1
|
Picher-Martel V, Locascio JJ, Chuang K, David WS, Amato AA, Gonzalez-Perez P. Investigating phenotypic variability patterns in myotonic dystrophy type 2 in a neuromuscular referral center retrospective cohort. Neuromuscul Disord 2025; 47:105255. [PMID: 39708548 PMCID: PMC11908914 DOI: 10.1016/j.nmd.2024.105255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
We aimed at investigating the presence of patterns that account for the phenotypic variability in a myotonic dystrophy type 2 (DM2) retrospective cohort at the Mass General Brigham Neuromuscular Centers. We collected the presence or absence of 23 clinical variables at symptom onset and diagnosis (n = 67 patients) and follow-up (n = 37 patients). We first identified set/s of variables (factors or cluster/s) representative of the large research data pool at onset by performing factor analyses, then assigned each patient to the cluster for which they had the highest computed total factor score. Twelve variables grouped into two distinct clusters that, based on their variable content, we named as proximal myotonic myopathy (PROMM)-DM2 or non-PROMM-DM2. Patients assigned to non-PROMM-DM2 more frequently had clinical myotonia and positive family history, and less frequently multiorgan involvement. Most patients (67.2 %) remained assigned to same cluster during disease course and 11 non-PROMM eventually transitioned to PROMM-DM2. Dyslipidemia and early cataracts (both in PROMM-DM2 cluster) were the earliest extramuscular manifestations that occurred during disease course and they accounted for the conversion of up to 8 out of 11 non-PROMM to PROMM converters. Identification of phenotypically homogeneous patient subgroups may help investigating DM2 prognosis and disease biomarkers in future prospective studies.
Collapse
Affiliation(s)
- Vincent Picher-Martel
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114, United States; Department of Neurology, Brigham Women's Hospital, Harvard Medical School, Boston, MA02115, United States
| | - Joseph J Locascio
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114, United States; Harvard Catalyst Biostatistical Consulting Group, Boston MA02114, United States
| | - Kathy Chuang
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114, United States
| | - William S David
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114, United States
| | - Anthony A Amato
- Department of Neurology, Brigham Women's Hospital, Harvard Medical School, Boston, MA02115, United States
| | - Paloma Gonzalez-Perez
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114, United States.
| |
Collapse
|
2
|
Krieger B, Schneider-Gold C, Genç E, Güntürkün O, Prehn C, Bellenberg B, Lukas C. Greater cortical thinning and microstructural integrity loss in myotonic dystrophy type 1 compared to myotonic dystrophy type 2. J Neurol 2024; 271:5525-5540. [PMID: 38896263 PMCID: PMC11319366 DOI: 10.1007/s00415-024-12511-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Myotonic dystrophy is a multisystem disorder characterized by widespread organic involvement including central nervous system symptoms. Although myotonic dystrophy disease types 1 (DM1) and 2 (DM2) cover a similar spectrum of symptoms, more pronounced clinical and brain alterations have been described in DM1. Here, we investigated brain volumetric and white matter alterations in both disease types and compared to healthy controls (HC). METHODS MRI scans were obtained from 29 DM1, 27 DM2, and 56 HC. We assessed macro- and microstructural brain changes by surface-based analysis of cortical thickness of anatomical images and tract-based spatial statistics of fractional anisotropy (FA) obtained by diffusion-weighted imaging, respectively. Global MRI measures were related to clinical and neuropsychological scores to evaluate their clinical relevance. RESULTS Cortical thickness was reduced in both patient groups compared to HC, showing similar patterns of regional distribution in DM1 and DM2 (occipital, temporal, frontal) but more pronounced cortical thinning for DM1. Similarly, FA values showed a widespread decrease in DM1 and DM2 compared to HC. Interestingly, FA was significantly lower in DM1 compared to DM2 within most parts of the brain. CONCLUSION Comparisons between DM1 and DM2 indicate a more pronounced cortical thinning of grey matter and a widespread reduction in microstructural integrity of white matter in DM1. Future studies are required to unravel the underlying and separating mechanisms for the disease courses of the two types and their neuropsychological symptoms.
Collapse
Affiliation(s)
- Britta Krieger
- Institute for Neuroradiology, St. Josef Hospital, Ruhr-University-Bochum, Gudrunstr. 56, 44791, Bochum, Germany.
| | - Christiane Schneider-Gold
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791, Bochum, Germany
| | - Erhan Genç
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystraße 67, 44139, Dortmund, Germany
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44780, Bochum, Germany
| | - Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44780, Bochum, Germany
| | - Christian Prehn
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791, Bochum, Germany
| | - Barbara Bellenberg
- Institute for Neuroradiology, St. Josef Hospital, Ruhr-University-Bochum, Gudrunstr. 56, 44791, Bochum, Germany
| | - Carsten Lukas
- Institute for Neuroradiology, St. Josef Hospital, Ruhr-University-Bochum, Gudrunstr. 56, 44791, Bochum, Germany
| |
Collapse
|
3
|
Wu Y, Wei Q, Lin J, Shang H, Ou R. Cognitive impairment, neuroimaging abnormalities, and their correlations in myotonic dystrophy: a comprehensive review. Front Cell Neurosci 2024; 18:1369332. [PMID: 38638300 PMCID: PMC11024338 DOI: 10.3389/fncel.2024.1369332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
Myotonic dystrophy (DM) encompasses a spectrum of neuromuscular diseases characterized by myotonia, muscle weakness, and wasting. Recent research has led to the recognition of DM as a neurological disorder. Cognitive impairment is a central nervous system condition that has been observed in various forms of DM. Neuroimaging studies have increasingly linked DM to alterations in white matter (WM) integrity and highlighted the relationship between cognitive impairment and abnormalities in WM structure. This review aims to summarize investigations into cognitive impairment and brain abnormalities in individuals with DM and to elucidate the correlation between these factors and the potential underlying mechanisms contributing to these abnormalities.
Collapse
Affiliation(s)
| | | | | | | | - Ruwei Ou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Mijajlovic M, Bozovic I, Pavlovic A, Rakocevic-Stojanovic V, Gluscevic S, Stojanovic A, Basta I, Meola G, Peric S. Transcranial brain parenchyma sonographic findings in patients with myotonic dystrophy type 1 and 2. Heliyon 2024; 10:e26856. [PMID: 38434309 PMCID: PMC10907768 DOI: 10.1016/j.heliyon.2024.e26856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction Myotonic dystrophy type 1 (DM1) and 2 (DM2) are genetically determined progressive muscular disorders with multisystemic affection, including brain involvement. Transcranial sonography (TCS) is a reliable diagnostic tool for the investigation of deep brain structures. We sought to evaluate TCS findings in genetically confirmed DM1 and DM2 patients, and further correlate these results with patients' clinical features. Methods This cross-sectional study included 163 patients (102 DM1, 61 DM2). Echogenicity of the brainstem raphe (BR) and substantia nigra (SN) as well as the diameter of the third ventricle (DTV) were assessed by TCS. Patients were evaluated using the Hamilton Depression Rating Scale, Fatigue Severity Scale and Daytime Sleepiness Scale. Results SN hyperechogenicity was observed in 40% of DM1 and 34% of DM2 patients. SN hypoechogenicity was detected in 17% of DM1 and 7% of DM2 patients. BR hypoechogenicity was found in 36% of DM1 and 47% of DM2 subjects. Enlarged DTV was noted in 19% of DM1 and 15% of DM2 patients. Older, weaker, depressive, and fatigued DM1 patients were more likely to have BR hypoechogenicity (p < 0.05). DTV correlated with age and disease duration in DM1 (p < 0.01). In DM2 patients SN hyperechogenicity correlated with fatigue. Excessive daytime sleepiness was associated with hypoechogenic BR (p < 0.05) and enlarged DVT (p < 0.01) in DM2 patients. Conclusions TCS is an easy applicable and sensitive neuroimaging technique that could offer new information regarding several brainstem structures in DM1 and DM2. This may lead to better understanding of the pathogenesis of the brain involvement in DM with possible clinical implications.
Collapse
Affiliation(s)
- Milija Mijajlovic
- Neurology Clinic, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivo Bozovic
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| | - Aleksandra Pavlovic
- Neurology Clinic, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Faculty of Special Education and Rehabilitation, University of Belgrade, Belgrade, Serbia
| | - Vidosava Rakocevic-Stojanovic
- Neurology Clinic, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sanja Gluscevic
- Neurology Clinic, Clinical Center of Montenegro, Podgorica, Montenegro
| | | | - Ivana Basta
- Neurology Clinic, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Giovanni Meola
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Department of Neurorehabilitation Sciences, Casa Di Cura del Policlinico, Milan, Italy
| | - Stojan Peric
- Neurology Clinic, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
5
|
Yoshizumi K, Nishi M, Igeta M, Nakamori M, Inoue K, Matsumura T, Fujimura H, Jinnai K, Kimura T. Analysis of splicing abnormalities in the white matter of myotonic dystrophy type 1 brain using RNA sequencing. Neurosci Res 2024; 200:48-56. [PMID: 37806497 DOI: 10.1016/j.neures.2023.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is a neuromuscular disorder caused by the genomic expansion of CTG repeats, in which RNA-binding proteins, such as muscleblind-like protein, are sequestered in the nucleus, and abnormal splicing is observed in various genes. Although abnormal splicing occurs in the brains of patients with DM1, its relation to central nervous system symptoms is unknown. Several imaging studies have indicated substantial white matter defects in patients with DM1. Here, we performed RNA sequencing and analysis of CTG repeat lengths in the frontal lobe of patients with DM1, separating the gray matter and white matter, to investigate splicing abnormalities in the DM1 brain, especially in the white matter. Several genes showed similar levels of splicing abnormalities in both gray and white matter, with an observable trend toward an increased number of repeats in the gray matter. These findings suggest that white matter defects in DM1 stem from aberrant RNA splicing in both gray and white matter. Notably, several of the genes displaying abnormal splicing are recognized as being dominantly expressed in astrocytes and oligodendrocytes, leading us to hypothesize that splicing defects in the white matter may be attributed to abnormal RNA splicing in glial cells.
Collapse
Affiliation(s)
- Kazuki Yoshizumi
- Department of Neurology, Hyogo Medical University, Nishinomiya, 663-8501 Hyogo, Japan
| | - Masamitsu Nishi
- Department of Neurology, Hyogo Medical University, Nishinomiya, 663-8501 Hyogo, Japan
| | - Masataka Igeta
- Department of Biostatistics, Hyogo Medical University, Nishinomiya, 663-8501 Hyogo, Japan
| | - Masayuki Nakamori
- Department of Neurology, Yamaguchi University Graduate School of Medicine, Yamaguchi, 755-8505 Yamaguchi, Japan
| | - Kimiko Inoue
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, 560-8552 Osaka, Japan
| | - Tsuyoshi Matsumura
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, 560-8552 Osaka, Japan
| | - Harutoshi Fujimura
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, 560-8552 Osaka, Japan
| | - Kenji Jinnai
- Department of Neurology, National Hospital Organization Hyogo-Chuo Hospital, Sanda, 669-1515 Hyogo, Japan
| | - Takashi Kimura
- Department of Neurology, Hyogo Medical University, Nishinomiya, 663-8501 Hyogo, Japan.
| |
Collapse
|
6
|
Garmendia J, Labayru G, Aliri J, López de Munain A, Sistiaga A. Executive functions and daily functioning in myotonic dystrophy type 1 ecological assessment with virtual reality. Neuromuscul Disord 2023; 33:917-922. [PMID: 37968165 DOI: 10.1016/j.nmd.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 09/26/2023] [Accepted: 10/12/2023] [Indexed: 11/17/2023]
Abstract
Central nervous system dysfunction is characteristic of patients with myotonic dystrophy type 1 (DM1). Although no consensus exists regarding the exact cognitive profile of these patients, executive dysfunction has been suggested to play a role. Due to the impact of executive functions on daily performance, this study aimed to describe executive functioning in an ecological manner and to analyze its impact - and that of other clinical variables - on the functional performance of DM1 patients. A Virtual Reality executive functioning test (Nesplora Ice Cream), the Wechsler Adult Intelligence Scale-Fourth Edition, and self-report questionnaires (AES, FSS, ESS and LIFE-H) were administered to 20 patients. Statistical analyses included correlation and multiple regression analyses to analyze the best predictors of daily performance. DM1 patients did not show major difficulties in the executive functioning tasks or in their overall performance on daily habits. However, both cold and hot executive functions still seem necessary for the correct accomplishment of life habits, since planning and level of apathy explained 47.6% of the total variance of daily functioning. This was the first study to assess executive functions in DM1 using Virtual Reality, and our findings open a debate about their actual impairment in this population.
Collapse
Affiliation(s)
- Joana Garmendia
- Department of Clinical and Health Psychology and Research Methodology, Psychology Faculty, University of the Basque Country (UPV/EHU), Donostia-San Sebastián, Gipuzkoa, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute Carlos III, Madrid, Spain
| | - Garazi Labayru
- Department of Clinical and Health Psychology and Research Methodology, Psychology Faculty, University of the Basque Country (UPV/EHU), Donostia-San Sebastián, Gipuzkoa, Spain; Neuroscience Area, Biodonostia Health Research Institute, Donostia-San Sebastián, Gipuzkoa, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute Carlos III, Madrid, Spain
| | - Jone Aliri
- Department of Clinical and Health Psychology and Research Methodology, Psychology Faculty, University of the Basque Country (UPV/EHU), Donostia-San Sebastián, Gipuzkoa, Spain
| | - Adolfo López de Munain
- Neuroscience Area, Biodonostia Health Research Institute, Donostia-San Sebastián, Gipuzkoa, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute Carlos III, Madrid, Spain; Neurology Department, Donostia University Hospital, Donostia-San Sebastián, Gipuzkoa, Spain; Neuroscience Department, University of the Basque Country (UPV/EHU), Donostia-San Sebastián, Gipuzkoa, Spain
| | - Andone Sistiaga
- Department of Clinical and Health Psychology and Research Methodology, Psychology Faculty, University of the Basque Country (UPV/EHU), Donostia-San Sebastián, Gipuzkoa, Spain; Neuroscience Area, Biodonostia Health Research Institute, Donostia-San Sebastián, Gipuzkoa, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute Carlos III, Madrid, Spain.
| |
Collapse
|
7
|
Pater R, Garmendia J, Gallais B, Graham C, Voet N. 267th ENMC International workshop: psychological interventions for improving quality of life in slowly progressive neuromuscular disorders. Neuromuscul Disord 2023; 33:562-569. [PMID: 37331200 DOI: 10.1016/j.nmd.2023.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
This workshop aimed to develop recommendations for psychological interventions to support people living with slowly progressive neuromuscular disorders (NMD). The workshop comprised clinicians, researchers, people living with NMD and their relatives. First, participants considered the key psychological challenges presented by NMD and the impact of NMD on relationships and mental health. Later, several psychological approaches for enhancing well-being in NMD were described. The results of randomised controlled trials of Cognitive Behaviour Therapy and Acceptance and Commitment Therapy for improving fatigue, quality of life, and mood in adults with NMD were examined. Then the group considered ways to adapt therapies for cognitive impairments or neurodevelopmental differences that occur in some NMD, alongside ways to support children and adolescents with NMD and their family members. Based on the evidence from randomised controlled trials, carefully conducted observational studies, and the coherence of these data with the experience of those living with NMD, the group recommends that psychological interventions should be embedded in the routine clinical care offered to people living with NMD.
Collapse
Affiliation(s)
- Ronne Pater
- Klimmendaal, Rehabilitation Center, Arnhem, The Netherlands; Department of Rehabilitation, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Joana Garmendia
- Department of Clinical and Health Psychology and Research Methodology; Psychology Faculty, University of the Basque Country (UPV/EHU), Donostia-San Sebastián, Gipuzkoa, Spain
| | - Benjamin Gallais
- ÉCOBES - Research and Transfer, Cegep de Jonquière, Jonquière, Canada
| | | | - Nicoline Voet
- Klimmendaal, Rehabilitation Center, Arnhem, The Netherlands; Department of Rehabilitation, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| |
Collapse
|
8
|
Theodosiou T, Christidi F, Xirou S, Karavasilis E, Bede P, Papadopoulos C, Argyropoulos GD, Kourtesis P, Pantolewn V, Ferentinos P, Kararizou E, Velonakis G, Zalonis I, Papadimas G. Executive Dysfunction, Social Cognition Impairment, and Gray Matter Pathology in Myotonic Dystrophy Type 2: A Pilot Study. Cogn Behav Neurol 2022; 35:204-211. [PMID: 35867610 DOI: 10.1097/wnn.0000000000000314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 01/05/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND In contrast to myotonic dystrophy type 1, the cognitive and radiologic profile of myotonic dystrophy type 2 (DM2) is relatively poorly characterized. OBJECTIVE To conduct a pilot study to systematically evaluate cognitive and radiologic features in a cohort of Greek individuals with DM2. METHOD Eleven genetically confirmed individuals with DM2 and 26 age- and education-matched healthy controls were administered the Edinburgh Cognitive and Behavioural Amyotrophic Lateral Sclerosis Screen (ECAS) to screen for impairment in multiple cognitive domains. MRI data were evaluated by morphometric analyses to identify disease-specific gray and white matter alterations. The following statistical thresholds were used for cognitive comparisons: PFDR < 0.05 and Bayes factor (BF 10 ) >10. RESULTS The DM2 group exhibited cognitive impairment (ECAS Total score; PFDR = 0.001; BF 10 = 108.887), which was dominated by executive impairment ( PFDR = 0.003; BF 10 = 25.330). A trend toward verbal fluency impairment was also identified. No significant impairments in memory, language, or visuospatial function were captured. The analysis of subscores revealed severe impairments in social cognition and alternation. Voxel-based morphometry identified widespread frontal, occipital, and subcortical gray matter atrophy, including the left superior medial frontal gyrus, right medial orbitofrontal gyrus, right operculum, right precuneus, bilateral fusiform gyri, and bilateral thalami. CONCLUSION DM2 may be associated with multifocal cortical and thalamic atrophy, which is likely to underpin the range of cognitive manifestations mostly characterized by executive impairment and specifically by impaired social cognition.
Collapse
Affiliation(s)
- Thomas Theodosiou
- First Department of Neurology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Foteini Christidi
- First Department of Neurology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sofia Xirou
- First Department of Neurology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstratios Karavasilis
- Radiology and Medical Imaging Research Unit, Second Department of Radiology, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, Ireland
- Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France
| | - Constantinos Papadopoulos
- First Department of Neurology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios D Argyropoulos
- Radiology and Medical Imaging Research Unit, Second Department of Radiology, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Kourtesis
- Human Cognitive Neuroscience, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Varvara Pantolewn
- Radiology and Medical Imaging Research Unit, Second Department of Radiology, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Ferentinos
- Second Department of Psychiatry, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Kararizou
- First Department of Neurology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Velonakis
- Radiology and Medical Imaging Research Unit, Second Department of Radiology, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Zalonis
- First Department of Neurology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Papadimas
- First Department of Neurology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
9
|
Kamali T, Deutsch GK, Hagerman KA, Parker D, Day JW, Sampson JB, Wozniak JR. Cognitive Impairment Analysis of Myotonic Dystrophy via Weakly Supervised Classification of Neuropsychological Features. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:4377-4382. [PMID: 36086274 DOI: 10.1109/embc48229.2022.9871626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The myotonic dystrophies (DM1 and DM2) are dominantly inherited disorders that cause pathological changes throughout the body. Many individuals with DM experience cognitive, behavioral and other functional central nervous system effects that impact their quality of life. The extent of psychological impairment that will develop in each patient is variable and unpredictable. Hence, it is difficult to get strong supervision information like fully ground truth labels for all cognitive involvement patterns. This study is to assess cognitive involvement among healthy controls and patients with DM. The DM cognitive impairment pattern observation is modeled in a weakly supervised setting and supervision information is used to transform the input feature space to a more discriminative representation suitable for pattern observation. This study incorporated results from 59 adults with DM and 92 control subjects. The developed system categorized the neuropsychological testing data into five cognitive clusters. The quality of the obtained clustering solution was assessed using an internal validity metric. The experimental results show that the proposed algorithm can discover interesting patterns and useful information from neuropsychological data, which will be be crucial in planning clinical trials and monitoring clinical performance. The proposed system resulted in an average classification accuracy of 88%, which is very promising considering the unique challenges present in this population.
Collapse
|
10
|
Laforce RJ, Dallaire-Théroux C, Racine AM, Dent G, Salinas-Valenzuela C, Poulin E, Cayer AM, Bédard-Tremblay D, Rouleau-Bonenfant T, St-Onge F, Schraen-Maschke S, Beauregard JM, Sergeant N, Puymirat J. Tau positron emission tomography, cerebrospinal fluid and plasma biomarkers of neurodegeneration, and neurocognitive testing: an exploratory study of participants with myotonic dystrophy type 1. J Neurol 2022; 269:3579-3587. [PMID: 35103843 PMCID: PMC9217820 DOI: 10.1007/s00415-022-10970-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate Tau pathology using multimodal biomarkers of neurodegeneration and neurocognition in participants with myotonic dystrophy type 1 (DM1). METHODS We recruited twelve participants with DM1 and, for comparison, two participants with Alzheimer's Disease (AD). Participants underwent cognitive screening and social cognition testing using the Dépistage Cognitif de Québec (DCQ), among other tests. Biomarkers included Tau PET with [18F]-AV-1451, CSF (Aβ, Tau, phospho-Tau), and plasma (Aβ, Tau, Nf-L, GFAP) studies. RESULTS Of the twelve DM1 participants, seven completed the full protocol (Neurocognition 11/12; PET 7/12, CSF 9/12, plasma 12/12). Three DM1 participants were cognitively impaired (CI). On average, CI DM1 participants had lower scores on the DCQ compared to cognitively unimpaired (CU) DM1 participants (75.5/100 vs. 91.4/100) and were older (54 vs. 44 years old) but did not differ in years of education (11.3 vs. 11.1). The majority (6/7) of DM1 participants had no appreciable PET signal. Only one of the CI participants presented with elevated Tau PET SUVR in bilateral medial temporal lobes. This participant was the eldest and most cognitively impaired, and had the lowest CSF Aβ 1-42 and the highest CSF Tau levels, all suggestive of co-existing AD. CSF Tau and phospho-Tau levels were higher in the 3 CI compared to CU DM1 participants, but with a mean value lower than that typically observed in AD. Nf-L and GFAP were elevated in most DM1 participants (9/11 and 8/11, respectively). Finally, CSF phospho-Tau was significantly correlated with plasma Nf-L concentrations. CONCLUSIONS AND RELEVANCE We observed heterogenous cognitive and biomarker profiles in individuals with DM1. While some participants presented with abnormal PET and/or CSF Tau, these patterns were highly variable and only present in a small subset. Although DM1 may indeed represent a non-AD Tauopathy, the Tau-PET tracer used in this study was unable to detect an in vivo Tau DM1 signature in this small cohort. Interestingly, most DM1 participants presented with elevated plasma Nf-L and GFAP levels, suggestive of other, possibly related, central brain alterations which motivate further research. This pioneering study provides novel insights towards the potential relationship between biomarkers and neurocognitive deficits commonly seen in DM1.
Collapse
Affiliation(s)
- Robert Jr Laforce
- Clinique Interdisciplinaire de Mémoire, CHU de Québec, Québec, QC, Canada.
| | | | | | | | | | - Elizabeth Poulin
- Clinique Interdisciplinaire de Mémoire, CHU de Québec, Québec, QC, Canada
| | - Anne-Marie Cayer
- Clinique Interdisciplinaire de Mémoire, CHU de Québec, Québec, QC, Canada
| | | | | | - Frédéric St-Onge
- Clinique Interdisciplinaire de Mémoire, CHU de Québec, Québec, QC, Canada
| | - Susanna Schraen-Maschke
- Université de Lille, Inserm UMRS1172, CHU Lille, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| | | | - Nicolas Sergeant
- Université de Lille, Inserm UMRS1172, CHU Lille, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| | - Jack Puymirat
- Clinique Interdisciplinaire de Mémoire, CHU de Québec, Québec, QC, Canada
| |
Collapse
|
11
|
Peric S, Gunjic I, Delic N, Stojiljkovic Tamas O, Salak-Djokic B, Pesovic J, Petrovic Djordjevic I, Ivanovic V, Savic-Pavicevic D, Meola G, Rakocevic-Stojanovic V. Cognitive assessment in patients with myotonic dystrophy type 2. Neuromuscul Disord 2022; 32:743-748. [PMID: 35879188 DOI: 10.1016/j.nmd.2022.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
Abstract
Myotonic dystrophy type 2 (DM2) is an autosomal dominant multisystemic disorder. Previous studies conducted on small cohorts of DM2 patients indicated presence of a cognitive dysfunction. We aimed to assess cognitive functions in a larger cohort of Serbian DM2 patients using an extensive battery of neuropsychological tests. The study included 76 patients with a genetically confirmed DM2, 68 of whom had all tests for different cognitive domains performed. Patients underwent clinical and neuropsychological testing, including cognitive screening and assessment of general intellectual level, attention, executive and visuospatial abilities, memory, and language functions. Only 6% of patients achieved a below-average score on the general intellectual level test. Cognitive screening tests indicated presence of cognitive deficits in 5.5% of patients according to the Mini Mental State Examination test and 25.8% according to the Addenbrooke's Cognitive Examination Revised test. Twenty-four (35.3%) patients had a cognitive impairment (being two standard deviations out of norm in at least two cognitive domains). Around one quarter of DM2 patients had a significant cognitive impairment that interfered with their everyday functioning. Patients with significant cognitive impairment were older at testing and at disease onset, less educated, and had more severe muscle weakness.
Collapse
Affiliation(s)
- Stojan Peric
- University Clinical Center of Serbia, Neurology Clinic, Dr Subotic Street 6, 11000 Belgrade, Serbia; University of Belgrade, Faculty of Medicine, Dr Subotic Street 8, 11000 Belgrade, Serbia.
| | - Ilija Gunjic
- University of Belgrade, Faculty of Medicine, Dr Subotic Street 8, 11000 Belgrade, Serbia
| | - Neda Delic
- University of Belgrade, Faculty of Medicine, Dr Subotic Street 8, 11000 Belgrade, Serbia
| | - Olivera Stojiljkovic Tamas
- University Clinical Center of Serbia, Neurology Clinic, Dr Subotic Street 6, 11000 Belgrade, Serbia; University of Belgrade, Faculty of Medicine, Dr Subotic Street 8, 11000 Belgrade, Serbia
| | - Biljana Salak-Djokic
- University Clinical Center of Serbia, Neurology Clinic, Dr Subotic Street 6, 11000 Belgrade, Serbia
| | - Jovan Pesovic
- University of Belgrade, Faculty of Biology, Studentski trg 16, Belgrade, Serbia
| | - Ivana Petrovic Djordjevic
- University of Belgrade, Faculty of Medicine, Dr Subotic Street 8, 11000 Belgrade, Serbia; University Clinical Center of Serbia, Cardiology Clinic, Pasterova 2, 11000 Belgrade, Serbia
| | - Vukan Ivanovic
- University Clinical Center of Serbia, Neurology Clinic, Dr Subotic Street 6, 11000 Belgrade, Serbia
| | | | - Giovanni Meola
- Department of Neurorehabilitation Sciences, Casa Di Cura del Policlinico, Department of Biomedical Sciences for Health, University of Milan, Via Dezza 48, 20144 Milan, Italy
| | - Vidosava Rakocevic-Stojanovic
- University Clinical Center of Serbia, Neurology Clinic, Dr Subotic Street 6, 11000 Belgrade, Serbia; University of Belgrade, Faculty of Medicine, Dr Subotic Street 8, 11000 Belgrade, Serbia
| |
Collapse
|
12
|
Morin A, Funkiewiez A, Routier A, Le Bouc R, Borderies N, Galanaud D, Levy R, Pessiglione M, Dubois B, Eymard B, Michon CC, Angeard N, Behin A, Laforet P, Stojkovic T, Azuar C. Unravelling the impact of frontal lobe impairment for social dysfunction in myotonic dystrophy type 1. Brain Commun 2022; 4:fcac111. [PMID: 35611304 PMCID: PMC9123843 DOI: 10.1093/braincomms/fcac111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 01/14/2022] [Accepted: 05/13/2022] [Indexed: 01/18/2023] Open
Abstract
Abstract
Myotonic dystrophy type 1 is an autosomal dominant multisystemic disorder affecting muscular and extra muscular systems, including the central nervous system. Cerebral involvement in myotonic dystrophy type 1 is associated with subtle cognitive and behavioural disorders, of major impact on socio-professional adaptation. The social dysfunction and its potential relation to frontal lobe neuropsychology remain under-evaluated in this pathology. The neuroanatomical network underpinning that disorder is yet to disentangle. Twenty-eight myotonic dystrophy type 1 adult patients (mean age: 46 years old) and 18 age and sex-matched healthy controls were included in the study. All patients performed an exhaustive neuropsychological assessment with a specific focus on frontal lobe neuropsychology (motivation, social cognition and executive functions). Among them, 18 myotonic dystrophy type 1 patients and 18 healthy controls had a brain MRI with T1 and T2 Flair sequences. Grey matter segmentation, Voxel-based morphometry and cortical thickness estimation were performed with Statistical Parametric Mapping Software SPM12 and Freesurfer software. Furthermore, T2 white matter lesions and subcortical structures were segmented with Automated Volumetry Software. Most patients showed significant impairment in executive frontal functions (auditory working memory, inhibition, contextualization and mental flexibility). Patients showed only minor difficulties in social cognition tests mostly in cognitive Theory of Mind, but with relative sparing of affective Theory of Mind and emotion recognition. Neuroimaging analysis revealed atrophy mostly in the parahippocampal and hippocampal regions and to a lesser extent in basal ganglia, regions involved in social navigation and mental flexibility, respectively. Social cognition scores were correlated with right parahippocampal gyrus atrophy. Social dysfunction in myotonic dystrophy type 1 might be a consequence of cognitive impairment regarding mental flexibility and social contextualization rather than a specific social cognition deficit such as emotion recognition. We suggest that both white matter lesions and grey matter disease could account for this social dysfunction, involving, in particular, the frontal-subcortical network and the hippocampal/arahippocampal regions, brain regions known, respectively, to integrate contextualization and social navigation.
Collapse
Affiliation(s)
- Alexandre Morin
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
- Service de Neurologie, CHU Rouen, Centre National de Référence Maladie d’Alzheimer du sujet jeune, 76000 Rouen, France
| | - Aurelie Funkiewiez
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
- Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer, Centre National Démences Rares, Hôpital Pitié-Salpêtrière, APHP, 75013 Paris, France
| | - Alexandre Routier
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
| | - Raphael Le Bouc
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
- Urgences cérébro-vasculaires, Hôpital de la Pitié-Salpêtrière, AP-HP, 75013 Paris, France
| | - Nicolas Borderies
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
| | - Damien Galanaud
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
- Service de Neuroradiologie, Hôpital Pitié-Salpêtrière, APHP, 75013 Paris, France
| | - Richard Levy
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
- Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer, Centre National Démences Rares, Hôpital Pitié-Salpêtrière, APHP, 75013 Paris, France
- Unité de Neuro-Psychiatrie Comportementale (IHU), Hôpital de la Pitié-Salpêtrière, AP-HP, 75013 Paris, France
| | - Mathias Pessiglione
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
| | - Bruno Dubois
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
- Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer, Centre National Démences Rares, Hôpital Pitié-Salpêtrière, APHP, 75013 Paris, France
| | - Bruno Eymard
- Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hospital Pitié-Salpêtrière, APHP, 75013 Paris, France
| | - Claire-Cecile Michon
- Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hospital Pitié-Salpêtrière, APHP, 75013 Paris, France
| | - Nathalie Angeard
- U1129, Paris Descartes University, Sorbonne Paris Cité, Paris, France
- Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, APHP, Paris, France
| | - Anthony Behin
- Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hospital Pitié-Salpêtrière, APHP, 75013 Paris, France
| | - Pascal Laforet
- Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hospital Raymond Poincaré, APHP, 92380 Garches, France
| | - Tanya Stojkovic
- Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hospital Pitié-Salpêtrière, APHP, 75013 Paris, France
| | - Carole Azuar
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
- Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer, Centre National Démences Rares, Hôpital Pitié-Salpêtrière, APHP, 75013 Paris, France
| |
Collapse
|
13
|
Nicoletti TF, Rossi S, Vita MG, Perna A, Guerrera G, Lino F, Iacovelli C, Di Natale D, Modoni A, Battistini L, Silvestri G. Elevated serum Neurofilament Light chain (NfL) as a potential biomarker of neurological involvement in Myotonic Dystrophy type 1 (DM1). J Neurol 2022; 269:5085-5092. [PMID: 35575811 PMCID: PMC9363395 DOI: 10.1007/s00415-022-11165-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/03/2022]
Abstract
Background Cognitive and behavioural symptoms due to involvement of the central nervous system (CNS) are among the main clinical manifestations of Myotonic Dystrophy type 1 (DM1). Such symptoms affect patients’ quality of life and disease awareness, impacting on disease prognosis by reducing compliance to medical treatments. Therefore, CNS is a key therapeutic target in DM1. Deeper knowledge of DM1 pathogenesis is prompting development of potential disease-modifying therapies: as DM1 is a rare, multisystem and slowly progressive disease, there is need of sensitive, tissue-specific prognostic and monitoring biomarkers in view of forthcoming clinical trials. Circulating Neurofilament light chain (NfL) levels have been recognized as a sensitive prognostic and monitoring biomarker of neuroaxonal damage in various CNS disorders. Methods We performed a cross-sectional study in a cohort of 40 adult DM1 patients, testing if serum NfL might be a potential biomarker of CNS involvement also in DM1. Moreover, we collected cognitive data, brain MRI, and other DM1-related diagnostic findings for correlation studies. Results Mean serum NfL levels resulted significantly higher in DM1 (25.32 ± 28.12 pg/ml) vs 22 age-matched healthy controls (6.235 ± 0.4809 pg/ml). Their levels positively correlated with age, and with one cognitive test (Rey’s Auditory Verbal learning task). No correlations were found either with other cognitive data, or diagnostic parameters in the DM1 cohort. Conclusions Our findings support serum NfL as a potential biomarker of CNS damage in DM1, which deserves further evaluation on larger cross-sectional and longitudinal studies to test its ability in assessing brain disease severity and/or progression. Supplementary Information The online version contains supplementary material available at 10.1007/s00415-022-11165-0.
Collapse
|
14
|
Liu J, Guo ZN, Yan XL, Yang Y, Huang S. Brain Pathogenesis and Potential Therapeutic Strategies in Myotonic Dystrophy Type 1. Front Aging Neurosci 2021; 13:755392. [PMID: 34867280 PMCID: PMC8634727 DOI: 10.3389/fnagi.2021.755392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy that affects multiple systems including the muscle and heart. The mutant CTG expansion at the 3'-UTR of the DMPK gene causes the expression of toxic RNA that aggregate as nuclear foci. The foci then interfere with RNA-binding proteins, affecting hundreds of mis-spliced effector genes, leading to aberrant alternative splicing and loss of effector gene product functions, ultimately resulting in systemic disorders. In recent years, increasing clinical, imaging, and pathological evidence have indicated that DM1, though to a lesser extent, could also be recognized as true brain diseases, with more and more researchers dedicating to develop novel therapeutic tools dealing with it. In this review, we summarize the current advances in the pathogenesis and pathology of central nervous system (CNS) deficits in DM1, intervention measures currently being investigated are also highlighted, aiming to promote novel and cutting-edge therapeutic investigations.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Xiu-Li Yan
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Shuo Huang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| |
Collapse
|
15
|
Hanoun S, Sun Y, Ebrahimi F, Ghasemi M. Speech and language abnormalities in myotonic dystrophy: An overview. J Clin Neurosci 2021; 96:212-220. [PMID: 34789418 DOI: 10.1016/j.jocn.2021.10.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/30/2021] [Accepted: 10/24/2021] [Indexed: 12/26/2022]
Abstract
Myotonic dystrophy (DM) is an autosomal dominant neuromuscular and multisystem disease that is divided into two types, DM1 and DM2, according to mutations in DMPK and CNBP genes, respectively. DM patients may manifest with various speech and language abnormalities. In this review, we had an overview on speech and language abnormalities in both DM1 and DM2. Our literature search highlights that irrespective of age, all DM patients (i.e. congenital, juvenile, and adult onset DM1 as well as DM2 patients) exhibit various degrees of speech impairments. These problems are related to both cognitive dysfunction (e.g. difficulties in written and spoken language) and bulbar/vocal muscles weakness and myotonia. DM1 adult patients have also a significant decrease in speech rate and performance due to myotonia and flaccid dysarthria, which can improve with warming up. Weakness, tiredness, and hypotonia of oral and velopharyngeal muscles can cause flaccid dysarthria. Hearing impairment also plays a role in affecting speech recognition in DM2. A better understanding of different aspects of speech and language abnormalities in DM patients may provide better characterization of these abnormalities as markers that can be potentially used as outcome measures in natural history studies or clinical trials.
Collapse
Affiliation(s)
- Sakhaa Hanoun
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Department of Medicine, Al-Quds University, Jerusalem, Palestine
| | - Yuyao Sun
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Farzad Ebrahimi
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA; Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
16
|
Lee JY, Jeong HN. Nationwide incidence of myotonic dystrophy type 1 and the status of multi-organ involvement. J Neurol 2021; 269:2666-2672. [PMID: 34704149 DOI: 10.1007/s00415-021-10875-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE This study aimed to investigate the incidence of myotonic dystrophy type 1 (DM1) and the status of multi-organ involvement. METHODS This was a nationwide, population-based, cohort study using data from the Korean National Health Claims database. All patients with DM1 from the entire population aged ≤ 80 years were included. To identify possible systemic diseases along with DM1, we searched for concurrent codes for systemic diseases. To assess the recent status of systemic evaluation, concurrent codes for various diagnostic and treatment modalities were collected. Cumulative incidence during 2016-2019 was first evaluated then systemic evaluation for those patients was assessed during 2010-2019. RESULTS A total of 387 patients (47.8% men) during the recent 4-year study period (2016-2019) were diagnosed with DM1. The cumulative incidence in the general population was 0.77 (95% confidence interval: 0.76-0.77) per 100,000 persons. In newly developed incidental cases, cardiac involvement developed in 51.2%, pneumonia in 30.7%, diabetes in 26.9%, brain involvement in 18.1%, cataract in 13.7%, and cancers in 5.4% of total patients. Electrocardiography was performed in 93.8%, Holter in 33.9%, and echocardiography in 31.3% of the total patients for cardiac evaluation. CONCLUSIONS The incidence estimates of DM1 in the Asian population were lower than those of Caucasians. This study provides the real situation of screening and treatment for systemic diseases related to DM1. These detailed estimates could promote an understanding of the current disease status and allow for appropriate planning within the healthcare system.
Collapse
Affiliation(s)
- Ju-Yeun Lee
- Department of Ophthalmology, Myongji Hospital, Hanyang University College of Medicine, Goyang, South Korea.,Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea.,Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, South Korea
| | - Ha-Neul Jeong
- Department of Neurology, Myongji Hospital, Hanyang University College of Medicine, 55, Hwasu-ro 14, Deogyang-gu, Goyang-si, Gyeonggi-do, 10475, Republic of Korea. .,Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Peric S, Rakocevic-Stojanovic V, Meola G. Cerebral involvement and related aspects in myotonic dystrophy type 2. Neuromuscul Disord 2021; 31:681-694. [PMID: 34244019 DOI: 10.1016/j.nmd.2021.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/18/2023]
Abstract
Myotonic dystrophy type 2 (DM2) is an autosomal dominant multisystemic disorder caused by CCTG repeats expansion in the first intron of the CNBP gene. In this review we focus on the brain involvement in DM2, including its pathogenic mechanisms, microstructural, macrostructural and functional brain changes, as well as the effects of all these impairments on patients' everyday life. We also try to understand how brain abnormalities in DM2 should be adequately measured and potentially treated. The most important pathogenetic mechanisms in DM2 are RNA gain-of-function and repeat-associated non-ATG (RAN) translation. One of the main neuroimaging findings in DM2 is the presence of diffuse periventricular white matter hyperintensity lesions (WMHLs). Brain atrophy has been described in DM2 patients, but it is not clear if it is mostly caused by a decrease of the white or gray matter volume. The most commonly reported specific cognitive symptoms in DM2 are dysexecutive syndrome, visuospatial and memory impairments. Fatigue, sleep-related disorders and pain are also frequent in DM2. The majority of key symptoms and signs in DM2 has a great influence on patients' daily lives, their psychological status, economic situation and quality of life.
Collapse
Affiliation(s)
- Stojan Peric
- Neurology Clinic, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Giovanni Meola
- Department of Neurorehabilitation Sciences, Casa Di Cura del Policlinico, Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
18
|
Theodosiou T, Christidi F, Xirou S, Bede P, Karavasilis E, Papadopoulos C, Kourtesis P, Pantoleon V, Kararizou E, Papadimas G, Zalonis I. Neuropsychological Assessment Should Always be Considered in Myotonic Dystrophy Type 2. Cogn Behav Neurol 2021; 34:1-10. [PMID: 33652465 DOI: 10.1097/wnn.0000000000000263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 07/21/2020] [Indexed: 11/26/2022]
Abstract
Myotonic dystrophies (DMs) are hereditary, multisystem, slowly progressive myopathies. One of the systems they affect is the CNS. In contrast to the well-established cognitive profile of myotonic dystrophy type 1 (DM1), only a few studies have investigated cognitive dysfunction in individuals with myotonic dystrophy type 2 (DM2), and their findings have been inconsistent. To identify the most commonly affected cognitive domains in individuals with DM2, we performed a formal comprehensive review of published DM2 studies. Using the terms "myotonic dystrophy type 2" AND "cognitive deficits," "cognitive," "cognition," "neuropsychological," "neurocognitive," and "neurobehavioral" in all fields, we conducted an advanced search on PubMed. We read and evaluated all of the available original research articles (13) and one case study, 14 in total, and included them in our review. Most of the research studies of DM2 reported primary cognitive deficits in executive functions (dysexecutive syndrome), memory (short-term nonverbal, verbal episodic memory), visuospatial/constructive-motor functions, and attention and processing speed; language was rarely reported to be affected. Based on the few neuroimaging and/or multimodal DM2 studies we could find, the cognitive profile of DM2 is associated with brain abnormalities in several secondary and high-order cortical and subcortical regions and associative white matter tracts. The limited sample size of individuals with DM2 was the most prominent limitation of these studies. The multifaceted profile of cognitive deficits found in individuals with DM2 highlights the need for routine neuropsychological assessment at both baseline and follow-up, which could unveil these individuals' cognitive strengths and deficits.
Collapse
Affiliation(s)
- Thomas Theodosiou
- First Department of Neurology, Medical School, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Foteini Christidi
- First Department of Neurology, Medical School, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Sofia Xirou
- First Department of Neurology, Medical School, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Peter Bede
- Biomedical Imaging Laboratory, Sorbonne University, National Center for Scientific Research, National Institute of Health and Medical Research, Paris, France
- Computational Neuroimaging Group, Trinity College, Dublin, Ireland
| | - Efstratios Karavasilis
- Radiology and Medical Imaging Research Unit, Second Department of Radiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Papadopoulos
- First Department of Neurology, Medical School, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Kourtesis
- Human Cognitive Neuroscience, Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Varvara Pantoleon
- Radiology and Medical Imaging Research Unit, Second Department of Radiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Kararizou
- First Department of Neurology, Medical School, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - George Papadimas
- First Department of Neurology, Medical School, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Zalonis
- First Department of Neurology, Medical School, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
19
|
Suwazono S, Arao H, Ueda Y, Maedou S. Event-related potentials using the auditory novel paradigm in patients with myotonic dystrophy. J Neurol 2021; 268:2900-2907. [PMID: 33609153 DOI: 10.1007/s00415-021-10465-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 11/30/2022]
Abstract
Many neuropsychological disorders, especially attentional abnormality, are present in patients with myotonic dystrophy type 1 (DM1), but the underlying mechanisms remain unclear. This study aimed to evaluate attention function by auditory event-related potential (ERP) P3a (novelty paradigm) in DM1 patients. A total of 10 young DM1 patients (mean age 30.4 years) and 14 age-matched normal controls participated in this study. ERPs were recorded using an auditory novel paradigm, consisting of three types of stimuli, i.e., standard sound (70%), target sound (20%), and various novel sounds (10%), and participants pressed buttons to the target sounds. ERP components P3b after the target stimuli and P3a following the novel stimuli were analyzed. Correlations of neuropsychological evaluations with the amplitudes and latencies of P3b and P3a were analyzed in DM1 patients. We found that P3a latency was significantly delayed in patients with DM1 compared with normal controls, although the latency and amplitude of P3b in DM1 patients were comparable with those in normal controls. The achievement rates of both the Symbol Digit Modality Test and the Paced Auditory Serial Addition Test were significantly correlated with P3a amplitude, as well as P3b amplitude. These results suggest that ERPs, including P3a and P3b, provide important insights into the physiological basis of neuropsychological abnormalities in patients with DM1, especially from the viewpoint of the frontal lobe and attention function.
Collapse
Affiliation(s)
- Shugo Suwazono
- Department of Neurology and Center for Clinical Neuroscience, National Hospital Organization Okinawa National Hospital, 3-20-14 Ganeko, Ginowan, 901-2214, Japan.
| | - Hiroshi Arao
- Department of Human Sciences, Taisho University, Tokyo, Japan
| | - Yukihiko Ueda
- Department of Human Welfare, Okinawa International University, Ginowan, Japan
| | - Shino Maedou
- Department of Human Welfare, Okinawa International University, Ginowan, Japan
| |
Collapse
|
20
|
Meola G. Myotonic dystrophy type 2: the 2020 update. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2020; 39:222-234. [PMID: 33458578 PMCID: PMC7783423 DOI: 10.36185/2532-1900-026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022]
Abstract
The myotonic dystrophies are the commonest cause of adult-onset muscular dystrophy. Phenotypes of DM1 and DM2 are similar, but there are some important differences, including the presence or absence of congenital form, muscles primarily affected (distal vs proximal), involved muscle fiber types (type 1 vs type 2 fibers), and some associated multisystemic phenotypes. There is currently no cure for the myotonic dystrophies but effective management significantly reduces the morbidity and mortality of patients. For the enormous understanding of the molecular pathogenesis of myotonic dystrophy type 1 and myotonic dystrophy type 2, these diseases are now called "spliceopathies" and are mediated by a primary disorder of RNA rather than proteins. Despite clinical and genetic similarities, myotonic dystrophy type 1 and type 2 are distinct disorders requiring different diagnostic and management strategies. Gene therapy for myotonic dystrophy type 1 and myotonic dystrophy type 2 appears to be very close and the near future is an exciting time for clinicians and patients.
Collapse
Affiliation(s)
- Giovanni Meola
- Department of Biomedical Sciences for Health, University of Milan, Italy.,Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, Milan, Italy
| |
Collapse
|
21
|
Longitudinal study in patients with myotonic dystrophy type 1: correlation of brain MRI abnormalities with cognitive performances. Neuroradiology 2020; 63:1019-1029. [PMID: 33237431 DOI: 10.1007/s00234-020-02611-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE Myotonic dystrophy type 1 (DM1) is a muscular dystrophy with neurological, cognitive, and radiological abnormalities. The developmental or degenerative nature of these abnormalities, and their progression over time, remains unclear. The aim of this study is to perform a longitudinal assessment of imaging and cognitive performances in a group of patients with DM1. METHODS A longitudinal observational study was conducted in a group of 33 DM1 patients. All patients underwent cognitive and MRI evaluation, including the use of structural and diffusion tensor imaging techniques, at baseline and follow-up evaluation (4 years). Longitudinal changes in white matter lesion (WML), volumetric analysis, and diffusivity values were assessed and correlated with neuropsychological test findings. RESULTS An increase in WML was observed in 16 patients (48.5%). An increase in ventricular system volume and a decrease in volume of the left thalamus, caudates, putamen, and hippocampus were observed (p < 0.001). Global cortical volume showed a significant decrease (p < 0.001), although no changes were observed in white matter volume. A significant increase in mean diffusivity and decrease in fractional anisotropy for the white matter were found (p < 0.001). Neuropsychological evaluation showed a significant deterioration in test performance that measures working memory (Letter-Number Sequencing, p = 0.049) and visuospatial skills (Benton Visual Retention Test, p = 0.001). These findings were significantly associated with WML load (working memory p = 0.002 and visuospatial skills p = 0.021) and mean diffusivity increase (visuospatial skills p = 0.003 in the corpus callosum and working memory p = 0.043 in the right cerebral white matter). CONCLUSION White matter and grey matter involvement in DM1 patients is progressive. Patients experience a worsening in cognitive impairment that correlates with white matter involvement. These findings support the neurodegenerative nature of this disease.
Collapse
|
22
|
Simoncini C, Spadoni G, Lai E, Santoni L, Angelini C, Ricci G, Siciliano G. Central Nervous System Involvement as Outcome Measure for Clinical Trials Efficacy in Myotonic Dystrophy Type 1. Front Neurol 2020; 11:624. [PMID: 33117249 PMCID: PMC7575726 DOI: 10.3389/fneur.2020.00624] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/28/2020] [Indexed: 01/18/2023] Open
Abstract
Increasing evidences indicate that in Myotonic Dystrophy type 1 (DM1 or Steinert disease), an autosomal dominant multisystem disorder caused by a (CTG)n expansion in DMPK gene on chromosome 19q13. 3, is the most common form of inherited muscular dystrophy in adult patients with a global prevalence of 1/8000, and involvement of the central nervous system can be included within the core clinical manifestations of the disease. Variable in its severity and progression rate over time, likely due to the underlying causative molecular mechanisms; this component of the clinical picture presents with high heterogeneity involving cognitive and behavioral alterations, but also sensory-motor neural integration, and in any case, significantly contributing to the disease burden projected to either specific functional neuropsychological domains or quality of life as a whole. Principle manifestations include alterations of the frontal lobe function, which is more prominent in patients with an early onset, such as in congenital and childhood onset forms, here associated with severe intellectual disabilities, speech and language delay and reduced IQ-values, while in adult onset DM1 cognitive and neuropsychological findings are usually not so severe. Different methods to assess central nervous system involvement in DM1 have then recently been developed, these ranging from more classical psychometric and cognitive functional instruments to sophisticated psycophysic, neurophysiologic and especially computerized neuroimaging techniques, in order to better characterize this disease component, at the same time underlining the opportunity to consider it a suitable marker on which measuring putative effectiveness of therapeutic interventions. This is the reason why, as outlined in the conclusive section of this review, the Authors are lead to wonder, perhaps in a provocative and even paradoxical way to arise the question, whether or not the myologist, by now the popular figure in charge to care of a patient with the DM1, needs to remain himself a neurologist to better appreciate, evaluate and speculate on this important aspect of Steinert disease.
Collapse
Affiliation(s)
- Costanza Simoncini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giulia Spadoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elisa Lai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lorenza Santoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Giulia Ricci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
23
|
Gutschmidt K, Wenninger S, Montagnese F, Schoser B. Dyslexia and cognitive impairment in adult patients with myotonic dystrophy type 1: a clinical prospective analysis. J Neurol 2020; 268:484-492. [PMID: 32851461 PMCID: PMC7880941 DOI: 10.1007/s00415-020-10161-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Cognitive impairments in patients with myotonic dystrophy type 1 (DM1) have often been described, however, there are only few studies differentiating between partial performance disorders and mental retardation in common. This study focused on the evaluation of reading performance and the frequency of dyslexia in adult DM1 patients. METHODS We performed a prospective cohort study including genetically confirmed adult DM1 patients registered in the DM registry of Germany or the internal database of the Friedrich-Baur-Institute, Munich, Germany. For the assessment of the patients' reading and spelling performance, we used the standardized and validated test 'Salzburger Lese- und Rechtschreibtest' (SLRT II). The 'CFT-20 R Grundintelligenztest Skala 2' in revised ("R") version (CFT 20-R), determining the intelligence level, was appropriate to differentiate between dyslexia and general mental retardation. The diagnosis of dyslexia, the combined reading and spelling disorder, was based on the guidelines for diagnosis and therapy of children and adolescents with dyslexia 2015 (S3-guideline) providing (1) the criterion of the divergence from age level and (2) the criterion of IQ-divergence. RESULTS Fifty-seven DM1 patients participated in our study. Evaluating the reading performance, 16 patients fulfilled the divergence criteria of the age level and 2 patients the IQ-divergence criteria. In total, the diagnosis of a reading disorder was given in 18 DM1 patients (31.6 %). In 11 out of these 18 patients with a reading disorder, a relevant impairment of spelling performance was observed with at least three spelling errors. As there are no normative values for adults in spelling performance, we assume a combined reading disorder and dyslexia, in those 11 DM1 patients (19.3 %). Regarding the separate analyses of the test procedures, in the SLRT II the performance was below average in 40.4 % of all patients for 'word reading' and in 61.4 % of all patients for 'pseudoword reading'. There was a significant positive correlation between the CTG expansion size and a reading disorder (p=0.027). The average IQ of 17 examined DM1 patients was in the lower normal range (86.1 ± 19.1). 54.5 % of patients with reading disorder had a normal IQ. CONCLUSION The calculated prevalence of dyslexia in the DM1 study cohort was 19.3 % and thus considerably increased compared to the normal German population. As dyslexia is not equivalent to a general cognitive impairment, it is important not to miss dyslexic features in cognitive inconspicuous DM1 patients. Case-by-case one should consider a differential diagnostic approach, as individualized therapies can be offered to support dyslexic patients in their performance.
Collapse
Affiliation(s)
- K Gutschmidt
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Ziemssenstr. 1a, 80336, Munich, Germany
| | - S Wenninger
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Ziemssenstr. 1a, 80336, Munich, Germany
| | - F Montagnese
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Ziemssenstr. 1a, 80336, Munich, Germany
| | - B Schoser
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Ziemssenstr. 1a, 80336, Munich, Germany.
| |
Collapse
|
24
|
Abstract
OBJECTIVE This study explored mental rotation (MR) performance in patients with myotonic dystrophy 1 (DM1), an inherited neuromuscular disorder dominated by muscular symptoms, including muscle weakness and myotonia. The aim of the study was twofold: to gain new insights into the neurocognitive mechanisms of MR and to better clarify the cognitive profile of DM1 patients. To address these aims, we used MR tasks involving kinds of stimuli that varied for the extent to which they emphasized motor simulation and activation of body representations (body parts) versus visuospatial imagery (abstract objects). We hypothesized that, if peripheral sensorimotor feedback system plays a pivotal role in modulating MR performance, then DM1 patients would exhibit more difficulties in mentally rotating hand stimuli than abstract objects. METHOD Twenty-four DM1 patients and twenty-four age- and education-matched control subjects were enrolled in the study and were required to perform two computerized MR tasks involving pictures of hands and abstract objects. RESULTS The analysis of accuracy showed that patients had impaired MR performance when the angular disparities between the stimuli were higher. Notably, as compared to controls, patients showed slower responses when the stimuli were hands, whereas no significant differences when stimuli were objects. CONCLUSION The findings are coherent with the embodied cognition view, indicating a tight relation between body- and motor-related processes and MR. They suggest that peripheral, muscular, abnormalities in DM1 lead to alterations in manipulation of motor representations, which in turn affect MR, especially when body parts are to mentally rotate.
Collapse
|
25
|
Santana LM, Valadares EDJA, Rosa-Júnior M. Differential diagnosis of temporal lobe lesions with hyperintense signal on T2-weighted and FLAIR sequences: pictorial essay. Radiol Bras 2020; 53:129-136. [PMID: 32336830 PMCID: PMC7170575 DOI: 10.1590/0100-3984.2018.0117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Various neuropathologies produce hyperintense signals on T2-weighted or fluid-attenuated inversion recovery sequences of the temporal lobes. Recognition of the distribution pattern and associated findings may narrow the spectrum of differential diagnoses or suggest a specific disease. This pictorial essay aims to illustrate the relatively common diseases that affect the temporal lobe, such as herpes simplex encephalitis, neurosyphilis, limbic encephalitis, postictal edema, neoplasia, and multiple sclerosis, as well as those that are less common, such as myotonic dystrophy type 1, CADASIL, and CARASIL, together with the particularities of each entity.
Collapse
Affiliation(s)
- Larissa Marques Santana
- Hospital Universitário Cassiano Antônio de Moraes da Universidade Federal do Espírito Santo (HUCAM/UFES), Vitória, ES, Brazil
| | | | - Marcos Rosa-Júnior
- Hospital Universitário Cassiano Antônio de Moraes da Universidade Federal do Espírito Santo (HUCAM/UFES), Vitória, ES, Brazil
| |
Collapse
|
26
|
Serra L, Bianchi G, Bruschini M, Giulietti G, Domenico CD, Bonarota S, Petrucci A, Silvestri G, Perna A, Meola G, Caltagirone C, Bozzali M. Abnormal Cortical Thickness Is Associated With Deficits in Social Cognition in Patients With Myotonic Dystrophy Type 1. Front Neurol 2020; 11:113. [PMID: 32180756 PMCID: PMC7059122 DOI: 10.3389/fneur.2020.00113] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/31/2020] [Indexed: 12/15/2022] Open
Abstract
Aim: To investigate the cortical thickness in myotonic dystrophy type 1 (DM1) and its potential association with patients' genetic triplet expansion and social cognition deficits. Methods: Thirty patients with DM1 underwent the Social Cognition Battery Test and magnetic resonance imaging (MRI) scanning at 3 T. Twenty-five healthy subjects (HSs) were enrolled in the study to serve as a control group for structural MRI data. To assess changes in cortical thickness in DM1 patients, they were compared to HSs using a t-test model. Correlations were used to assess potential associations between genetic and clinical characteristics and social cognition performances in the patient group. Additionally, multiple regression models were used to explore associations between cortical thickness, CTG triplet expansion size, and scores obtained by DM1 patients on the Social Cognition Battery. Results: DM1 patients showed low performances in several subtests of the Social Cognition Battery. Specifically, they obtained pathological scores at Emotion Attribution Test (i.e., Sadness, Embarrassment, Happiness, and Anger) and at the Social Situations Test (i.e., recognition of normal situation, recognition of aberrant behavior). Significant negative correlations were found between CTG triplet expansion size and Embarrassment, and Severity of Aberrant Behavior. Similarly, a negative correlation was found between patients' MIRS scores and Sadness. DM1 patients compared to HSs showed reduced thickness in the right premotor cortex, angular gyrus, precuneus, and inferior parietal lobule. Significant associations were found between patients' CTG triplet expansion size and thickness in left postcentral gyrus and in the left primary somatosensory cortex, in the posterior cingulate cortex bilaterally, and in the right lingual gyrus. Finally, significant associations were found between cortical thickness and sadness in the superior temporal gyrus, the right precentral gyrus, the right angular gyrus, and the left medial frontal gyrus bilaterally. DM1 patients showed a negative correlation between cortical thickness in the bilateral precuneus and in the left lateral occipital cortex and performance at the Social Situations Test. Finally, DM1 patients showed a negative correlation between cortical thickness in the left precuneus and in the superior frontal gyrus and scores at the Moral Distinction Test. Discussion: The present study shows both cortical thickness changes in DM1 patients compared to controls and significant associations between cortical thickness and patients' social cognition performances. These data confirm the presence of widespread brain damages associated with cognitive impairment in DM1 patients.
Collapse
Affiliation(s)
- Laura Serra
- Neuroimaging Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | | | | | | | - Sabrina Bonarota
- Neuroimaging Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Antonio Petrucci
- UOC Neurologia e Neurofisiopatologia, AO San Camillo Forlanini, Rome, Italy
| | - Gabriella Silvestri
- Department of Geriatrics, Orthopedic and Neuroscience, Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy
| | - Alessia Perna
- Department of Geriatrics, Orthopedic and Neuroscience, Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy
| | - Giovanni Meola
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milan, Italy
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Marco Bozzali
- Neuroimaging Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy.,Brighton & Sussex Medical School, CISC, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
27
|
Abstract
There is increasing evidence of central nervous system involvement in numerous neuromuscular disorders primarily considered diseases of skeletal muscle. Our knowledge on cerebral affection in myopathies is expanding continuously due to a better understanding of the genetic background and underlying pathophysiological mechanisms. Intriguingly, there is a remarkable overlap of brain pathology in muscular diseases with pathomechanisms involved in neurodegenerative or neurodevelopmental disorders. A rapid progress in advanced neuroimaging techniques results in further detailed insight into structural and functional cerebral abnormalities. The spectrum of clinical manifestations is broad and includes movement disorders, neurovascular complications, paroxysmal neurological symptoms like migraine and epileptic seizures, but also behavioural abnormalities and cognitive dysfunction. Cerebral involvement implies a high socio-economic and personal burden in adult patients sometimes exceeding the everyday challenges associated with muscle weakness. It is especially important to clarify the nature and natural history of brain affection against the background of upcoming specific treatment regimen in hereditary myopathies that should address the brain as a secondary target. This review aims to highlight the character and extent of central nervous system involvement in patients with hereditary myopathies manifesting in adulthood, however also includes some childhood-onset diseases with brain abnormalities that transfer into adult neurological care.
Collapse
Affiliation(s)
- Jens Reimann
- Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Germany
- Center for Rare Diseases, University Hospital Bonn, Germany
| | - Cornelia Kornblum
- Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Germany
- Center for Rare Diseases, University Hospital Bonn, Germany
| |
Collapse
|
28
|
Ates S, Deistung A, Schneider R, Prehn C, Lukas C, Reichenbach JR, Schneider-Gold C, Bellenberg B. Characterization of Iron Accumulation in Deep Gray Matter in Myotonic Dystrophy Type 1 and 2 Using Quantitative Susceptibility Mapping and R2 * Relaxometry: A Magnetic Resonance Imaging Study at 3 Tesla. Front Neurol 2019; 10:1320. [PMID: 31920940 PMCID: PMC6923271 DOI: 10.3389/fneur.2019.01320] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/28/2019] [Indexed: 01/14/2023] Open
Abstract
Quantitative mapping of the magnetic susceptibility and the effective transverse relaxation rate (R2*) are suitable to assess the iron content in distinct brain regions. In this prospective, explorative study the iron accumulation in deep gray matter nuclei (DGM) in myotonic dystrophy type 1 (DM1) and 2 (DM2) and its clinical and neuro-cognitive relevance using susceptibility and R2* mapping was examined. Twelve classical DM1, four childhood-onset DM1 (DM1c.o.), twelve DM2 patients and twenty-nine matched healthy controls underwent MRI at 3 Tesla, neurological and neuro-cognitive tests. Susceptibility, R2* and volumes were determined for eleven DGM structures and compared between patients and controls. Twelve classical DM1, four childhood-onset DM1, and 12 DM2 patients as well as 29 matched healthy controls underwent MRI at 3 Tesla, and neurological and neuro-cognitive tests. Susceptibility, R2* and volumes were determined for 11 DGM structures and compared between patients and controls. Iron accumulation in DGM reflected by R2* or susceptibility was found in the putamen and accumbens of DM1 and in DM2, but was more widespread in DM1 (caudate, pallidum, hippocampus, subthalamic nucleus, thalamus, and substantia nigra). Opposed changes of R2* or susceptibility were detected in caudate, putamen and accumbens in the childhood-onset DM1 patients compared to classical DM1. R2* or susceptibility alterations in DGM were significantly associated with clinical symptoms including muscular weakness (DM1), daytime sleepiness (DM1), depression (DM2), and with specific cognitive deficits in DM1 and DM2.
Collapse
Affiliation(s)
- Sevda Ates
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Andreas Deistung
- Department of Radiology, University Hospital Halle (Saale), Halle (Saale), Germany.,Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller-University, Jena, Germany
| | - Ruth Schneider
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Christian Prehn
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Carsten Lukas
- Institute of Neuroradiology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany.,Department of Diagnostic and Interventional Radiology and Nuclear Medicine, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller-University, Jena, Germany
| | | | - Barbara Bellenberg
- Institute of Neuroradiology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany.,Department of Diagnostic and Interventional Radiology and Nuclear Medicine, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
29
|
Angelini C, Pinzan E. Advances in imaging of brain abnormalities in neuromuscular disease. Ther Adv Neurol Disord 2019; 12:1756286419845567. [PMID: 31105770 PMCID: PMC6503605 DOI: 10.1177/1756286419845567] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 03/05/2019] [Indexed: 01/18/2023] Open
Abstract
Brain atrophy, white matter abnormalities, and ventricular enlargement have been described in different neuromuscular diseases (NMDs). We aimed to provide a comprehensive overview of the substantial advancement of brain imaging in neuromuscular diseases by consulting the main libraries (Pubmed, Scopus and Google Scholar) including the more common forms of muscular dystrophies such as dystrophinopathies, dystroglycanopathies, myotonic dystrophies, facioscapulohumeral dystrophy, limb-girdle muscular dystrophy, congenital myotonia, and congenital myopathies. A consistent, widespread cortical and subcortical involvement of grey and white matter was found. Abnormalities in the functional connectivity in brain networks and metabolic alterations were observed with positron emission tomography (PET) and single photon emission computed tomography (SPECT). Pathological brain changes with cognitive dysfunction seemed to be frequently associated in NMDs. In particular, in congenital muscular dystrophies (CMDs), skeletal muscular weakness, severe hypotonia, WM abnormalities, ventricular dilatation and abnormalities in cerebral gyration were observed. In dystroglycanopathy 2I subtype (LGMD2I), adult patients showed subcortical atrophy and a WM periventricular involvement, moderate ventriculomegaly, and enlargement of subarachnoid spaces. Correlations with clinical features have been observed with brain imaging characteristics and alterations were prominent in congenital or childhood onset cases. In myotonic dystrophy type 2 (DM2) symptoms seem to be less severe than in type 1 (DM1). In Duchenne and Becker muscular dystrophies (DMD, BMD) cortical atrophy is associated with minimal ventricular dilatation and WM abnormalities. Late-onset glycogenosis type II (GSD II) or Pompe infantile forms are characterized by delayed myelination. Only in a few cases of oculopharyngeal muscular dystrophy (OPMD) central nervous system involvement has been described and associated with executive functions impairment.
Collapse
Affiliation(s)
- Corrado Angelini
- Fondazione Ospedale San Camillo IRCCS, Via
Alberoni 70, Venezia, 30126, Italia
| | - Elena Pinzan
- Fondazione Ospedale San Camillo IRCCS, Venezia,
Italia
| |
Collapse
|
30
|
Tracking the brain in myotonic dystrophies: A 5-year longitudinal follow-up study. PLoS One 2019; 14:e0213381. [PMID: 30845252 PMCID: PMC6405094 DOI: 10.1371/journal.pone.0213381] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/19/2019] [Indexed: 12/05/2022] Open
Abstract
Objectives The aim of this study was to examine the natural history of brain involvement in adult-onset myotonic dystrophies type 1 and 2 (DM1, DM2). Methods We conducted a longitudinal observational study to examine functional and structural cerebral changes in myotonic dystrophies. We enrolled 16 adult-onset DM1 patients, 16 DM2 patients, and 17 controls. At baseline and after 5.5 ± 0.4 years participants underwent neurological, neuropsychological, and 3T-brain MRI examinations using identical study protocols that included voxel-based morphometry and diffusion tensor imaging. Data were analyzed by (i) group comparisons between patients and controls at baseline and follow-up, and (ii) group comparisons using difference maps (baseline–follow-up in each participant) to focus on disease-related effects over time. Results We found minor neuropsychological deficits with mild progression in DM1 more than DM2. Daytime sleepiness was restricted to DM1, whereas fatigue was present in both disease entities and stable over time. Comparing results of cross-sectional neuroimaging analyses at baseline and follow-up revealed an unchanged pattern of pronounced white matter alterations in DM1. There was mild additional gray matter reduction in DM1 at follow-up. In DM2, white matter reduction was of lesser extent, but there were some additional alterations at follow-up. Gray matter seemed unaffected in DM2. Intriguingly, longitudinal analyses using difference maps and comparing them between patients and controls did not reveal any significant differences of cerebral changes over time between patients and controls. Conclusion The lack of significant disease-related progression of gray and white matter involvement over a period of five years in our cohort of DM1 and DM2 patients suggests either a rather slowly progressive process or even a stable course of cerebral changes in middle-aged adult-onset patients. Being the first longitudinal neuroimaging trial in DM1 and DM2, this study provides useful additional information regarding the natural history of brain involvement.
Collapse
|
31
|
Pick E, Kleinbub JR, Mannarini S, Palmieri A. Empathy In Neurodegenerative Diseases: A Systematic Review. Neuropsychiatr Dis Treat 2019; 15:3287-3304. [PMID: 31819455 PMCID: PMC6878921 DOI: 10.2147/ndt.s225920] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 10/31/2019] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION Empathy, in its affective and cognitive components, is a crucial interpersonal ability. It is broadly studied in the field of psychopathology, whereas its study in the neurodegenerative diseases is relatively recent. Existing literature, though, focused on a reduced subset of considered diseases, which often found a compromise in empathy abilities. Organized knowledge about a more comprehensive set of diseases is lacking. METHOD The present PRISMA systematic review was aimed at collecting the current available literature concerning empathic alterations in adult patients affected by neurodegenerative diseases. It considered the different empathy components, evaluated existing patterns, the impact on patients' lives, and treatment considerations. RESULTS Overall, the 32 retrieved studies describe a spread deterioration of empathic abilities in patients, with each disease displaying its own pattern of empathy functioning. Literature in this field is fragmented and of heterogeneous quality, and further studies are warranted to increase evidence of many preliminary results. DISCUSSION In conclusion, we highlight the crucial importance of acknowledging empathy deficits in these diseases, showing their repercussion on both patients' and caregivers' quality of life, the establishment of a functional doctor-patient relationship, and the development of efficacious psychological intervention. These clinical approaches can be enriched by the knowledge of the spared abilities of patients affected by neurodegenerative diseases.
Collapse
Affiliation(s)
- Emanuele Pick
- Department of Philosophy, Sociology, Education, and Applied Psychology, University of Padova, Padova, Italy
| | - Johann R Kleinbub
- Department of Philosophy, Sociology, Education, and Applied Psychology, University of Padova, Padova, Italy
| | - Stefania Mannarini
- Department of Philosophy, Sociology, Education, and Applied Psychology, University of Padova, Padova, Italy.,Interdepartmental Center for Family Research, University of Padova, Padova, Italy
| | - Arianna Palmieri
- Department of Philosophy, Sociology, Education, and Applied Psychology, University of Padova, Padova, Italy.,Padova Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
32
|
Abstract
Purpose of Review Muscular dystrophies (MDs) are a spectrum of muscle disorders, which are caused by a number of gene mutations. The studies of MDs are limited due to lack of appropriate models, except for Duchenne muscular dystrophy (DMD), myotonic dystrophy type 1 (DM1), facioscapulohumeral muscular dystrophy (FSHD), and certain type of limb-girdle muscular dystrophy (LGMD). Human induced pluripotent stem cell (iPSC) technologies are emerging to offer a useful model for mechanistic studies, drug discovery, and cell-based therapy to supplement in vivo animal models. This review will focus on current applications of iPSC as disease models of MDs for studies of pathogenic mechanisms and therapeutic development. Recent Findings Many and more human disease-specific iPSCs have been or being established, which carry the natural mutation of MDs with human genomic background. These iPSCs can be differentiated into specific cell types affected in a particular MDs such as skeletal muscle progenitor cells, skeletal muscle fibers, and cardiomyocytes. Human iPSCs are particularly useful for studies of the pathogenicity at the early stage or developmental phase of MDs. High-throughput screening using disease-specific human iPSCs has become a powerful technology in drug discovery. While MD iPSCs have been generated for cell-based replacement therapy, recent advances in genome editing technologies enabled correction of genetic mutations in these cells in culture, raising hope for in vivo genome therapy, which offers a fundamental cure for these daunting inherited MDs. Summary Human disease-specific iPSC models for MDs are emerging as an additional tool to current disease models for elucidating disease mechanisms and developing therapeutic intervention.
Collapse
Affiliation(s)
- Guangbin Xia
- Department of Neurology, College of Medicine, University of New Mexico, Albuquerque, NM USA
| | - Naohiro Terada
- Department of Pathology, Immunology & Laboratory Medicine, College of Medicine, Gainesville, FL USA
| | - Tetsuo Ashizawa
- Houston Methodist Neurological Institute and Research Institute, 6670 Bertner Ave R11-117, Houston, TX USA
| |
Collapse
|
33
|
Callus E, Bertoldo EG, Beretta M, Boveri S, Cardani R, Fossati B, Brigonzi E, Meola G. Neuropsychological and Psychological Functioning Aspects in Myotonic Dystrophy Type 1 Patients in Italy. Front Neurol 2018; 9:751. [PMID: 30298045 PMCID: PMC6160752 DOI: 10.3389/fneur.2018.00751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022] Open
Abstract
Introduction: Myotonic Dystrophy Type 1 (DM1) is an autosomal dominant genetic illness, characterized by a progressive loss of strength. Important deficits in cognitive functioning and a significant prevalence of psychiatric disorders have been previously reported. Methods:A neuropsychological and psychological assessment was carried out in 31 DM1 patients (61% males) in order to measure the cognitive functioning and explore their personality profiles. The MMSE Mini-Mental State Examination, Frontal Assessment Battery (FAB), ENB-2 Battery assessing memory (short term, long term and working memory), integration capacities, visual-spatial ability, attention (selective, divided, shifting/switching) executive functions, praxis, discrimination and logic capabilities and psychopathology Symptom Check List 90-R (SCL-90-R) were administered. The neuropsychological and psychological evaluation of DM1 patients was carried out taking into consideration the clinical parameters (CTG repeat, age at onset, disease duration, Muscular Impairment Rate Scale (MIRS), Medical Research Council Scale (MRC) and the Epworth Sleepiness Scales (EPS)). Results: Regarding psychopathology 19.4% of patients scored a moderate or high level of symptoms intensity index (GSI), 12.9% reported a high number of symptoms (PST) and 16.1% reported a high intensity level of the perceived symptoms (PSDI). Fatigue and daytime sleepiness resulted as being associated with higher levels of psychoticism (PSY). Only 1 patient reported a severe impairment in the spatial and temporal orientation, memory, language, praxis, attention and calculation. Longer disease duration was also associated with cognitive impairment evaluated through ENB-2 (p < 0.05). Discussions and Conclusions:There are indications of the utility of neuropsychological and psychological screening and support for these patients and their families due to the link between disease duration and cognitive performances. A proposal of a clinical protocol, with an illustration of a clinical case report of a family is presented.
Collapse
Affiliation(s)
- Edward Callus
- Clinical Psychology Service, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Enrico G Bertoldo
- Clinical Psychology Service, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Maria Beretta
- Clinical Psychology Service, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Sara Boveri
- Scientific Directorate, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Barbara Fossati
- Department of Neurology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Elisa Brigonzi
- Department of Neurology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Giovanni Meola
- Department of Neurology, IRCCS Policlinico San Donato, San Donato Milanese, Italy.,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
34
|
Minnerop M, Gliem C, Kornblum C. Current Progress in CNS Imaging of Myotonic Dystrophy. Front Neurol 2018; 9:646. [PMID: 30186217 PMCID: PMC6110944 DOI: 10.3389/fneur.2018.00646] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/18/2018] [Indexed: 01/18/2023] Open
Abstract
Neuroimaging in myotonic dystrophies provided a major contribution to the insight into brain involvement which is highly prevalent in these multisystemic disorders. Particular in Myotonic Dystrophy Type 1, conventional MRI first revealed hyperintense white matter lesions, predominantly localized in the anterior temporal lobe. Brain atrophy and ventricle enlargement were additional early findings already described almost 30 years ago. Since then, more advanced and sophisticated imaging methods have been applied in Myotonic Dystrophy Types 1 and 2. Involvement of actually normal appearing white matter and widespread cortical affection in PET studies were key results toward the recognition of diffuse and not only focally localized brain pathology in vivo. Later, structural abnormalities of both, gray and white matter, have been found in both forms of the disorder, albeit more prominent in myotonic dystrophy type 1. In Type 1, a consistent widespread cortical and subcortical involvement of gray and white matter affecting all lobes, brainstem and cerebellum was observed. Spectroscopy studies gave additional evidence of neuronal and glial damage in both types. Central questions regarding the origin and spatiotemporal evolution of the CNS involvement and its relevance for clinical symptoms had already been raised 30 years ago, however are still not answered. Results of correlation analyses between neuroimaging and clinical parameters are diverse and with few exceptions not well reproducible across studies. It may be related to the fact that most of the reported studies included only small numbers of subjects, sometimes even not separating Myotonic Dystrophy Type 1 from Type 2. But this heterogeneity may also support the current point of view that the clinical impairments are not simply linked to specific and regionally circumscribed structural or functional brain alterations. It seems more convincing that disturbed networks build the functional and structural substrate of clinical symptoms in these disorders as it is proposed in other neuropsychiatric diseases. Consecutively, structural and functional network analyses may provide additional information regarding the link between brain pathology and clinical symptoms. Up to now, only cross-sectional neuroimaging studies have been published. To analyze the temporal evolution of brain affection, longitudinal studies are urgently needed, and systematic natural history data would be useful to identify potential biomarkers for therapeutic studies.
Collapse
Affiliation(s)
- Martina Minnerop
- Institute of Neuroscience and Medicine (INM-1), Research Center Juelich, Juelich, Germany.,Department of Neurology and Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Center for Movement Disorders and Neuromodulation, Heinrich-Heine University, Düsseldorf, Germany
| | - Carla Gliem
- Department of Neurology, University Hospital of Bonn, Bonn, Germany
| | - Cornelia Kornblum
- Department of Neurology, University Hospital of Bonn, Bonn, Germany.,Center for Rare Diseases Bonn (ZSEB), University Hospital of Bonn, Bonn, Germany
| |
Collapse
|
35
|
White matter hyperintensities in myotonic dystrophy type 2: Not always another expression of the disease. Mult Scler Relat Disord 2018; 24:117-119. [DOI: 10.1016/j.msard.2018.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/24/2018] [Accepted: 06/28/2018] [Indexed: 10/28/2022]
|
36
|
Spitalieri P, Talarico RV, Murdocca M, Fontana L, Marcaurelio M, Campione E, Massa R, Meola G, Serafino A, Novelli G, Sangiuolo F, Botta A. Generation and Neuronal Differentiation of hiPSCs From Patients With Myotonic Dystrophy Type 2. Front Physiol 2018; 9:967. [PMID: 30100878 PMCID: PMC6074094 DOI: 10.3389/fphys.2018.00967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/02/2018] [Indexed: 02/03/2023] Open
Abstract
Human induced pluripotent stem cells (hiPSCs)-patient specific are an innovative tool to reproduce a model of disease in vitro and summarize the pathological phenotype and the disease etiopathology. Myotonic dystrophy type 2 (DM2) is caused by an unstable (CCTG)n expansion in intron 1 of the CNBP gene, leading to a progressive multisystemic disease with muscle, heart and central nervous dysfunctions. The pathogenesis of CNS involvement in DM2 is poorly understood since no cellular or animal models fully recapitulate the molecular and clinical neurodegenerative phenotype of patients. In this study, we generated for the first time, two DM2 and two wild type hiPSC lines from dermal fibroblasts by polycistronic lentiviral vector (hSTEMCCA-loxP) expressing OCT4, SOX2, KLF4, and cMYC genes and containing loxP-sites, excisable by Cre recombinase. Specific morphological, molecular and immunocytochemical markers have confirmed the stemness of DM2 and wild type-derived hiPSCs. These cells are able to differentiate into neuronal population (NP) expressing tissue specific markers. hiPSCs-derived NP cells maintain (CCTG)n repeat expansion and intranuclear RNA foci exhibiting sequestration of MBNL1 protein, which are pathognomonic of the disease. DM2 hiPSCs represent an important tool for the study of CNS pathogenesis in patients, opening new perspectives for the development of cell-based therapies in the field of personalized medicine and drug screening.
Collapse
Affiliation(s)
- Paola Spitalieri
- Medical Genetics Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Rosa V. Talarico
- Medical Genetics Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Michela Murdocca
- Medical Genetics Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Luana Fontana
- Medical Genetics Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Marzia Marcaurelio
- Medical Genetics Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Elena Campione
- Division of Dermatology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Roberto Massa
- Division of Neurology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giovanni Meola
- Department of Biomedical Science for Health, Policlinico San Donato (IRCCS), University of Milan, Milan, Italy
| | - Annalucia Serafino
- Institute of Translational Pharmacology, Italian National Research Council, Rome, Italy
| | - Giuseppe Novelli
- Medical Genetics Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Istituto Neurologico Mediterraneo (IRCCS), Pozzilli, Italy
| | - Federica Sangiuolo
- Medical Genetics Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Annalisa Botta
- Medical Genetics Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
37
|
Cabada T, Iridoy M, Jericó I, Lecumberri P, Seijas R, Gargallo A, Gomez M. Brain Involvement in Myotonic Dystrophy Type 1: A Morphometric and Diffusion Tensor Imaging Study with Neuropsychological Correlation. Arch Clin Neuropsychol 2018; 32:401-412. [PMID: 28164212 DOI: 10.1093/arclin/acx008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 01/13/2017] [Indexed: 11/12/2022] Open
Abstract
Objective Myotonic dystrophy type 1 (DM1), the most prevalent inherited neuromuscular disease in adults, is a genetic multisystem disorder with a well-established but not well-characterized cerebral involvement. The aim of this study was to evaluate the presence of white matter and gray matter abnormalities in DM1 patients and to investigate their relationship with neurocognitive dysfunction. Methods A total of 42 DM1 patients and 42 healthy controls were included in the study. Clinical, cognitive, and magnetic resonance imaging evaluations, including the use of structural and diffusion tensor imaging (DTI) techniques, were performed. White matter lesion (WML) load, volumetric analysis, and diffusivity changes were assessed and correlated with clinical and neuropsychological test findings. Results WMLs were significantly more frequent in DM1 patients (p < .001), and anterior temporal lobe lesions were only found in the patient group. Global and regional cortical volume loss and corpus callosum atrophy were found. Diffuse white matter DTI abnormalities, including fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity were observed with sparing of the internal capsule. Subcortical structures showed volume loss and increased median diffusivity. Neuropsychological evaluation showed significant impairment in several cognitive functions, but only visuospatial impairment was correlated with white matter abnormalities and cortical atrophy. Daytime sleepiness was associated with WML and ventral diencephalon and pallidum volume loss. Conclusion DM1 produces a widespread involvement of white matter and gray matter, including cortical and subcortical structures. These structural abnormalities are involved in the progressive neuropsychological functional impairment in these patients.
Collapse
Affiliation(s)
- T Cabada
- Radiology Department, Complejo Hospitalario De Navarra,Spain
| | - M Iridoy
- Neurology Department, Complejo Hospitalario De Navarra, Spain
| | - I Jericó
- Neurology Department, Complejo Hospitalario De Navarra, Spain
| | - P Lecumberri
- Mathematics Department, Universidad Publica De Navarra, Spain
| | - R Seijas
- Neurology Department, Complejo Hospitalario De Navarra, Spain
| | - A Gargallo
- Radiology Department, Complejo Hospitalario De Navarra,Spain
| | - M Gomez
- Mathematics Department, Universidad Publica De Navarra, Spain
| |
Collapse
|
38
|
Graham CD, Kemp S, Radakovic R, Kapur N. Clinical neuropsychology in the management of myotonic dystrophy. Muscle Nerve 2018; 57:701-704. [DOI: 10.1002/mus.26085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 11/12/2022]
Affiliation(s)
| | - Steven Kemp
- Department of Clinical Neuropsychology; Leeds Teaching Hospitals NHS Trust, St. James University Hospital; Leeds UK
| | - Ratko Radakovic
- Faculty of Medicine and Health Sciences, Queens Building, University of East Anglia; Norwich UK
| | - Narinder Kapur
- Research Department of Clinical; Educational & Health Psychology, University College; London UK
| |
Collapse
|
39
|
Sugiyama A, Sone D, Sato N, Kimura Y, Ota M, Maikusa N, Maekawa T, Enokizono M, Mori-Yoshimura M, Ohya Y, Kuwabara S, Matsuda H. Brain gray matter structural network in myotonic dystrophy type 1. PLoS One 2017; 12:e0187343. [PMID: 29095898 PMCID: PMC5667809 DOI: 10.1371/journal.pone.0187343] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/18/2017] [Indexed: 11/18/2022] Open
Abstract
This study aimed to investigate abnormalities in structural covariance network constructed from gray matter volume in myotonic dystrophy type 1 (DM1) patients by using graph theoretical analysis for further clarification of the underlying mechanisms of central nervous system involvement. Twenty-eight DM1 patients (4 childhood onset, 10 juvenile onset, 14 adult onset), excluding three cases from 31 consecutive patients who underwent magnetic resonance imaging in a certain period, and 28 age- and sex- matched healthy control subjects were included in this study. The normalized gray matter images of both groups were subjected to voxel based morphometry (VBM) and Graph Analysis Toolbox for graph theoretical analysis. VBM revealed extensive gray matter atrophy in DM1 patients, including cortical and subcortical structures. On graph theoretical analysis, there were no significant differences between DM1 and control groups in terms of the global measures of connectivity. Betweenness centrality was increased in several regions including the left fusiform gyrus, whereas it was decreased in the right striatum. The absence of significant differences between the groups in global network measurements on graph theoretical analysis is consistent with the fact that the general cognitive function is preserved in DM1 patients. In DM1 patients, increased connectivity in the left fusiform gyrus and decreased connectivity in the right striatum might be associated with impairment in face perception and theory of mind, and schizotypal-paranoid personality traits, respectively.
Collapse
Affiliation(s)
- Atsuhiko Sugiyama
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Daichi Sone
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Noriko Sato
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan
- * E-mail:
| | - Yukio Kimura
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Miho Ota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Norihide Maikusa
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tomoko Maekawa
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Mikako Enokizono
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | - Yasushi Ohya
- Department of Neurology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Matsuda
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
40
|
Okkersen K, Monckton DG, Le N, Tuladhar AM, Raaphorst J, van Engelen BGM. Brain imaging in myotonic dystrophy type 1: A systematic review. Neurology 2017; 89:960-969. [PMID: 28768849 DOI: 10.1212/wnl.0000000000004300] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/30/2017] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE To systematically review brain imaging studies in myotonic dystrophy type 1 (DM1). METHODS We searched Embase (index period 1974-2016) and MEDLINE (index period 1946-2016) for studies in patients with DM1 using MRI, magnetic resonance spectroscopy (MRS), functional MRI (fMRI), CT, ultrasound, PET, or SPECT. From 81 studies, we extracted clinical characteristics, primary outcomes, clinical-genetic correlations, and information on potential risk of bias. Results were summarized and pooled prevalence of imaging abnormalities was calculated, where possible. RESULTS In DM1, various imaging changes are widely dispersed throughout the brain, with apparently little anatomical specificity. We found general atrophy and widespread gray matter volume reductions in all 4 cortical lobes, the basal ganglia, and cerebellum. The pooled prevalence of white matter hyperintensities is 70% (95% CI 64-77), compared with 6% (95% CI 3-12) in unaffected controls. DTI shows increased mean diffusivity in all 4 lobes and reduced fractional anisotropy in virtually all major association, projection, and commissural white matter tracts. Functional studies demonstrate reduced glucose uptake and cerebral perfusion in frontal, parietal, and temporal lobes, and abnormal fMRI connectivity patterns that correlate with personality traits. There is significant between-study heterogeneity in terms of imaging methods, which together with the established clinical variability of DM1 may explain divergent results. Longitudinal studies are remarkably scarce. CONCLUSIONS DM1 brains show widespread white and gray matter involvement throughout the brain, which is supported by abnormal resting-state network, PET/SPECT, and MRS parameters. Longitudinal studies evaluating spatiotemporal imaging changes are essential.
Collapse
Affiliation(s)
- Kees Okkersen
- From the Department of Neurology (K.O., N.L., A.M.T., J.R., B.G.M.v.E.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; and Institute of Molecular, Cell and Systems Biology (D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | - Darren G Monckton
- From the Department of Neurology (K.O., N.L., A.M.T., J.R., B.G.M.v.E.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; and Institute of Molecular, Cell and Systems Biology (D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Nhu Le
- From the Department of Neurology (K.O., N.L., A.M.T., J.R., B.G.M.v.E.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; and Institute of Molecular, Cell and Systems Biology (D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Anil M Tuladhar
- From the Department of Neurology (K.O., N.L., A.M.T., J.R., B.G.M.v.E.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; and Institute of Molecular, Cell and Systems Biology (D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Joost Raaphorst
- From the Department of Neurology (K.O., N.L., A.M.T., J.R., B.G.M.v.E.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; and Institute of Molecular, Cell and Systems Biology (D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Baziel G M van Engelen
- From the Department of Neurology (K.O., N.L., A.M.T., J.R., B.G.M.v.E.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; and Institute of Molecular, Cell and Systems Biology (D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| |
Collapse
|
41
|
Meola G, Cardani R. Myotonic dystrophy type 2 and modifier genes: an update on clinical and pathomolecular aspects. Neurol Sci 2017; 38:535-546. [PMID: 28078562 DOI: 10.1007/s10072-016-2805-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 12/22/2016] [Indexed: 12/20/2022]
Abstract
Myotonic dystrophy (DM) is the most common adult muscular dystrophy, characterized by autosomal dominant progressive myopathy, myotonia, and multiorgan involvement. To date, two distinct forms caused by similar mutations in two different genes have been identified: myotonic dystrophy type 1 (DM1) and myotonic dystrophy type 2 (DM2). Aberrant transcription and mRNA processing of multiple genes due to RNA-mediated toxic gain-of function has been suggested to cause the complex phenotype in DM1 and DM2. However, despite clinical and genetic similarities, DM1 and DM2 may be considered as distinct disorders. This review is an update on the latest findings specific to DM2, including explanations for the differences in clinical manifestations and pathophysiology between the two forms of myotonic dystrophies.
Collapse
Affiliation(s)
- Giovanni Meola
- Department of Biomedical Sciences for Health, University of Milan, IRCCS Policlinico San Donato, Piazza E. Malan, 1, San Donato Mil., 20097, Milan, Italy. .,Department of Neurology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy.
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| |
Collapse
|
42
|
Peric S, Rakocevic Stojanovic V, Mandic Stojmenovic G, Ilic V, Kovacevic M, Parojcic A, Pesovic J, Mijajlovic M, Savic-Pavicevic D, Meola G. Clusters of cognitive impairment among different phenotypes of myotonic dystrophy type 1 and type 2. Neurol Sci 2016; 38:415-423. [DOI: 10.1007/s10072-016-2778-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/18/2016] [Indexed: 11/30/2022]
|
43
|
Campione E, Botta A, Di Prete M, Rastelli E, Gibellini M, Petrucci A, Bernardini S, Novelli G, Bianchi L, Orlandi A, Massa R, Terracciano C. Cutaneous features of myotonic dystrophy types 1 and 2: Implication of premature aging and vitamin D homeostasis. Neuromuscul Disord 2016; 27:163-169. [PMID: 28065683 DOI: 10.1016/j.nmd.2016.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 02/08/2023]
Abstract
Skin changes have been described in myotonic dystrophy type 1 (DM1). However, whether and in which way skin is a target of specific disease alterations in DM1 and DM2 has not been yet clarified. This study aims to explore cutaneous features of DM1 and DM2 patients. Skin examination was performed in 60 DM1, 15 DM2, and 103 control, unselected patients by means of dermoscopy. It revealed quantitative and qualitative abnormalities of nevi and typical signs of premature aging in both DM1 and DM2 patients, with a significantly higher frequency of dysplastic nevi, alopecia, xerosis and seborrheic dermatitis. Twenty-eight nevi were excised in DM patients and none showed histological features of melanoma, although 12 of them were diagnosed as dysplastic and the remaining 16 presented histological irregularity in melanin distribution. In DM1 patients, the number of nevi correlated with CTG expansion size, whereas the presence of dysplastic nevi and xerosis inversely correlated with vitamin D levels. DM1 and DM2 patients display a high frequency of skin abnormalities, the most common of which correlate with genotype severity and serum vitamin D levels. Skin examination is highly informative in these patients and reveals features suggestive of premature aging and impaired vitamin D homeostasis.
Collapse
Affiliation(s)
- Elena Campione
- Department of Systems Medicine, Division of Dermatology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Annalisa Botta
- Department of Biomedicine and Prevention, Division of Medical Genetics, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Monia Di Prete
- Department of Systems Medicine, Division of Dermatology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Emanuele Rastelli
- Department of Systems Medicine, Division of Neurology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Manuela Gibellini
- Department of Systems Medicine, Division of Neurology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; Department of Experimental Medicine and Surgery, Division of Clinical Biochemistry, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Antonio Petrucci
- Center for Neuromuscular and Neurological Rare Diseases S. Camillo-Forlanini Hospital, Circonvallazione Gianicolense 87, 00152 Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine and Surgery, Division of Clinical Biochemistry, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Division of Medical Genetics, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Luca Bianchi
- Department of Systems Medicine, Division of Dermatology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Augusto Orlandi
- Department of Biomedicine and Prevention, Division of Anatomic Pathology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Roberto Massa
- Department of Systems Medicine, Division of Neurology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Chiara Terracciano
- Department of Systems Medicine, Division of Neurology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; Department of Experimental Medicine and Surgery, Division of Clinical Biochemistry, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy.
| |
Collapse
|
44
|
Bajrami A, Azman F, Yayla V, Cagirici S, Keskinkiliç C, Sozer N. MRI findings and cognitive functions in a small cohort of myotonic dystrophy type 1: Retrospective analyses. Neuroradiol J 2016; 30:23-27. [PMID: 27837184 DOI: 10.1177/1971400916678223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a progressive multisystemic disease with common cognitive deficits and potential brain involvement in addition to the cardinal muscular and systemic symptoms. Impaired mental function associated with nonspecific pathological findings such as white-matter hyperintense lesions (WMHLs), ventricular enlargement and brain atrophy on brain MRI have been previously reported in DM1 patients. While some studies showed correlation of brain morphological changes with neuropsychological and clinical parameters including CTG repeat sizes and disease severity scales in DM1, others failed. The goal of this study was to retrospectively investigate cranial MR abnormalities, predominantly WMHLs, and their effects on clinical and cognitive deficits in a small, phenotypically or genotypically well-characterized cohort of DM1 patients.
Collapse
Affiliation(s)
- Arsida Bajrami
- 1 Bakirkoy Dr. Sadi Konuk Research and Training Hospital, Department of Neurology, Istanbul, Turkey
| | - Filiz Azman
- 1 Bakirkoy Dr. Sadi Konuk Research and Training Hospital, Department of Neurology, Istanbul, Turkey
| | - Vildan Yayla
- 1 Bakirkoy Dr. Sadi Konuk Research and Training Hospital, Department of Neurology, Istanbul, Turkey
| | - Sultan Cagirici
- 1 Bakirkoy Dr. Sadi Konuk Research and Training Hospital, Department of Neurology, Istanbul, Turkey
| | - Cahit Keskinkiliç
- 2 Bakırköy Dr. Mazhar Osman Training and Research Hospital for Psychiatric, Neurologic and Neurosurgical Diseasesm Department of Neuropsychology, Istanbul, Turkey
| | - Nejla Sozer
- 1 Bakirkoy Dr. Sadi Konuk Research and Training Hospital, Department of Neurology, Istanbul, Turkey
| |
Collapse
|
45
|
Renard D, Collombier L, Castelli C, Pouget JP, Kotzki PO, Boudousq V. In myotonic dystrophy type 1 reduced FDG-uptake on FDG-PET is most severe in Brodmann area 8. BMC Neurol 2016; 16:100. [PMID: 27411408 PMCID: PMC4944494 DOI: 10.1186/s12883-016-0630-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 07/01/2016] [Indexed: 11/21/2022] Open
Abstract
Background In myotonic dystrophy type 1 (DM1), only one FDG-PET study used statistical parametric mapping (SPM) showing frontal reduced FDG-uptake. Our aim was to 1) identify the FDG-PET area with the most severe reduced FDG-uptake using SPM8 in a larger group of patients 2) assess potential correlation between CTG-numbers and FDG-PET. Methods FDG-PET was performed in 24 patients and compared to 24 controls. Pearson’s correlation was used to analyse correlation. Results SPM8 revealed Brodmann area 8 as the area with the most severe reduced FDG-uptake. Weak, although not statistically significant, correlation was observed between CTG-numbers and reduced FDG-uptake in Brodmann area 8. Conclusion In DM1, Brodmann area 8 is the area with the most severe reduced FDG-uptake on FDG-PET. Brodmann area 8 reduced FDG-uptake is correlated –although weakly- to CTG-repeat numbers.
Collapse
Affiliation(s)
- Dimitri Renard
- Department of Neurology, CHU Nîmes, Hôpital Caremeau, Place du Pr Debré, 30029, Nîmes Cedex 4, France.
| | - Laurent Collombier
- Department of Nuclear Medicine, CHU Nîmes, Hôpital Caremeau, Place du Pr Debré, 30029, Nîmes Cedex 4, France
| | - Christel Castelli
- Laboratoire de Biostatistique, Epidémiologie clinique, Santé Publique et Information, Médicale (BESPIM), CHU Nîmes, Hôpital Caremeau, Place du Pr Debré, 30029, Nîmes Cedex 4, France
| | - Jean-Pierre Pouget
- Department of Nuclear Medicine, CHU Nîmes, Hôpital Caremeau, Place du Pr Debré, 30029, Nîmes Cedex 4, France
| | - Pierre-Olivier Kotzki
- Department of Nuclear Medicine, CHU Nîmes, Hôpital Caremeau, Place du Pr Debré, 30029, Nîmes Cedex 4, France
| | - Vincent Boudousq
- Department of Nuclear Medicine, CHU Nîmes, Hôpital Caremeau, Place du Pr Debré, 30029, Nîmes Cedex 4, France
| |
Collapse
|
46
|
Baldanzi S, Cecchi P, Fabbri S, Pesaresi I, Simoncini C, Angelini C, Bonuccelli U, Cosottini M, Siciliano G. Relationship between neuropsychological impairment and grey and white matter changes in adult-onset myotonic dystrophy type 1. NEUROIMAGE-CLINICAL 2016; 12:190-7. [PMID: 27437180 PMCID: PMC4939389 DOI: 10.1016/j.nicl.2016.06.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 06/01/2016] [Accepted: 06/13/2016] [Indexed: 01/18/2023]
Abstract
Myotonic dystrophy type 1 (DM1) has a wide phenotypic spectrum and potentially may affect central nervous system with mild to severe involvement. Our aim was to investigate grey matter (GM) and white matter (WM) structural alterations in a sample of adult-onset DM1 patients and to evaluate relationship with clinical and cognitive variables. Thirty DM1 patients underwent neuropsychological investigation and 3T-MRI protocol. GM and WM changes were evaluated calculating brain parenchymal fraction (BPF), voxel-based morphometry (VBM), white matter lesion load (LL% and Fazekas scale) and tract based spatial statistical (TBSS). Patients showed main impairment in tests exploring executive and mnesic domains with visuo-spatial involvement, significantly related to BPF. VBM revealed clusters of widespread GM reduction and TBSS revealed areas of decreased fractional anisotropy (FA) and increased radial diffusivity (RD), mean diffusivity (MD) and axial diffusivity (AD) in patients compared to a group of matched healthy controls. Multiple regression analyses showed areas of significant negative relationship between left temporal atrophy and verbal memory, between RD and mnesic and visuo-spatial cognitive domains, and between AD and verbal memory. TBSS results indicate that the involvement of normal appearance WM, beyond the signal changes detected with conventional MR imaging (Fazekas scale and LL%), was associated with neuropsychological deficit. These data suggest that disrupted complex neuronal networks can underlie cognitive-behavioural dysfunctions in DM1. We performed VBM and TBSS analyses in a sample of adult-onset DM1 patients. The relationship between neuroimaging variables and cognitive profile was studied. Global atrophy correlated with executive and visuo-spatial abilities. TBSS revealed associations between DTI indexes and cognitive performances. Disrupted complex neuronal networks can underlie cognitive dysfunction in DM1.
Collapse
Affiliation(s)
- Sigrid Baldanzi
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi 10, 56126 Pisa, Italy
| | - Paolo Cecchi
- Neuroradiology Unit, S.Chiara Hospital, via Roma 67, 56126 Pisa, Italy
| | - Serena Fabbri
- Neuroradiology Unit, S.Chiara Hospital, via Roma 67, 56126 Pisa, Italy
| | - Ilaria Pesaresi
- Neuroradiology Unit, S.Chiara Hospital, via Roma 67, 56126 Pisa, Italy
| | - Costanza Simoncini
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi 10, 56126 Pisa, Italy
| | - Corrado Angelini
- Fondazione Ospedale S.Camillo, IRCCS, Via Alberoni 70, 30126 Lido Venice, Italy
| | - Ubaldo Bonuccelli
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi 10, 56126 Pisa, Italy
| | - Mirco Cosottini
- Neuroradiology Unit, S.Chiara Hospital, via Roma 67, 56126 Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Savi 10, 56126 Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi 10, 56126 Pisa, Italy
| |
Collapse
|
47
|
Baldanzi S, Bevilacqua F, Lorio R, Volpi L, Simoncini C, Petrucci A, Cosottini M, Massimetti G, Tognoni G, Ricci G, Angelini C, Siciliano G. Disease awareness in myotonic dystrophy type 1: an observational cross-sectional study. Orphanet J Rare Dis 2016; 11:34. [PMID: 27044540 PMCID: PMC4820880 DOI: 10.1186/s13023-016-0417-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 03/30/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Myotonic dystrophy type 1 (Steinert's disease or DM1), the most common form of autosomal dominant muscular dystrophy in adults, is a multisystem disorder, affecting skeletal muscle as well as eyes, heart, gastrointestinal tract, endocrine system, and central nervous system, finally responsible of increasing disabilities and secondary social consequences. To date, DM1-related brain involvement represents a challenging field of research. It is well known that DM1 patients frequently present neuropsychological disturbances and psychiatric comorbidities among which reduced awareness of disease burden and its progression, also defined as anosognosia, is common in clinical practice, this leading to secondary misattribution of symptoms, delay in timely diagnostic procedures and low compliance to treatment. METHODS Here we present an observational cross sectional study in which disease-related cognitive dysfunctions and quality of life were assessed by a protocol finally designed to estimate the prevalence of disease awareness in a sample of 65 adult-onset DM1 patients. RESULTS Our analysis showed that in DM1 patients several cognitive functions, including executive and mnesic domains with visuo-spatial involvement, were affected. The assessment of anosognosia revealed that a high percentage (51.6%) of DM1 subjects was disease unaware. The reduced illness awareness occurs across different physical and life domains, and it appears more prominent in Activities and Independence domains investigated by the Individualized Neuromuscular Quality Of Life (INQoL) questionnaire. Moreover, the unawareness resulted significantly related (at p <0.05 and p < 0.01) to the performance failure in cognitive tests, specifically in the domains of visuo-spatial memory, cognitive flexibility and conceptualization. CONCLUSIONS The obtained data confirm, by a systematic analysis, what's the common clinical perceiving of disease unawareness in Steinert's disease, this related to the already known cognitive-behavioural impairment of frontal type in affected patients. We believe that a deep knowledge of this aspect will be useful for medical practice in the management of patients with DM1, also for guidance in occupational and social interventions, definition of outcome measures and in preparation of trial readiness.
Collapse
Affiliation(s)
- Sigrid Baldanzi
- Department of Clinical and Experimental Medicine, Neurological Unit, University of Pisa, Via Roma 67, 56126, Pisa, Italy
| | | | - Rita Lorio
- IRCCS San Camillo Venezia, Via Alberoni 70, Venezia, 30126, Italy
| | - Leda Volpi
- Department of Clinical and Experimental Medicine, Neurological Unit, University of Pisa, Via Roma 67, 56126, Pisa, Italy
| | - Costanza Simoncini
- Department of Clinical and Experimental Medicine, Neurological Unit, University of Pisa, Via Roma 67, 56126, Pisa, Italy
| | - Antonio Petrucci
- Neurology and Neurophysiopathology Unit, San Camillo Forlanini Hospital, Piazza Carlo Forlanini 1, 00151, Rome, Italy
| | - Mirco Cosottini
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Paradisa 2, 56126, Pisa, Italy
| | - Gabriele Massimetti
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Pisa, Via Roma 67, 56126, Pisa, Italy
| | - Gloria Tognoni
- Department of Clinical and Experimental Medicine, Neurological Unit, University of Pisa, Via Roma 67, 56126, Pisa, Italy
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, Neurological Unit, University of Pisa, Via Roma 67, 56126, Pisa, Italy
| | - Corrado Angelini
- IRCCS San Camillo Venezia, Via Alberoni 70, Venezia, 30126, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, Neurological Unit, University of Pisa, Via Roma 67, 56126, Pisa, Italy.
| |
Collapse
|
48
|
Mutchnick IS, Thatikunta MA, Gump WC, Stewart DL, Moriarty TM. Congenital myotonic dystrophy: ventriculomegaly and shunt considerations for the pediatric neurosurgeon. Childs Nerv Syst 2016; 32:609-16. [PMID: 26747623 DOI: 10.1007/s00381-015-2993-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/22/2015] [Indexed: 12/13/2022]
Abstract
PURPOSE Ventriculomegaly in infants with congenital myotonic dystrophy (CDM) is common, and the neurosurgical determination of shunting is complex. The natural history of CDM-associated ventriculomegaly from prenatal to natal to postnatal stages is poorly known. The relationship between macrocephaly and ventriculomegaly, incidence of shunt necessity, and early mortality outcomes lack pooled data analysis. This study aims to review clinical features and pathophysiology of CDM, with emphasis on ventriculomegaly progression, ventriculomegaly association with macrocephaly, and incidence of shunting. METHODS This is a literature review with pooled data analysis and case report. RESULTS One hundred four CDM patients were reviewed in 13 articles that mentioned CDM with ventriculomegaly and/or head circumference. Data was very limited: only 7 patients had data on the presence or absence of prenatal ventriculomegaly, 97 on ventriculomegaly at birth, and 32 on whether or not the ventricles enlarged post-natally. Three patients of 7 (43 %) had pre-natally diagnosed ventriculomegaly, 43 of 97 (44 %) had ventriculomegaly at birth, and only 5 of 32 (16 %) had progressive enlargement of ventricles post-natally. Only 5 of 104 patients had a documented shunt placement: 1 for obstructive, 1 for a post-hemorrhagic communicating, 2 for a communicating hydrocephalus without hemorrhage, and 1 with unknown indication. Of 13 macrocephalic patients with data about ventricular size, 12 had ventriculomegaly. CONCLUSIONS Ventriculomegaly occurs regularly with CDM but most often does not require CSF diversion. Decisions regarding neurosurgical intervention will necessarily be based on limited information, but shunting should only occur once dynamic data confirms hydrocephalus.
Collapse
Affiliation(s)
- Ian S Mutchnick
- Division of Pediatric Neurosurgery, Norton Neuroscience Institute and Kosair Children's Hospital, 210 East Gray St., Suite 1102, Louisville, KY, 40202, USA.
| | - Meena A Thatikunta
- Department of Neurosurgery, University of Louisville Hospital, Louisville, KY, USA
| | - William C Gump
- Division of Pediatric Neurosurgery, Norton Neuroscience Institute and Kosair Children's Hospital, 210 East Gray St., Suite 1102, Louisville, KY, 40202, USA
| | - Dan L Stewart
- Department of Pediatrics, Neonatology, University of Louisville School of Medicine, Kosair Children's Hospital, Louisville, KY, USA
| | - Thomas M Moriarty
- Division of Pediatric Neurosurgery, Norton Neuroscience Institute and Kosair Children's Hospital, 210 East Gray St., Suite 1102, Louisville, KY, 40202, USA
| |
Collapse
|
49
|
Xia G, Gao Y, Jin S, Subramony SH, Terada N, Ranum LPW, Swanson MS, Ashizawa T. Genome modification leads to phenotype reversal in human myotonic dystrophy type 1 induced pluripotent stem cell-derived neural stem cells. Stem Cells 2016; 33:1829-38. [PMID: 25702800 DOI: 10.1002/stem.1970] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 01/17/2015] [Indexed: 12/15/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is caused by expanded CTG repeats in the 3'-untranslated region (3' UTR) of the DMPK gene. Correcting the mutation in DM1 stem cells would be an important step toward autologous stem cell therapy. The objective of this study is to demonstrate in vitro genome editing to prevent production of toxic mutant transcripts and reverse phenotypes in DM1 stem cells. Genome editing was performed in DM1 neural stem cells (NSCs) derived from human DM1 induced pluripotent stem (iPS) cells. An editing cassette containing SV40/bGH polyA signals was integrated upstream of the CTG repeats by TALEN-mediated homologous recombination (HR). The expression of mutant CUG repeats transcript was monitored by nuclear RNA foci, the molecular hallmarks of DM1, using RNA fluorescence in situ hybridization. Alternative splicing of microtubule-associated protein tau (MAPT) and muscleblind-like (MBNL) proteins were analyzed to further monitor the phenotype reversal after genome modification. The cassette was successfully inserted into DMPK intron 9 and this genomic modification led to complete disappearance of nuclear RNA foci. MAPT and MBNL 1, 2 aberrant splicing in DM1 NSCs were reversed to normal pattern in genome-modified NSCs. Genome modification by integration of exogenous polyA signals upstream of the DMPK CTG repeat expansion prevents the production of toxic RNA and leads to phenotype reversal in human DM1 iPS-cells derived stem cells. Our data provide proof-of-principle evidence that genome modification may be used to generate genetically modified progenitor cells as a first step toward autologous cell transfer therapy for DM1.
Collapse
Affiliation(s)
- Guangbin Xia
- Department of Neurology, University of Florida, College of Medicine, Gainesville, Florida, USA.,Center for Cellular Reprogramming, University of Florida, College of Medicine, Gainesville, Florida, USA.,Center for NeuroGenetics, University of Florida, College of Medicine, Gainesville, Florida, USA.,The Evelyn L & William F. McKnight Brain Institute, University of Florida, Gainesville, Florida, USA.,Department of Neuroscience, University of Florida, Gainesville, Florida, USA
| | - Yuanzheng Gao
- Department of Neurology, University of Florida, College of Medicine, Gainesville, Florida, USA.,The Evelyn L & William F. McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Shouguang Jin
- Department of Molecular Genetics and Microbiology, College of Medicine, Gainesville, Florida, USA
| | - S H Subramony
- Department of Neurology, University of Florida, College of Medicine, Gainesville, Florida, USA.,Center for NeuroGenetics, University of Florida, College of Medicine, Gainesville, Florida, USA.,The Evelyn L & William F. McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Naohiro Terada
- Center for Cellular Reprogramming, University of Florida, College of Medicine, Gainesville, Florida, USA.,Department of Pathology, Immunology & Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Laura P W Ranum
- Department of Neurology, University of Florida, College of Medicine, Gainesville, Florida, USA.,Center for NeuroGenetics, University of Florida, College of Medicine, Gainesville, Florida, USA.,Department of Molecular Genetics and Microbiology, College of Medicine, Gainesville, Florida, USA.,Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Maurice S Swanson
- Center for NeuroGenetics, University of Florida, College of Medicine, Gainesville, Florida, USA.,Department of Molecular Genetics and Microbiology, College of Medicine, Gainesville, Florida, USA.,Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Tetsuo Ashizawa
- Department of Neurology, University of Florida, College of Medicine, Gainesville, Florida, USA.,Center for Cellular Reprogramming, University of Florida, College of Medicine, Gainesville, Florida, USA.,Center for NeuroGenetics, University of Florida, College of Medicine, Gainesville, Florida, USA.,The Evelyn L & William F. McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
50
|
Choi SH, Yang HK, Hwang JM, Park KS. Ocular Findings of Myotonic Dystrophy Type 1 in the Korean Population. Graefes Arch Clin Exp Ophthalmol 2016; 254:1189-93. [DOI: 10.1007/s00417-016-3266-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 11/30/2022] Open
|