directly placed/infused into the CNS such as deep brain stimulation (DBS), cell transplants, gene therapies and growth factor infusions. To date, all of these treatments have produced variable outcomes and the reasons for this have been widely debated but the host astrocytic and/or microglial response induced by such invasively delivered agents has not been discussed in any detail. In this review, we have attempted to summarize the limited published data on this, in particular we discuss the small number of human post-mortem studies reported in this field. By so doing, we hope to provide a better description and understanding of the extent and nature of both the astrocytic and microglial response, which in turn could lead to modifications in the way these therapeutic interventions are delivered.
Collapse
Affiliation(s)
- Francesca Cicchetti
- Axe Neurosciences, Centre de Recherche du CHU de Québec Québec, QC, Canada ; Département de Psychiatrie et Neurosciences, Université Laval Québec, QC, Canada
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge Cambridge, UK
| |
Collapse
|
24
|
Hallett PJ, Cooper O, Sadi D, Robertson H, Mendez I, Isacson O. Long-term health of dopaminergic neuron transplants in Parkinson's disease patients. Cell Rep 2014; 7:1755-61. [PMID: 24910427 DOI: 10.1016/j.celrep.2014.05.027] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 04/01/2014] [Accepted: 05/09/2014] [Indexed: 12/23/2022] Open
Abstract
To determine the long-term health and function of transplanted dopamine neurons in Parkinson's disease (PD) patients, the expression of dopamine transporters (DATs) and mitochondrial morphology were examined in human fetal midbrain cellular transplants. DAT was robustly expressed in transplanted dopamine neuron terminals in the reinnervated host putamen and caudate for at least 14 years after transplantation. The transplanted dopamine neurons showed a healthy and nonatrophied morphology at all time points. Labeling of the mitochondrial outer membrane protein Tom20 and α-synuclein showed a typical cellular pathology in the patients' own substantia nigra, which was not observed in transplanted dopamine neurons. These results show that the vast majority of transplanted neurons remain healthy for the long term in PD patients, consistent with clinical findings that fetal dopamine neuron transplants maintain function for up to 15-18 years in patients. These findings are critically important for the rational development of stem-cell-based dopamine neuronal replacement therapies for PD.
Collapse
Affiliation(s)
- Penelope J Hallett
- Neuroregeneration Research Institute, Harvard University and McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
| | - Oliver Cooper
- Neuroregeneration Research Institute, Harvard University and McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
| | - Damaso Sadi
- Division of Neurosurgery, Department of Anatomy and Neurobiology, and Department of Pharmacology, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS B3H 3A7, Canada
| | - Harold Robertson
- Division of Neurosurgery, Department of Anatomy and Neurobiology, and Department of Pharmacology, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS B3H 3A7, Canada
| | - Ivar Mendez
- Division of Neurosurgery, Department of Anatomy and Neurobiology, and Department of Pharmacology, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS B3H 3A7, Canada
| | - Ole Isacson
- Neuroregeneration Research Institute, Harvard University and McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA.
| |
Collapse
|
25
|
Pruszak J. A brief perspective on neural cell therapy. MOLECULAR AND CELLULAR THERAPIES 2014; 2:2. [PMID: 26056571 PMCID: PMC4452046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 11/18/2013] [Indexed: 11/21/2023]
Abstract
For a range of nervous system disorders current treatment options remain limited. Focusing on Parkinson's disease as a neurodegenerative entity that affects an increasing quantity of people in our aging societies, we briefly discuss remaining challenges and opportunities that neural stem cell therapy might be able to offer. Providing a snapshot of neural transplantation paradigms, we contemplate possible imminent translational scenarios and discuss critical requirements to be considered before clinical implementation.
Collapse
Affiliation(s)
- Jan Pruszak
- Emmy Noether-Group for Stem Cell Biology, Institute of Anatomy and Cell Biology, University of Freiburg, Albertstr. 17, 79104 Freiburg, Germany
| |
Collapse
|
26
|
Pruszak J. A brief perspective on neural cell therapy. MOLECULAR AND CELLULAR THERAPIES 2014; 2:2. [PMID: 26056571 PMCID: PMC4452046 DOI: 10.1186/2052-8426-2-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 11/18/2013] [Indexed: 11/25/2022]
Abstract
For a range of nervous system disorders current treatment options remain limited. Focusing on Parkinson’s disease as a neurodegenerative entity that affects an increasing quantity of people in our aging societies, we briefly discuss remaining challenges and opportunities that neural stem cell therapy might be able to offer. Providing a snapshot of neural transplantation paradigms, we contemplate possible imminent translational scenarios and discuss critical requirements to be considered before clinical implementation.
Collapse
Affiliation(s)
- Jan Pruszak
- Emmy Noether-Group for Stem Cell Biology, Institute of Anatomy and Cell Biology, University of Freiburg, Albertstr. 17, 79104 Freiburg, Germany
| |
Collapse
|
27
|
Barker RA, Barrett J, Mason SL, Björklund A. Fetal dopaminergic transplantation trials and the future of neural grafting in Parkinson's disease. Lancet Neurol 2013; 12:84-91. [PMID: 23237903 DOI: 10.1016/s1474-4422(12)70295-8] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Clinical use of allografts of fetal ventral mesencephalic tissue as a treatment to replace dopaminergic neurons in patients with Parkinson's disease was first done more than 20 years ago. Since then, many patients have received transplants, with variable results. During this time, our knowledge of Parkinson's disease has changed and the nature and extent of problems associated with the disorder have been better defined. Our understanding on how best to implement this cell-replacement strategy for patients has grown, but gaining this insight has entailed critical reappraisal of data from transplant trials that have already been undertaken.
Collapse
|
28
|
Cooper O, Hallett P, Isacson O. Using stem cells and iPS cells to discover new treatments for Parkinson's disease. Parkinsonism Relat Disord 2012; 18 Suppl 1:S14-6. [PMID: 22166414 DOI: 10.1016/s1353-8020(11)70007-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Fetal cell transplantation can improve the symptoms of Parkinson's disease (PD) patients for more than a decade. In some patients, alpha-synuclein aggregates and Lewy bodies have been observed in the transplanted neurons without functional significance. Recently stem cells have emerged as an ethically acceptable source of cells for transplantation but, importantly, the type of stem cell matters. While the lineage restriction of adult neural stem cells limits their clinical applicability for patients with PD, human pluripotent stem cells provide an opportunity to replace specific types of degenerating neurons. Now, cellular reprogramming technology can provide patient-specific neurons for neural transplantation and problems with cell fate specification and safety are resolving. Induced pluripotent stem (iPS) cell-derived neurons are also a unique tool for interpreting the genetic basis for an individual's risk of developing PD into clinically meaningful information. For example, clinical trials for neuroprotective molecules need to be tested in presymptomatic individuals when the neurons can still be protected. Patient-specific neural cells can also be used to identify an individual's responsiveness to drugs and to understand the mechanisms of the disease. Along these avenues of investigation, stem cells are enabling research for new treatments in PD.
Collapse
Affiliation(s)
- Oliver Cooper
- Neuroregeneration Institute, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA
| | | | | |
Collapse
|
29
|
Hansen C, Li JY. Beyond α-synuclein transfer: pathology propagation in Parkinson's disease. Trends Mol Med 2012; 18:248-55. [PMID: 22503115 DOI: 10.1016/j.molmed.2012.03.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 02/29/2012] [Accepted: 03/05/2012] [Indexed: 02/08/2023]
Abstract
α-Synuclein (α-syn) is the most abundant protein found in Lewy bodies, a hallmark of Parkinson's disease (PD), and can aggregate to form toxic oligomers and fibrillar structures. Recent studies have shown that α-syn can be transmitted between neurons and can seed the formation of toxic aggregates in recipient neurons in a prion-like manner. In addition, it is known that Lewy body pathology may spread gradually and systematically from the peripheral or enteric nervous system or olfactory bulb to specific brain regions during progression of idiopathic PD. It is therefore conceivable that α-syn species could act as seeds that drive PD progression. Here, we review recent advances from studies of α-syn cell-to-cell transfer, the current understanding of α-syn toxicity, and how these relate to progression of PD pathology.
Collapse
Affiliation(s)
- Christian Hansen
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Lund University, BMC A10 22184, Lund, Sweden
| | | |
Collapse
|
30
|
Steece-Collier K, Rademacher DJ, Soderstrom K. Anatomy of Graft-induced Dyskinesias: Circuit Remodeling in the Parkinsonian Striatum. ACTA ACUST UNITED AC 2012; 2:15-30. [PMID: 22712056 DOI: 10.1016/j.baga.2012.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The goal of researchers and clinicians interested in re-instituting cell based therapies for PD is to develop an effective and safe surgical approach to replace dopamine (DA) in individuals suffering from Parkinson's disease (PD). Worldwide clinical trials involving transplantation of embryonic DA neurons into individuals with PD have been discontinued because of the often devastating post-surgical side-effect known as graft-induced dyskinesia (GID). There have been many review articles published in recent years on this subject. There has been a tendency to promote single factors in the cause of GID. In this review, we contrast the pros and cons of multiple factors that have been suggested from clinical and/or preclinical observations, as well as novel factors not yet studied that may be involved with GID. It is our intention to provide a platform that might be instrumental in examining how individual factors that correlate with GID and/or striatal pathology might interact to give rise to dysfunctional circuit remodeling and aberrant motor output.
Collapse
Affiliation(s)
- Kathy Steece-Collier
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI 49503
| | | | | |
Collapse
|
31
|
Smith Y, Wichmann T, Factor SA, DeLong MR. Parkinson's disease therapeutics: new developments and challenges since the introduction of levodopa. Neuropsychopharmacology 2012; 37:213-46. [PMID: 21956442 PMCID: PMC3238085 DOI: 10.1038/npp.2011.212] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 12/13/2022]
Abstract
The demonstration that dopamine loss is the key pathological feature of Parkinson's disease (PD), and the subsequent introduction of levodopa have revolutionalized the field of PD therapeutics. This review will discuss the significant progress that has been made in the development of new pharmacological and surgical tools to treat PD motor symptoms since this major breakthrough in the 1960s. However, we will also highlight some of the challenges the field of PD therapeutics has been struggling with during the past decades. The lack of neuroprotective therapies and the limited treatment strategies for the nonmotor symptoms of the disease (ie, cognitive impairments, autonomic dysfunctions, psychiatric disorders, etc.) are among the most pressing issues to be addressed in the years to come. It appears that the combination of early PD nonmotor symptoms with imaging of the nigrostriatal dopaminergic system offers a promising path toward the identification of PD biomarkers, which, once characterized, will set the stage for efficient use of neuroprotective agents that could slow down and alter the course of the disease.
Collapse
Affiliation(s)
- Yoland Smith
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
32
|
Deleidi M, Hargus G, Hallett P, Osborn T, Isacson O. Development of histocompatible primate-induced pluripotent stem cells for neural transplantation. Stem Cells 2011; 29:1052-63. [PMID: 21608081 PMCID: PMC3340906 DOI: 10.1002/stem.662] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Immune rejection and risk of tumor formation are perhaps the greatest hurdles in the field of stem cell transplantation. Here, we report the generation of several lines of induced pluripotent stem cells (iPSCs) from cynomolgus macaque (CM) skin fibroblasts carrying specific major histocompatibility complex (MHC) haplotypes. To develop a collection of MHC-matched iPSCs, we genotyped the MHC locus of 25 CMs by microsatellite polymerase chain reaction analysis. Using retroviral infection of dermal skin fibroblasts, we generated several CM-iPSC lines carrying different haplotypes. We characterized the immunological properties of CM-iPSCs and demonstrated that CM-iPSCs can be induced to differentiate in vitro along specific neuronal populations, such as midbrain dopaminergic (DA) neurons. Midbrain-like DA neurons generated from CM-iPSCs integrated into the striatum of a rodent model of Parkinson's disease and promoted behavioral recovery. Importantly, neither tumor formation nor inflammatory reactions were observed in the transplanted animals up to 6 months after transplantation. We believe that the generation and characterization of such histocompatible iPSCs will allow the preclinical validation of safety and efficacy of iPSCs for neurodegenerative diseases and several other human conditions in the field of regenerative medicine.
Collapse
Affiliation(s)
- Michela Deleidi
- Center for Neuroregeneration Research, Harvard Medical School/McLean Hospital, Belmont, MA, 02478; Udall Parkinson’s Disease Research Center of Excellence; Harvard Neurodiscovery Center, Boston, Massachusetts 02114, USA
| | - Gunnar Hargus
- Center for Neuroregeneration Research, Harvard Medical School/McLean Hospital, Belmont, MA, 02478; Udall Parkinson’s Disease Research Center of Excellence; Harvard Neurodiscovery Center, Boston, Massachusetts 02114, USA
| | - Penelope Hallett
- Center for Neuroregeneration Research, Harvard Medical School/McLean Hospital, Belmont, MA, 02478; Udall Parkinson’s Disease Research Center of Excellence; Harvard Neurodiscovery Center, Boston, Massachusetts 02114, USA
| | - Teresia Osborn
- Center for Neuroregeneration Research, Harvard Medical School/McLean Hospital, Belmont, MA, 02478; Udall Parkinson’s Disease Research Center of Excellence; Harvard Neurodiscovery Center, Boston, Massachusetts 02114, USA
| | - Ole Isacson
- Center for Neuroregeneration Research, Harvard Medical School/McLean Hospital, Belmont, MA, 02478; Udall Parkinson’s Disease Research Center of Excellence; Harvard Neurodiscovery Center, Boston, Massachusetts 02114, USA
| |
Collapse
|
33
|
Wakeman DR, Dodiya HB, Kordower JH. Cell transplantation and gene therapy in Parkinson's disease. ACTA ACUST UNITED AC 2011; 78:126-58. [PMID: 21259269 DOI: 10.1002/msj.20233] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Parkinson's disease is a progressive neurodegenerative disorder affecting, in part, dopaminergic motor neurons of the ventral midbrain and their terminal projections that course to the striatum. Symptomatic strategies focused on dopamine replacement have proven effective at remediating some motor symptoms during the course of disease but ultimately fail to deliver long-term disease modification and lose effectiveness due to the emergence of side effects. Several strategies have been experimentally tested as alternatives for Parkinson's disease, including direct cell replacement and gene transfer through viral vectors. Cellular transplantation of dopamine-secreting cells was hypothesized as a substitute for pharmacotherapy to directly provide dopamine, whereas gene therapy has primarily focused on restoration of dopamine synthesis or neuroprotection and restoration of spared host dopaminergic circuitry through trophic factors as a means to enhance sustained controlled dopamine transmission. This seems now to have been verified in numerous studies in rodents and nonhuman primates, which have shown that grafts of fetal dopamine neurons or gene transfer through viral vector delivery can lead to improvements in biochemical and behavioral indices of dopamine deficiency. However, in clinical studies, the improvements in parkinsonism have been rather modest and variable and have been plagued by graft-induced dyskinesias. New developments in stem-cell transplantation and induced patient-derived cells have opened the doors for the advancement of cell-based therapeutics. In addition, viral-vector-derived therapies have been developed preclinically with excellent safety and efficacy profiles, showing promise in clinical trials thus far. Further progress and optimization of these therapies will be necessary to ensure safety and efficacy before widespread clinical use is deemed appropriate.
Collapse
|
34
|
Kordower JH, Dodiya HB, Kordower AM, Terpstra B, Paumier K, Madhavan L, Sortwell C, Steece-Collier K, Collier TJ. Transfer of host-derived α synuclein to grafted dopaminergic neurons in rat. Neurobiol Dis 2011; 43:552-7. [PMID: 21600984 DOI: 10.1016/j.nbd.2011.05.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 05/03/2011] [Indexed: 10/18/2022] Open
Abstract
Multiple laboratories have recently demonstrated that long-term dopaminergic transplants form Lewy bodies in patients with Parkinson's disease. Debate has arisen as to whether these Lewy bodies form from the transfer of α synuclein from the host to the graft or whether they form from intrinsic responses of the graft from being placed into what was, or became, an inflammatory focus. To test whether the former hypothesis was possible, we grafted fetal rat ventral mesencephalon into the dopamine depleted striatum of rats that had previously received 6-hydroxydopamine lesions. One month after the transplant, rats received viral over expression of human α synuclein (AAV2/6-α synuclein) or green fluorescent protein (AAV2/6-GFP) into the striatum rostral to the grafts. Care was taken to make sure that the AAV injections were sufficiently distal to the graft so no cells would be directly transfected. All rats were sacrificed five weeks after the virus injections. Double label immunohistochemistry combined with confocal microscopy revealed that a small number of grafted tyrosine hydroxylase (TH) neurons (5.7% ± 1.5% (mean ± SEM) of grafted dopamine cells) expressed host derived α synuclein but none of the grafted cells expressed host-derived GFP. The α synuclein in a few of these cells was misfolded and failed to be digested with proteinase K. These data indicate that it is possible for host derived α synuclein to transfer to grafted neurons supporting the concept that this is one possible mechanism by which grafted dopamine neurons form Lewy bodies in Parkinson's disease patients.
Collapse
Affiliation(s)
- Jeffrey H Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois 60612, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tsui A, Isacson O. Functions of the nigrostriatal dopaminergic synapse and the use of neurotransplantation in Parkinson's disease. J Neurol 2011; 258:1393-405. [PMID: 21544566 DOI: 10.1007/s00415-011-6061-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 04/12/2011] [Accepted: 04/14/2011] [Indexed: 10/18/2022]
Abstract
While pharmaceutical options remain the overwhelmingly accepted treatment of choice for neurological and psychiatric diseases, significant accomplishments in regenerative neuroscience research have demonstrated the potential of cellular and synaptic functional repair in future therapies. Parkinson's disease stands out as an example in which repair by dopaminergic neurons appears a viable potential therapy. This article describes the basic neurobiological underpinnings of the rationale for cell therapy for Parkinson's disease and the challenges ahead for the use of regenerative medicine in the treatment for this disease.
Collapse
Affiliation(s)
- Alex Tsui
- University of Oxford Medical School, John Radcliffe Hospital, Oxford, UK.
| | | |
Collapse
|
36
|
Cicchetti F, Soulet D, Freeman TB. Neuronal degeneration in striatal transplants and Huntington's disease: potential mechanisms and clinical implications. Brain 2011; 134:641-52. [DOI: 10.1093/brain/awq328] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
37
|
Rosser AE, Kelly CM, Dunnett SB. Cell transplantation for Huntington’s disease: practical and clinical considerations. FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.10.78] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Huntington’s disease is a dominantly inherited neurodegenerative disorder, usually starting in mid-life and leading to progressive disability and early death. There are currently no disease-modifying treatments available. Cell transplantation is being considered as a potential therapy, following proof of principle that cell transplantation can improve outcomes in another basal ganglia disorder, namely Parkinson’s disease. The principle aim is to replace the striatal medium spiny neurons lost in Huntington’s disease with new cells that are able to take over their function and reconnect the circuitry. This article reviews the experimental background and evidence from clinical studies that suggest that cell transplantation may improve function in Huntington’s disease, reviews the current status of the field and considers the current challenges to taking this experimental strategy forward to becoming a reliable therapeutic option.
Collapse
Affiliation(s)
- Anne E Rosser
- Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Claire M Kelly
- The Brain Repair Group, Cardiff University School of Biosciences, Museum Av., Cardiff CF10 3AX, UK
| | - Stephen B Dunnett
- The Brain Repair Group, Cardiff University School of Biosciences, Museum Av., Cardiff CF10 3AX, UK
| |
Collapse
|
38
|
|