1
|
Darras BT, Volpe JJ. Muscle Involvement and Restricted Disorders. VOLPE'S NEUROLOGY OF THE NEWBORN 2025:1074-1121.e18. [DOI: 10.1016/b978-0-443-10513-5.00037-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Takeuchi Y, Masuda T, Kimura N, Sumi K, Jikumaru M, Eura N, Nishino I, Matsubara E. X-linked Myotubular Myopathy Manifesting Carrier with Central and Peripheral Nervous System Involvement. Intern Med 2024; 63:3371-3375. [PMID: 38631855 PMCID: PMC11729177 DOI: 10.2169/internalmedicine.3417-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/01/2024] [Indexed: 04/19/2024] Open
Abstract
X-linked myotubular myopathy (XLMTM) is a rare genetic disorder caused by X-linked mutations in the MTM1 gene. Although heterozygous females are typically asymptomatic, affected cases have recently been reported. We herein report a case of XLMTM manifesting carrier of the pathogenic c.206dupG mutation in MTM1 with uncommon extramuscular symptoms. She developed gaze nystagmus and cognitive impairment in addition to muscle weakness. Electrophysiological studies and brain magnetic resonance imaging indicated the involvement of the central and peripheral nervous systems. XLMTM manifesting carriers may have a wider spectrum of clinical phenotypes than currently assumed. Appropriate follow-up of extramuscular and conventional muscular manifestations is important in such cases.
Collapse
Affiliation(s)
- Yosuke Takeuchi
- Department of Neurology, Faculty of Medicine, Oita University, Japan
| | - Teruaki Masuda
- Department of Neurology, Faculty of Medicine, Oita University, Japan
| | - Noriyuki Kimura
- Department of Neurology, Faculty of Medicine, Oita University, Japan
| | - Kaori Sumi
- Department of Neurology, Faculty of Medicine, Oita University, Japan
| | - Mika Jikumaru
- Department of Neurology, Faculty of Medicine, Oita University, Japan
| | - Nobuyuki Eura
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Japan
| | - Etsuro Matsubara
- Department of Neurology, Faculty of Medicine, Oita University, Japan
| |
Collapse
|
3
|
Hayes LH, Neuhaus SB, Donkervoort S, Mohassel P, Foley AR, Dastgir J, Bharucha-Goebel D, Leach ME, Vuillerot C, Iannaccone ST, Grosmann CM, Beggs AH, Bönnemann CG. Taking on the Titin: Muscle imaging as a diagnostic marker of biallelic TTN-related myopathy. J Neuromuscul Dis 2024; 11:1211-1220. [PMID: 39967429 DOI: 10.1177/22143602241283391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
BACKGROUND The accurate diagnosis of titin-related myopathies (TTN-RM) is challenging due to the "gigantism" of the coding gene TTN with an incompletely understood landscape of normal genetic variation, an increasing number of pathogenic variants, and wide phenotypic variability of both cardiac and muscle involvement. Particularly in situations of potentially incomplete genotypes, clinicians need more phenotyping tools to help confidently determine the pathogenicity of variants in TTN and accurately diagnose titinopathies. OBJECTIVE To illustrate the pattern of muscle involvement found by muscle imaging in patients with TTN-RM. METHODS We reviewed the clinical and imaging data of patients with TTN-RM. Cross secitonal MR images of the lower extremity muscles were scored for degree of abnormality using the Mercuri scoring system and patterns were identified with comparison across muscle groups. Ultrasound images were also reviewed and described. RESULTS Eleven patients with TTN-RM had clinical and imaging data available for review. The relatively more severe involvement of the semitendinosus muscle in the hamstring group ("semitendinosus sign") emerged as a consistent feature in patients with recessive TTN-RM despite clinical heterogeneity. CONCLUSIONS Here we find that despite considerable complexity, the pattern of muscle involvement on MRI and ultrasound may aid in the confirmation of TTN-RM by establishing compatibility with the diagnosis.
Collapse
Affiliation(s)
- L H Hayes
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, MD, USA
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - S B Neuhaus
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - S Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - P Mohassel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - A R Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - J Dastgir
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, MD, USA
- Atlantic Health System, Goryeb Children's Hospital, Morristown, NJ, USA
| | - D Bharucha-Goebel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, MD, USA
- Division of Neurology, Children's National Hospital, Washington, DC, USA
| | - M E Leach
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, MD, USA
- Division of Pediatric Neurology, Oregon Health and Science University, Portland, OR, USA
| | - C Vuillerot
- Hospices Civils de Lyon, Hôpital Femme Mère Enfant, Paediatric Physical Medicine and Rehabilitation Department, NeuroMyogène Institute, Lyon University, Lyon, France
| | | | - C M Grosmann
- Departments of Neurosciences and Pediatrics, School of Medicine, University of California, San Diego, Rady Children's Hospital, San Diego, CA, USA
| | - A H Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - C G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Jolfayi AG, Kohansal E, Ghasemi S, Naderi N, Hesami M, MozafaryBazargany M, Moghadam MH, Fazelifar AF, Maleki M, Kalayinia S. Exploring TTN variants as genetic insights into cardiomyopathy pathogenesis and potential emerging clues to molecular mechanisms in cardiomyopathies. Sci Rep 2024; 14:5313. [PMID: 38438525 PMCID: PMC10912352 DOI: 10.1038/s41598-024-56154-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/01/2024] [Indexed: 03/06/2024] Open
Abstract
The giant protein titin (TTN) is a sarcomeric protein that forms the myofibrillar backbone for the components of the contractile machinery which plays a crucial role in muscle disorders and cardiomyopathies. Diagnosing TTN pathogenic variants has important implications for patient management and genetic counseling. Genetic testing for TTN variants can help identify individuals at risk for developing cardiomyopathies, allowing for early intervention and personalized treatment strategies. Furthermore, identifying TTN variants can inform prognosis and guide therapeutic decisions. Deciphering the intricate genotype-phenotype correlations between TTN variants and their pathologic traits in cardiomyopathies is imperative for gene-based diagnosis, risk assessment, and personalized clinical management. With the increasing use of next-generation sequencing (NGS), a high number of variants in the TTN gene have been detected in patients with cardiomyopathies. However, not all TTN variants detected in cardiomyopathy cohorts can be assumed to be disease-causing. The interpretation of TTN variants remains challenging due to high background population variation. This narrative review aimed to comprehensively summarize current evidence on TTN variants identified in published cardiomyopathy studies and determine which specific variants are likely pathogenic contributors to cardiomyopathy development.
Collapse
Affiliation(s)
- Amir Ghaffari Jolfayi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Erfan Kohansal
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Serwa Ghasemi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Naderi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahshid Hesami
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Hosseini Moghadam
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Farjam Fazelifar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Kušíková K, Šoltýsová A, Ficek A, Feichtinger RG, Mayr JA, Škopková M, Gašperíková D, Kolníková M, Ornig K, Kalev O, Weis S, Weis D. Prognostic Value of Genotype-Phenotype Correlations in X-Linked Myotubular Myopathy and the Use of the Face2Gene Application as an Effective Non-Invasive Diagnostic Tool. Genes (Basel) 2023; 14:2174. [PMID: 38136996 PMCID: PMC10742680 DOI: 10.3390/genes14122174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND X-linked myotubular myopathy (XLMTM) is a rare congenital myopathy resulting from dysfunction of the protein myotubularin encoded by the MTM1 gene. XLMTM has a high neonatal and infantile mortality rate due to a severe myopathic phenotype and respiratory failure. However, in a minority of XLMTM cases, patients present with milder phenotypes and achieve ambulation and adulthood. Notable facial dysmorphia is also present. METHODS We investigated the genotype-phenotype correlations in newly diagnosed XLMTM patients in a patients' cohort (previously published data plus three novel variants, n = 414). Based on the facial gestalt difference between XLMTM patients and unaffected controls, we investigated the use of the Face2Gene application. RESULTS Significant associations between severe phenotype and truncating variants (p < 0.001), frameshift variants (p < 0.001), nonsense variants (p = 0.006), and in/del variants (p = 0.036) were present. Missense variants were significantly associated with the mild and moderate phenotype (p < 0.001). The Face2Gene application showed a significant difference between XLMTM patients and unaffected controls (p = 0.001). CONCLUSIONS Using genotype-phenotype correlations could predict the disease course in most XLMTM patients, but still with limitations. The Face2Gene application seems to be a practical, non-invasive diagnostic approach in XLMTM using the correct algorithm.
Collapse
Affiliation(s)
- Katarína Kušíková
- Department of Pediatric Neurology, Faculty of Medicine, Comenius University Bratislava and National Institute of Children’s Diseases, 83340 Bratislava, Slovakia; (K.K.)
| | - Andrea Šoltýsová
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 84215 Bratislava, Slovakia
- Institute for Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Andrej Ficek
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 84215 Bratislava, Slovakia
| | - René G. Feichtinger
- University Children’s Hospital, SalzburgerLandeskliniken (SALK), Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (R.G.F.)
| | - Johannes A. Mayr
- University Children’s Hospital, SalzburgerLandeskliniken (SALK), Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (R.G.F.)
| | - Martina Škopková
- Department of Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Science, 84505 Bratislava, Slovakia
| | - Daniela Gašperíková
- Department of Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Science, 84505 Bratislava, Slovakia
| | - Miriam Kolníková
- Department of Pediatric Neurology, Faculty of Medicine, Comenius University Bratislava and National Institute of Children’s Diseases, 83340 Bratislava, Slovakia; (K.K.)
| | - Karoline Ornig
- Division of Neuropathology, Department of Pathology and Molecular Pathology, Neuromed Campus, Kepler University Hospital, Johannes Kepler University, 4020 Linz, Austria
| | - Ognian Kalev
- Division of Neuropathology, Department of Pathology and Molecular Pathology, Neuromed Campus, Kepler University Hospital, Johannes Kepler University, 4020 Linz, Austria
| | - Serge Weis
- Division of Neuropathology, Department of Pathology and Molecular Pathology, Neuromed Campus, Kepler University Hospital, Johannes Kepler University, 4020 Linz, Austria
| | - Denisa Weis
- Department of Medical Genetics, Kepler University Hospital Med Campus IV, Johannes Kepler University, 4020 Linz, Austria
| |
Collapse
|
6
|
Singanamalla B, Kesavan S, Aggarwal D, Chatterjee D, Urtizberea A, Suthar R. Marked Facial Weakness, Ptosis, and Hanging Jaw: A Case with RYR1 -Related Congenital Centronuclear Myopathy. J Pediatr Genet 2023; 12:318-324. [PMID: 38162159 PMCID: PMC10756716 DOI: 10.1055/s-0041-1731683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 05/22/2021] [Indexed: 10/20/2022]
Abstract
Congenital myopathies are an expanding spectrum of neuromuscular disorders with early infantile or childhood onset hypotonia and slowly or nonprogressive skeletal muscle weakness. RYR1 -related myopathies are the most common and frequently diagnosed class of congenital myopathies. Malignant hyperthermia susceptibility and central core disease are autosomal dominant or de novo RYR1 disorder, whereas multiminicore, congenital fiber type disproportion and centronuclear myopathy are autosomal recessive RYR1 disorders. The presence of ptosis, ophthalmoparesis, facial, and proximal muscles weakness, with the presence of dusty cores and multiple internal nuclei on muscle biopsy are clues to the diagnosis. We describe an 18-year-old male, who presented with early infantile onset ptosis, ophthalmoplegia, myopathic facies, hanging lower jaw, and proximal muscle weakness confirmed as an RYR1 -related congenital centronuclear myopathy on genetic analysis and muscle biopsy.
Collapse
Affiliation(s)
- Bhanudeep Singanamalla
- Pediatric Neurology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Shivan Kesavan
- Pediatric Neurology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Divya Aggarwal
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Debajyoti Chatterjee
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Renu Suthar
- Pediatric Neurology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
7
|
Bouma S, Cobben N, Bouman K, Gaytant M, van de Biggelaar R, van Doorn J, Reumers SFI, Voet NB, Doorduin J, Erasmus CE, Kamsteeg EJ, Jungbluth H, Wijkstra P, Voermans NC. Respiratory features of centronuclear myopathy in the Netherlands. Neuromuscul Disord 2023; 33:580-588. [PMID: 37364426 DOI: 10.1016/j.nmd.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
Centronuclear myopathy (CNM) is a heterogeneous group of muscle disorders primarily characterized by muscle weakness and variable degrees of respiratory dysfunction caused by mutations in MTM1, DNM2, RYR1, TTN and BIN1. X-linked myotubular myopathy has been the focus of recent natural history studies and clinical trials. Data on respiratory function for other genotypes is limited. To better understand the respiratory properties of the CNM spectrum, we performed a retrospective study in a non-selective Dutch CNM cohort. Respiratory dysfunction was defined as an FVC below 70% of predicted and/or a daytime pCO2 higher than 6 kPa. We collected results of other pulmonary function values (FEV1/FVC ratio) and treatment data from the home mechanical ventilation centres. Sixty-one CNM patients were included. Symptoms of respiratory weakness were reported by 15/47 (32%) patients. Thirty-three individuals (54%) with different genotypes except autosomal dominant (AD)-BIN1-related CNM showed respiratory dysfunction. Spirometry showed decreased FVC, FEV1 & PEF values in all but two patients. Sixteen patients were using HMV (26%), thirteen of them only during night-time. In conclusion, this study provides insight into the prevalence of respiratory symptoms in four genetic forms of CNM in the Netherlands and offers the basis for future natural history studies.
Collapse
Affiliation(s)
- Sietse Bouma
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nicolle Cobben
- Department of Pulmonary Diseases & Home Mechanical Ventilation, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Karlijn Bouman
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Michael Gaytant
- Center for Home Mechanical Ventilation, Department of Pulmonology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ries van de Biggelaar
- Department of Pulmonary Diseases & Home Mechanical Ventilation, Erasmus MC, Rotterdam, the Netherlands
| | - Jeroen van Doorn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Stacha F I Reumers
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nicoline Bm Voet
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Rehabilitation Center Klimmendaal, Arnhem, the Netherlands
| | - Jonne Doorduin
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Corrie E Erasmus
- Department of Paediatric Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center - Amalia Children's Hospital, Nijmegen, the Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, FoLSM, King's College, London, UK
| | - Peter Wijkstra
- Department of Pulmonary Diseases & Home Mechanical Ventilation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Centre Groningen, the Netherlands
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
8
|
Novel Splicing Mutation in MTM1 Leading to Two Abnormal Transcripts Causes Severe Myotubular Myopathy. Int J Mol Sci 2022; 23:ijms231810274. [PMID: 36142184 PMCID: PMC9499315 DOI: 10.3390/ijms231810274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
X-linked myotubular myopathy (XLMTM) is a severe form of centronuclear myopathy, characterized by generalized weakness and respiratory insufficiency, associated with pathogenic variants in the MTM1 gene. NGS targeted sequencing on the DNA of a three-month-old child affected by XLMTM identified the novel hemizygous MTM1 c.1261-5T>G intronic variant, which interferes with the normal splicing process, generating two different abnormal transcripts simultaneously expressed in the patient’s muscular cells. The first aberrant transcript, induced by the activation of a cryptic splice site in intron 11, includes four intronic nucleotides upstream of exon 12, resulting in a shift in the transcript reading frame and introducing a new premature stop codon in the catalytic domain of the protein (p.Arg421SerfsTer7). The second aberrant MTM1 transcript, due to the lack of recognition of the 3′ acceptor splice site of intron 11 from the spliceosome complex, leads to the complete skipping of exon 12. We expanded the genotypic spectrum of XLMTM underlying the importance of intron−exons boundaries sequencing in male patients affected by XLMTM.
Collapse
|
9
|
Fusto A, Cassandrini D, Fiorillo C, Codemo V, Astrea G, D’Amico A, Maggi L, Magri F, Pane M, Tasca G, Sabbatini D, Bello L, Battini R, Bernasconi P, Fattori F, Bertini ES, Comi G, Messina S, Mongini T, Moroni I, Panicucci C, Berardinelli A, Donati A, Nigro V, Pini A, Giannotta M, Dosi C, Ricci E, Mercuri E, Minervini G, Tosatto S, Santorelli F, Bruno C, Pegoraro E. Expanding the clinical-pathological and genetic spectrum of RYR1-related congenital myopathies with cores and minicores: an Italian population study. Acta Neuropathol Commun 2022; 10:54. [PMID: 35428369 PMCID: PMC9013059 DOI: 10.1186/s40478-022-01357-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/25/2022] [Indexed: 11/10/2022] Open
Abstract
Mutations in the RYR1 gene, encoding ryanodine receptor 1 (RyR1), are a well-known cause of Central Core Disease (CCD) and Multi-minicore Disease (MmD). We screened a cohort of 153 patients carrying an histopathological diagnosis of core myopathy (cores and minicores) for RYR1 mutation. At least one RYR1 mutation was identified in 69 of them and these patients were further studied. Clinical and histopathological features were collected. Clinical phenotype was highly heterogeneous ranging from asymptomatic or paucisymptomatic hyperCKemia to severe muscle weakness and skeletal deformity with loss of ambulation. Sixty-eight RYR1 mutations, generally missense, were identified, of which 16 were novel. The combined analysis of the clinical presentation, disease progression and the structural bioinformatic analyses of RYR1 allowed to associate some phenotypes to mutations in specific domains. In addition, this study highlighted the structural bioinformatics potential in the prediction of the pathogenicity of RYR1 mutations. Further improvement in the comprehension of genotype-phenotype relationship of core myopathies can be expected in the next future: the actual lack of the human RyR1 crystal structure paired with the presence of large intrinsically disordered regions in RyR1, and the frequent presence of more than one RYR1 mutation in core myopathy patients, require designing novel investigation strategies to completely address RyR1 mutation effect.
Collapse
|
10
|
El Kadiri Y, Ratbi I, Sefiani A, Lyahyai J. Clinical and molecular genetic analysis of early-onset myopathy with fatal cardiomyopathy: Novel biallelic M-line TTN mutation and review of the literature. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Salih MA, Hamad MH, Savarese M, Alorainy IA, Al-Jarallah AS, Alkhalidi H, AlQudairy H, Albader A, Alotaibi AJ, Alsagob M, Al-Bakheet A, Colak D, Udd B, Kaya N. Exome Sequencing Reveals Novel TTN Variants in Saudi Patients with Congenital Titinopathies. Genet Test Mol Biomarkers 2021; 25:757-764. [DOI: 10.1089/gtmb.2021.0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Mustafa A. Salih
- Division of Pediatric Neurology, Department of Pediatrics, King Saud University, Riyadh, Saudi Arabia
| | - Muddathir H. Hamad
- Division of Pediatric Neurology, Department of Pediatrics, King Saud University, Riyadh, Saudi Arabia
| | - Marco Savarese
- The Folkhälsan Institute of Genetics and the Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Ibrahim A. Alorainy
- Department of Radiology and Diagnostic Imaging, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah S. Al-Jarallah
- Pediatric Cardiology Division, Cardiac Science Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hisham Alkhalidi
- Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hanan AlQudairy
- Translational Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC: 03, Riyadh, Saudi Arabia
| | - Anoud Albader
- Translational Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC: 03, Riyadh, Saudi Arabia
| | - Amal Jahz Alotaibi
- Translational Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC: 03, Riyadh, Saudi Arabia
| | - Maysoon Alsagob
- Translational Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC: 03, Riyadh, Saudi Arabia
| | - Albandary Al-Bakheet
- Translational Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC: 03, Riyadh, Saudi Arabia
| | - Dilek Colak
- Biostatistics, Epidemiology, and Scientific Computing Department, MBC: 03, Riyadh, Saudi Arabia
| | - Bjarne Udd
- Tampere Neuromuscular Research Unit, The Folkhälsan Institute of Genetics and the Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Namik Kaya
- Translational Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC: 03, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Fujise K, Okubo M, Abe T, Yamada H, Takei K, Nishino I, Takeda T, Noguchi S. Imaging-based evaluation of pathogenicity by novel DNM2 variants associated with centronuclear myopathy. Hum Mutat 2021; 43:169-179. [PMID: 34837441 DOI: 10.1002/humu.24307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 11/11/2022]
Abstract
A centronuclear myopathy (CNM) is a group of inherited congenital diseases showing clinically progressive muscle weakness associated with the presence of centralized myonuclei, diagnosed by genetic testing and muscle biopsy. The gene encoding dynamin 2, DNM2, has been identified as a causative gene for an autosomal dominant form of CNM. However, the information of a DNM2 variant alone is not always sufficient to gain a definitive diagnosis as the pathogenicity of many gene variants is currently unknown. In this study, we identified five novel DNM2 variants in our cohort. To establish the pathogenicity of these variants without using clinicopathological information, we used a simple in cellulo imaging-based assay for T-tubule-like structures to provide quantitative data that enable objective determination of pathogenicity by novel DNM2 variants. With this assay, we demonstrated that the phenotypes induced by mutant dynamin 2 in cellulo are well correlated with biochemical gain-of-function features of mutant dynamin 2 as well as the clinicopathological phenotypes of each patient. Our approach of combining an in cellulo assay with clinical information of the patients also explains the course of a disease progression by the pathogenesis of each variant in DNM2-associated CNM.
Collapse
Affiliation(s)
- Kenshiro Fujise
- Department of Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Mariko Okubo
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan.,Department of Pediatrics, The University of Tokyo, Tokyo, Japan
| | - Tadashi Abe
- Department of Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroshi Yamada
- Department of Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kohji Takei
- Department of Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| | - Tetsuya Takeda
- Department of Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Satoru Noguchi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| |
Collapse
|
13
|
Baban A, Lodato V, Parlapiano G, di Mambro C, Adorisio R, Bertini ES, Dionisi-Vici C, Drago F, Martinelli D. Myocardial and Arrhythmic Spectrum of Neuromuscular Disorders in Children. Biomolecules 2021; 11:1578. [PMID: 34827576 PMCID: PMC8615674 DOI: 10.3390/biom11111578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/02/2021] [Accepted: 10/14/2021] [Indexed: 12/30/2022] Open
Abstract
Neuromuscular disorders (NMDs) are highly heterogenous from both an etiological and clinical point of view. Their signs and symptoms are often multisystemic, with frequent cardiac involvement. In fact, childhood onset forms can predispose a person to various progressive cardiac abnormalities including cardiomyopathies (CMPs), valvulopathies, atrioventricular conduction defects (AVCD), supraventricular tachycardia (SVT) and ventricular arrhythmias (VA). In this review, we selected and described five specific NMDs: Friedreich's Ataxia (FRDA), congenital and childhood forms of Myotonic Dystrophy type 1 (DM1), Kearns Sayre Syndrome (KSS), Ryanodine receptor type 1-related myopathies (RYR1-RM) and Laminopathies. These changes are widely investigated in adults but less researched in children. We focused on these specific topics due their relative frequency and their potential unexpected cardiac manifestations in children. Moreover these conditions present different inheritance patterns and mechanisms of action. We decided not to discuss Duchenne and Becker muscular dystrophies due to extensive work regarding the cardiac aspects in children. For each described NMD, we focused on the possible cardiac manifestations such as different types of CMPs (dilated-DCM, hypertrophic-HCM, restrictive-RCM or left ventricular non compaction-LVNC), structural heart abnormalities (including valvulopathies), and progressive heart rhythm changes (AVCD, SVT, VA). We describe the current management strategies for these conditions. We underline the importance, especially for children, of a serial multidisciplinary personalized approach and the need for periodic surveillance by a dedicated heart team. This is largely due to the fact that in children, the diagnosis of certain NMDs might be overlooked and the cardiac aspect can provide signs of their presence even prior to overt neurological diagnosis.
Collapse
Affiliation(s)
- Anwar Baban
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Department of Pediatric Cardiology and Cardiac Surgery, Heart and Lung Transplantation, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (C.d.M.); (R.A.); (F.D.)
| | - Valentina Lodato
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Department of Pediatric Cardiology and Cardiac Surgery, Heart and Lung Transplantation, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (C.d.M.); (R.A.); (F.D.)
| | - Giovanni Parlapiano
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - Corrado di Mambro
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Department of Pediatric Cardiology and Cardiac Surgery, Heart and Lung Transplantation, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (C.d.M.); (R.A.); (F.D.)
| | - Rachele Adorisio
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Department of Pediatric Cardiology and Cardiac Surgery, Heart and Lung Transplantation, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (C.d.M.); (R.A.); (F.D.)
| | - Enrico Silvio Bertini
- The European Reference Network for Neuromuscular Disorders (ERN NMD), Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00146 Rome, Italy;
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (C.D.-V.); (D.M.)
| | - Fabrizio Drago
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Department of Pediatric Cardiology and Cardiac Surgery, Heart and Lung Transplantation, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (C.d.M.); (R.A.); (F.D.)
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (C.D.-V.); (D.M.)
| |
Collapse
|
14
|
Gómez-Oca R, Cowling BS, Laporte J. Common Pathogenic Mechanisms in Centronuclear and Myotubular Myopathies and Latest Treatment Advances. Int J Mol Sci 2021; 22:11377. [PMID: 34768808 PMCID: PMC8583656 DOI: 10.3390/ijms222111377] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 10/18/2021] [Indexed: 01/18/2023] Open
Abstract
Centronuclear myopathies (CNM) are rare congenital disorders characterized by muscle weakness and structural defects including fiber hypotrophy and organelle mispositioning. The main CNM forms are caused by mutations in: the MTM1 gene encoding the phosphoinositide phosphatase myotubularin (myotubular myopathy), the DNM2 gene encoding the mechanoenzyme dynamin 2, the BIN1 gene encoding the membrane curvature sensing amphiphysin 2, and the RYR1 gene encoding the skeletal muscle calcium release channel/ryanodine receptor. MTM1, BIN1, and DNM2 proteins are involved in membrane remodeling and trafficking, while RyR1 directly regulates excitation-contraction coupling (ECC). Several CNM animal models have been generated or identified, which confirm shared pathological anomalies in T-tubule remodeling, ECC, organelle mispositioning, protein homeostasis, neuromuscular junction, and muscle regeneration. Dynamin 2 plays a crucial role in CNM physiopathology and has been validated as a common therapeutic target for three CNM forms. Indeed, the promising results in preclinical models set up the basis for ongoing clinical trials. Another two clinical trials to treat myotubular myopathy by MTM1 gene therapy or tamoxifen repurposing are also ongoing. Here, we review the contribution of the different CNM models to understanding physiopathology and therapy development with a focus on the commonly dysregulated pathways and current therapeutic targets.
Collapse
Affiliation(s)
- Raquel Gómez-Oca
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67400 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France
- Strasbourg University, 67081 Strasbourg, France
- Dynacure, 67400 Illkirch, France;
| | | | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67400 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France
- Strasbourg University, 67081 Strasbourg, France
| |
Collapse
|
15
|
Ambrosini A, Baldessari D, Pozzi S, Battaglia M, Beltrami E, Merico AM, Rasconi M, Monaco L. Fondazione Telethon and Unione Italiana Lotta alla Distrofia Muscolare, a successful partnership for neuromuscular healthcare research of value for patients. Orphanet J Rare Dis 2021; 16:408. [PMID: 34600567 PMCID: PMC8487484 DOI: 10.1186/s13023-021-02047-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/19/2021] [Indexed: 11/10/2022] Open
Abstract
In 2001, Fondazione Telethon and the Italian muscular dystrophy patient organisation Unione Italiana Lotta alla Distrofia Muscolare joined their efforts to design and launch a call for grant applications specifically dedicated to clinical projects in the field of neuromuscular disorders. This strategic initiative, run regularly over the years and still ongoing, aims at supporting research with impact on the daily life of people with a neuromuscular condition and is centred on macro-priorities identified by the patient organisation. It is investigator-driven, and all proposals are peer-reviewed for quality and feasibility. Over the years, this funding program contributed to strengthening the activities of the Italian neuromuscular clinical network, reaching many achievements in healthcare research. Moreover, it has been an enabling factor for innovative therapy experimentation at international level and prepared the clinical ground to make therapies available to Italian patients. The ultimate scope of healthcare research is to ameliorate the delivery of care. In this paper, the achievements of the funded studies are analysed also from this viewpoint, to ascertain to which extent they have fulfilled the original goals established by the patient organisation. The evidence presented indicates that this has been a highly fruitful program. Factors that contributed to its success, lessons learned, challenges, and issues that remain to be addressed are discussed to provide practical examples of an experience that could inspire also other organizations active in the field of rare disease research.
Collapse
Affiliation(s)
| | | | - Silvia Pozzi
- Fondazione Telethon, Via Poerio 14, Milan, Italy
- B.E.A. Consulting, Milan, Italy
| | | | | | | | - Marco Rasconi
- UILDM, Unione Italiana Lotta alla Distrofia Muscolare, Padua, Italy
| | - Lucia Monaco
- Fondazione Telethon, Via Poerio 14, Milan, Italy
| |
Collapse
|
16
|
Wang Q, Yu M, Xie Z, Liu J, Wang Q, Lv H, Zhang W, Yuan Y, Wang Z. Mutational and clinical spectrum of centronuclear myopathy in 9 cases and a literature review of Chinese patients. Neurol Sci 2021; 43:2803-2811. [PMID: 34595679 DOI: 10.1007/s10072-021-05627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/23/2021] [Indexed: 12/01/2022]
Abstract
Centronuclear myopathy (CNM) is a group of congenital myopathies with the histopathological findings of centralized nuclei in muscle fibres. In this study, we summarized the mutational spectrum and phenotypic features of nine Chinese patients with CNM and reanalysed the existing data on 32 CNM patients reported in China. In a cohort comprising nine patients, 14 variants were found in three CNM-related genes, including DNM2, RYR1, and TTN, in 4, 3, and 2 patients, respectively. Of the total 14 variants identified, nine were reported, and 5 were novel including one pathogenic, one likely pathogenic, and 3 of undetermined significance (VUS). Pathologically, we identified the percentage of muscle fibres with central nuclei was much higher in the DNM2-related CNM patients than that in other genetic type of CNM. Of the 32 genetic-diagnosed CNM patients previously reported from China, DNM2, MTM1, SPEG, RYR1, and MYH7 mutations accounted for 59.4%, 25.0%, 9.4%, 3.1%, and 3.1%, respectively. Notably, all of the 20 variants of DNM2 were missense mutations, and the missense mutations in exon 8 were found in 60.0% of DNM2 variants. The c.1106G > A/ p.R369Q (NM_001005360) occurred in 26.3% patients of this Chinese cohort with DNM2-CNM. In conclusion, CNM showed a highly variable genetic spectrum, with DNM2 as the most common causative gene in Chinese CNM patients.
Collapse
Affiliation(s)
- Qi Wang
- Department of Neurology, Peking University First Hospital, Xishiku St 8#, Xicheng District, Beijing, 100034, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Xishiku St 8#, Xicheng District, Beijing, 100034, China
| | - Zhiying Xie
- Department of Neurology, Peking University First Hospital, Xishiku St 8#, Xicheng District, Beijing, 100034, China
| | - Jing Liu
- Department of Neurology, Peking University First Hospital, Xishiku St 8#, Xicheng District, Beijing, 100034, China
| | - Qingqing Wang
- Department of Neurology, Peking University First Hospital, Xishiku St 8#, Xicheng District, Beijing, 100034, China
| | - He Lv
- Department of Neurology, Peking University First Hospital, Xishiku St 8#, Xicheng District, Beijing, 100034, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Xishiku St 8#, Xicheng District, Beijing, 100034, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Xishiku St 8#, Xicheng District, Beijing, 100034, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, 100034, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Xishiku St 8#, Xicheng District, Beijing, 100034, China. .,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, 100034, China.
| |
Collapse
|
17
|
Reumers SFI, Erasmus CE, Bouman K, Pennings M, Schouten M, Kusters B, Duijkers FAM, van der Kooi A, Jaeger B, Verschuuren-Bemelmans CC, Faber CG, van Engelen BG, Kamsteeg EJ, Jungbluth H, Voermans NC. Clinical, genetic, and histological features of centronuclear myopathy in the Netherlands. Clin Genet 2021; 100:692-702. [PMID: 34463354 PMCID: PMC9292987 DOI: 10.1111/cge.14054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 11/30/2022]
Abstract
Centronuclear myopathy (CNM) is a genetically heterogeneous congenital myopathy characterized by muscle weakness, atrophy, and variable degrees of cardiorespiratory involvement. The clinical severity is largely explained by genotype (DNM2, MTM1, RYR1, BIN1, TTN, and other rarer genetic backgrounds), specific mutation(s), and age of the patient. The histopathological hallmark of CNM is the presence of internal centralized nuclei on muscle biopsy. Information on the phenotypical spectrum, subtype prevalence, and phenotype–genotype correlations is limited. To characterize CNM more comprehensively, we retrospectively assessed a national cohort of 48 CNM patients (mean age = 32 ± 24 years, range 0–80, 54% males) from the Netherlands clinically, histologically, and genetically. All information was extracted from entries in the patient's medical records, between 2000 and 2020. Frequent clinical features in addition to muscle weakness and hypotonia were fatigue and exercise intolerance in more mildly affected cases. Genetic analysis showed variants in four genes (18 DNM2, 14 MTM1, 9 RYR1, and 7 BIN1), including 16 novel variants. In addition to central nuclei, histologic examination revealed a large variability of myopathic features in the different genotypes. The identification and characterization of these patients contribute to trial readiness.
Collapse
Affiliation(s)
- Stacha F I Reumers
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Corrie E Erasmus
- Department of Paediatric Neurology, Radboud University Medical Center - Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Karlijn Bouman
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Paediatric Neurology, Radboud University Medical Center - Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Maartje Pennings
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Meyke Schouten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Benno Kusters
- Department of pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Floor A M Duijkers
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Anneke van der Kooi
- Department of Neurology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Bregje Jaeger
- Department of Paediatric Neurology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | | | - Catharina G Faber
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Baziel G van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK.,Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, FoLSM, King's College, London, UK
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
18
|
Reumers SFI, Braun F, Spillane JE, Böhm J, Pennings M, Schouten M, van der Kooi AJ, Foley AR, Bönnemann CG, Kamsteeg EJ, Erasmus CE, Schara-Schmidt U, Jungbluth H, Voermans NC. Spectrum of Clinical Features in X-Linked Myotubular Myopathy Carriers: An International Questionnaire Study. Neurology 2021; 97:e501-e512. [PMID: 34011573 DOI: 10.1212/wnl.0000000000012236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/26/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To characterize the spectrum of clinical features in a cohort of X-linked myotubular myopathy (XL-MTM) carriers, including prevalence, genetic features, clinical symptoms, and signs, as well as associated disease burden. METHODS We performed a cross-sectional online questionnaire study among XL-MTM carriers. Participants were recruited from patient associations, medical centers, and registries in the United Kingdom, Germany, and the Netherlands. We used a custom-made questionnaire, the Checklist Individual Strength (CIS), the Frenchay Activities Index (FAI), the Short Form 12 (SF-12) health survey, and the McGill Pain Questionnaire. Carriers were classified as manifesting or nonmanifesting on the basis of self-reported ambulation and muscle weakness. RESULTS The prevalence of manifesting carriers in this study population (n = 76) was 51%, subdivided into mild (independent ambulation, 39%), moderate (assisted ambulation, 9%), and severe (wheelchair dependent, 3%) phenotypes. In addition to muscle weakness, manifesting carriers frequently reported fatigue (70%) and exercise intolerance (49%). Manifesting carriers scored higher on the overall CIS (p = 0.001), the fatigue subscale (p < 0.001), and least severe pain subscale (p = 0.005) than nonmanifesting carriers. They scored lower on the FAI (p = 0.005) and the physical component of the SF-12 health survey (p < 0.001). CONCLUSIONS The prevalence of manifesting XL-MTM carriers may be higher than currently assumed, most having a mild phenotype and a wide variety of symptoms. Manifesting carriers are particularly affected by fatigue, limitations of daily activities, pain, and reduced quality of life. Our findings should increase awareness and provide useful information for health care providers and future clinical trials.
Collapse
Affiliation(s)
- Stacha F I Reumers
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK
| | - Frederik Braun
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK
| | - Jennifer E Spillane
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK
| | - Johann Böhm
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK
| | - Maartje Pennings
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK
| | - Meyke Schouten
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK
| | - Anneke J van der Kooi
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK
| | - A Reghan Foley
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK
| | - Carsten G Bönnemann
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK
| | - Erik-Jan Kamsteeg
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK
| | - Corrie E Erasmus
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK
| | - Ulrike Schara-Schmidt
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK
| | - Heinz Jungbluth
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK
| | - Nicol C Voermans
- From the Department of Neurology (S.F.I.R., N.C.V.), Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics (M.P., E.-j.K.), and Department of Clinical Genetics (M.S.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatric Neurology and Neuromuscular Centre (F.B., U.S.-S.), University Hospital Essen, Germany; Department of Neurology (J.E.S.), St. Thomas Hospital, and Department of Paediatric Neurology (H.J.), Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Department of Neurobiology and Genetics (J.B.), Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Department of Neurology (A.J.v.d.K.), Amsterdam University Medical Center, Neuroscience Institute, the Netherlands; Neuromuscular and Neurogenetic Disorders of Childhood Section (A.R.F., C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Department of Pediatric Neurology (C.E.E.), Radboud University Medical Center Amalia Children's Hospital, Nijmegen, the Netherlands; and Muscle Signalling Section (H.J.), Randall Division for Cell and Molecular Biophysics, King's College, London, UK.
| |
Collapse
|
19
|
Savarese M, Välipakka S, Johari M, Hackman P, Udd B. Is Gene-Size an Issue for the Diagnosis of Skeletal Muscle Disorders? J Neuromuscul Dis 2021; 7:203-216. [PMID: 32176652 PMCID: PMC7369045 DOI: 10.3233/jnd-190459] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human genes have a variable length. Those having a coding sequence of extraordinary length and a high number of exons were almost impossible to sequence using the traditional Sanger-based gene-by-gene approach. High-throughput sequencing has partly overcome the size-related technical issues, enabling a straightforward, rapid and relatively inexpensive analysis of large genes. Several large genes (e.g. TTN, NEB, RYR1, DMD) are recognized as disease-causing in patients with skeletal muscle diseases. However, because of their sheer size, the clinical interpretation of variants in these genes is probably the most challenging aspect of the high-throughput genetic investigation in the field of skeletal muscle diseases. The main aim of this review is to discuss the technical and interpretative issues related to the diagnostic investigation of large genes and to reflect upon the current state of the art and the future advancements in the field.
Collapse
Affiliation(s)
- Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Salla Välipakka
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Mridul Johari
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Peter Hackman
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland.,Neuromuscular Research Center, Tampere University and University Hospital, Tampere, Finland.,Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| |
Collapse
|
20
|
Abstract
Muscle stiffness, muscle elasticity and explosive strength are the main components of athletes' performance and they show a sex-based as well as ethnicity variation. Muscle stiffness is thought to be one of the risk factors associated with sports injuries and is less common in females than in males. These observations may be explained by circulating levels of sex hormones and their specific receptors. It has been shown that higher levels of estrogen are associated with lower muscle stiffness responsible for suppression of collagen synthesis. It is thought that these properties, at least in part, depend on genetic factors. Particularly, the gene encoding estrogen receptor 1 (ESR1) is one of the candidates that may be associated with muscle stiffness. Muscle elasticity increases with aging and there is evidence suggesting that titin (encoded by the TTN gene), a protein that is expressed in cardiac and skeletal muscles, is one of the factors responsible for elastic properties of the muscles. Mutations in the TTN gene result in some types of muscular dystrophy or cardiomyopathy. In this context, TTN may be regarded as a promising candidate for studying the elastic properties of muscles in athletes. The physiological background of explosive strength depends not only on the muscle architecture and muscle fiber composition, but also on the central nervous system and functionality of neuromuscular units. These properties are, at least partly, genetically determined. In this context, the ACTN3 gene code for α-actinin 3 has been widely researched.
Collapse
|
21
|
Pathogenic deep intronic MTM1 variant activates a pseudo-exon encoding a nonsense codon resulting in severe X-linked myotubular myopathy. Eur J Hum Genet 2020; 29:61-66. [PMID: 32862205 DOI: 10.1038/s41431-020-00715-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/30/2020] [Accepted: 08/21/2020] [Indexed: 12/25/2022] Open
Abstract
X-linked myotubular myopathy (XLMTM) is a severe congenital myopathy characterised by generalised weakness and respiratory insufficiency. XLMTM is associated with pathogenic variants in MTM1; a gene encoding the lipid phosphatase myotubularin. Whole genome sequencing (WGS) of an exome-negative male proband with severe hypotonia, respiratory insufficiency and centralised nuclei on muscle biopsy identified a deep intronic MTM1 variant NG_008199.1(NM_000252.2):c.1468-577A>G, which strengthened a cryptic 5' splice site (A>G substitution at the +5 position). Muscle RNA sequencing was non-diagnostic due to low read depth. Reverse transcription PCR (RT-PCR) of muscle RNA confirmed the c.1468-577A>G variant activates inclusion of a pseudo-exon encoding a premature stop codon into all detected MTM1 transcripts. Western blot analysis establishes deficiency of myotubularin protein, consistent with the severe XLMTM phenotype. We expand the genotypic spectrum of XLMTM and highlight benefits of screening non-coding regions of MTM1 in male probands with phenotypically concordant XLMTM who remain undiagnosed following exome sequencing.
Collapse
|
22
|
Papadimas GK, Xirou S, Kararizou E, Papadopoulos C. Update on Congenital Myopathies in Adulthood. Int J Mol Sci 2020; 21:ijms21103694. [PMID: 32456280 PMCID: PMC7279481 DOI: 10.3390/ijms21103694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Congenital myopathies (CMs) constitute a group of heterogenous rare inherited muscle diseases with different incidences. They are traditionally grouped based on characteristic histopathological findings revealed on muscle biopsy. In recent decades, the ever-increasing application of modern genetic technologies has not just improved our understanding of their pathophysiology, but also expanded their phenotypic spectrum and contributed to a more genetically based approach for their classification. Later onset forms of CMs are increasingly recognised. They are often considered milder with slower progression, variable clinical presentations and different modes of inheritance. We reviewed the key features and genetic basis of late onset CMs with a special emphasis on those forms that may first manifest in adulthood.
Collapse
|
23
|
Zecevic N, Arsenijevic V, Manolakos E, Papoulidis I, Theocharis G, Sartsidis A, Tsagas T, Tziotis I, Dagklis T, Kalogeros G, Tsakiridis I, Filipovic Stankovic M, Eleftheriades M. New Compound Heterozygous Splice Site Mutations of the Skeletal Muscle Ryanodine Receptor ( RYR1) Gene Manifest Fetal Akinesia: A Linkage with Congenital Myopathies. Mol Syndromol 2020; 11:104-109. [PMID: 32655342 DOI: 10.1159/000507034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2020] [Indexed: 11/19/2022] Open
Abstract
Mutations in the skeletal muscle ryanodine receptor (RYR1) gene have been linked to malignant hyperthermia susceptibility, central core disease, and minicore myopathy with external ophthalmoplegia. RYR1 is an intracellular calcium release channel and plays a crucial role in the sarcoplasmic reticulum and transverse tubule connection. Here, we report 2 fetuses from the same parents with compound heterozygous mutations in the RYR1 gene (c.10347+1G>A and c.10456-2Α>G) who presented with fetal akinesia and polyhydramnios at 27 and 19 weeks of gestation with intrauterine growth restriction in the third pregnancy. The prospective parents of the fetuses were heterozygous carriers for c.10456-2Α>G (mother) and c.10347+1G>A (father). Both mutations affect splice sites resulting in dysfunctional protein forms probably missing crucial domains of the C-terminus. Our findings reveal a new RYR1 splice site mutation (c.10456-2Α>G) that may be associated with the clinical features of myopathies, expanding the RYR1 spectrum related to these pathologies.
Collapse
Affiliation(s)
- Nebojsa Zecevic
- Obstetric and Gynecological Clinic Narodni Front, Belgrade, Serbia
| | | | | | | | | | | | - Tryfon Tsagas
- Department of Obstetrics and Gynecology, IASO Maternity Hospital, Athens, Greece
| | - Ioannis Tziotis
- Department of Obstetrics and Gynecology, IASO Maternity Hospital, Athens, Greece
| | - Themistoklis Dagklis
- 3rd Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Kalogeros
- Department of Obstetrics and Gynecology, IASO Thessaly Maternity Hospital, Larissa, Greece
| | - Ioannis Tsakiridis
- 3rd Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Makarios Eleftheriades
- 2nd Department of Obstetrics and Gynecology, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
24
|
Savarese M, Maggi L, Vihola A, Jonson PH, Tasca G, Ruggiero L, Bello L, Magri F, Giugliano T, Torella A, Evilä A, Di Fruscio G, Vanakker O, Gibertini S, Vercelli L, Ruggieri A, Antozzi C, Luque H, Janssens S, Pasanisi MB, Fiorillo C, Raimondi M, Ergoli M, Politano L, Bruno C, Rubegni A, Pane M, Santorelli FM, Minetti C, Angelini C, De Bleecker J, Moggio M, Mongini T, Comi GP, Santoro L, Mercuri E, Pegoraro E, Mora M, Hackman P, Udd B, Nigro V. Interpreting Genetic Variants in Titin in Patients With Muscle Disorders. JAMA Neurol 2019; 75:557-565. [PMID: 29435569 DOI: 10.1001/jamaneurol.2017.4899] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Importance Mutations in the titin gene (TTN) cause a wide spectrum of genetic diseases. The interpretation of the numerous rare variants identified in TTN is a difficult challenge given its large size. Objective To identify genetic variants in titin in a cohort of patients with muscle disorders. Design, Setting, and Participants In this case series, 9 patients with titinopathy and 4 other patients with possibly disease-causing variants in TTN were identified. Titin mutations were detected through targeted resequencing performed on DNA from 504 patients with muscular dystrophy, congenital myopathy, or other skeletal muscle disorders. Patients were enrolled from 10 clinical centers in April 2012 to December 2013. All of them had not received a diagnosis after undergoing an extensive investigation, including Sanger sequencing of candidate genes. The data analysis was performed between September 2013 and January 2017. Sequencing data were analyzed using an internal custom bioinformatics pipeline. Main Outcomes and Measures The identification of novel mutations in the TTN gene and novel patients with titinopathy. We performed an evaluation of putative causative variants in the TTN gene, combining genetic, clinical, and imaging data with messenger RNA and/or protein studies. Results Of the 9 novel patients with titinopathy, 5 (55.5%) were men and the mean (SD) age at onset was 25 (15.8) years (range, 0-46 years). Of the 4 other patients (3 men and 1 woman) with possibly disease-causing TTN variants, 2 (50%) had a congenital myopathy and 2 (50%) had a slowly progressive distal myopathy with onset in the second decade. Most of the identified mutations were previously unreported. However, all the variants, even the already described mutations, require careful clinical and molecular evaluation of probands and relatives. Heterozygous truncating variants or unique missense changes are not sufficient to make a diagnosis of titinopathy. Conclusions and Relevance The interpretation of TTN variants often requires further analyses, including a comprehensive evaluation of the clinical phenotype (deep phenotyping) as well as messenger RNA and protein studies. We propose a specific workflow for the clinical interpretation of genetic findings in titin.
Collapse
Affiliation(s)
- Marco Savarese
- Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland.,Dipartimento di Biochimica, Biofisica e Patologia Generale, Università degli Studi della Campania "Luigi Vanvitelli," Napoli, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Lorenzo Maggi
- Neuromuscular Diseases and Neuroimmunology Unit, Institute for Research and Health Care Foundation Neurological Institute C. Besta, Milan, Italy
| | - Anna Vihola
- Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
| | - Per Harald Jonson
- Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
| | - Giorgio Tasca
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "A. Gemelli," Rome, Italy
| | - Lucia Ruggiero
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli "Federico II," Napoli, Italy
| | - Luca Bello
- Neuromuscular Center, Dipartimento di Neuroscienze, Università di Padova, Padova, Italy
| | - Francesca Magri
- Centro Dino Ferrari, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Fondazione Institute for Research and Health Care Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Teresa Giugliano
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Università degli Studi della Campania "Luigi Vanvitelli," Napoli, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Annalaura Torella
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Università degli Studi della Campania "Luigi Vanvitelli," Napoli, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Anni Evilä
- Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
| | - Giuseppina Di Fruscio
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Università degli Studi della Campania "Luigi Vanvitelli," Napoli, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Olivier Vanakker
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Sara Gibertini
- Neuromuscular Diseases and Neuroimmunology Unit, Institute for Research and Health Care Foundation Neurological Institute C. Besta, Milan, Italy
| | - Liliana Vercelli
- Neuromuscular Unit, Department of Neurosciences, Rita Levi Montalcini, University of Torino, Torino, Italy
| | - Alessandra Ruggieri
- Neuromuscular Diseases and Neuroimmunology Unit, Institute for Research and Health Care Foundation Neurological Institute C. Besta, Milan, Italy
| | - Carlo Antozzi
- Neuromuscular Diseases and Neuroimmunology Unit, Institute for Research and Health Care Foundation Neurological Institute C. Besta, Milan, Italy
| | - Helena Luque
- Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
| | - Sandra Janssens
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Maria Barbara Pasanisi
- Neuromuscular Diseases and Neuroimmunology Unit, Institute for Research and Health Care Foundation Neurological Institute C. Besta, Milan, Italy
| | - Chiara Fiorillo
- Pediatric Neurology and Neuromuscular Disorders Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal, and Child Health; University of Genoa, Istituto G. Gaslini, Genova, Italy
| | | | - Manuela Ergoli
- Dipartimento di Medicina Sperimentale, Cardiomiologia e Genetica Medica, Università degli Studi della Campania "Luigi Vanvitelli," Napoli, Italy
| | - Luisa Politano
- Dipartimento di Medicina Sperimentale, Cardiomiologia e Genetica Medica, Università degli Studi della Campania "Luigi Vanvitelli," Napoli, Italy
| | - Claudio Bruno
- Center of Myology and Neurodegenerative Disease, Istituto Giannina Gaslini, Genova, Italy
| | - Anna Rubegni
- Medicina Molecolare, Institute for Research and Health Care Fondazione Stella Maris, Pisa, Italy
| | - Marika Pane
- Department of Pediatric Neurology, Catholic University and Nemo Roma Center for Neuromuscular Disorders, Rome, Italy
| | - Filippo M Santorelli
- Medicina Molecolare, Institute for Research and Health Care Fondazione Stella Maris, Pisa, Italy
| | - Carlo Minetti
- Pediatric Neurology and Neuromuscular Disorders Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal, and Child Health; University of Genoa, Istituto G. Gaslini, Genova, Italy
| | - Corrado Angelini
- Fondazione Hospital S.Camillo Institute for Research and Health Care, Venezia, Italy
| | - Jan De Bleecker
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Maurizio Moggio
- Neuromuscular and Rare Disease Unit, Dipartimento di Neuroscienze, Università degli Studi di Milano, Fondazione Institute for Research and Health Care Ca' Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Tiziana Mongini
- Neuromuscular Unit, Department of Neurosciences, Rita Levi Montalcini, University of Torino, Torino, Italy
| | - Giacomo Pietro Comi
- Centro Dino Ferrari, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Fondazione Institute for Research and Health Care Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Lucio Santoro
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli "Federico II," Napoli, Italy
| | - Eugenio Mercuri
- Department of Pediatric Neurology, Catholic University and Nemo Roma Center for Neuromuscular Disorders, Rome, Italy
| | - Elena Pegoraro
- Neuromuscular Center, Dipartimento di Neuroscienze, Università di Padova, Padova, Italy
| | - Marina Mora
- Neuromuscular Diseases and Neuroimmunology Unit, Institute for Research and Health Care Foundation Neurological Institute C. Besta, Milan, Italy
| | - Peter Hackman
- Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland.,Neuromuscular Research Center, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Vincenzo Nigro
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Università degli Studi della Campania "Luigi Vanvitelli," Napoli, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| |
Collapse
|
25
|
Cocanougher BT, Flynn L, Yun P, Jain M, Waite M, Vasavada R, Wittenbach JD, de Chastonay S, Chhibber S, Innes AM, MacLaren L, Mozaffar T, Arai AE, Donkervoort S, Bönnemann CG, Foley AR. Adult MTM1-related myopathy carriers: Classification based on deep phenotyping. Neurology 2019; 93:e1535-e1542. [PMID: 31541013 DOI: 10.1212/wnl.0000000000008316] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 05/13/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To better characterize adult myotubularin 1 (MTM1)-related myopathy carriers and recommend a phenotypic classification. METHODS This cohort study was performed at the NIH Clinical Center. Participants were required to carry a confirmed MTM1 mutation and were recruited via the Congenital Muscle Disease International Registry (n = 8), a traveling local clinic of the Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH and Cure CMD (n = 1), and direct physician referral (n = 1). Neuromuscular examinations, muscle MRI, dynamic breathing MRI, cardiac MRI, pulmonary function tests (PFTs), physical therapy assessments including the Motor Function Measure 32 (MFM-32) scale, and X chromosome inactivation (XCI) studies were performed. RESULTS Phenotypic categories were proposed based on ambulatory status and muscle weakness. Carriers were categorized as severe (nonambulatory; n = 1), moderate (minimal independent ambulation/assisted ambulation; n = 3), mild (independent ambulation but with evidence of muscle weakness; n = 4), and nonmanifesting (no evidence of muscle weakness; n = 2). Carriers with more severe muscle weakness exhibited greater degrees of respiratory insufficiency and abnormal signal on muscle imaging. Skeletal asymmetries were evident in both manifesting and nonmanifesting carriers. Skewed XCI did not explain phenotypic severity. CONCLUSION This work illustrates the phenotypic range of MTM1-related myopathy carriers in adulthood and recommends a phenotypic classification. This classification, defined by ambulatory status and muscle weakness, is supported by muscle MRI, PFT, and MFM-32 scale composite score findings, which may serve as markers of disease progression and outcome measures in future gene therapy or other clinical trials.
Collapse
Affiliation(s)
- Benjamin T Cocanougher
- From the University of Rochester School of Medicine and Dentistry (B.T.C.), NY; Howard Hughes Medical Institute Janelia Research Campus (B.T.C., J.D.W.), Ashburn, VA; St Catharine's College (B.T.C.), University of Cambridge, UK; Clinical Center, NINDS (L.F.), Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS (P.Y., S.D., C.G.B., A.R.F.), Clinical Research Center, Rehabilitation Medicine Department (M.J., M.W., R.V.), and Advanced Cardiovascular Imaging Laboratory, NHLBI (A.E.A.), NIH, Bethesda, MD; Congenital Muscle Disease International Registry (CMDIR) (S.d.C.), Cure CMD, Torrance, CA; Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and Department of Clinical Neurosciences (S.C.), University of Calgary; Department of Medical Genetics and Alberta Children's Hospital (L.M.), Calgary, Canada; and Department of Neurology (T.M.), University of California, Irvine
| | - Lauren Flynn
- From the University of Rochester School of Medicine and Dentistry (B.T.C.), NY; Howard Hughes Medical Institute Janelia Research Campus (B.T.C., J.D.W.), Ashburn, VA; St Catharine's College (B.T.C.), University of Cambridge, UK; Clinical Center, NINDS (L.F.), Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS (P.Y., S.D., C.G.B., A.R.F.), Clinical Research Center, Rehabilitation Medicine Department (M.J., M.W., R.V.), and Advanced Cardiovascular Imaging Laboratory, NHLBI (A.E.A.), NIH, Bethesda, MD; Congenital Muscle Disease International Registry (CMDIR) (S.d.C.), Cure CMD, Torrance, CA; Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and Department of Clinical Neurosciences (S.C.), University of Calgary; Department of Medical Genetics and Alberta Children's Hospital (L.M.), Calgary, Canada; and Department of Neurology (T.M.), University of California, Irvine
| | - Pomi Yun
- From the University of Rochester School of Medicine and Dentistry (B.T.C.), NY; Howard Hughes Medical Institute Janelia Research Campus (B.T.C., J.D.W.), Ashburn, VA; St Catharine's College (B.T.C.), University of Cambridge, UK; Clinical Center, NINDS (L.F.), Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS (P.Y., S.D., C.G.B., A.R.F.), Clinical Research Center, Rehabilitation Medicine Department (M.J., M.W., R.V.), and Advanced Cardiovascular Imaging Laboratory, NHLBI (A.E.A.), NIH, Bethesda, MD; Congenital Muscle Disease International Registry (CMDIR) (S.d.C.), Cure CMD, Torrance, CA; Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and Department of Clinical Neurosciences (S.C.), University of Calgary; Department of Medical Genetics and Alberta Children's Hospital (L.M.), Calgary, Canada; and Department of Neurology (T.M.), University of California, Irvine
| | - Minal Jain
- From the University of Rochester School of Medicine and Dentistry (B.T.C.), NY; Howard Hughes Medical Institute Janelia Research Campus (B.T.C., J.D.W.), Ashburn, VA; St Catharine's College (B.T.C.), University of Cambridge, UK; Clinical Center, NINDS (L.F.), Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS (P.Y., S.D., C.G.B., A.R.F.), Clinical Research Center, Rehabilitation Medicine Department (M.J., M.W., R.V.), and Advanced Cardiovascular Imaging Laboratory, NHLBI (A.E.A.), NIH, Bethesda, MD; Congenital Muscle Disease International Registry (CMDIR) (S.d.C.), Cure CMD, Torrance, CA; Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and Department of Clinical Neurosciences (S.C.), University of Calgary; Department of Medical Genetics and Alberta Children's Hospital (L.M.), Calgary, Canada; and Department of Neurology (T.M.), University of California, Irvine
| | - Melissa Waite
- From the University of Rochester School of Medicine and Dentistry (B.T.C.), NY; Howard Hughes Medical Institute Janelia Research Campus (B.T.C., J.D.W.), Ashburn, VA; St Catharine's College (B.T.C.), University of Cambridge, UK; Clinical Center, NINDS (L.F.), Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS (P.Y., S.D., C.G.B., A.R.F.), Clinical Research Center, Rehabilitation Medicine Department (M.J., M.W., R.V.), and Advanced Cardiovascular Imaging Laboratory, NHLBI (A.E.A.), NIH, Bethesda, MD; Congenital Muscle Disease International Registry (CMDIR) (S.d.C.), Cure CMD, Torrance, CA; Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and Department of Clinical Neurosciences (S.C.), University of Calgary; Department of Medical Genetics and Alberta Children's Hospital (L.M.), Calgary, Canada; and Department of Neurology (T.M.), University of California, Irvine
| | - Ruhi Vasavada
- From the University of Rochester School of Medicine and Dentistry (B.T.C.), NY; Howard Hughes Medical Institute Janelia Research Campus (B.T.C., J.D.W.), Ashburn, VA; St Catharine's College (B.T.C.), University of Cambridge, UK; Clinical Center, NINDS (L.F.), Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS (P.Y., S.D., C.G.B., A.R.F.), Clinical Research Center, Rehabilitation Medicine Department (M.J., M.W., R.V.), and Advanced Cardiovascular Imaging Laboratory, NHLBI (A.E.A.), NIH, Bethesda, MD; Congenital Muscle Disease International Registry (CMDIR) (S.d.C.), Cure CMD, Torrance, CA; Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and Department of Clinical Neurosciences (S.C.), University of Calgary; Department of Medical Genetics and Alberta Children's Hospital (L.M.), Calgary, Canada; and Department of Neurology (T.M.), University of California, Irvine
| | - Jason D Wittenbach
- From the University of Rochester School of Medicine and Dentistry (B.T.C.), NY; Howard Hughes Medical Institute Janelia Research Campus (B.T.C., J.D.W.), Ashburn, VA; St Catharine's College (B.T.C.), University of Cambridge, UK; Clinical Center, NINDS (L.F.), Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS (P.Y., S.D., C.G.B., A.R.F.), Clinical Research Center, Rehabilitation Medicine Department (M.J., M.W., R.V.), and Advanced Cardiovascular Imaging Laboratory, NHLBI (A.E.A.), NIH, Bethesda, MD; Congenital Muscle Disease International Registry (CMDIR) (S.d.C.), Cure CMD, Torrance, CA; Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and Department of Clinical Neurosciences (S.C.), University of Calgary; Department of Medical Genetics and Alberta Children's Hospital (L.M.), Calgary, Canada; and Department of Neurology (T.M.), University of California, Irvine
| | - Sabine de Chastonay
- From the University of Rochester School of Medicine and Dentistry (B.T.C.), NY; Howard Hughes Medical Institute Janelia Research Campus (B.T.C., J.D.W.), Ashburn, VA; St Catharine's College (B.T.C.), University of Cambridge, UK; Clinical Center, NINDS (L.F.), Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS (P.Y., S.D., C.G.B., A.R.F.), Clinical Research Center, Rehabilitation Medicine Department (M.J., M.W., R.V.), and Advanced Cardiovascular Imaging Laboratory, NHLBI (A.E.A.), NIH, Bethesda, MD; Congenital Muscle Disease International Registry (CMDIR) (S.d.C.), Cure CMD, Torrance, CA; Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and Department of Clinical Neurosciences (S.C.), University of Calgary; Department of Medical Genetics and Alberta Children's Hospital (L.M.), Calgary, Canada; and Department of Neurology (T.M.), University of California, Irvine
| | - Sameer Chhibber
- From the University of Rochester School of Medicine and Dentistry (B.T.C.), NY; Howard Hughes Medical Institute Janelia Research Campus (B.T.C., J.D.W.), Ashburn, VA; St Catharine's College (B.T.C.), University of Cambridge, UK; Clinical Center, NINDS (L.F.), Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS (P.Y., S.D., C.G.B., A.R.F.), Clinical Research Center, Rehabilitation Medicine Department (M.J., M.W., R.V.), and Advanced Cardiovascular Imaging Laboratory, NHLBI (A.E.A.), NIH, Bethesda, MD; Congenital Muscle Disease International Registry (CMDIR) (S.d.C.), Cure CMD, Torrance, CA; Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and Department of Clinical Neurosciences (S.C.), University of Calgary; Department of Medical Genetics and Alberta Children's Hospital (L.M.), Calgary, Canada; and Department of Neurology (T.M.), University of California, Irvine
| | - A Micheil Innes
- From the University of Rochester School of Medicine and Dentistry (B.T.C.), NY; Howard Hughes Medical Institute Janelia Research Campus (B.T.C., J.D.W.), Ashburn, VA; St Catharine's College (B.T.C.), University of Cambridge, UK; Clinical Center, NINDS (L.F.), Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS (P.Y., S.D., C.G.B., A.R.F.), Clinical Research Center, Rehabilitation Medicine Department (M.J., M.W., R.V.), and Advanced Cardiovascular Imaging Laboratory, NHLBI (A.E.A.), NIH, Bethesda, MD; Congenital Muscle Disease International Registry (CMDIR) (S.d.C.), Cure CMD, Torrance, CA; Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and Department of Clinical Neurosciences (S.C.), University of Calgary; Department of Medical Genetics and Alberta Children's Hospital (L.M.), Calgary, Canada; and Department of Neurology (T.M.), University of California, Irvine
| | - Linda MacLaren
- From the University of Rochester School of Medicine and Dentistry (B.T.C.), NY; Howard Hughes Medical Institute Janelia Research Campus (B.T.C., J.D.W.), Ashburn, VA; St Catharine's College (B.T.C.), University of Cambridge, UK; Clinical Center, NINDS (L.F.), Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS (P.Y., S.D., C.G.B., A.R.F.), Clinical Research Center, Rehabilitation Medicine Department (M.J., M.W., R.V.), and Advanced Cardiovascular Imaging Laboratory, NHLBI (A.E.A.), NIH, Bethesda, MD; Congenital Muscle Disease International Registry (CMDIR) (S.d.C.), Cure CMD, Torrance, CA; Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and Department of Clinical Neurosciences (S.C.), University of Calgary; Department of Medical Genetics and Alberta Children's Hospital (L.M.), Calgary, Canada; and Department of Neurology (T.M.), University of California, Irvine
| | - Tahseen Mozaffar
- From the University of Rochester School of Medicine and Dentistry (B.T.C.), NY; Howard Hughes Medical Institute Janelia Research Campus (B.T.C., J.D.W.), Ashburn, VA; St Catharine's College (B.T.C.), University of Cambridge, UK; Clinical Center, NINDS (L.F.), Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS (P.Y., S.D., C.G.B., A.R.F.), Clinical Research Center, Rehabilitation Medicine Department (M.J., M.W., R.V.), and Advanced Cardiovascular Imaging Laboratory, NHLBI (A.E.A.), NIH, Bethesda, MD; Congenital Muscle Disease International Registry (CMDIR) (S.d.C.), Cure CMD, Torrance, CA; Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and Department of Clinical Neurosciences (S.C.), University of Calgary; Department of Medical Genetics and Alberta Children's Hospital (L.M.), Calgary, Canada; and Department of Neurology (T.M.), University of California, Irvine
| | - Andrew E Arai
- From the University of Rochester School of Medicine and Dentistry (B.T.C.), NY; Howard Hughes Medical Institute Janelia Research Campus (B.T.C., J.D.W.), Ashburn, VA; St Catharine's College (B.T.C.), University of Cambridge, UK; Clinical Center, NINDS (L.F.), Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS (P.Y., S.D., C.G.B., A.R.F.), Clinical Research Center, Rehabilitation Medicine Department (M.J., M.W., R.V.), and Advanced Cardiovascular Imaging Laboratory, NHLBI (A.E.A.), NIH, Bethesda, MD; Congenital Muscle Disease International Registry (CMDIR) (S.d.C.), Cure CMD, Torrance, CA; Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and Department of Clinical Neurosciences (S.C.), University of Calgary; Department of Medical Genetics and Alberta Children's Hospital (L.M.), Calgary, Canada; and Department of Neurology (T.M.), University of California, Irvine
| | - Sandra Donkervoort
- From the University of Rochester School of Medicine and Dentistry (B.T.C.), NY; Howard Hughes Medical Institute Janelia Research Campus (B.T.C., J.D.W.), Ashburn, VA; St Catharine's College (B.T.C.), University of Cambridge, UK; Clinical Center, NINDS (L.F.), Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS (P.Y., S.D., C.G.B., A.R.F.), Clinical Research Center, Rehabilitation Medicine Department (M.J., M.W., R.V.), and Advanced Cardiovascular Imaging Laboratory, NHLBI (A.E.A.), NIH, Bethesda, MD; Congenital Muscle Disease International Registry (CMDIR) (S.d.C.), Cure CMD, Torrance, CA; Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and Department of Clinical Neurosciences (S.C.), University of Calgary; Department of Medical Genetics and Alberta Children's Hospital (L.M.), Calgary, Canada; and Department of Neurology (T.M.), University of California, Irvine
| | - Carsten G Bönnemann
- From the University of Rochester School of Medicine and Dentistry (B.T.C.), NY; Howard Hughes Medical Institute Janelia Research Campus (B.T.C., J.D.W.), Ashburn, VA; St Catharine's College (B.T.C.), University of Cambridge, UK; Clinical Center, NINDS (L.F.), Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS (P.Y., S.D., C.G.B., A.R.F.), Clinical Research Center, Rehabilitation Medicine Department (M.J., M.W., R.V.), and Advanced Cardiovascular Imaging Laboratory, NHLBI (A.E.A.), NIH, Bethesda, MD; Congenital Muscle Disease International Registry (CMDIR) (S.d.C.), Cure CMD, Torrance, CA; Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and Department of Clinical Neurosciences (S.C.), University of Calgary; Department of Medical Genetics and Alberta Children's Hospital (L.M.), Calgary, Canada; and Department of Neurology (T.M.), University of California, Irvine
| | - A Reghan Foley
- From the University of Rochester School of Medicine and Dentistry (B.T.C.), NY; Howard Hughes Medical Institute Janelia Research Campus (B.T.C., J.D.W.), Ashburn, VA; St Catharine's College (B.T.C.), University of Cambridge, UK; Clinical Center, NINDS (L.F.), Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, NINDS (P.Y., S.D., C.G.B., A.R.F.), Clinical Research Center, Rehabilitation Medicine Department (M.J., M.W., R.V.), and Advanced Cardiovascular Imaging Laboratory, NHLBI (A.E.A.), NIH, Bethesda, MD; Congenital Muscle Disease International Registry (CMDIR) (S.d.C.), Cure CMD, Torrance, CA; Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and Department of Clinical Neurosciences (S.C.), University of Calgary; Department of Medical Genetics and Alberta Children's Hospital (L.M.), Calgary, Canada; and Department of Neurology (T.M.), University of California, Irvine.
| |
Collapse
|
26
|
Misaka T, Yoshihisa A, Takeishi Y. Titin in muscular dystrophy and cardiomyopathy: Urinary titin as a novel marker. Clin Chim Acta 2019; 495:123-128. [PMID: 30959043 DOI: 10.1016/j.cca.2019.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 01/12/2023]
Abstract
Titin, encoded by the gene TTN, is the largest human protein, and plays central roles in sarcomeric structures and functions in skeletal and cardiac muscles. Mutations of TTN are causally related to specific types of muscular dystrophies and cardiomyopathies. A developed methodology of next generation sequencing has recently led to the identification of novel TTN mutations in such diseases. The clinical significance of titin is now emerging as a target for genetic strategies. Titin-related muscular dystrophies include tibial muscular dystrophy, limb-girdle muscular dystrophy, Emery-Dreifuss muscular dystrophy, hereditary myopathy with early respiratory failure, central core myopathy, centronuclear myopathies, and Salih myopathy. Truncation mutations of TTN have been identified as the most frequent genetic cause of dilated cardiomyopathy. In this review article, we highlight the role of titin and impact of TTN mutations in the pathogenesis of muscular dystrophies and cardiomyopathies. Recently, a novel sensitive sandwich enzyme-linked immunosorbent assay (ELISA) for the detection of the urinary titin N-terminal fragments (U-TN) has been established. We discuss the clinical significance of U-TN in the diagnosis of muscular dystrophies and differential diagnosis of cardiomyopathies, as well as risk stratification in dilated cardiomyopathy.
Collapse
Affiliation(s)
- Tomofumi Misaka
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan.; Department of Advanced Cardiac Therapeutics, Fukushima Medical University, Fukushima, Japan
| | - Akiomi Yoshihisa
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan.; Department of Advanced Cardiac Therapeutics, Fukushima Medical University, Fukushima, Japan..
| | - Yasuchika Takeishi
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
27
|
Gonorazky HD, Dowling JJ, Volpatti JR, Vajsar J. Signs and Symptoms in Congenital Myopathies. Semin Pediatr Neurol 2019; 29:3-11. [PMID: 31060723 DOI: 10.1016/j.spen.2019.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Congenital myopathies (CM) represent a continuously growing group of disorders with a wide range of clinical and histopathologic presentations. The refinement and application of new technologies for genetic diagnosis have broadened our understanding of the genetic causes of CM. Our growing knowledge has revealed that there are no clear limits between each subgroup of CM, and thus the clinical overlap between genes has become more evident. The implementation of next generation sequencing has produced vast amounts of genomic data that may be difficult to interpret. With an increasing number of reports revealing variants of unknown significance, it is essential to support the genetic diagnosis with a well characterized clinical description of the patient. Phenotype-genotype correlation should be a priority at the moment of disclosing the genetic results. Thus, a detailed physical examination can provide us with subtle differences that are not only key in order to arrive at a correct diagnosis, but also in the characterization of new myopathies and candidate genes.
Collapse
Affiliation(s)
- Hernan D Gonorazky
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - James J Dowling
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Molecular Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jonathan R Volpatti
- Department of Molecular Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jiri Vajsar
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
28
|
Abstract
The congenital myopathies form a large clinically and genetically heterogeneous group of disorders. Currently mutations in at least 27 different genes have been reported to cause a congenital myopathy, but the number is expected to increase due to the accelerated use of next-generation sequencing methods. There is substantial overlap between the causative genes and the clinical and histopathologic features of the congenital myopathies. The mode of inheritance can be autosomal recessive, autosomal dominant or X-linked. Both dominant and recessive mutations in the same gene can cause a similar disease phenotype, and the same clinical phenotype can also be caused by mutations in different genes. Clear genotype-phenotype correlations are few and far between.
Collapse
Affiliation(s)
- Katarina Pelin
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland; The Folkhälsan Institute of Genetics, Folkhälsan Research Center, and Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.
| | - Carina Wallgren-Pettersson
- The Folkhälsan Institute of Genetics, Folkhälsan Research Center, and Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
29
|
Abstract
Titin/connectin, encoded by the TTN gene, is the largest protein in humans. It acts as a molecular spring in the sarcomere of striated muscles. Although titin is degraded in the skeletal muscles of patients with muscular dystrophies, studies of titin have been limited by its mammoth size. Mutations in the TTN gene have been detected not only in skeletal muscle diseases but in cardiac muscle diseases. TTN mutations result in a wide variety of phenotypes. Recent proteome analysis has found that titin fragments are excreted into the urine of patents with Duchenne muscular dystrophy (DMD). Enzyme-linked immunosorbent assays (ELISAs) have shown that urinary titin is a useful noninvasive biomarker for the diagnosis and screening of not only DMD, but also of neuromuscular diseases, for predicting the outcome of cardiomyopathy and for evaluating physical activities. The development of ELISA systems to measure urinary titin has opened a door to studying muscle degradation directly and noninvasively. This review provides current understanding of urinary titin and future prospects for measuring this protein.
Collapse
|
30
|
Martinez-Thompson JM, Winder TL, Liewluck T. Centronuclear myopathy with cardiomyopathy due to recessive titinopathy. Muscle Nerve 2019; 59:E26-E27. [PMID: 30681174 DOI: 10.1002/mus.26429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/14/2019] [Accepted: 01/20/2019] [Indexed: 11/08/2022]
|
31
|
Alkhunaizi E, Shuster S, Shannon P, Siu VM, Darilek S, Mohila CA, Boissel S, Ellezam B, Fallet-Bianco C, Laberge AM, Zandberg J, Injeyan M, Hazrati LN, Hamdan F, Chitayat D. Homozygous/compound heterozygote RYR1 gene variants: Expanding the clinical spectrum. Am J Med Genet A 2019; 179:386-396. [PMID: 30652412 DOI: 10.1002/ajmg.a.61025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/26/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023]
Abstract
The ryanodine receptor 1 (RYR1) is a calcium release channel essential for excitation-contraction coupling in the sarcoplasmic reticulum of skeletal muscles. Dominant variants in the RYR1 have been well associated with the known pharmacogenetic ryanodinopathy and malignant hyperthermia. With the era of next-generation gene sequencing and growing number of causative variants, the spectrum of ryanodinopathies has been evolving with dominant and recessive variants presenting with RYR1-related congenital myopathies such as central core disease, minicore myopathy with external ophthalmoplegia, core-rod myopathy, and congenital neuromuscular disease. Lately, the spectrum was broadened to include fetal manifestations, causing a rare recessive and lethal form of fetal akinesia deformation sequence syndrome (FADS)/arthrogryposis multiplex congenita (AMC) and lethal multiple pterygium syndrome. Here we broaden the spectrum of clinical manifestations associated with homozygous/compound heterozygous RYR1 gene variants to include a wide range of manifestations from FADS through neonatal hypotonia to a 35-year-old male with AMC and PhD degree. We report five unrelated families in which three presented with FADS. One of these families was consanguineous and had three affected fetuses with FADS, one patient with neonatal hypotonia who is alive, and one individual with AMC who is 35 years old with normal intellectual development and uses a wheelchair. Muscle biopsies on these cases demonstrated a variety of histopathological abnormalities, which did not assist with the diagnostic process. Neither the affected living individuals nor the parents who are obligate heterozygotes had history of malignant hyperthermia.
Collapse
Affiliation(s)
- Ebba Alkhunaizi
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Pediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Shirley Shuster
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Patrick Shannon
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Victoria Mok Siu
- Division of Medical Genetics, Department of Pediatrics, London Health Sciences Centre, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Sandra Darilek
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Carrie A Mohila
- Department of Pathology, Texas Children's Hospital, Houston, Texas.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Sarah Boissel
- Department of Medical Genetics, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Benjamin Ellezam
- Department of Medical Genetics, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | | | - Anne-Marie Laberge
- Department of Medical Genetics, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Julianne Zandberg
- Division of Medical Genetics, Department of Pediatrics, London Health Sciences Centre, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Marie Injeyan
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Lili-Naz Hazrati
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Fadi Hamdan
- Department of Medical Genetics, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - David Chitayat
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Pediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
32
|
Abstract
Ryanodine receptor type 1-related myopathies (RYR1-RM) are the most common class of congenital myopathies. Historically, RYR1-RM classification and diagnosis have been guided by histopathologic findings on muscle biopsy. Main histological subtypes of RYR1-RM include central core disease, multiminicore disease, core-rod myopathy, centronuclear myopathy, and congenital fiber-type disproportion. A range of RYR1-RM clinical phenotypes has also emerged more recently and includes King Denborough syndrome, RYR1 rhabdomyolysis-myalgia syndrome, atypical periodic paralysis, congenital neuromuscular disease with uniform type 1 fibers, and late-onset axial myopathy. This expansion of the RYR1-RM disease spectrum is due, in part, to implementation of next-generation sequencing methods, which include the entire RYR1 coding sequence rather than being restricted to hotspot regions. These methods enhance diagnostic capabilities, especially given historic limitations of histopathologic and clinical overlap across RYR1-RM. Both dominant and recessive modes of inheritance have been documented, with the latter typically associated with a more severe clinical phenotype. As with all congenital myopathies, no FDA-approved treatments exist to date. Here, we review histopathologic, clinical, imaging, and genetic diagnostic features of the main RYR1-RM subtypes. We also discuss the current state of treatments and focus on disease-modulating (nongenetic) therapeutic strategies under development for RYR1-RM. Finally, perspectives for future approaches to treatment development are broached.
Collapse
Affiliation(s)
- Tokunbor A Lawal
- Neuromuscular Symptoms Unit, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Joshua J Todd
- Neuromuscular Symptoms Unit, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Katherine G Meilleur
- Neuromuscular Symptoms Unit, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
33
|
An integrated modelling methodology for estimating the prevalence of centronuclear myopathy. Neuromuscul Disord 2018; 28:766-777. [DOI: 10.1016/j.nmd.2018.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/24/2018] [Accepted: 06/26/2018] [Indexed: 11/22/2022]
|
34
|
Rinnenthal JL, Dittmayer C, Irlbacher K, Wacker I, Schröder R, Goebel HH, Butori C, Villa L, Sacconi S, Stenzel W. New variant of necklace fibres display peculiar lysosomal structures and mitophagy. Neuromuscul Disord 2018; 28:846-856. [PMID: 30149909 DOI: 10.1016/j.nmd.2018.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/20/2018] [Accepted: 06/24/2018] [Indexed: 11/19/2022]
Abstract
Here, we describe a new variant of necklace fibres with specific myopathological features that have not been described thus far. They were observed in two patients, from two independent families with identical DNM2 (dynamin 2) mutation (c.1106 G > A (p.Arg369Gln)), displaying mildly heterogeneous clinical phenotypes. The variant is characterized by lysosomal inclusions, arranged in a necklace pattern, containing homogenous material, devoid of myonuclei. The so-called necklace region has a certain characteristic distance to the sarcolemma. Electron microscopy, including three dimensional reconstructions of serial section images highlights their ultrastructural properties and relation to neighbouring organelles. This new pattern is compared to the previously reported patterns in muscle biopsies containing necklace fibres associated with MTM1- and DNM2-mutations.
Collapse
Affiliation(s)
- Jan Leo Rinnenthal
- Department of Pathology, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Carsten Dittmayer
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Kerstin Irlbacher
- Department of Neurology, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Irene Wacker
- Cryo EM, CAM, Universität Heidelberg, Im Neuenheimer Feld 225 69120 Heidelberg, Germany
| | - Rasmus Schröder
- Cryo EM, BioQuant, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 225 69120 Heidelberg, Germany
| | - Hans-Hilmar Goebel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Catherine Butori
- Department of Pathology, CHU de Nice, University Côte d'Azur, Hopital Saint Roch 5 rue Pierre Devoluy, France
| | - Luisa Villa
- Department of Pathology, CHU de Nice, University Côte d'Azur, Hopital Saint Roch 5 rue Pierre Devoluy, France
| | - Sabrina Sacconi
- Peripheral Nervous System, Muscle and ALS Department, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University Côte d'Azur, CHU Nice, 30, Avenue de la Voie Romaine, France
| | - Werner Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
35
|
Cabrera-Serrano M, Mavillard F, Biancalana V, Rivas E, Morar B, Hernández-Laín A, Olive M, Muelas N, Khan E, Carvajal A, Quiroga P, Diaz-Manera J, Davis M, Ávila R, Domínguez C, Romero NB, Vílchez JJ, Comas D, Laing NG, Laporte J, Kalaydjieva L, Paradas C. A Roma founder BIN1 mutation causes a novel phenotype of centronuclear myopathy with rigid spine. Neurology 2018; 91:e339-e348. [PMID: 29950440 DOI: 10.1212/wnl.0000000000005862] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 04/16/2018] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To describe a large series of BIN1 patients, in which a novel founder mutation in the Roma population of southern Spain has been identified. METHODS Patients diagnosed with centronuclear myopathy (CNM) at 5 major reference centers for neuromuscular disease in Spain (n = 53) were screened for BIN1 mutations. Clinical, histologic, radiologic, and genetic features were analyzed. RESULTS Eighteen patients from 13 families carried the p.Arg234Cys variant; 16 of them were homozygous for it and 2 had compound heterozygous p.Arg234Cys/p.Arg145Cys mutations. Both BIN1 variants have only been identified in Roma, causing 100% of CNM in this ethnic group in our cohort. The haplotype analysis confirmed all families are related. In addition to clinical features typical of CNM, such as proximal limb weakness and ophthalmoplegia, most patients in our cohort presented with prominent axial weakness, often associated with rigid spine. Severe fat replacement of paravertebral muscles was demonstrated by muscle imaging. This phenotype seems to be specific to the p.Arg234Cys mutation, not reported in other BIN1 mutations. Extreme clinical variability was observed in the 2 compound heterozygous patients for the p.Arg234Cys/p.Arg145Cys mutations, from a congenital onset with catastrophic outcome to a late-onset disease. Screening of European Roma controls (n = 758) for the p.Arg234Cys variant identified a carrier frequency of 3.5% among the Spanish Roma. CONCLUSION We have identified a BIN1 founder Roma mutation associated with a highly specific phenotype, which is, from the present cohort, the main cause of CNM in Spain.
Collapse
Affiliation(s)
- Macarena Cabrera-Serrano
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Fabiola Mavillard
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Valerie Biancalana
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Eloy Rivas
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Bharti Morar
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Aurelio Hernández-Laín
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Montse Olive
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Nuria Muelas
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Eduardo Khan
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Alejandra Carvajal
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Pablo Quiroga
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Jordi Diaz-Manera
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Mark Davis
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Rainiero Ávila
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Cristina Domínguez
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Norma Beatriz Romero
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Juan J Vílchez
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - David Comas
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Nigel G Laing
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Jocelyn Laporte
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Luba Kalaydjieva
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Carmen Paradas
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France.
| |
Collapse
|
36
|
Zanoteli E. Centronuclear myopathy: advances in genetic understanding and potential for future treatments. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1480366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Edmar Zanoteli
- Departamento de Neurologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
37
|
Savarese M, Sarparanta J, Vihola A, Udd B, Hackman P. Increasing Role of Titin Mutations in Neuromuscular Disorders. J Neuromuscul Dis 2018; 3:293-308. [PMID: 27854229 PMCID: PMC5123623 DOI: 10.3233/jnd-160158] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The TTN gene with 363 coding exons encodes titin, a giant muscle protein spanning from the Z-disk to the M-band within the sarcomere. Mutations in the TTN gene have been associated with different genetic disorders, including hypertrophic and dilated cardiomyopathy and several skeletal muscle diseases. Before the introduction of next generation sequencing (NGS) methods, the molecular analysis of TTN has been laborious, expensive and not widely used, resulting in a limited number of mutations identified. Recent studies however, based on the use of NGS strategies, give evidence of an increasing number of rare and unique TTN variants. The interpretation of these rare variants of uncertain significance (VOUS) represents a challenge for clinicians and researchers. The main aim of this review is to describe the wide spectrum of muscle diseases caused by TTN mutations so far determined, summarizing the molecular findings as well as the clinical data, and to highlight the importance of joint efforts to respond to the challenges arising from the use of NGS. An international collaboration through a clinical and research consortium and the development of a single accessible database listing variants in the TTN gene, identified by high throughput approaches, may be the key to a better assessment of titinopathies and to systematic genotype– phenotype correlation studies.
Collapse
Affiliation(s)
- Marco Savarese
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Jaakko Sarparanta
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland.,Albert Einstein College of Medicine, Departments of Medicine- Endocrinology and Molecular Pharmacology, Bronx, NY, USA
| | - Anna Vihola
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland.,Neuromuscular Research Center, University of Tampere and Tampere University Hospital, Tampere, Finland.,Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| | - Peter Hackman
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| |
Collapse
|
38
|
Felice KJ, Whitaker CH, Wu Q. Whole exome sequencing discloses a pathogenic MTM1 gene mutation and ends the diagnostic odyssey in an older woman with a progressive and seemingly sporadic myopathy: Case report and literature review of MTM1 manifesting female carriers. Neuromuscul Disord 2018; 28:339-345. [PMID: 29567349 DOI: 10.1016/j.nmd.2018.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/29/2018] [Accepted: 02/02/2018] [Indexed: 01/28/2023]
Abstract
We report the case of a 58-year-old woman with a progressive and seemingly sporadic myopathy who, later through whole exome sequencing, was diagnosed as a manifesting carrier of a myotubularin 1 gene mutation (c.342_342 + 4delAGTAA). As the case was a diagnostic challenge for 7 years, we thought it would be helpful to report the patient and review the other 25 cases thus far described. The manifesting carrier state is a rare cause for myopathic weakness in a female but should be strongly considered in kindreds with known affected males with myotubularin 1 gene mutations, and families with history of gestational polyhydramnios or male infantile death. Although the clinical phenotype is quite variable, the findings of ptosis, ophthalmoparesis, facial weakness, and asymmetrical limb involvement should raise the suspicion of the manifesting carrier state. Necklace fibers appear to be a highly sensitive and specific pathologic finding in such cases.
Collapse
Affiliation(s)
- Kevin J Felice
- Muscular Dystrophy Association Care Center, Department of Neuromuscular Medicine, Hospital for Special Care, New Britain, Connecticut, USA.
| | - Charles H Whitaker
- Muscular Dystrophy Association Care Center, Department of Neuromuscular Medicine, Hospital for Special Care, New Britain, Connecticut, USA
| | - Qian Wu
- Department of Pathology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW This article reviews adult presentations of the major congenital myopathies - central core disease, multiminicore disease, centronuclear myopathy and nemaline myopathy - with an emphasis on common genetic backgrounds, typical clinicopathological features and differential diagnosis. RECENT FINDINGS The congenital myopathies are a genetically heterogeneous group of conditions with characteristic histopathological features. Although essentially considered paediatric conditions, some forms - in particular those due to dominant mutations in the skeletal muscle ryanodine receptor (RYR1), the dynamin 2 (DNM2), the amphiphysin 2 (BIN1) and the Kelch repeat-and BTB/POZ domain-containing protein 13 (KBTBD13) gene - may present late into adulthood. Moreover, dominant RYR1 mutations associated with the malignant hyperthermia susceptibility trait have been recently identified as a common cause of (exertional) rhabdomyolysis presenting throughout life. In addition, improved standards of care and development of new therapies will result in an increasing number of patients with early-onset presentations transitioning to the adult neuromuscular clinic. Lastly, if nemaline rods are the predominant histopathological feature, acquired treatable conditions have to be considered in the differential diagnosis. SUMMARY Recently identified genotypes and phenotypes indicate a spectrum of the congenital myopathies extending into late adulthood, with important implications for clinical practice.
Collapse
|
40
|
Darras BT, Volpe JJ. Muscle Involvement and Restricted Disorders. VOLPE'S NEUROLOGY OF THE NEWBORN 2018:922-970.e15. [DOI: 10.1016/b978-0-323-42876-7.00033-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
41
|
Affected female carriers of MTM1 mutations display a wide spectrum of clinical and pathological involvement: delineating diagnostic clues. Acta Neuropathol 2017; 134:889-904. [PMID: 28685322 DOI: 10.1007/s00401-017-1748-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/24/2017] [Accepted: 07/02/2017] [Indexed: 01/14/2023]
Abstract
X-linked myotubular myopathy (XLMTM), a severe congenital myopathy, is caused by mutations in the MTM1 gene located on the X chromosome. A majority of affected males die in the early postnatal period, whereas female carriers are believed to be usually asymptomatic. Nevertheless, several affected females have been reported. To assess the phenotypic and pathological spectra of carrier females and to delineate diagnostic clues, we characterized 17 new unrelated affected females and performed a detailed comparison with previously reported cases at the clinical, muscle imaging, histological, ultrastructural and molecular levels. Taken together, the analysis of this large cohort of 43 cases highlights a wide spectrum of clinical severity ranging from severe neonatal and generalized weakness, similar to XLMTM male, to milder adult forms. Several females show a decline in respiratory function. Asymmetric weakness is a noteworthy frequent specific feature potentially correlated to an increased prevalence of highly skewed X inactivation. Asymmetry of growth was also noted. Other diagnostic clues include facial weakness, ptosis and ophthalmoplegia, skeletal and joint abnormalities, and histopathological signs that are hallmarks of centronuclear myopathy such as centralized nuclei and necklace fibers. The histopathological findings also demonstrate a general disorganization of muscle structure in addition to these specific hallmarks. Thus, MTM1 mutations in carrier females define a specific myopathy, which may be independent of the presence of an XLMTM male in the family. As several of the reported affected females carry large heterozygous MTM1 deletions not detectable by Sanger sequencing, and as milder phenotypes present as adult-onset limb-girdle myopathy, the prevalence of this myopathy is likely to be greatly underestimated. This report should aid diagnosis and thus the clinical management and genetic counseling of MTM1 carrier females. Furthermore, the clinical and pathological history of this cohort may be useful for therapeutic projects in males with XLMTM, as it illustrates the spectrum of possible evolution of the disease in patients surviving long term.
Collapse
|
42
|
Cassandrini D, Trovato R, Rubegni A, Lenzi S, Fiorillo C, Baldacci J, Minetti C, Astrea G, Bruno C, Santorelli FM. Congenital myopathies: clinical phenotypes and new diagnostic tools. Ital J Pediatr 2017; 43:101. [PMID: 29141652 PMCID: PMC5688763 DOI: 10.1186/s13052-017-0419-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/02/2017] [Indexed: 12/26/2022] Open
Abstract
Congenital myopathies are a group of genetic muscle disorders characterized clinically by hypotonia and weakness, usually from birth, and a static or slowly progressive clinical course. Historically, congenital myopathies have been classified on the basis of major morphological features seen on muscle biopsy. However, different genes have now been identified as associated with the various phenotypic and histological expressions of these disorders, and in recent years, because of their unexpectedly wide genetic and clinical heterogeneity, next-generation sequencing has increasingly been used for their diagnosis. We reviewed clinical and genetic forms of congenital myopathy and defined possible strategies to improve cost-effectiveness in histological and imaging diagnosis.
Collapse
Affiliation(s)
| | - Rosanna Trovato
- Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Anna Rubegni
- Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Sara Lenzi
- Neurology, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Chiara Fiorillo
- Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genoa, Italy
| | - Jacopo Baldacci
- Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Carlo Minetti
- Unit of Pediatric Neurology and Muscular Disorders, Istituto G. Gaslini, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genoa, Italy
| | - Guja Astrea
- Neurology, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Claudio Bruno
- Department of Neuroscience, Center of Myology and Neurodegenerative Disorders, Istituto G. Gaslini, Genoa, Italy
| | | | | |
Collapse
|
43
|
Amburgey K, Tsuchiya E, de Chastonay S, Glueck M, Alverez R, Nguyen CT, Rutkowski A, Hornyak J, Beggs AH, Dowling JJ. A natural history study of X-linked myotubular myopathy. Neurology 2017; 89:1355-1364. [PMID: 28842446 PMCID: PMC5649758 DOI: 10.1212/wnl.0000000000004415] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/06/2017] [Indexed: 11/15/2022] Open
Abstract
Objective: To define the natural history of X-linked myotubular myopathy (MTM). Methods: We performed a cross-sectional study that included an online survey (n = 35) and a prospective, 1-year longitudinal investigation using a phone survey (n = 33). Results: We ascertained data from 50 male patients with MTM and performed longitudinal assessments on 33 affected individuals. Consistent with existing knowledge, we found that MTM is a disorder associated with extensive morbidities, including wheelchair (86.7% nonambulant) and ventilator (75% requiring >16 hours of support) dependence. However, unlike previous reports and despite the high burden of disease, mortality was lower than anticipated (approximate rate 10%/y). Seventy-six percent of patients with MTM enrolled (mean age 10 years 11 months) were alive at the end of the study. Nearly all deaths in the study were associated with respiratory failure. In addition, the disease course was more stable than expected, with few adverse events reported during the prospective survey. Few non–muscle-related morbidities were identified, although an unexpectedly high incidence of learning disability (43%) was noted. Conversely, MTM was associated with substantial burdens on patient and caregiver daily living, reflected by missed days of school and lost workdays. Conclusions: MTM is one of the most severe neuromuscular disorders, with affected individuals requiring extensive mechanical interventions for survival. However, among study participants, the disease course was more stable than predicted, with more individuals surviving infancy and early childhood. These data reflect the disease burden of MTM but offer hope in terms of future therapeutic intervention.
Collapse
Affiliation(s)
- Kimberly Amburgey
- From the Division of Neurology (K.A., E.T., C.-T.N., J.J.D.) and Program for Genetics and Genome Biology (E.T., J.J.D.), Hospital for Sick Children; Departments of Paediatrics (K.A., J.J.D.), Computer Science (M.G.), and Molecular Genetics (J.J.D.), University of Toronto, Ontario, Canada; Cure CMD (R.A., S.d.C., A.R.), Torrance, CA; Autodesk Research (M.G.), Toronto, Ontario, Canada; Kaiser SCPMG (A.R.), Torrance, CA; Physical Medicine and Rehabilitation (J.H.), University of Michigan, Ann Arbor; and Division of Genetics and Genomics (A.H.B.), The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, MA
| | - Etsuko Tsuchiya
- From the Division of Neurology (K.A., E.T., C.-T.N., J.J.D.) and Program for Genetics and Genome Biology (E.T., J.J.D.), Hospital for Sick Children; Departments of Paediatrics (K.A., J.J.D.), Computer Science (M.G.), and Molecular Genetics (J.J.D.), University of Toronto, Ontario, Canada; Cure CMD (R.A., S.d.C., A.R.), Torrance, CA; Autodesk Research (M.G.), Toronto, Ontario, Canada; Kaiser SCPMG (A.R.), Torrance, CA; Physical Medicine and Rehabilitation (J.H.), University of Michigan, Ann Arbor; and Division of Genetics and Genomics (A.H.B.), The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, MA
| | - Sabine de Chastonay
- From the Division of Neurology (K.A., E.T., C.-T.N., J.J.D.) and Program for Genetics and Genome Biology (E.T., J.J.D.), Hospital for Sick Children; Departments of Paediatrics (K.A., J.J.D.), Computer Science (M.G.), and Molecular Genetics (J.J.D.), University of Toronto, Ontario, Canada; Cure CMD (R.A., S.d.C., A.R.), Torrance, CA; Autodesk Research (M.G.), Toronto, Ontario, Canada; Kaiser SCPMG (A.R.), Torrance, CA; Physical Medicine and Rehabilitation (J.H.), University of Michigan, Ann Arbor; and Division of Genetics and Genomics (A.H.B.), The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, MA
| | - Michael Glueck
- From the Division of Neurology (K.A., E.T., C.-T.N., J.J.D.) and Program for Genetics and Genome Biology (E.T., J.J.D.), Hospital for Sick Children; Departments of Paediatrics (K.A., J.J.D.), Computer Science (M.G.), and Molecular Genetics (J.J.D.), University of Toronto, Ontario, Canada; Cure CMD (R.A., S.d.C., A.R.), Torrance, CA; Autodesk Research (M.G.), Toronto, Ontario, Canada; Kaiser SCPMG (A.R.), Torrance, CA; Physical Medicine and Rehabilitation (J.H.), University of Michigan, Ann Arbor; and Division of Genetics and Genomics (A.H.B.), The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, MA
| | - Rachel Alverez
- From the Division of Neurology (K.A., E.T., C.-T.N., J.J.D.) and Program for Genetics and Genome Biology (E.T., J.J.D.), Hospital for Sick Children; Departments of Paediatrics (K.A., J.J.D.), Computer Science (M.G.), and Molecular Genetics (J.J.D.), University of Toronto, Ontario, Canada; Cure CMD (R.A., S.d.C., A.R.), Torrance, CA; Autodesk Research (M.G.), Toronto, Ontario, Canada; Kaiser SCPMG (A.R.), Torrance, CA; Physical Medicine and Rehabilitation (J.H.), University of Michigan, Ann Arbor; and Division of Genetics and Genomics (A.H.B.), The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, MA
| | - Cam-Tu Nguyen
- From the Division of Neurology (K.A., E.T., C.-T.N., J.J.D.) and Program for Genetics and Genome Biology (E.T., J.J.D.), Hospital for Sick Children; Departments of Paediatrics (K.A., J.J.D.), Computer Science (M.G.), and Molecular Genetics (J.J.D.), University of Toronto, Ontario, Canada; Cure CMD (R.A., S.d.C., A.R.), Torrance, CA; Autodesk Research (M.G.), Toronto, Ontario, Canada; Kaiser SCPMG (A.R.), Torrance, CA; Physical Medicine and Rehabilitation (J.H.), University of Michigan, Ann Arbor; and Division of Genetics and Genomics (A.H.B.), The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, MA
| | - Anne Rutkowski
- From the Division of Neurology (K.A., E.T., C.-T.N., J.J.D.) and Program for Genetics and Genome Biology (E.T., J.J.D.), Hospital for Sick Children; Departments of Paediatrics (K.A., J.J.D.), Computer Science (M.G.), and Molecular Genetics (J.J.D.), University of Toronto, Ontario, Canada; Cure CMD (R.A., S.d.C., A.R.), Torrance, CA; Autodesk Research (M.G.), Toronto, Ontario, Canada; Kaiser SCPMG (A.R.), Torrance, CA; Physical Medicine and Rehabilitation (J.H.), University of Michigan, Ann Arbor; and Division of Genetics and Genomics (A.H.B.), The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, MA
| | - Joseph Hornyak
- From the Division of Neurology (K.A., E.T., C.-T.N., J.J.D.) and Program for Genetics and Genome Biology (E.T., J.J.D.), Hospital for Sick Children; Departments of Paediatrics (K.A., J.J.D.), Computer Science (M.G.), and Molecular Genetics (J.J.D.), University of Toronto, Ontario, Canada; Cure CMD (R.A., S.d.C., A.R.), Torrance, CA; Autodesk Research (M.G.), Toronto, Ontario, Canada; Kaiser SCPMG (A.R.), Torrance, CA; Physical Medicine and Rehabilitation (J.H.), University of Michigan, Ann Arbor; and Division of Genetics and Genomics (A.H.B.), The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, MA
| | - Alan H Beggs
- From the Division of Neurology (K.A., E.T., C.-T.N., J.J.D.) and Program for Genetics and Genome Biology (E.T., J.J.D.), Hospital for Sick Children; Departments of Paediatrics (K.A., J.J.D.), Computer Science (M.G.), and Molecular Genetics (J.J.D.), University of Toronto, Ontario, Canada; Cure CMD (R.A., S.d.C., A.R.), Torrance, CA; Autodesk Research (M.G.), Toronto, Ontario, Canada; Kaiser SCPMG (A.R.), Torrance, CA; Physical Medicine and Rehabilitation (J.H.), University of Michigan, Ann Arbor; and Division of Genetics and Genomics (A.H.B.), The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, MA
| | - James J Dowling
- From the Division of Neurology (K.A., E.T., C.-T.N., J.J.D.) and Program for Genetics and Genome Biology (E.T., J.J.D.), Hospital for Sick Children; Departments of Paediatrics (K.A., J.J.D.), Computer Science (M.G.), and Molecular Genetics (J.J.D.), University of Toronto, Ontario, Canada; Cure CMD (R.A., S.d.C., A.R.), Torrance, CA; Autodesk Research (M.G.), Toronto, Ontario, Canada; Kaiser SCPMG (A.R.), Torrance, CA; Physical Medicine and Rehabilitation (J.H.), University of Michigan, Ann Arbor; and Division of Genetics and Genomics (A.H.B.), The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, MA.
| |
Collapse
|
44
|
Verma S, Balasubramanian SB. Clinical, Electrophysiology, and Pathology Features of Dynamin Centronuclear Myopathy: A Case Report and Review of Literature. J Clin Neuromuscul Dis 2016; 18:84-88. [PMID: 27861221 DOI: 10.1097/cnd.0000000000000141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Dynamin (DNM2) centronuclear myopathy (CNM) has variable age of onset, distal greater than proximal muscle weakness, ptosis with or without extraocular muscle weakness, and a characteristic muscle biopsy with radial sarcoplasmic strands giving spoke like appearance. The following case report highlights clinical, electrophysiology, and pathology features of a genetic confirmed DNM2 CNM subject. In addition, a review of literature on all genetic confirmed DNM2 CNM cases published in English literature from 2006 to 2016 is presented.
Collapse
MESH Headings
- Adolescent
- Dynamin II
- Dynamins/genetics
- Electrodiagnosis
- Humans
- Male
- Muscle Weakness/diagnosis
- Muscle Weakness/genetics
- Muscle Weakness/pathology
- Muscle Weakness/physiopathology
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Mutation
- Myopathies, Structural, Congenital/diagnosis
- Myopathies, Structural, Congenital/genetics
- Myopathies, Structural, Congenital/pathology
- Myopathies, Structural, Congenital/physiopathology
- Phenotype
Collapse
Affiliation(s)
- Sumit Verma
- Departments of *Pediatrics and †Neurology, Emory University School of Medicine, Atlanta, GA
| | | |
Collapse
|
45
|
Treves S, Jungbluth H, Voermans N, Muntoni F, Zorzato F. Ca 2+ handling abnormalities in early-onset muscle diseases: Novel concepts and perspectives. Semin Cell Dev Biol 2016; 64:201-212. [PMID: 27427513 DOI: 10.1016/j.semcdb.2016.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/14/2016] [Indexed: 12/17/2022]
Abstract
The physiological process by which Ca2+ is released from the sarcoplasmic reticulum is called excitation-contraction coupling; it is initiated by an action potential which travels deep into the muscle fiber where it is sensed by the dihydropyridine receptor, a voltage sensing L-type Ca2+channel localized on the transverse tubules. Voltage-induced conformational changes in the dihydropyridine receptor activate the ryanodine receptor Ca2+ release channel of the sarcoplasmic reticulum. The released Ca2+ binds to troponin C, enabling contractile thick-thin filament interactions. The Ca2+ is subsequently transported back into the sarcoplasmic reticulum by specialized Ca2+ pumps (SERCA), preparing the muscle for a new cycle of contraction. Although other proteins are involved in excitation-contraction coupling, the mechanism described above emphasizes the unique role played by the two Ca2+ channels (the dihydropyridine receptor and the ryanodine receptor), the SERCA Ca2+ pumps and the exquisite spatial organization of the membrane compartments endowed with the proteins responsible for this mechanism to function rapidly and efficiently. Research over the past two decades has uncovered the fine details of excitation-contraction coupling under normal conditions while advances in genomics have helped to identify mutations in novel genes in patients with neuromuscular disorders. While it is now clear that many patients with congenital muscle diseases carry mutations in genes encoding proteins directly involved in Ca2+ homeostasis, it has become apparent that mutations are also present in genes encoding for proteins not thought to be directly involved in Ca2+ regulation. Ongoing research in the field now focuses on understanding the functional effect of individual mutations, as well as understanding the role of proteins not specifically located in the sarcoplasmic reticulum which nevertheless are involved in Ca2+ regulation or excitation-contraction coupling. The principal challenge for the future is the identification of drug targets that can be pharmacologically manipulated by small molecules, with the ultimate aim to improve muscle function and quality of life of patients with congenital muscle disorders. The aim of this review is to give an overview of the most recent findings concerning Ca2+ dysregulation and its impact on muscle function in patients with congenital muscle disorders due to mutations in proteins involved in excitation-contraction coupling and more broadly on Ca2+ homeostasis.
Collapse
Affiliation(s)
- Susan Treves
- Departments of Biomedicine and Anesthesia, Basel University Hospital, 4031 Basel, Switzerland; Department of Life Sciences, General Pathology Section, University of Ferrara, 44100 Ferrara, Italy.
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina Children's Hospital, St. Thomas' Hospital, London, United Kingdom; Randall Division for Cell and Molecular Biophysics, Muscle Signalling Section, King's College, London, United Kingdom; Department of Basic and Clinical Neuroscience, IoPPN, King's College, London, United Kingdom
| | - Nicol Voermans
- Department of Neurology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, United Kingdom
| | - Francesco Zorzato
- Departments of Biomedicine and Anesthesia, Basel University Hospital, 4031 Basel, Switzerland; Department of Life Sciences, General Pathology Section, University of Ferrara, 44100 Ferrara, Italy
| |
Collapse
|
46
|
Savarese M, Musumeci O, Giugliano T, Rubegni A, Fiorillo C, Fattori F, Torella A, Battini R, Rodolico C, Pugliese A, Piluso G, Maggi L, D'Amico A, Bruno C, Bertini E, Santorelli FM, Mora M, Toscano A, Minetti C, Nigro V. Novel findings associated with MTM1 suggest a higher number of female symptomatic carriers. Neuromuscul Disord 2016; 26:292-9. [PMID: 27017278 PMCID: PMC4862961 DOI: 10.1016/j.nmd.2016.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/08/2015] [Accepted: 02/04/2016] [Indexed: 12/16/2022]
Abstract
504 myopathic patients have been screened for MTM1 variants by NGS and CGH array approaches. Seven novel XLMTM patients and the fifth case of a large Xq28 deletion have been identified. The identification of two sporadic manifesting female carriers suggests that their number may be underestimated. Large NGS panels, including the MTM1 gene, are useful tools to identify sporadic female XLMTM patients. The identification of MTM1 variants, also as incidental findings, complicates genetic counseling.
Mutations in the MTM1 gene cause X-linked myotubular myopathy (XLMTM), characterized by neonatal hypotonia and respiratory failure, and are responsible for a premature mortality in affected males. Female carriers are usually asymptomatic but they may present with muscular weakness because of a hypothesized skewed pattern of X-chromosome inactivation. By combining next generation sequencing (NGS) and CGH array approaches, we have investigated the role of MTM1 variants in a large cohort of undiagnosed patients with a wide spectrum of myopathies. Seven novel XLMTM patients have been identified, including two girls with an unremarkable family history for myotubular myopathy. Moreover, we have detected and finely mapped a large deletion causing a myotubular myopathy with abnormal genital development. Our data confirm that the severe neonatal onset of the disease in male infants is sufficient to address the direct molecular testing toward the MTM1 gene and, above all, suggest that the number of undiagnosed symptomatic female carriers is probably underestimated.
Collapse
Affiliation(s)
- Marco Savarese
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università di Napoli, Napoli, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Olimpia Musumeci
- Dipartimento di Neuroscienze, Università degli Studi di Messina, Messina, Italy
| | - Teresa Giugliano
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università di Napoli, Napoli, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | | | | | | | - Annalaura Torella
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università di Napoli, Napoli, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | | | - Carmelo Rodolico
- Dipartimento di Neuroscienze, Università degli Studi di Messina, Messina, Italy
| | | | - Giulio Piluso
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università di Napoli, Napoli, Italy
| | - Lorenzo Maggi
- Dipartimento di Neuroscienze, Istituto Besta, Milano, Italy
| | | | - Claudio Bruno
- Center of Myology and Neurodegenerative Disorders, Istituto Giannina Gaslini, Genova, Italy
| | | | | | - Marina Mora
- Dipartimento di Neuroscienze, Istituto Besta, Milano, Italy
| | - Antonio Toscano
- Dipartimento di Neuroscienze, Università degli Studi di Messina, Messina, Italy
| | - Carlo Minetti
- Center of Myology and Neurodegenerative Disorders, Istituto Giannina Gaslini, Genova, Italy
| | - Vincenzo Nigro
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università di Napoli, Napoli, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.
| |
Collapse
|
47
|
Longo G, Russo S, Novelli G, Sangiuolo F, D'Apice M. Mutation spectrum of the MTM1
gene in XLMTM patients: 10 years of experience in prenatal and postnatal diagnosis. Clin Genet 2015; 89:93-8. [DOI: 10.1111/cge.12674] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/01/2015] [Accepted: 09/01/2015] [Indexed: 11/28/2022]
Affiliation(s)
- G. Longo
- Department of Biomedicine and Prevention; University of Rome ‘Tor Vergata’; Rome Italy
| | - S. Russo
- Fondazione PTV “Policlinico Tor Vergata”; U.O.C. of Medical Genetics; Rome Italy
| | - G. Novelli
- Department of Biomedicine and Prevention; University of Rome ‘Tor Vergata’; Rome Italy
- Fondazione PTV “Policlinico Tor Vergata”; U.O.C. of Medical Genetics; Rome Italy
| | - F. Sangiuolo
- Department of Biomedicine and Prevention; University of Rome ‘Tor Vergata’; Rome Italy
- Fondazione PTV “Policlinico Tor Vergata”; U.O.C. of Medical Genetics; Rome Italy
| | - M.R. D'Apice
- Fondazione PTV “Policlinico Tor Vergata”; U.O.C. of Medical Genetics; Rome Italy
| |
Collapse
|