1
|
Krause P, Mahlknecht P, Skogseid IM, Steigerwald F, Deuschl G, Erasmi R, Schnitzler A, Warnecke T, Müller J, Poewe W, Schneider GH, Vesper J, Warneke N, Eisner W, Prokop T, Müller JU, Volkmann J, Kühn AA. Long-Term Outcomes on Pallidal Neurostimulation for Dystonia: A Controlled, Prospective 10-Year Follow-Up. Mov Disord 2025. [PMID: 39907392 DOI: 10.1002/mds.30130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/13/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Pallidal neurostimulation is an effective treatment for severe isolated dystonia, but long-term data from clinical trials are lacking. OBJECTIVES To evaluate long-term efficacy and safety of pallidal neurostimulation in patients with isolated generalized or segmental dystonia. METHODS Extension study of the prospective multicenter trial (n = 40; July 2002 to May 2004), all patients received effective stimulation and underwent regular follow-up. The 10-year follow-up (n = 31) included Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) motor and disability score, Beck Depression Inventory, Beck Anxiety Inventory, and Mattis Dementia Rating Scale. Primary and secondary endpoints compared motor symptoms, disability scores, mood, and cognition changes. RESULTS Thirty-one patients (12 female), aged 23-72 years, completed the 10-year study extension. Per protocol analysis showed sustained significant improvement in BFMDRS motor scores at 10 years compared with baseline, without significant change from the 6-month or 5-year follow-up. On average, motor scores decreased by 25.3 ± 5.2 points at 10 years (P < 0.0001; 56% improvement). Individual outcomes varied, with 27 responders (≥25% improvement; mean improvement 65.2 ± 21.4%) and 13 non-responders compared with baseline. Sustained improvements were seen in disability, mood, and anxiety scores. Cognition remained stable. CONCLUSIONS This study presents the longest prospective, multicenter follow-up of pallidal neurostimulation in generalized and segmental dystonia. Two-thirds of patients showed strong and stable long-term improvements of dystonia, confirming sustained efficacy and safety over 10 years in treatment-refractory dystonic patients. However, one-third experienced primary (3/40) or secondary (10/40) treatment failure. Diagnostic advances, including genetic testing, and technological progress in pallidal neurostimulation may help to reduce the non-responder rates in the future. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Patricia Krause
- Movement Disorder and Neuromodulation Unit, Charité, University Medicine Berlin, Berlin, Germany
| | - Philipp Mahlknecht
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | | | | | - Günther Deuschl
- Department of Neurology, Christian-Albrechts-University, Kiel, Germany
| | - Richard Erasmi
- Department of Neurology, Christian-Albrechts-University, Kiel, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, and Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tobias Warnecke
- Department of Neurology, University of Münster, Münster, Germany
- Department of Neurology and Rehabilitation, Klinikum Osnabrück, Academic Teaching Hospital of the University of Münster, Osnabrück, Germany
| | - Jörg Müller
- Department of Neurology, Vivantes Klinikum Spandau, Berlin, Germany
| | - Werner Poewe
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Gerd-Helge Schneider
- Department of Neurosurgery, Charité, University Medicine Berlin, Berlin, Germany
| | - Jan Vesper
- Department of Stereotactic and Functional Neurosurgery, University of Düsseldorf, Düsseldorf, Germany
| | - Nils Warneke
- Department of Neurosurgery, University of Münster, Münster, Germany
| | - Wilhelm Eisner
- Department of Neurosurgery, Medical University Innsbruck, Innsbruck, Austria
| | - Thomas Prokop
- Division of Stereotactic and Functional Neurosurgery, University of Freiburg, Freiburg, Germany
| | - Jan-Uwe Müller
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Jens Volkmann
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Charité, University Medicine Berlin, Berlin, Germany
| |
Collapse
|
2
|
Yang AZ, Boutet A, Pai V, Colditz MJ, Vetkas A, Santyr B, Samuel N, Germann J, Breitbart S, Elkam L, Ertl‐Wagner B, Fasano A, Lozano AM, Ibrahim GM, Gorodetsky C. Imaging Findings of Intracerebral Infection after Deep Brain Stimulation: Pediatric Case Series and Literature Review. Mov Disord Clin Pract 2025; 12:242-245. [PMID: 39520314 PMCID: PMC11802644 DOI: 10.1002/mdc3.14251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 09/10/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Affiliation(s)
- Andrew Z. Yang
- Division of Neurosurgery, Toronto Western HospitalUniversity of TorontoTorontoOntarioCanada
| | - Alexandre Boutet
- Joint Department of Medical ImagingUniversity of TorontoTorontoOntarioCanada
| | - Vivek Pai
- Joint Department of Medical ImagingUniversity of TorontoTorontoOntarioCanada
- Division of Neuroradiology, Department of Diagnostic ImagingSickKids HospitalTorontoOntarioCanada
| | - Michael J. Colditz
- Division of Neurosurgery, Toronto Western HospitalUniversity of TorontoTorontoOntarioCanada
| | - Artur Vetkas
- Division of Neurosurgery, Toronto Western HospitalUniversity of TorontoTorontoOntarioCanada
| | - Brendan Santyr
- Division of Neurosurgery, Toronto Western HospitalUniversity of TorontoTorontoOntarioCanada
| | - Nardin Samuel
- Division of Neurosurgery, Toronto Western HospitalUniversity of TorontoTorontoOntarioCanada
| | - Jurgen Germann
- Division of Neurosurgery, Toronto Western HospitalUniversity of TorontoTorontoOntarioCanada
- Krembil Brain InstituteTorontoOntarioCanada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA)TorontoOntarioCanada
| | - Sara Breitbart
- Division of NeurosurgerySickKids HospistalTorontoOntarioCanada
| | - Lior Elkam
- Department of Neurology and Neurosurgery, Montreal Neurological Institute HospitalUniversity of McGillMontrealQuebecCanada
| | - Birgit Ertl‐Wagner
- Joint Department of Medical ImagingUniversity of TorontoTorontoOntarioCanada
- Division of Neuroradiology, Department of Diagnostic ImagingSickKids HospitalTorontoOntarioCanada
| | - Alfonso Fasano
- Krembil Brain InstituteTorontoOntarioCanada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA)TorontoOntarioCanada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western HospitalUHN, TorontoOntarioCanada
- Division of NeurologyUniversity of TorontoTorontoOntarioCanada
- KITE, University Health NetworkTorontoOntarioCanada
| | - Andres M. Lozano
- Division of Neurosurgery, Toronto Western HospitalUniversity of TorontoTorontoOntarioCanada
- Krembil Brain InstituteTorontoOntarioCanada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA)TorontoOntarioCanada
- KITE, University Health NetworkTorontoOntarioCanada
| | - George M Ibrahim
- Division of NeurosurgerySickKids HospistalTorontoOntarioCanada
- Division of NeurosurgeryUniversity of TorontoTorontoOntarioCanada
| | - Carolina Gorodetsky
- Center for Advancing Neurotechnological Innovation to Application (CRANIA)TorontoOntarioCanada
- Division of NeurosurgerySickKids HospistalTorontoOntarioCanada
- Division of NeurologySickKids HopistalTorontoOntarioCanada
- Department of PediatricsUniversity of TorontoTorontoCanada
| |
Collapse
|
3
|
Vogt L, Quiroz V, Ebrahimi-Fakhari D. Emerging therapies for childhood-onset movement disorders. Curr Opin Pediatr 2024; 36:331-341. [PMID: 38655812 PMCID: PMC11047116 DOI: 10.1097/mop.0000000000001354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
PURPOSE OF REVIEW We highlight novel and emerging therapies in the treatment of childhood-onset movement disorders. We structured this review by therapeutic entity (small molecule drugs, RNA-targeted therapeutics, gene replacement therapy, and neuromodulation), recognizing that there are two main approaches to treatment: symptomatic (based on phenomenology) and molecular mechanism-based therapy or 'precision medicine' (which is disease-modifying). RECENT FINDINGS We highlight reports of new small molecule drugs for Tourette syndrome, Friedreich's ataxia and Rett syndrome. We also discuss developments in gene therapy for aromatic l-amino acid decarboxylase deficiency and hereditary spastic paraplegia, as well as current work exploring optimization of deep brain stimulation and lesioning with focused ultrasound. SUMMARY Childhood-onset movement disorders have traditionally been treated symptomatically based on phenomenology, but focus has recently shifted toward targeted molecular mechanism-based therapeutics. The development of precision therapies is driven by increasing capabilities for genetic testing and a better delineation of the underlying disease mechanisms. We highlight novel and exciting approaches to the treatment of genetic childhood-onset movement disorders while also discussing general challenges in therapy development for rare diseases. We provide a framework for molecular mechanism-based treatment approaches, a summary of specific treatments for various movement disorders, and a clinical trial readiness framework.
Collapse
Affiliation(s)
- Lindsey Vogt
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, Toronto Ontario, Canada
| | - Vicente Quiroz
- Movement Disorders Program, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Darius Ebrahimi-Fakhari
- Movement Disorders Program, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Samanci B, Şahin E, Samanci Y, Bilgiç B, Atasu B, Lohmann E, Peker S, Hanağası HA. Pallidal Deep Brain Stimulation Improves HPCA-Linked (DYT 2) Dystonia. Mov Disord Clin Pract 2024; 11:184-187. [PMID: 38386491 PMCID: PMC10883396 DOI: 10.1002/mdc3.13947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/13/2023] [Accepted: 11/26/2023] [Indexed: 02/24/2024] Open
Affiliation(s)
- Bedia Samanci
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
| | - Erdi Şahin
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
| | - Yavuz Samanci
- Department of Neurosurgery, Koc University Faculty of MedicineKoc UniversityIstanbulTurkey
| | - Başar Bilgiç
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
| | - Burcu Atasu
- German Center for Neurodegenerative Diseases (DZNE)‐TübingenTübingenGermany
- Hertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Ebba Lohmann
- German Center for Neurodegenerative Diseases (DZNE)‐TübingenTübingenGermany
- Hertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Selçuk Peker
- Department of Neurosurgery, Koc University Faculty of MedicineKoc UniversityIstanbulTurkey
| | - Haşmet A. Hanağası
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
| |
Collapse
|
5
|
Rački V, Hero M, Papić E, Rožmarić G, Čizmarević NS, Chudy D, Peterlin B, Vuletić V. Applicability of clinical genetic testing for deep brain stimulation treatment in monogenic Parkinson's disease and monogenic dystonia: a multidisciplinary team perspective. Front Neurosci 2023; 17:1282267. [PMID: 38027472 PMCID: PMC10667448 DOI: 10.3389/fnins.2023.1282267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
In this perspective article, we highlight the possible applicability of genetic testing in Parkinson's disease and dystonia patients treated with deep brain stimulation (DBS). DBS, a neuromodulatory technique employing electrical stimulation, has historically targeted motor symptoms in advanced PD and dystonia, yet its precise mechanisms remain elusive. Genetic insights have emerged as potential determinants of DBS efficacy. Known PD genes such as GBA, SNCA, LRRK2, and PRKN are most studied, even though further studies are required to make firm conclusions. Variable outcomes depending on genotype is present in genetic dystonia, as DYT-TOR1A, NBIA/DYTPANK2, DYT-SCGE and X-linked dystonia-parkinsonism have demonstrated promising outcomes following GPi-DBS, while varying outcomes have been documented in DYT-THAP1. We present two clinical vignettes that illustrate the applicability of genetics in clinical practice, with one PD patient with compound GBA mutations and one GNAL dystonia patient. Integrating genetic testing into clinical practice is pivotal, particularly with advancements in next-generation sequencing. However, there is a clear need for further research, especially in rarer monogenic forms. Our perspective is that applying genetics in PD and dystonia is possible today, and despite challenges, it has the potential to refine patient selection and enhance treatment outcomes.
Collapse
Affiliation(s)
- Valentino Rački
- Department of Neurology, Clinical Hospital Center Rijeka, Rijeka, Croatia
- Department of Neurology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Mario Hero
- Department of Neurology, Clinical Hospital Center Rijeka, Rijeka, Croatia
- Department of Neurology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Eliša Papić
- Department of Neurology, Clinical Hospital Center Rijeka, Rijeka, Croatia
- Department of Neurology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Gloria Rožmarić
- Department of Neurology, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Nada Starčević Čizmarević
- Department of Medical Genomics and Biology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Darko Chudy
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia
| | - Borut Peterlin
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Vladimira Vuletić
- Department of Neurology, Clinical Hospital Center Rijeka, Rijeka, Croatia
- Department of Neurology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
6
|
Chudy D, Raguž M, Vuletić V, Rački V, Papić E, Nenadić Baranašić N, Barišić N. GPi DBS treatment outcome in children with monogenic dystonia: a case series and review of the literature. Front Neurol 2023; 14:1151900. [PMID: 37168666 PMCID: PMC10166204 DOI: 10.3389/fneur.2023.1151900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/30/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction Dystonia is the third most common pediatric movement disorder and is often difficult to treat. Deep brain stimulation (DBS) of the internal pallidum (GPi) has been demonstrated as a safe and effective treatment for genetic dystonia in adolescents and adults. The results of DBS in children are limited to individual cases or case series, although it has been proven to be an effective procedure in carefully selected pediatric cohorts. The aim of our study was to present the treatment outcome for 7- to 9-year-old pediatric patients with disabling monogenic isolated generalized DYT-THAP1 and DYT-KMT2B dystonia after bilateral GPi-DBS. Patients and results We present three boys aged <10 years; two siblings with disabling generalized DYT-THAP1 dystonia and a boy with monogenic-complex DYT-KMT2B. Dystonia onset occurred between the ages of 3 and 6. Significantly disabled children were mostly dependent on their parents. Pharmacotherapy was inefficient and patients underwent bilateral GPi-DBS. Clinical signs of dystonia improved significantly in the first month after the implantation and continued to maintain improved motor functions, which were found to have improved further at follow-up. These patients were ambulant without support and included in everyday activities. All patients had significantly lower Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) values, indicating >25% improvement over the first 15 months. However, there was a decline in speech and upper limb function, manifesting with bradylalia, bradykinesia, and dysphonia, which decreased after treatment with trihexyphenidyl. Conclusion Although reports of patients with monogenic dystonia, particularly DYT-THAP1, treated with DBS are still scarce, DBS should be considered as an efficient treatment approach in children with pharmacoresistent dystonia, especially with generalized monogenic dystonia and to prevent severe and disabling symptoms that reduce the quality of life, including emotional and social aspects. Patients require an individual approach and parents should be properly informed about expectations and possible outcomes, including relapses and impairments, in addition to DBS responsiveness and related improvements. Furthermore, early genetic diagnosis and the provision of appropriate treatments, including DBS, are mandatory for preventing severe neurologic impairments.
Collapse
Affiliation(s)
- Darko Chudy
- Department of Neurosurgery, Dubrava University Hospital, Zagreb, Croatia
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marina Raguž
- Department of Neurosurgery, Dubrava University Hospital, Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia
- *Correspondence: Marina Raguž
| | - Vladimira Vuletić
- Department of Neurology, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Valentino Rački
- Department of Neurology, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Eliša Papić
- Department of Neurology, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Nataša Nenadić Baranašić
- Department of Pediatrics, University Hospital Centre, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nina Barišić
- Department of Pediatrics, University Hospital Centre, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
7
|
Lee A, Sarva H. Approach to Tremor Disorders. Semin Neurol 2021; 41:731-743. [PMID: 34826875 DOI: 10.1055/s-0041-1726356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Tremor disorders are diverse and complex. Historical clues and examination features play a major role in diagnosing these disorders, but diagnosis can be challenging due to phenotypic overlap. Ancillary testing, such as neuroimaging or laboratory testing, is driven by the history and examination, and should be performed particularly when there are other neurological or systemic manifestations. The pathophysiology of tremor is not entirely understood, but likely involves multiple networks along with the cerebello-thalamo-cortical pathways. Treatment options include medications, botulinum toxin, surgery, and nonpharmacologic interventions utilizing physical and occupational therapies and assistive devices. Further work is needed in developing accurate diagnostic tests and better treatment options for tremor disorders.
Collapse
Affiliation(s)
- Andrea Lee
- Parkinson's Disease and Movement Disorders Institute, Division of Neurodegenerative Diseases, Department of Neurology, Weill Cornell Medicine, New York, New York
| | - Harini Sarva
- Parkinson's Disease and Movement Disorders Institute, Division of Neurodegenerative Diseases, Department of Neurology, Weill Cornell Medicine, New York, New York
| |
Collapse
|
8
|
Larsh T, Wu SW, Vadivelu S, Grant GA, O'Malley JA. Deep Brain Stimulation for Pediatric Dystonia. Semin Pediatr Neurol 2021; 38:100896. [PMID: 34183138 DOI: 10.1016/j.spen.2021.100896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/26/2022]
Abstract
Dystonia is one of the most common pediatric movement disorders and can have a profound impact on the lives of children and their caregivers. Response to pharmacologic treatment is often unsatisfactory. Deep brain stimulation (DBS) has emerged as a promising treatment option for children with medically refractory dystonia. In this review we highlight the relevant literature related to DBS for pediatric dystonia, with emphasis on the background, indications, prognostic factors, challenges, and future directions of pediatric DBS.
Collapse
Affiliation(s)
- Travis Larsh
- Center for Pediatric Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH
| | - Steve W Wu
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati, Cincinnati, OH
| | - Sudhakar Vadivelu
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Gerald A Grant
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Stanford University School of Medicine, Palo Alto, CA
| | - Jennifer A O'Malley
- Department of Neurology, Division of Child Neurology, Stanford University School of Medicine, Palo Alto, CA.
| |
Collapse
|
9
|
Tai CH, Lee WT, Tseng SH. DYT6 Dystonia Mimicking Adolescent Idiopathic Scoliosis Successfully Treated by Pallidal Stimulation. Int Med Case Rep J 2021; 14:315-321. [PMID: 34012300 PMCID: PMC8128503 DOI: 10.2147/imcrj.s307010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/26/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Dystonia type 6 (DYT6) is an autosomal dominant monogenic movement disorder that often involves craniocervical and laryngeal regions, but can in rare circumstance present as trunk dystonia or severe scoliosis. Deep brain stimulation of the globus pallidus internus (GPi-DBS) has yielded favorable results in the treatment of DYT6 patients. This report describes the case of a 14-year-old male adolescent with DYT6 dystonia and severe scoliosis who was successfully treated by GPi DBS. Patients and Methods The diagnosis of DYT6 dystonia was made after excluding other etiologies and was confirmed by next-generation sequencing. The patient underwent bilateral GPi-DBS implantation surgery under general anesthesia. Results The patient’s Burke–Fahn–Marsden Dystonia Rating Scale score was 24 before surgery and decreased to 13.5 at 3 months, 3 at 6 months, and 2 at 12 months after bilateral GPi-DBS, corresponding to a 91% improvement from baseline to 12 months post-surgery. The patient’s scoliosis improved significantly within 6 months after DBS. No complications occurred during surgery. Conclusion An adolescent DYT6 patient with dystonia-related severe scoliosis was treated by bilateral GPi-DBS. The patient had an excellent outcome at 12 months after surgery, which prevented him from developing severe spinal deformity and disability. Early diagnosis of dystonia in adolescent patients can lead to timely and effective treatment. The etiology of severe scoliosis in adolescents should be carefully evaluated and differential diagnosis including dystonia should be considered. GPi-DBS in patients with DYT6 dystonia can prevent deformity.
Collapse
Affiliation(s)
- Chun-Hwei Tai
- Department of Neurology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Wang-Tso Lee
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Sheng-Hong Tseng
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
10
|
Lange LM, Junker J, Loens S, Baumann H, Olschewski L, Schaake S, Madoev H, Petkovic S, Kuhnke N, Kasten M, Westenberger A, Domingo A, Marras C, König IR, Camargos S, Ozelius LJ, Klein C, Lohmann K. Genotype-Phenotype Relations for Isolated Dystonia Genes: MDSGene Systematic Review. Mov Disord 2021; 36:1086-1103. [PMID: 33502045 DOI: 10.1002/mds.28485] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/24/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022] Open
Abstract
This comprehensive MDSGene review is devoted to 7 genes - TOR1A, THAP1, GNAL, ANO3, PRKRA, KMT2B, and HPCA - mutations in which may cause isolated dystonia. It followed MDSGene's standardized data extraction protocol and screened a total of ~1200 citations. Phenotypic and genotypic data on ~1200 patients with 254 different mutations were curated and analyzed. There were differences regarding age at onset, site of onset, and distribution of symptoms across mutation carriers in all 7 genes. Although carriers of TOR1A, THAP1, PRKRA, KMT2B, or HPCA mutations mostly showed childhood and adolescent onset, patients with GNAL and ANO3 mutations often developed first symptoms in adulthood. GNAL and KMT2B mutation carriers frequently have 1 predominant site of onset, that is, the neck (GNAL) or the lower limbs (KMT2B), whereas site of onset in DYT-TOR1A, DYT-THAP1, DYT-ANO3, DYT-PRKRA, and DYT-HPCA was broader. However, in most DYT-THAP1 and DYT-ANO3 patients, dystonia first manifested in the upper half of the body (upper limb, neck, and craniofacial/laryngeal), whereas onset in DYT-TOR1A, DYT-PRKRA and DYT-HPCA was frequently observed in an extremity, including both upper and lower ones. For ANO3, a segmental/multifocal distribution was typical, whereas TOR1A, PRKRA, KMT2B, and HPCA mutation carriers commonly developed generalized dystonia. THAP1 mutation carriers presented with focal, segmental/multifocal, or generalized dystonia in almost equal proportions. GNAL mutation carriers rarely showed generalization. This review provides a comprehensive overview of the current knowledge of hereditary isolated dystonia. The data are also available in an online database (http://www.mdsgene.org), which additionally offers descriptive summary statistics. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Lara M Lange
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Johanna Junker
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Sebastian Loens
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Hauke Baumann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Luisa Olschewski
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Susen Schaake
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Harutyun Madoev
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Sonja Petkovic
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Neele Kuhnke
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Meike Kasten
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Aloysius Domingo
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Connie Marras
- The Morton and Gloria Shulman Movement Disorders Centre and the Edmond J Safra Program in Parkinson's Disease, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Inke R König
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Sarah Camargos
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital das Clínicas, The Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Laurie J Ozelius
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
11
|
van der Heijden ME, Kizek DJ, Perez R, Ruff EK, Ehrlich ME, Sillitoe RV. Abnormal cerebellar function and tremor in a mouse model for non-manifesting partially penetrant dystonia type 6. J Physiol 2021; 599:2037-2054. [PMID: 33369735 PMCID: PMC8559601 DOI: 10.1113/jp280978] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Loss-of-function mutations in the Thap1 gene cause partially penetrant dystonia type 6 (DYT6). Some non-manifesting DYT6 mutation carriers have tremor and abnormal cerebello-thalamo-cortical signalling. We show that Thap1 heterozygote mice have action tremor, a reduction in cerebellar neuron number, and abnormal electrophysiological signals in the remaining neurons. These results underscore the importance of Thap1 levels for cerebellar function. These results uncover how cerebellar abnormalities contribute to different dystonia-associated motor symptoms. ABSTRACT Loss-of-function mutations in the Thanatos-associated domain-containing apoptosis-associated protein 1 (THAP1) gene cause partially penetrant autosomal dominant dystonia type 6 (DYT6). However, the neural abnormalities that promote the resultant motor dysfunctions remain elusive. Studies in humans show that some non-manifesting DYT6 carriers have altered cerebello-thalamo-cortical function with subtle but reproducible tremor. Here, we uncover that Thap1 heterozygote mice have action tremor that rises above normal baseline values even though they do not exhibit overt dystonia-like twisting behaviour. At the neural circuit level, we show using in vivo recordings in awake Thap1+/- mice that Purkinje cells have abnormal firing patterns and that cerebellar nuclei neurons, which connect the cerebellum to the thalamus, fire at a lower frequency. Although the Thap1+/- mice have fewer Purkinje cells and cerebellar nuclei neurons, the number of long-range excitatory outflow projection neurons is unaltered. The preservation of interregional connectivity suggests that abnormal neural function rather than neuron loss instigates the network dysfunction and the tremor in Thap1+/- mice. Accordingly, we report an inverse correlation between the average firing rate of cerebellar nuclei neurons and tremor power. Our data show that cerebellar circuitry is vulnerable to Thap1 mutations and that cerebellar dysfunction may be a primary cause of tremor in non-manifesting DYT6 carriers and a trigger for the abnormal postures in manifesting patients.
Collapse
Affiliation(s)
- Meike E. van der Heijden
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Dominic J. Kizek
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Ross Perez
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Elena K. Ruff
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Michelle E. Ehrlich
- Department of Neurology and Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Roy V. Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| |
Collapse
|
12
|
Coblentz A, Elias GJB, Boutet A, Germann J, Algarni M, Oliveira LM, Neudorfer C, Widjaja E, Ibrahim GM, Kalia SK, Jain M, Lozano AM, Fasano A. Mapping efficacious deep brain stimulation for pediatric dystonia. J Neurosurg Pediatr 2021; 27:346-356. [PMID: 33385998 DOI: 10.3171/2020.7.peds20322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/21/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The objective of this study was to report the authors' experience with deep brain stimulation (DBS) of the internal globus pallidus (GPi) as a treatment for pediatric dystonia, and to elucidate substrates underlying clinical outcome using state-of-the-art neuroimaging techniques. METHODS A retrospective analysis was conducted in 11 pediatric patients (6 girls and 5 boys, mean age 12 ± 4 years) with medically refractory dystonia who underwent GPi-DBS implantation between June 2009 and September 2017. Using pre- and postoperative MRI, volumes of tissue activated were modeled and weighted by clinical outcome to identify brain regions associated with clinical outcome. Functional and structural networks associated with clinical benefits were also determined using large-scale normative data sets. RESULTS A total of 21 implanted leads were analyzed in 11 patients. The average follow-up duration was 19 ± 20 months (median 5 months). Using a 7-point clinical rating scale, 10 patients showed response to treatment, as defined by scores < 3. The mean improvement in the Burke-Fahn-Marsden Dystonia Rating Scale motor score was 40% ± 23%. The probabilistic map of efficacy showed that the voxel cluster most associated with clinical improvement was located at the posterior aspect of the GPi, comparatively posterior and superior to the coordinates of the classic GPi target. Strong functional and structural connectivity was evident between the probabilistic map and areas such as the precentral and postcentral gyri, parietooccipital cortex, and brainstem. CONCLUSIONS This study reported on a series of pediatric patients with dystonia in whom GPi-DBS resulted in variable clinical benefit and described a clinically favorable stimulation site for this cohort, as well as its structural and functional connectivity. This information could be valuable for improving surgical planning, simplifying programming, and further informing disease pathophysiology.
Collapse
Affiliation(s)
- Ailish Coblentz
- 1Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto
| | | | - Alexandre Boutet
- 2University Health Network, Toronto
- 3Joint Department of Medical Imaging, University of Toronto
| | | | - Musleh Algarni
- 4Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Division of Neurology, University of Toronto
| | - Lais M Oliveira
- 4Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Division of Neurology, University of Toronto
| | | | - Elysa Widjaja
- 1Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto
| | - George M Ibrahim
- 5Department of Neurosurgery, The Hospital for Sick Children, Toronto
| | - Suneil K Kalia
- 3Joint Department of Medical Imaging, University of Toronto
- 7Krembil Brain Institute, Toronto; and
- 8Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Ontario, Canada
| | - Mehr Jain
- 6Faculty of Medicine, University of Ottawa
| | | | - Alfonso Fasano
- 4Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Division of Neurology, University of Toronto
- 7Krembil Brain Institute, Toronto; and
- 8Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Ontario, Canada
| |
Collapse
|
13
|
Sui Y, Tian Y, Ko WKD, Wang Z, Jia F, Horn A, De Ridder D, Choi KS, Bari AA, Wang S, Hamani C, Baker KB, Machado AG, Aziz TZ, Fonoff ET, Kühn AA, Bergman H, Sanger T, Liu H, Haber SN, Li L. Deep Brain Stimulation Initiative: Toward Innovative Technology, New Disease Indications, and Approaches to Current and Future Clinical Challenges in Neuromodulation Therapy. Front Neurol 2021; 11:597451. [PMID: 33584498 PMCID: PMC7876228 DOI: 10.3389/fneur.2020.597451] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/23/2020] [Indexed: 01/17/2023] Open
Abstract
Deep brain stimulation (DBS) is one of the most important clinical therapies for neurological disorders. DBS also has great potential to become a great tool for clinical neuroscience research. Recently, the National Engineering Laboratory for Neuromodulation at Tsinghua University held an international Deep Brain Stimulation Initiative workshop to discuss the cutting-edge technological achievements and clinical applications of DBS. We specifically addressed new clinical approaches and challenges in DBS for movement disorders (Parkinson's disease and dystonia), clinical application toward neurorehabilitation for stroke, and the progress and challenges toward DBS for neuropsychiatric disorders. This review highlighted key developments in (1) neuroimaging, with advancements in 3-Tesla magnetic resonance imaging DBS compatibility for exploration of brain network mechanisms; (2) novel DBS recording capabilities for uncovering disease pathophysiology; and (3) overcoming global healthcare burdens with online-based DBS programming technology for connecting patient communities. The successful event marks a milestone for global collaborative opportunities in clinical development of neuromodulation to treat major neurological disorders.
Collapse
Affiliation(s)
- Yanan Sui
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Ye Tian
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Wai Kin Daniel Ko
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Zhiyan Wang
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Fumin Jia
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Andreas Horn
- Charité, Department of Neurology, Movement Disorders and Neuromodulation Unit, University Medicine Berlin, Berlin, Germany
| | - Dirk De Ridder
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Ki Sueng Choi
- Department of Psychiatry and Behavioural Science, Emory University, Atlanta, GA, United States.,Department of Radiology, Mount Sinai School of Medicine, New York, NY, United States.,Department of Neurosurgery, Mount Sinai School of Medicine, New York, NY, United States
| | - Ausaf A Bari
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Clement Hamani
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Kenneth B Baker
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Andre G Machado
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Tipu Z Aziz
- Department of Neurosurgery, John Radcliffe Hospital, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Erich Talamoni Fonoff
- Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil.,Hospital Sírio-Libanês and Hospital Albert Einstein, São Paulo, Brazil
| | - Andrea A Kühn
- Charité, Department of Neurology, Movement Disorders and Neuromodulation Unit, University Medicine Berlin, Berlin, Germany
| | - Hagai Bergman
- Department of Medical Neurobiology (Physiology), Institute of Medical Research-Israel-Canada (IMRIC), Faculty of Medicine, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Research (ELSC), The Hebrew University and Department of Neurosurgery, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Terence Sanger
- University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Hesheng Liu
- Department of Neuroscience, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Suzanne N Haber
- Department of Pharmacology and Physiology, University of Rochester School of Medicine & Dentistry, Rochester, NY, United States.,McLean Hospital and Harvard Medical School, Belmont, MA, United States
| | - Luming Li
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| |
Collapse
|
14
|
Tisch S, Kumar KR. Pallidal Deep Brain Stimulation for Monogenic Dystonia: The Effect of Gene on Outcome. Front Neurol 2021; 11:630391. [PMID: 33488508 PMCID: PMC7820073 DOI: 10.3389/fneur.2020.630391] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/09/2020] [Indexed: 11/13/2022] Open
Abstract
Globus pallidus internus deep brain stimulation (GPi DBS) is the most effective intervention for medically refractory segmental and generalized dystonia in both children and adults. Predictive factors for the degree of improvement after GPi DBS include shorter disease duration and dystonia subtype with idiopathic isolated dystonia usually responding better than acquired combined dystonias. Other factors contributing to variability in outcome may include body distribution, pattern of dystonia and DBS related factors such as lead placement and stimulation parameters. The responsiveness to DBS appears to vary between different monogenic forms of dystonia, with some improving more than others. The first observation in this regard was reports of superior DBS outcomes in DYT-TOR1A (DYT1) dystonia, although other studies have found no difference. Recently a subgroup with young onset DYT-TOR1A, more rapid progression and secondary worsening after effective GPi DBS, has been described. Myoclonus dystonia due to DYT-SCGE (DYT11) usually responds well to GPi DBS. Good outcomes following GPi DBS have also been documented in X-linked dystonia Parkinsonism (DYT3). In contrast, poorer, more variable DBS outcomes have been reported in DYT-THAP1 (DYT6) including a recent larger series. The outcome of GPi DBS in other monogenic isolated and combined dystonias including DYT-GNAL (DYT25), DYT-KMT2B (DYT28), DYT-ATP1A3 (DYT12), and DYT-ANO3 (DYT24) have been reported with varying results in smaller numbers of patients. In this article the available evidence for long term GPi DBS outcome between different genetic dystonias is reviewed to reappraise popular perceptions of expected outcomes and revisit whether genetic diagnosis may assist in predicting DBS outcome.
Collapse
Affiliation(s)
- Stephen Tisch
- Department of Neurology, St Vincent's Hospital, University of New South Wales, Sydney, NSW, Australia
| | - Kishore Raj Kumar
- Molecular Medicine Laboratory and Neurology Department, Concord Clinical School, Concord Repatriation General Hospital, The University of Sydney, Sydney, NSW, Australia
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| |
Collapse
|
15
|
Cif L, Demailly D, Lin JP, Barwick KE, Sa M, Abela L, Malhotra S, Chong WK, Steel D, Sanchis-Juan A, Ngoh A, Trump N, Meyer E, Vasques X, Rankin J, Allain MW, Applegate CD, Attaripour Isfahani S, Baleine J, Balint B, Bassetti JA, Baple EL, Bhatia KP, Blanchet C, Burglen L, Cambonie G, Seng EC, Bastaraud SC, Cyprien F, Coubes C, d’Hardemare V, Doja A, Dorison N, Doummar D, Dy-Hollins ME, Farrelly E, Fitzpatrick DR, Fearon C, Fieg EL, Fogel BL, Forman EB, Fox RG, Gahl WA, Galosi S, Gonzalez V, Graves TD, Gregory A, Hallett M, Hasegawa H, Hayflick SJ, Hamosh A, Hully M, Jansen S, Jeong SY, Krier JB, Krystal S, Kumar KR, Laurencin C, Lee H, Lesca G, François LL, Lynch T, Mahant N, Martinez-Agosto JA, Milesi C, Mills KA, Mondain M, Morales-Briceno H, Ostergaard JR, Pal S, Pallais JC, Pavillard F, Perrigault PF, Petersen AK, Polo G, Poulen G, Rinne T, Roujeau T, Rogers C, Roubertie A, Sahagian M, Schaefer E, Selim L, Selway R, Sharma N, Signer R, Soldatos AG, Stevenson DA, Stewart F, Tchan M, Verma IC, de Vries BBA, Wilson JL, Wong DA, Zaitoun R, Zhen D, Znaczko A, Dale RC, de Gusmão CM, Friedman J, et alCif L, Demailly D, Lin JP, Barwick KE, Sa M, Abela L, Malhotra S, Chong WK, Steel D, Sanchis-Juan A, Ngoh A, Trump N, Meyer E, Vasques X, Rankin J, Allain MW, Applegate CD, Attaripour Isfahani S, Baleine J, Balint B, Bassetti JA, Baple EL, Bhatia KP, Blanchet C, Burglen L, Cambonie G, Seng EC, Bastaraud SC, Cyprien F, Coubes C, d’Hardemare V, Doja A, Dorison N, Doummar D, Dy-Hollins ME, Farrelly E, Fitzpatrick DR, Fearon C, Fieg EL, Fogel BL, Forman EB, Fox RG, Gahl WA, Galosi S, Gonzalez V, Graves TD, Gregory A, Hallett M, Hasegawa H, Hayflick SJ, Hamosh A, Hully M, Jansen S, Jeong SY, Krier JB, Krystal S, Kumar KR, Laurencin C, Lee H, Lesca G, François LL, Lynch T, Mahant N, Martinez-Agosto JA, Milesi C, Mills KA, Mondain M, Morales-Briceno H, Ostergaard JR, Pal S, Pallais JC, Pavillard F, Perrigault PF, Petersen AK, Polo G, Poulen G, Rinne T, Roujeau T, Rogers C, Roubertie A, Sahagian M, Schaefer E, Selim L, Selway R, Sharma N, Signer R, Soldatos AG, Stevenson DA, Stewart F, Tchan M, Verma IC, de Vries BBA, Wilson JL, Wong DA, Zaitoun R, Zhen D, Znaczko A, Dale RC, de Gusmão CM, Friedman J, Fung VSC, King MD, Mohammad SS, Rohena L, Waugh JL, Toro C, Raymond FL, Topf M, Coubes P, Gorman KM, Kurian MA. KMT2B-related disorders: expansion of the phenotypic spectrum and long-term efficacy of deep brain stimulation. Brain 2020; 143:3242-3261. [PMID: 33150406 PMCID: PMC7719027 DOI: 10.1093/brain/awaa304] [Show More Authors] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/28/2020] [Accepted: 07/13/2020] [Indexed: 12/31/2022] Open
Abstract
Heterozygous mutations in KMT2B are associated with an early-onset, progressive and often complex dystonia (DYT28). Key characteristics of typical disease include focal motor features at disease presentation, evolving through a caudocranial pattern into generalized dystonia, with prominent oromandibular, laryngeal and cervical involvement. Although KMT2B-related disease is emerging as one of the most common causes of early-onset genetic dystonia, much remains to be understood about the full spectrum of the disease. We describe a cohort of 53 patients with KMT2B mutations, with detailed delineation of their clinical phenotype and molecular genetic features. We report new disease presentations, including atypical patterns of dystonia evolution and a subgroup of patients with a non-dystonic neurodevelopmental phenotype. In addition to the previously reported systemic features, our study has identified co-morbidities, including the risk of status dystonicus, intrauterine growth retardation, and endocrinopathies. Analysis of this study cohort (n = 53) in tandem with published cases (n = 80) revealed that patients with chromosomal deletions and protein truncating variants had a significantly higher burden of systemic disease (with earlier onset of dystonia) than those with missense variants. Eighteen individuals had detailed longitudinal data available after insertion of deep brain stimulation for medically refractory dystonia. Median age at deep brain stimulation was 11.5 years (range: 4.5-37.0 years). Follow-up after deep brain stimulation ranged from 0.25 to 22 years. Significant improvement of motor function and disability (as assessed by the Burke Fahn Marsden's Dystonia Rating Scales, BFMDRS-M and BFMDRS-D) was evident at 6 months, 1 year and last follow-up (motor, P = 0.001, P = 0.004, and P = 0.012; disability, P = 0.009, P = 0.002 and P = 0.012). At 1 year post-deep brain stimulation, >50% of subjects showed BFMDRS-M and BFMDRS-D improvements of >30%. In the long-term deep brain stimulation cohort (deep brain stimulation inserted for >5 years, n = 8), improvement of >30% was maintained in 5/8 and 3/8 subjects for the BFMDRS-M and BFMDRS-D, respectively. The greatest BFMDRS-M improvements were observed for trunk (53.2%) and cervical (50.5%) dystonia, with less clinical impact on laryngeal dystonia. Improvements in gait dystonia decreased from 20.9% at 1 year to 16.2% at last assessment; no patient maintained a fully independent gait. Reduction of BFMDRS-D was maintained for swallowing (52.9%). Five patients developed mild parkinsonism following deep brain stimulation. KMT2B-related disease comprises an expanding continuum from infancy to adulthood, with early evidence of genotype-phenotype correlations. Except for laryngeal dysphonia, deep brain stimulation provides a significant improvement in quality of life and function with sustained clinical benefit depending on symptoms distribution.
Collapse
Affiliation(s)
- Laura Cif
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté de médecine, Université de Montpellier, France
| | - Diane Demailly
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté de médecine, Université de Montpellier, France
| | - Jean-Pierre Lin
- Complex Motor Disorder Service, Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Children’s Neuromodulation Group, Women and Children’s Health Institute, Faculty of life Sciences and Medicine (FOLSM), King’s Health Partners, London, UK
| | - Katy E Barwick
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Mario Sa
- Complex Motor Disorder Service, Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Lucia Abela
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Sony Malhotra
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London, UK
| | - Wui K Chong
- Developmental Imaging and Biophysics, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Dora Steel
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Alba Sanchis-Juan
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Haematology, NHS Blood and Transplant Centre, University of Cambridge, Cambridge, UK
| | - Adeline Ngoh
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Natalie Trump
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Esther Meyer
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | | | - Julia Rankin
- Clinical Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Meredith W Allain
- Division of Medical Genetics, Department of Pediatrics, Stanford University, Palo Alto, CA, USA
| | - Carolyn D Applegate
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sanaz Attaripour Isfahani
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Julien Baleine
- Unité de Soins Intensifs et Réanimation Pédiatrique et Néonatale, Hôpital Universitaire de Montpellier, Montpellier, France
| | - Bettina Balint
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jennifer A Bassetti
- Division of Medical Genetics, Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
| | - Emma L Baple
- Clinical Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
- Institute of Biomedical and Clinical Science RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Catherine Blanchet
- Département d’Oto-Rhino-Laryngologie et Chirurgie Cervico-Faciale, Hôpital Universitaire de Montpellier, Montpellier, France
| | - Lydie Burglen
- Département de génétique médicale, APHP Hôpital Armand Trousseau, Paris, France
| | - Gilles Cambonie
- Unité de Soins Intensifs et Réanimation Pédiatrique et Néonatale, Hôpital Universitaire de Montpellier, Montpellier, France
| | - Emilie Chan Seng
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté de médecine, Université de Montpellier, France
| | | | - Fabienne Cyprien
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté de médecine, Université de Montpellier, France
| | - Christine Coubes
- Département de Génétique médicale, Maladies rares et médecine personnalisée, CHU Montpellier, Montpellier, France
| | - Vincent d’Hardemare
- Unité Dyspa, Neurochirurgie Pédiatrique, Hôpital Fondation Rothschild, Paris, France
| | | | - Asif Doja
- Division of Neurology, Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Nathalie Dorison
- Unité Dyspa, Neurochirurgie Pédiatrique, Hôpital Fondation Rothschild, Paris, France
| | - Diane Doummar
- Neuropédiatrie, Centre de référence neurogénétique mouvement anormaux de l’enfant, Hôpital Armand Trousseau, AP-HP, Sorbonne Université, France
| | - Marisela E Dy-Hollins
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Ellyn Farrelly
- Division of Medical Genetics, Department of Pediatrics, Stanford University, Palo Alto, CA, USA
- Department of Pediatrics, Lucile Packard Children’s Hospital at Stanford, CA, USA
| | - David R Fitzpatrick
- Human Genetics Unit, Medical and Developmental Genetics, University of Edinburgh Western General Hospital, Edinburgh, Scotland, UK
| | - Conor Fearon
- Department of Neurology, The Dublin Neurological Institute at the Mater Misericordiae University Hospital, Dublin, Ireland
| | - Elizabeth L Fieg
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brent L Fogel
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Eva B Forman
- Department of Paediatric Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Rachel G Fox
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | | | - William A Gahl
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Serena Galosi
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Victoria Gonzalez
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté de médecine, Université de Montpellier, France
| | - Tracey D Graves
- Department of Neurology, Hinchingbrooke Hospital, North West Anglia NHS Foundation Trust, Huntingdon, UK
| | - Allison Gregory
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Harutomo Hasegawa
- Complex Motor Disorder Service, Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Children’s Neuromodulation Group, Women and Children’s Health Institute, Faculty of life Sciences and Medicine (FOLSM), King’s Health Partners, London, UK
| | - Susan J Hayflick
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
- Department of Paediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Ada Hamosh
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marie Hully
- Département de Neurologie, APHP-Necker-Enfants Malades, Paris, France
| | - Sandra Jansen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Suh Young Jeong
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Joel B Krier
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sidney Krystal
- Département de Neuroradiologie, Hôpital Fondation Rothschild, Paris
| | - Kishore R Kumar
- Translational Genomics Group, Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Department of Neurogenetics, Kolling Institute, University of Sydney and Royal North Shore Hospital, St Leonards, NSW, Australia
- Molecular Medicine Laboratory, Concord Hospital, Sydney, NSW, Australia
| | - Chloé Laurencin
- Département de Neurologie, Hôpital Neurologique Pierre Wertheimer, Lyon, France
| | - Hane Lee
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Gaetan Lesca
- Département de Génétique, Hôpital Universitaire de Lyon, Lyon, France
| | | | - Timothy Lynch
- Department of Neurology, The Dublin Neurological Institute at the Mater Misericordiae University Hospital, Dublin, Ireland
- UCD School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Neil Mahant
- Movement Disorders Unit, Department of Neurology, Westmead Hospital, Westmead, NSW, Australia
| | - Julian A Martinez-Agosto
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Division of Medical Genetics, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Christophe Milesi
- Unité de Soins Intensifs et Réanimation Pédiatrique et Néonatale, Hôpital Universitaire de Montpellier, Montpellier, France
| | - Kelly A Mills
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michel Mondain
- Département d’Oto-Rhino-Laryngologie et Chirurgie Cervico-Faciale, Hôpital Universitaire de Montpellier, Montpellier, France
| | - Hugo Morales-Briceno
- Movement Disorders Unit, Department of Neurology, Westmead Hospital, Westmead, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - NIHR BioResource
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - John R Ostergaard
- Centre for Rare Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Swasti Pal
- Institute of Genetics and Genomics, Sir Ganga Ram Hospital, Rajender Nagar, New Delhi, India
| | - Juan C Pallais
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Frédérique Pavillard
- Département d’Anesthésie-Réanimation Gui de Chauliac, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Pierre-Francois Perrigault
- Département d’Anesthésie-Réanimation Gui de Chauliac, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | | | - Gustavo Polo
- Département de Neurochirurgie Fonctionnelle, Hôpital Neurologique et Neurochirurgical, Pierre Wertheimer, Lyon, France
| | - Gaetan Poulen
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté de médecine, Université de Montpellier, France
| | - Tuula Rinne
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thomas Roujeau
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
| | - Caleb Rogers
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Agathe Roubertie
- Département de Neuropédiatrie, Hôpital Universitaire de Montpellier, Montpellier, France
- INSERM U1051, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Michelle Sahagian
- Division of Neurology, Rady Children's Hospital San Diego, CA, USA
- Department of Neuroscience, University of California San Diego, CA, USA
| | - Elise Schaefer
- Medical Genetics, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Laila Selim
- Cairo University Children Hospital, Pediatric Neurology and Metabolic division, Cairo, Egypt
| | - Richard Selway
- Department of Neurosurgery, King's College Hospital, London, UK
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Rebecca Signer
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ariane G Soldatos
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - David A Stevenson
- Division of Medical Genetics, Department of Pediatrics, Stanford University, Palo Alto, CA, USA
| | - Fiona Stewart
- Department of Genetic Medicine, Belfast Health and Social Care Trust, Belfast, UK
| | - Michel Tchan
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Department of Genetics, Westmead Hospital, Westmead, NSW, Australia
| | - Undiagnosed Diseases Network
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ishwar C Verma
- Institute of Genetics and Genomics, Sir Ganga Ram Hospital, Rajender Nagar, New Delhi, India
| | - Bert B A de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jenny L Wilson
- Division of Pediatric Neurology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Derek A Wong
- Division of Medical Genetics, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Raghda Zaitoun
- Department of Paediatrics, Neurology Division, Ain Shams University Hospital, Cairo, Egypt
| | - Dolly Zhen
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Anna Znaczko
- Department of Genetic Medicine, Belfast Health and Social Care Trust, Belfast, UK
| | - Russell C Dale
- Department of Paediatric Neurology, The Children's Hospital at Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney NSW, Australia
| | - Claudio M de Gusmão
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Jennifer Friedman
- Division of Neurology, Rady Children's Hospital San Diego, CA, USA
- Department of Neuroscience, University of California San Diego, CA, USA
- Departments of Paediatrics, University of California, San Diego, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Victor S C Fung
- Movement Disorders Unit, Department of Neurology, Westmead Hospital, Westmead, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Mary D King
- Department of Paediatric Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland
- UCD School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Shekeeb S Mohammad
- Department of Paediatric Neurology, The Children's Hospital at Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney NSW, Australia
| | - Luis Rohena
- Division of Medical Genetics, Department of Pediatrics, San Antonio Military Medical Center, San Antonio, TX, USA
- Department of Pediatrics, Long School of Medicine, UT Health, San Antonio, TX, USA
| | - Jeff L Waugh
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, USA
| | - Camilo Toro
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - F Lucy Raymond
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Maya Topf
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London, UK
| | - Philippe Coubes
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté de médecine, Université de Montpellier, France
| | - Kathleen M Gorman
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Manju A Kurian
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| |
Collapse
|
16
|
Hale AT, Monsour MA, Rolston JD, Naftel RP, Englot DJ. Deep brain stimulation in pediatric dystonia: a systematic review. Neurosurg Rev 2020; 43:873-880. [PMID: 30397842 PMCID: PMC6500764 DOI: 10.1007/s10143-018-1047-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/21/2018] [Accepted: 10/29/2018] [Indexed: 01/12/2023]
Abstract
While deep brain stimulation (DBS) treatment is relatively rare in children, it may have a role in dystonia to reduce motor symptoms and disability. Pediatric DBS studies are sparse and limited by small sample size, and thus, outcomes are poorly understood. Thus, we performed a systematic review of the literature including studies of DBS for pediatric (age < 21) dystonia. Patient demographics, disease causes and characteristics, motor scores, and disability scores were recorded at baseline and at last post-operative follow-up. We identified 19 studies reporting DBS outcomes in 76 children with dystonia. Age at surgery was 13.8 ± 3.9 (mean ± SD) years, and 58% of individuals were male. Post-operative follow-up duration was 2.8 ± 2.8 years. Sixty-eight percent of patients had primary dystonia (PD), of whom 56% had a pathological mutation in DYT1 (DYT1+). Across all patients, regardless of dystonia type, 43.8 ± 36% improvement was seen in Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) motor (-M) scores after DBS, while 43.7 ± 31% improvement was observed in BFMDRS disability (-D) scores. Patients with PD were more likely to experience ≥ 50% improvement (56%) in BFMDRS-M scores compared to patients with secondary causes of dystonia (21%, p = 0.004). DYT1+ patients were more likely to achieve ≥ 50% improvement (65%) in BFMDRS-D than DTY1- individuals (29%, p = 0.02), although there was no difference in BFMDRS-M ≥ 50% improvement rates between DYT1+ (66%) or DYT1- (43%) children (p = 0.11). While DBS is less common in pediatric patients, individuals with severe dystonia may receive worthwhile benefit with neuromodulation treatment.
Collapse
Affiliation(s)
- Andrew T Hale
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.
- Medical Scientist Training Program, Vanderbilt University School of Medicine, 2200 Pierce Ave. 610 Robinson Research Building, Nashville, TN, 37232, USA.
| | - Meredith A Monsour
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John D Rolston
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Robert P Naftel
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Pediatric Neurosurgery, Monroe Carell Jr. Children's Hospital of Vanderbilt University, Nashville, TN, USA
| | - Dario J Englot
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University Medical Center and Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
17
|
Zhu GY, Zhang RL, Chen YC, Liu YY, Liu DF, Wang SY, Jiang Y, Zhang JG. Characteristics of globus pallidus internus local field potentials in generalized dystonia patients with TWNK mutation. Clin Neurophysiol 2020; 131:1453-1461. [PMID: 32387964 DOI: 10.1016/j.clinph.2020.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/11/2019] [Accepted: 03/07/2020] [Indexed: 01/16/2023]
Abstract
OBJECTIVE We focused on a rare gene mutation causing dystonia in two siblings who received globus pallidus internus deep brain stimulation (GPi-DBS). The aim was to characterize the relationship between neuronal activity patterns and clinical syndromes. METHODS Whole exome sequencing was applied to identify the TWNK (previous symbol C10orf2) mutation; Two siblings with TWNK mutation presented as generalized dystonia with rigidity and bradykinesia; four other sporadic generalized dystonia patients underwent GPi-DBS and local field potentials (LFPs) were recorded. Oscillatory activities were illustrated with power spectra and temporal dynamics measured by the Lempel-Ziv complexity (LZC). RESULTS Normalized power spectra of GPi LFPs differed between patients with TWNK mutation and dystonia over the low beta bands. Patients with TWNK mutation had higher low beta power (15-27 Hz, unpaired t-test, corrected P < 0.0022) and lower LZC (15-27 Hz, unpaired t-test, P < 0.01) than other patients with generalized dystonia. On the other hand, the TWNK mutation patients showed decreased low frequency and beta oscillation in the GPi after DBS, as well as improved movement performance. CONCLUSION The LFPs were different in TWNK mutation dystonia siblings than other patients with generalized dystonia, which indicate the abnormal LFPs were related to symptoms rather than specific disease. In addition, the inhibited effect on oscillations also provided a potential evidence for DBS treatment on rare movement disorders. SIGNIFICANCE This study could potentially aid in the future development of adaptive DBS via rare disease LFPs comparison.
Collapse
Affiliation(s)
- Guan-Yu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Rui-Li Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Ying-Chuan Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu-Ye Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - De-Feng Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shou-Yan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Yin Jiang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| | - Jian-Guo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
18
|
Danielsson A, Carecchio M, Cif L, Koy A, Lin JP, Solders G, Romito L, Lohmann K, Garavaglia B, Reale C, Zorzi G, Nardocci N, Coubes P, Gonzalez V, Roubertie A, Collod-Beroud G, Lind G, Tedroff K. Pallidal Deep Brain Stimulation in DYT6 Dystonia: Clinical Outcome and Predictive Factors for Motor Improvement. J Clin Med 2019; 8:jcm8122163. [PMID: 31817799 PMCID: PMC6947218 DOI: 10.3390/jcm8122163] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Pallidal deep brain stimulation is an established treatment in dystonia. Available data on the effect in DYT-THAP1 dystonia (also known as DYT6 dystonia) are scarce and long-term follow-up studies are lacking. In this retrospective, multicenter follow-up case series of medical records of such patients, the clinical outcome of pallidal deep brain stimulation in DYT-THAP1 dystonia, was evaluated. The Burke Fahn Marsden Dystonia Rating Scale served as an outcome measure. Nine females and 5 males were enrolled, with a median follow-up of 4 years and 10 months after implant. All benefited from surgery: dystonia severity was reduced by a median of 58% (IQR 31-62, p = 0.001) at last follow-up, as assessed by the Burke Fahn Marsden movement subscale. In the majority of individuals, there was no improvement of speech or swallowing, and overall, the effect was greater in the trunk and limbs as compared to the cranio-cervical and orolaryngeal regions. No correlation was found between disease duration before surgery, age at surgery, or preoperative disease burden and the outcome of deep brain stimulation. Device- and therapy-related side-effects were few. Accordingly, pallidal deep brain stimulation should be considered in clinically impairing and pharmaco-resistant DYT-THAP1 dystonia. The method is safe and effective, both short- and long-term.
Collapse
Affiliation(s)
- Annika Danielsson
- Department of Women’s and Children’s Health, Karolinska Institutet, 17176 Stockholm, Sweden;
- Sachs’ Children and Youth Hospital, Stockholm South General Hospital, 11883 Stockholm, Sweden
- Correspondence: ; Tel.: +46-708-182785
| | - Miryam Carecchio
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20131 Milan, Italy; (M.C.); (G.Z.); (N.N.)
- Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
- Department of Neuroscience, University of Padua, 35128 Padua, Italy
| | - Laura Cif
- Département de Neurochirurgie, Unité de Recherche sur les Comportements et Mouvements Anormaux, (URCMA), Centre hospitalier universitaire de Montpellier, 34090 Montpellier, France; (L.C.); (P.C.); (V.G.)
| | - Anne Koy
- Faculty of Medicine, University of Cologne and Deparment of Pediatrics, University Hospital Cologne, 50924 Cologne, Germany;
| | - Jean-Pierre Lin
- Complex Motor Disorders Services, Evelina London Children’s Hospital, Children’s Neuromodulation, Children and Women’s Health Institute, King’s Health Partners, London SE1 7EH, UK;
| | - Göran Solders
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; (G.S.); (G.L.)
- Department of Neurology, Karolinska University Hospital, 14186 Stockholm, Sweden
| | - Luigi Romito
- Department of Movement Disorders, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Katja Lohmann
- Institute of Neurogenetics, University of Luebeck, 23562 Luebeck, Germany;
| | - Barbara Garavaglia
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (B.G.); (C.R.)
| | - Chiara Reale
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (B.G.); (C.R.)
| | - Giovanna Zorzi
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20131 Milan, Italy; (M.C.); (G.Z.); (N.N.)
| | - Nardo Nardocci
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20131 Milan, Italy; (M.C.); (G.Z.); (N.N.)
| | - Philippe Coubes
- Département de Neurochirurgie, Unité de Recherche sur les Comportements et Mouvements Anormaux, (URCMA), Centre hospitalier universitaire de Montpellier, 34090 Montpellier, France; (L.C.); (P.C.); (V.G.)
| | - Victoria Gonzalez
- Département de Neurochirurgie, Unité de Recherche sur les Comportements et Mouvements Anormaux, (URCMA), Centre hospitalier universitaire de Montpellier, 34090 Montpellier, France; (L.C.); (P.C.); (V.G.)
| | - Agathe Roubertie
- Département de Neuropédiatrie, Centre hospitalier universitaire de Montpellier, 34295 Montpellier, France;
- INSERM U 1051, Institut des Neuroscience de Montpellier, 34091 Montpellier, France
| | | | - Göran Lind
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; (G.S.); (G.L.)
| | - Kristina Tedroff
- Department of Women’s and Children’s Health, Karolinska Institutet, 17176 Stockholm, Sweden;
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, 17176 Stockholm, Sweden
| |
Collapse
|
19
|
Wen Y, Yang H, Bao X. Deep brain stimulation for early-onset dystonia. BRAIN SCIENCE ADVANCES 2019. [DOI: 10.26599/bsa.2019.9050004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
20
|
Abstract
Deep brain stimulation (DBS) is considered as a treatment option for many neurological diseases. Many patients with movement disorders exhibit remarkable improvement after DBS. Owing to its minimally invasive nature, reversibility, and adjustability, DBS has been increasingly used over the past several decades. Dystonia is one of the most common movement disorders among children, and there is no effective treatment. Recently, some surgeon groups have performed DBS surgery for children. However, the outcomes of DBS in children are not well characterized. Here we mainly discuss the efficacy of DBS against childhood-onset dystonia and introduce the main procedure of pediatric DBS based on our own experience.
Collapse
Affiliation(s)
- Yongxin Wen
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
- These authors contributed equally to this work
| | - Haibo Yang
- Department of Pediatric Surgery, Peking University First Hospital, Beijing 100034, China
- These authors contributed equally to this work
| | - Xinhua Bao
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
21
|
Horn A, Li N, Dembek TA, Kappel A, Boulay C, Ewert S, Tietze A, Husch A, Perera T, Neumann WJ, Reisert M, Si H, Oostenveld R, Rorden C, Yeh FC, Fang Q, Herrington TM, Vorwerk J, Kühn AA. Lead-DBS v2: Towards a comprehensive pipeline for deep brain stimulation imaging. Neuroimage 2019; 184:293-316. [PMID: 30179717 PMCID: PMC6286150 DOI: 10.1016/j.neuroimage.2018.08.068] [Citation(s) in RCA: 509] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/13/2018] [Accepted: 08/28/2018] [Indexed: 01/09/2023] Open
Abstract
Deep brain stimulation (DBS) is a highly efficacious treatment option for movement disorders and a growing number of other indications are investigated in clinical trials. To ensure optimal treatment outcome, exact electrode placement is required. Moreover, to analyze the relationship between electrode location and clinical results, a precise reconstruction of electrode placement is required, posing specific challenges to the field of neuroimaging. Since 2014 the open source toolbox Lead-DBS is available, which aims at facilitating this process. The tool has since become a popular platform for DBS imaging. With support of a broad community of researchers worldwide, methods have been continuously updated and complemented by new tools for tasks such as multispectral nonlinear registration, structural/functional connectivity analyses, brain shift correction, reconstruction of microelectrode recordings and orientation detection of segmented DBS leads. The rapid development and emergence of these methods in DBS data analysis require us to revisit and revise the pipelines introduced in the original methods publication. Here we demonstrate the updated DBS and connectome pipelines of Lead-DBS using a single patient example with state-of-the-art high-field imaging as well as a retrospective cohort of patients scanned in a typical clinical setting at 1.5T. Imaging data of the 3T example patient is co-registered using five algorithms and nonlinearly warped into template space using ten approaches for comparative purposes. After reconstruction of DBS electrodes (which is possible using three methods and a specific refinement tool), the volume of tissue activated is calculated for two DBS settings using four distinct models and various parameters. Finally, four whole-brain tractography algorithms are applied to the patient's preoperative diffusion MRI data and structural as well as functional connectivity between the stimulation volume and other brain areas are estimated using a total of eight approaches and datasets. In addition, we demonstrate impact of selected preprocessing strategies on the retrospective sample of 51 PD patients. We compare the amount of variance in clinical improvement that can be explained by the computer model depending on the preprocessing method of choice. This work represents a multi-institutional collaborative effort to develop a comprehensive, open source pipeline for DBS imaging and connectomics, which has already empowered several studies, and may facilitate a variety of future studies in the field.
Collapse
Affiliation(s)
- Andreas Horn
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Germany.
| | - Ningfei Li
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Germany
| | - Till A Dembek
- Department of Neurology, University Hospital of Cologne, Germany
| | - Ari Kappel
- Wayne State University, Department of Neurosurgery, Detroit, Michigan, USA
| | | | - Siobhan Ewert
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Germany
| | - Anna Tietze
- Institute of Neuroradiology, Charité - University Medicine Berlin, Germany
| | - Andreas Husch
- University of Luxembourg, Luxembourg Centre for Systems Biomedicine, Interventional Neuroscience Group, Belvaux, Luxembourg
| | - Thushara Perera
- Bionics Institute, East Melbourne, Victoria, Australia; Department of Medical Bionics, University of Melbourne, Parkville, Victoria, Australia
| | - Wolf-Julian Neumann
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Germany; Institute of Neuroradiology, Charité - University Medicine Berlin, Germany
| | - Marco Reisert
- Medical Physics, Department of Radiology, Faculty of Medicine, University Freiburg, Germany
| | - Hang Si
- Numerical Mathematics and Scientific Computing, Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Germany
| | - Robert Oostenveld
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, NL, Netherlands; NatMEG, Karolinska Institutet, Stockholm, SE, Sweden
| | - Christopher Rorden
- McCausland Center for Brain Imaging, University of South Carolina, Columbia, SC, USA
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh PA, USA
| | - Qianqian Fang
- Department of Bioengineering, Northeastern University, Boston, USA
| | - Todd M Herrington
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Johannes Vorwerk
- Scientific Computing & Imaging (SCI) Institute, University of Utah, Salt Lake City, USA
| | - Andrea A Kühn
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Germany
| |
Collapse
|
22
|
Elkaim LM, De Vloo P, Kalia SK, Lozano AM, Ibrahim GM. Deep brain stimulation for childhood dystonia: current evidence and emerging practice. Expert Rev Neurother 2018; 18:773-784. [DOI: 10.1080/14737175.2018.1523721] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Lior M. Elkaim
- Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Phillippe De Vloo
- Department of Neurosurgery, Great Ormond Street Hospital for Children, London, UK
| | - Suneil K. Kalia
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, Toronto, Canada
| | - Andres M. Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, Toronto, Canada
| | - George M. Ibrahim
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Program in Neuroscience and Mental Health, The Hospital for Sick Children Research Institute, Toronto, Canada
| |
Collapse
|
23
|
Abstract
Dystonia is a neurological condition characterized by abnormal involuntary movements or postures owing to sustained or intermittent muscle contractions. Dystonia can be the manifesting neurological sign of many disorders, either in isolation (isolated dystonia) or with additional signs (combined dystonia). The main focus of this Primer is forms of isolated dystonia of idiopathic or genetic aetiology. These disorders differ in manifestations and severity but can affect all age groups and lead to substantial disability and impaired quality of life. The discovery of genes underlying the mendelian forms of isolated or combined dystonia has led to a better understanding of its pathophysiology. In some of the most common genetic dystonias, such as those caused by TOR1A, THAP1, GCH1 and KMT2B mutations, and idiopathic dystonia, these mechanisms include abnormalities in transcriptional regulation, striatal dopaminergic signalling and synaptic plasticity and a loss of inhibition at neuronal circuits. The diagnosis of dystonia is largely based on clinical signs, and the diagnosis and aetiological definition of this disorder remain a challenge. Effective symptomatic treatments with pharmacological therapy (anticholinergics), intramuscular botulinum toxin injection and deep brain stimulation are available; however, future research will hopefully lead to reliable biomarkers, better treatments and cure of this disorder.
Collapse
|
24
|
Abstract
Within the field of movement disorders, the conceptual understanding of dystonia has continued to evolve. Clinical advances have included improvements in recognition of certain features of dystonia, such as tremor, and understanding of phenotypic spectrums in the genetic dystonias and dystonia terminology and classification. Progress has also been made in the understanding of underlying biological processes which characterize dystonia from discoveries using approaches such as neurophysiology, functional imaging, genetics, and animal models. Important advances include the role of the cerebellum in dystonia, the concept of dystonia as an aberrant brain network disorder, additional evidence supporting the concept of dystonia endophenotypes, and new insights into psychogenic dystonia. These discoveries have begun to shape treatment approaches as, in parallel, important new treatment modalities, including magnetic resonance imaging-guided focused ultrasound, have emerged and existing interventions such as deep brain stimulation have been further refined. In this review, these topics are explored and discussed.
Collapse
Affiliation(s)
- Stephen Tisch
- Faculty of Medicine, University of New South Wales, Sydney, Australia.,Department of Neurology, St Vincent's Hospital, Sydney, Australia
| |
Collapse
|
25
|
Alterman RL, Filippidis AS. Genetic Subtypes and Deep Brain Stimulation in Dystonia. Mov Disord Clin Pract 2018; 5:357-360. [PMID: 30838292 PMCID: PMC6336377 DOI: 10.1002/mdc3.12660] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/28/2018] [Accepted: 06/07/2018] [Indexed: 01/16/2023] Open
Affiliation(s)
- Ron L. Alterman
- Division of NeurosurgeryBeth Israel Deaconess Medical CenterBostonMA
| | | |
Collapse
|
26
|
Abstract
Mainly due to the advent of next-generation sequencing (NGS), the field of genetics of dystonia has rapidly grown in recent years, which led to the discovery of a number of novel dystonia genes and the development of a new classification and nomenclature for inherited dystonias. In addition, new findings from both in vivo and in vitro studies have been published on the role of previously known dystonia genes, extending our understanding of the pathophysiology of dystonia. We here review the current knowledge and recent findings in the known genes for isolated dystonia TOR1A, THAP1, and GNAL as well as for the combined dystonias due to mutations in GCH1, ATP1A3, and SGCE. We present confirmatory evidence for a role of dystonia genes that had not yet been unequivocally established including PRKRA, TUBB4A, ANO3, and TAF1. We finally discuss selected novel genes for dystonia such as KMT2B and VAC14 along with the challenges for gene identification in the NGS era and the translational importance of dystonia genetics in clinical practice.
Collapse
|
27
|
Toward defining deep brain stimulation targets in MNI space: A subcortical atlas based on multimodal MRI, histology and structural connectivity. Neuroimage 2017; 170:271-282. [PMID: 28536045 DOI: 10.1016/j.neuroimage.2017.05.015] [Citation(s) in RCA: 402] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 05/09/2017] [Indexed: 01/08/2023] Open
Abstract
Three-dimensional atlases of subcortical brain structures are valuable tools to reference anatomy in neuroscience and neurology. For instance, they can be used to study the position and shape of the three most common deep brain stimulation (DBS) targets, the subthalamic nucleus (STN), internal part of the pallidum (GPi) and ventral intermediate nucleus of the thalamus (VIM) in spatial relationship to DBS electrodes. Here, we present a composite atlas based on manual segmentations of a multimodal high resolution brain template, histology and structural connectivity. In a first step, four key structures were defined on the template itself using a combination of multispectral image analysis and manual segmentation. Second, these structures were used as anchor points to coregister a detailed histological atlas into standard space. Results show that this approach significantly improved coregistration accuracy over previously published methods. Finally, a sub-segmentation of STN and GPi into functional zones was achieved based on structural connectivity. The result is a composite atlas that defines key nuclei on the template itself, fills the gaps between them using histology and further subdivides them using structural connectivity. We show that the atlas can be used to segment DBS targets in single subjects, yielding more accurate results compared to priorly published atlases. The atlas will be made publicly available and constitutes a resource to study DBS electrode localizations in combination with modern neuroimaging methods.
Collapse
|
28
|
Rowland NC, Sammartino F, Lozano AM. Advances in surgery for movement disorders. Mov Disord 2016; 32:5-10. [PMID: 27125681 DOI: 10.1002/mds.26636] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 03/03/2016] [Accepted: 03/06/2016] [Indexed: 12/27/2022] Open
Abstract
Movement disorder surgery has evolved throughout history as our knowledge of motor circuits and ways in which to manipulate them have expanded. Today, the positive impact on patient quality of life for a growing number of movement disorders such as Parkinson's disease is now well accepted and confirmed through several decades of randomized, controlled trials. Nevertheless, residual motor symptoms after movement disorder surgery such as deep brain stimulation and lack of a definitive cure for these conditions demand that advances continue to push the boundaries of the field and maximize its therapeutic potential. Similarly, advances in related fields - wireless technology, artificial intelligence, stem cell and gene therapy, neuroimaging, nanoscience, and minimally invasive surgery - mean that movement disorder surgery stands at a crossroads to benefit from unique combinations of all these developments. In this minireview, we outline some of these developments as well as evidence supporting topics of recent discussion and controversy in our field. Moving forward, expectations remain high that these improvements will come to encompass an even broader range of patients who might benefit from this therapy and decrease the burden of disease associated with these conditions. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Nathan C Rowland
- Toronto Western Hospital, Division of Neurosurgery, Toronto, Ontario, Canada
| | | | - Andres M Lozano
- Toronto Western Hospital, Division of Neurosurgery, Toronto, Ontario, Canada
| |
Collapse
|