1
|
Wang SX, Streit A. Shared features in ear and kidney development - implications for oto-renal syndromes. Dis Model Mech 2024; 17:dmm050447. [PMID: 38353121 PMCID: PMC10886756 DOI: 10.1242/dmm.050447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
The association between ear and kidney anomalies has long been recognized. However, little is known about the underlying mechanisms. In the last two decades, embryonic development of the inner ear and kidney has been studied extensively. Here, we describe the developmental pathways shared between both organs with particular emphasis on the genes that regulate signalling cross talk and the specification of progenitor cells and specialised cell types. We relate this to the clinical features of oto-renal syndromes and explore links to developmental mechanisms.
Collapse
Affiliation(s)
- Scarlet Xiaoyan Wang
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Andrea Streit
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| |
Collapse
|
2
|
Comprehensive Analysis on the Specific Role and Function of Mitochondrial Inner Membrane Protein MPV17 in Liver Hepatocellular Carcinoma. Genet Res (Camb) 2022; 2022:7236823. [PMID: 35919033 PMCID: PMC9325347 DOI: 10.1155/2022/7236823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022] Open
Abstract
Background Liver hepatocellular carcinoma (LIHC) is the predominant type of liver cancer, and its treatment still faces great challenges presently. Mitochondrial inner membrane protein MPV17 is reported to be involved in multiple biological activities of cancers. Here, we seek to investigate the specific role and functions of MPV17 in LIHC progression. Methods Firstly, MPV17 expressions in various tumors and corresponding normal samples and LIHC groups with various clinical features were analyzed, respectively. Next, the relationship between MPV17 expression and LIHC survival was analyzed and verified by AUC curves. Besides, differentially expressed genes (DEGs) for LIHC were screened from TCGA and then analyzed by GO and KEGG. Then, MPV17 was analyzed by prognostic model, Cox analysis, predictive nomogram, pathway correlation, and immunoassay. Finally, the functions of MPV17 were determined by CCK-8 and Tranwell assays. Results In most tumors, MPV17 expression was higher than that in the normal group, and it was related to LIHC clinical features. In the LIHC survival analysis, highly expressed MPV17 was associated with a poor prognosis. Besides, 314 upregulated and 193 downregulated DEGs are mainly involved in the TNF signaling pathway and tyrosine metabolism. Through prognostic model, Cox analysis, and predictive nomogram, MPV17 had the prognostic value for LIHC. Gene-pathway correlation analysis showed that MPV17 had the strongest correlation with the G2M_checkpoint pathway. In an immunoassay, MPV17 had a strong correlation with many immune cells. Functional assays showed that MPV17 reduction in LIHC cells could inhibit cell invasion, migration, and proliferation. Conclusion MPV17, as a tumor promoter, could be a new biomarker for LIHC diagnosis and prognosis and probably shed new light on the exploration of LIHC therapies.
Collapse
|
3
|
Hou N, Li C, He J, Liu Y, Yu S, Malnoy M, Mobeen Tahir M, Xu L, Ma F, Guan Q. MdMTA-mediated m 6 A modification enhances drought tolerance by promoting mRNA stability and translation efficiency of genes involved in lignin deposition and oxidative stress. THE NEW PHYTOLOGIST 2022; 234:1294-1314. [PMID: 35246985 DOI: 10.1111/nph.18069] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Although the N6 -methyladenosine (m6 A) modification is the most prevalent RNA modification in eukaryotes, the global m6 A modification landscape and its molecular regulatory mechanism in response to drought stress remain unclear. Transcriptome-wide m6 A methylome profiling revealed that m6 A is mainly enriched in the coding sequence and 3' untranslated region in response to drought stress in apple, by recognizing the plant-specific sequence motif UGUAH (H=A, U or C). We identified a catalytically active component of the m6 A methyltransferase complex, MdMTA. An in vitro methyl transfer assay, dot blot, LC-MS/MS and m6 A-sequencing (m6 A-seq) suggested that MdMTA is an m6 A writer and essential for m6 A mRNA modification. Further studies revealed that MdMTA is required for apple drought tolerance. m6 A-seq and RNA-seq analyses under drought conditions showed that MdMTA mediates m6 A modification and transcripts of mRNAs involved in oxidative stress and lignin deposition. Moreover, m6 A modification promotes mRNA stability and the translation efficiency of these genes in response to drought stress. Consistently, MdMTA enhances lignin deposition and scavenging of reactive oxygen species under drought conditions. Our results reveal the global involvement of m6 A modification in the drought response of perennial apple trees and illustrate its molecular mechanisms, thereby providing candidate genes for the breeding of stress-tolerant apple cultivars.
Collapse
Affiliation(s)
- Nan Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Chaoshuo Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Yu Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Sisi Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Mickael Malnoy
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach, San Michele all'Adige, 38010, Italy
| | - Muhammad Mobeen Tahir
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Lingfei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| |
Collapse
|
4
|
Jiang P, Ma X, Han S, Ma L, Ai J, Wu L, Zhang Y, Xiao H, Tian M, Tao WA, Zhang S, Chai R. Characterization of the microRNA transcriptomes and proteomics of cochlear tissue-derived small extracellular vesicles from mice of different ages after birth. Cell Mol Life Sci 2022; 79:154. [PMID: 35218422 PMCID: PMC11072265 DOI: 10.1007/s00018-022-04164-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/30/2021] [Accepted: 01/23/2022] [Indexed: 12/22/2022]
Abstract
The cochlea is an important sensory organ for both balance and sound perception, and the formation of the cochlea is a complex developmental process. The development of the mouse cochlea begins on embryonic day (E)9 and continues until postnatal day (P)21 when the hearing system is considered mature. Small extracellular vesicles (sEVs), with a diameter ranging from 30 to 200 nm, have been considered a significant medium for information communication in both physiological and pathological processes. However, there are no studies exploring the role of sEVs in the development of the cochlea. Here, we isolated tissue-derived sEVs from the cochleae of FVB mice at P3, P7, P14, and P21 by ultracentrifugation. These sEVs were first characterized by transmission electron microscopy, nanoparticle tracking analysis, and western blotting. Next, we used small RNA-seq and mass spectrometry to characterize the microRNA transcriptomes and proteomes of cochlear sEVs from mice at different ages. Many microRNAs and proteins were discovered to be related to inner ear development, anatomical structure development, and auditory nervous system development. These results all suggest that sEVs exist in the cochlea and are likely to be essential for the normal development of the auditory system. Our findings provide many sEV microRNA and protein targets for future studies of the roles of cochlear sEVs.
Collapse
Affiliation(s)
- Pei Jiang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xiangyu Ma
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Shanying Han
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Leyao Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jingru Ai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Leilei Wu
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yuan Zhang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Hairong Xiao
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Mengyao Tian
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - W Andy Tao
- Department of Chemistry, Department of Biochemistry, Purdue University, West Lafayette, Indiana, 47907, USA.
- Center for Cancer Research, Purdue University, West Lafayette, Indiana, 47907, USA.
| | - Shasha Zhang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
5
|
Liu Z, Bai X, Wan P, Mo F, Chen G, Zhang J, Gao J. Targeted Deletion of Loxl3 by Col2a1-Cre Leads to Progressive Hearing Loss. Front Cell Dev Biol 2021; 9:683495. [PMID: 34150778 PMCID: PMC8212933 DOI: 10.3389/fcell.2021.683495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Collagens are major constituents of the extracellular matrix (ECM) that play an essential role in the structure of the inner ear and provide elasticity and rigidity when the signals of sound are received and transformed into electrical signals. LOXL3 is a member of the lysyl oxidase (LOX) family that are copper-dependent amine oxidases, generating covalent cross-links to stabilize polymeric elastin and collagen fibers in the ECM. Biallelic missense variant of LOXL3 was found in Stickler syndrome with mild conductive hearing loss. However, available information regarding the specific roles of LOXL3 in auditory function is limited. In this study, we showed that the Col2a1-Cre-mediated ablation of Loxl3 in the inner ear can cause progressive hearing loss, degeneration of hair cells and secondary degeneration of spiral ganglion neurons. The abnormal distribution of type II collagen in the spiral ligament and increased inflammatory responses were also found in Col2a1–Loxl3–/– mice. Amino oxidase activity exerts an effect on collagen; thus, Loxl3 deficiency was expected to result in the instability of collagen in the spiral ligament and the basilar membrane, which may interfere with the mechanical properties of the organ of Corti and induce the inflammatory responses that are responsible for the hearing loss. Overall, our findings suggest that Loxl3 may play an essential role in maintaining hearing function.
Collapse
Affiliation(s)
- Ziyi Liu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Xinfeng Bai
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Peifeng Wan
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Fan Mo
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Ge Chen
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Jian Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Jiangang Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| |
Collapse
|
6
|
Jacinto S, Guerreiro P, de Oliveira RM, Cunha-Oliveira T, Santos MJ, Grazina M, Rego AC, Outeiro TF. MPV17 Mutations Are Associated With a Quiescent Energetic Metabolic Profile. Front Cell Neurosci 2021; 15:641264. [PMID: 33815063 PMCID: PMC8011494 DOI: 10.3389/fncel.2021.641264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/08/2021] [Indexed: 02/03/2023] Open
Abstract
Mutations in the MPV17 gene are associated with hepatocerebral form of mitochondrial depletion syndrome. The mechanisms through which MPV17 mutations cause respiratory chain dysfunction and mtDNA depletion is still unclear. The MPV17 gene encodes an inner membrane mitochondrial protein that was recently described to function as a non-selective channel. Although its exact function is unknown, it is thought to be important in the maintenance of mitochondrial membrane potential (ΔΨm). To obtain more information about the role of MPV17 in human disease, we investigated the effect of MPV17 knockdown and of selected known MPV17 mutations associated with MPV17 disease in vitro. We used different approaches in order to evaluate the cellular consequences of MPV17 deficiency. We found that lower levels of MPV17 were associated with impaired mitochondrial respiration and with a quiescent energetic metabolic profile. All the mutations studied destabilized the protein, resulting in reduced protein levels. We also demonstrated that different mutations caused different cellular abnormalities, including increased ROS production, decreased oxygen consumption, loss of ΔΨm, and mislocalization of MPV17 protein. Our study provides novel insight into the molecular effects of MPV17 mutations and opens novel possibilities for testing therapeutic strategies for a devastating group of disorders.
Collapse
Affiliation(s)
- Sandra Jacinto
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Serviço de Neurologia Pediátrica, Hospital Dona Estefânia, Centro Hospitalar Universitário Lisboa Central-EPE, Lisboa, Portugal
| | - Patrícia Guerreiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Switch Laboratory, Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, Katholiek Universiteit (KU), Leuven, Belgium
| | - Rita Machado de Oliveira
- CEDOC - Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | | | - Maria João Santos
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Manuela Grazina
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Ana Cristina Rego
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.,Max Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
7
|
Iommarini L, Peralta S, Torraco A, Diaz F. Mitochondrial Diseases Part II: Mouse models of OXPHOS deficiencies caused by defects in regulatory factors and other components required for mitochondrial function. Mitochondrion 2015; 22:96-118. [PMID: 25640959 DOI: 10.1016/j.mito.2015.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 01/22/2015] [Indexed: 01/21/2023]
Abstract
Mitochondrial disorders are defined as defects that affect the oxidative phosphorylation system (OXPHOS). They are characterized by a heterogeneous array of clinical presentations due in part to a wide variety of factors required for proper function of the components of the OXPHOS system. There is no cure for these disorders owing to our poor knowledge of the pathogenic mechanisms of disease. To understand the mechanisms of human disease numerous mouse models have been developed in recent years. Here we summarize the features of several mouse models of mitochondrial diseases directly related to those factors affecting mtDNA maintenance, replication, transcription, translation as well as other proteins that are involved in mitochondrial dynamics and quality control which affect mitochondrial OXPHOS function without being intrinsic components of the system. We discuss how these models have contributed to our understanding of mitochondrial diseases and their pathogenic mechanisms.
Collapse
Affiliation(s)
- Luisa Iommarini
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Via Irnerio 42, 40128 Bologna, Italy.
| | - Susana Peralta
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
| | - Alessandra Torraco
- Unit for Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Viale di San Paolo, 15 - 00146, Rome, Italy.
| | - Francisca Diaz
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
8
|
Feng H, Pyykkö I, Zou J. Hyaluronan up-regulation is linked to renal dysfunction and hearing loss induced by silver nanoparticles. Eur Arch Otorhinolaryngol 2014; 272:2629-42. [PMID: 25082176 DOI: 10.1007/s00405-014-3213-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 07/23/2014] [Indexed: 12/20/2022]
Abstract
Increased application of silver nanoparticles (AgNPs) has raised concerns on their potential adverse effects on human health. However, the precise toxicological mechanisms are not known in detail. The current study hypothesized that AgNPs induced glycosaminoglycan accumulation in the basement membrane that associated with the up-regulation of its component hyaluronic acid, known as a hydrophilic molecule of binding and retaining water, and caused toxicities in the kidney and cochlea. Rats administered AgNPs through either intravenous or intratympanic injection were observed at different time points after exposure. The concentrations of creatinine and urea in the serum were elevated remarkably, and proteins leaked into the urine were increased. A significant hearing loss over a broad range of frequencies was indicated. AgNP exposure induced glycosaminoglycan accumulation and hyaluronic acid up-regulation in the basement membrane. Abundant apoptotic cell death was demonstrated in the AgNP-exposed organs. Our results suggested that glycosaminoglycan accumulation associated with the up-regulation of hyaluronic acid was involved in the toxicities of kidney and cochlea caused by AgNPs.
Collapse
Affiliation(s)
- Hao Feng
- Hearing and Balance Research Unit, Field of Oto-laryngology, School of Medicine, University of Tampere, Medisiinarinkatu 3, Room C2165, 33520, Tampere, Finland
| | | | | |
Collapse
|
9
|
Calzada AP, Lopez IA, Parrazal LB, Ishiyama A, Ishiyama G. Cochlin expression in vestibular endorgans obtained from patients with Meniere's disease. Cell Tissue Res 2012; 350:373-84. [PMID: 22992960 PMCID: PMC4420027 DOI: 10.1007/s00441-012-1481-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 07/10/2012] [Indexed: 10/27/2022]
Abstract
The distribution of cochlin and its associated basement membrane proteins (collagen IV, collagen II, laminin-β2, and nidogen-1) were evaluated in the vestibular endorgans of subjects with Meniere's disease and compared with normal specimens. Cochlin mRNA expression in vestibular endorgans from Meniere's disease specimens was also investigated. Specimens were obtained from patients who had Meniere's disease and who were undergoing ablative labyrinthectomy. Control specimens were obtained both from autopsy specimens with documented normal audiovestibular function and from patients undergoing labyrinthectomy for acoustic neuroma excision. In the normal control specimens, cochlin immunoreactivity was found evenly distributed in the stroma of the cristae ampullaris and maculae of the utricle. In Meniere's specimens, cochlin immunoreactivity was markedly increased; this was associated with an increase in cochlin mRNA expression as shown by real-time reverse transcription with the polymerase chain reaction. Collagen IV and laminin-β2 immunoreactivity was significantly decreased in Meniere's specimens. Nidogen-1 and collagen II immunoreactivity was unchanged in Meniere's specimens when compared with normal samples. Cochlin upregulation has been implicated in the hereditary audiovestibulopathy, DFNA9. The increased expression of cochlin and decreased expression of collagen IV and laminin in Meniere's disease are suggestive that the overexpression of cochlin contributes to the dysfunctional inner ear homeostasis seen in this disease.
Collapse
Affiliation(s)
- Audrey P. Calzada
- Department of Head and Neck Surgery, Universidad Veracruzana, Veracruz, Mexico
| | - Ivan A Lopez
- Department of Head and Neck Surgery, Universidad Veracruzana, Veracruz, Mexico
| | | | - Akira Ishiyama
- Department of Head and Neck Surgery, Universidad Veracruzana, Veracruz, Mexico
| | - Gail Ishiyama
- Neurology Department, UCLA School of Medicine David Geffen, 10833 Le Conte Avenue Los Angeles, California 90095, USA
| |
Collapse
|
10
|
Missing mitochondrial Mpv17 gene function induces tissue-specific cell-death pathway in the degenerating inner ear. Cell Tissue Res 2012; 347:343-56. [PMID: 22322422 DOI: 10.1007/s00441-012-1326-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 01/11/2012] [Indexed: 12/11/2022]
Abstract
The Mpv17 gene encodes a mitochondrial inner-membrane protein that has been implicated in the metabolism of reactive oxygen species. The loss of function in Mpv17-/- mice leads to early sensorineural deafness associated with severe inner ear degeneration and late onset of kidney failure. The present study demonstrates that the onset of the degeneration of the cochlear neuroepithelia is related to the onset of auditory function and appears to be first restricted to the outer hair cells (OHC), which subsequently undergo rapid degeneration. At the age of 18 days, the OHC lateral membrane degenerates and extensive vacuolization of the cytoplasm is followed by lysis of the OHCs. Such degenerative processes have been seen for the first time in relation to auditory dysfunction. The structural degeneration pattern of the OHC appears to be similar to the described paraptotic processes (an alternative form of programmed cell death) discussed in the literature as a cause of cytoplasmic neurodegeneration. In contrast, the melanocyte-like intermediate cells that are of neural crest origin and that are located in the stria vascularis, undergo apoptosis, as documented ultrastructurally. A lack of Mpv17 protein function in mitochondria thus seems to initiate tissue-specific cell-death pathways resulting in the pathology seen during the degeneration process.
Collapse
|
11
|
Kundu S, Munjal C, Tyagi N, Sen U, Tyagi AC, Tyagi SC. Folic acid improves inner ear vascularization in hyperhomocysteinemic mice. Hear Res 2011; 284:42-51. [PMID: 22222235 DOI: 10.1016/j.heares.2011.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/22/2011] [Accepted: 12/09/2011] [Indexed: 11/18/2022]
Abstract
More than 29 million adults in the United States have been diagnosed with hearing loss. Interestingly, elevated homocysteine (Hcy) levels, known as hyperhomocysteinemia (HHcy), are also associated with impaired hearing. However, the associated mechanism remains obscure. The collagen receptor such as discoidin domain receptor 1 and matrix metalloproteinase (MMP) play a significant role in inner ear structure and function. We hypothesize that HHcy increases hearing thresholds by compromise in inner ear vasculature resulted from impaired Hcy metabolism, increased oxidative stress, collagen IVa and collagen Ia turnover. The treatment with folic acid (FA) protects elevated hearing thresholds and prevents reduction in vessel density by lowering abundant collagen deposition and oxidative stress in inner ear. To test this hypothesis we employed 8 weeks old male wild type (WT), cystathionine-beta-synthase heterozygote knockout (CBS+/-) mice, WT + FA (0.0057 μg/g/day, equivalent to a 400 μg/70 kg/day human dose in drinking water); and CBS(+/-) +FA. The mice were treated for four weeks. The hearing thresholds were determined by recording the auditory brainstem responses. Integrity of vessels was analyzed by perfusion of horseradish peroxidase (HRP) tracer. Endothelial permeability was assessed, which indicated restoration of HRP leakage by FA treatment. A total Hcy level was increased in stria vascularis (SV) and spiral ligament (SL) of CBS+/- mice which was lowered by FA. Interestingly, FA treatment lowered Col IVa Immunostaining by affecting its turnover. The levels of MMP-2, -9, methylenetetrahydrofolate reductase (MTHFR) and cystathione gamma lyase (CSE) were measured by Western blot analysis. The oxidative stress was high in SV and SL of CBS+/- compared to WT however the treatment with FA lowered oxidative stress in CBS+/- mice. These data suggested that hearing loss in CBS+/- mice was primarily due to leakage in inner ear circulation, also partly by induced collagen imbalance, increase in Hcy and oxidative stress in inner ear.
Collapse
MESH Headings
- Adult
- Animals
- Auditory Threshold/drug effects
- Auditory Threshold/physiology
- Cochlea/blood supply
- Cochlea/drug effects
- Cochlea/physiopathology
- Collagen Type IV/genetics
- Collagen Type IV/metabolism
- Cystathionine beta-Synthase/genetics
- Cystathionine beta-Synthase/metabolism
- Ear, Inner/blood supply
- Ear, Inner/drug effects
- Ear, Inner/physiopathology
- Evoked Potentials, Auditory, Brain Stem/drug effects
- Folic Acid/pharmacology
- Hearing Loss/etiology
- Hearing Loss/genetics
- Hearing Loss/physiopathology
- Heterozygote
- Humans
- Hyperhomocysteinemia/complications
- Hyperhomocysteinemia/drug therapy
- Hyperhomocysteinemia/genetics
- Hyperhomocysteinemia/physiopathology
- Male
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/metabolism
- Metabolic Networks and Pathways
- Methylenetetrahydrofolate Reductase (NADPH2)/genetics
- Methylenetetrahydrofolate Reductase (NADPH2)/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Biological
- Oxidative Stress/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Soumi Kundu
- Department of Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Rudbecklaboratoriet C11 PLAN 3, 751 85 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
12
|
Magoulas C, Jasim A, Lopez de Heredia L. Prediction of novel isoforms of the mouse Mpv17l protein. Genome 2010; 52:968-74. [PMID: 19935920 DOI: 10.1139/g09-061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Mpv17l protein has two isoforms, M-LPL and M-LPS, which both regulate the production of reactive oxygen species (ROS) and protect against mitochondrial oxidative stress and apoptosis. M-LPL is ubiquitously expressed, while M-LPS is expressed mostly in the kidney of aged animals. We identified a variety of transcripts of the Mpv17l gene that could encode novel isoforms by mapping expressed sequence tags on the mouse M-LP genomic locus. We analysed the expression and evolutionary conservation of a novel Mpv17l transcript (mpv17l-002) that is predicted to encode a new protein, termed M-LP2. The isoform M-LP2 has the full length of M-LPS plus six amino acids at the end of its amino terminus, which could be encoded by an alternative 5'-flanking sequence. We show that the mRNA of M-LP2 has a different pattern of expression than the mRNA of M-LPS, and sequences of both transcripts are conserved in the rodent genome; however, neither of these isoforms is detected in the human genome. These observations suggest that the functions of certain M-LP isoforms are tissue- and species-specific, implying that their potential involvement in ROS metabolism may be redundant or may be complemented by other members of the Mpv17 family.
Collapse
Affiliation(s)
- Charalambos Magoulas
- Neuroscience Centre, Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary, University of London, 4 Newark Street, Whitechapel, London E1 2AT, United Kingdom.
| | | | | |
Collapse
|
13
|
El-Hattab AW, Li FY, Schmitt E, Zhang S, Craigen WJ, Wong LJC. MPV17-associated hepatocerebral mitochondrial DNA depletion syndrome: new patients and novel mutations. Mol Genet Metab 2010; 99:300-8. [PMID: 20074988 DOI: 10.1016/j.ymgme.2009.10.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 10/07/2009] [Accepted: 10/07/2009] [Indexed: 12/27/2022]
Abstract
Mitochondrial DNA depletion syndromes are autosomal recessive diseases characterized by a severe decrease in mitochondrial DNA content leading to dysfunction of the affected organ. They are phenotypically heterogeneous and classified as myopathic, encephalomyopathic, or hepatocerebral. The latter group has been associated with mutations in TWINKLE,POLG1, DGUOK genes and recently with mutations in the MPV17 gene. MPV17 encodes a mitochondrial inner membrane protein and plays an as yet poorly understood role in mitochondrial DNA maintenance. Mutations in the MPV17 gene have been reported in patients who came to medical attention during infancy with liver failure, hypoglycemia, failure-to-thrive and neurological symptoms. In addition, a homozygous p.R50Q mutation has been identified in patients with Navajo neurohepatopathy. To date, 13 different mutations in 21 patients have been reported. We report eight new patients with seven novel mutations, including four missense mutations (c.262A>G (p.K88E), c.280G>C (p.G94R), c.293C>T (p.P98L), and c.485C>A (p.A162D)), one in-frame deletion (c.271_273del3 (p.L91del)), one splice site substitution (c.186+2T>C), and one insertion (c.22_23insC). The p.R50Q mutation, which occurs in a CpG dinucleotide, is the most common MPV17 mutation and, to date, has only been found in the homozygous state. Clinically, patients homozygous for p.R50Q or compound heterozygous for the p.G94R and p.P98L mutations have a better prognosis, with all the other mutations associated with early death if not treated by liver transplantation. Localizing the mutations within the predicted MPV17 protein structure reveals clustering of mutations in the region of the putative protein kinase C phosphorylation site.
Collapse
Affiliation(s)
- Ayman W El-Hattab
- Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor plaza, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
14
|
Ishiyama A, Mowry SE, Lopez IA, Ishiyama G. Immunohistochemical distribution of basement membrane proteins in the human inner ear from older subjects. Hear Res 2009; 254:1-14. [PMID: 19348877 PMCID: PMC2758085 DOI: 10.1016/j.heares.2009.03.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 03/02/2009] [Accepted: 03/27/2009] [Indexed: 11/27/2022]
Abstract
The immunolocalization of several basement membrane (BM) proteins was investigated in vestibular endorgans microdissected from temporal bones obtained from subjects with a documented normal auditory and vestibular function (n=5, average age=88 years old). Fluorescent immunostaining using antibodies directed at collagen IV alpha 2, nidogen-1, laminin-beta2, alpha-dystroglycan, and tenascin-C was applied to cryosections from human cochlea, cristae ampullares, utricular and saccular maculae. Collagen IV alpha 2, nidogen-1, and laminin-beta2 localized to all subepithelial cochlear BMs, Reissner's membrane, strial and spiral ligamental perineural and perivascular BMs, and the spiral limbus. Tenascin-C localized to the basilar membrane and the osseous spiral lamina. alpha-Dystroglycan localized to most cochlear BMs except those in the spiral ligament, basilar membrane and spiral limbus. Collagen IV, nidogen-1, and laminin-beta2 localized to the subepithelial BMs of the maculae and cristae ampullares, and the perineural and perivascular BMs within the underlying stroma. The BM underlying the transitional and dark cell region of the cristae ampullares also expressed collagen IV, nidogen-1, and laminin-beta2. Tenascin-C localized to the subepithelial BMs of the utricular maculae and cristae ampullares, and to calyx-like profiles throughout the vestibular epithelium, but not to the perineural and perivascular BMs. alpha-Dystroglycan colocalized with aquaporin-4 in the basal vestibular supporting cell, and was also expressed in the subepithelial BMs, as well as perivascular and perineural BMs. This study provides the first comprehensive immunolocalization of these ECM proteins in the human inner ear. The validity of the rodent models for inner ear disorders secondary to BM pathologies was confirmed as there is a high degree of conservation of expression of these proteins in the human inner ear. This information is critical to begin to unravel the role that BMs may play in human inner ear physiology and audiovestibular pathologies.
Collapse
Affiliation(s)
- Akira Ishiyama
- Department of Surgery, Division of Head and Neck, UCLA, Los Angeles, California, USA
| | - Sarah E Mowry
- Department of Surgery, Division of Head and Neck, UCLA, Los Angeles, California, USA
| | - Ivan A Lopez
- Department of Surgery, Division of Head and Neck, UCLA, Los Angeles, California, USA
| | - Gail Ishiyama
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
15
|
Irving-Rodgers HF, Morris S, Collett RA, Peura TT, Davy M, Thompson JG, Mason HD, Rodgers RJ. Phenotypes of the ovarian follicular basal lamina predict developmental competence of oocytes. Hum Reprod 2009; 24:936-44. [PMID: 19095662 PMCID: PMC2656928 DOI: 10.1093/humrep/den447] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 11/11/2008] [Accepted: 11/15/2008] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The ovarian follicular basal lamina underlies the epithelial membrana granulosa and maintains the avascular intra-follicular compartment. Additional layers of basal lamina occur in a number of pathologies, including pili annulati and diabetes. We previously found additional layers of follicular basal lamina in a significant percentage of healthy bovine follicles. We wished to determine if this phenomenon existed in humans, and if it was related to oocyte function in the bovine. METHODS AND RESULTS We examined follicles from human ovaries (n = 18) by electron microscopy and found that many follicles had additional layers of basal lamina. Oocytes (n = 222) from bovine follicles with normal or unusual basal laminas were isolated and their ability to undergo in vitro maturation, fertilization and culture to blastocyst was compared. Healthy bovine follicles with a single layer of basal lamina had oocytes with significantly (P < 0.01) greater developmental competence than healthy follicles with additional layers of follicular basal lamina (65% versus 28%). CONCLUSIONS These findings provide direct evidence that the phenotype of the follicular basal lamina is related to oocyte competence.
Collapse
Affiliation(s)
- Helen F. Irving-Rodgers
- Research Centre for Reproductive Health, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, Australia
| | - Stephanie Morris
- Research Centre for Reproductive Health, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, Australia
| | - Rachael A. Collett
- Research Centre for Reproductive Health, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, Australia
| | - Teija T. Peura
- South Australian Research and Development Institute, Turretfield Research Centre, Rosedale, South Australia 5350, Australia
- Present address: Australian Stem Cell Centre, University of Queensland, Brisbane QLD 4072, Australia
| | - Margaret Davy
- Gynaecological Oncology, Royal Adelaide Hospital, South Australia, Australia
| | - Jeremy G. Thompson
- Research Centre for Reproductive Health, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, Australia
| | - Helen D. Mason
- Basic Medical Sciences and Clinical Developmental Sciences, St. George's, University of London, London SW17 0RE, UK
| | - Raymond J. Rodgers
- Research Centre for Reproductive Health, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, Australia
| |
Collapse
|
16
|
Spinazzola A, Invernizzi F, Carrara F, Lamantea E, Donati A, Dirocco M, Giordano I, Meznaric-Petrusa M, Baruffini E, Ferrero I, Zeviani M. Clinical and molecular features of mitochondrial DNA depletion syndromes. J Inherit Metab Dis 2009; 32:143-58. [PMID: 19125351 DOI: 10.1007/s10545-008-1038-z] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 11/03/2008] [Accepted: 11/06/2008] [Indexed: 10/21/2022]
Abstract
Mitochondrial DNA depletion syndromes (MDSs) form a group of autosomal recessive disorders characterized by profoundly decreased mitochondrial DNA copy numbers in affected tissues. Three main clinical presentations are known: myopathic, encephalomyopathic and hepatocerebral. The first is associated with mutations in thymidine kinase 2 (TK2) and p53-induced ribonucleotide reductase B subunit (RRM2B); the second with mutations in succinate synthase A (SUCLA2) and B (SUCLG1); the third with mutations in Twinkle (PEO1), pol-gammaA (POLG1), deoxyguanosine kinase (DGUOK) and MPV17 (MPV17). In this work, we review the MDS-associated phenotypes and present our own experience of 32 MDS patients, with the aim of defining the mutation frequency of the known genes, the clinical spectrum of the diseases, and the genotype-phenotype correlations. Five of our patients carried previously unreported mutations in one of the eight MDS genes.
Collapse
Affiliation(s)
- A Spinazzola
- Unit of Molecular Neurogenetics, IRCCS Foundation Neurological Institute 'C. Besta', Via Temolo, 4, 20126, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ayçiçek A, Sargin R, Kenar F, Dereköy FS. Can Rh antigens be a risk factor in noise-induced hearing loss? Eur Arch Otorhinolaryngol 2009; 266:363-366. [PMID: 18587592 DOI: 10.1007/s00405-008-0753-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 06/08/2008] [Indexed: 11/27/2022]
Abstract
Noise-induced hearing loss (NIHL) is one of the most common occupational problems and is one of the main causes of deafness. Many factors cause NIHL. Individual susceptibility is one of them. Rhesus (Rh) antigens and ABO blood groups can be factors in determining individual susceptibility. We aim to investigate the relationship between the Rh antigens and NIHL. The study was conducted in 438 factory workers who had been exposed to a noise level more than 85 dB for 8 h a day for a period of >/=15 years. The audiologic results and blood groups were obtained from the individual health records of the factory workers. We determined NIHL in 236 (53.9%) workers. Two hundred and nineteen (55.4%) of Rh-positive workers and seventeen (39.5%) of Rh-negative workers have NIHL, and the difference between the two groups was statistically significant (P < 0.05), whereas no statistically significant difference was determined between the NIHL and ABO blood groups. In conclusion, we suggest that the people with Rh-positive blood group are more prone to develop NIHL.
Collapse
Affiliation(s)
- Abdullah Ayçiçek
- AKU ANS Araştirma Hastanesi, Pembe Hastane, KBB Anabilim Dali, Afyonkarahisar, Turkey.
| | | | | | | |
Collapse
|
18
|
Viscomi C, Spinazzola A, Maggioni M, Fernandez-Vizarra E, Massa V, Pagano C, Vettor R, Mora M, Zeviani M. Early-onset liver mtDNA depletion and late-onset proteinuric nephropathy in Mpv17 knockout mice. Hum Mol Genet 2009; 18:12-26. [PMID: 18818194 PMCID: PMC2644642 DOI: 10.1093/hmg/ddn309] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Accepted: 09/22/2008] [Indexed: 01/24/2023] Open
Abstract
In humans, MPV17 mutations are responsible for severe mitochondrial depletion syndrome, mainly affecting the liver and the nervous system. To gain insight into physiopathology of MPV17-related disease, we investigated an available Mpv17 knockout animal model. We found severe mtDNA depletion in liver and, albeit to a lesser extent, in skeletal muscle, whereas hardly any depletion was detected in brain and kidney, up to 1 year after birth. Mouse embryonic fibroblasts did show mtDNA depletion, but only after several culturing passages, or in a serumless culturing medium. In spite of severe mtDNA depletion, only moderate decrease in respiratory chain enzymatic activities, and mild cytoarchitectural alterations, were observed in the Mpv17(-/-) livers, but neither cirrhosis nor failure ever occurred in this organ at any age. The mtDNA transcription rate was markedly increased in liver, which could contribute to compensate the severe mtDNA depletion. This phenomenon was associated with specific downregulation of Mterf1, a negative modulator of mtDNA transcription. The most relevant clinical features involved skin, inner ear and kidney. The coat of the Mpv17(-/-) mice turned gray early in adulthood, and 18-month or older mice developed focal segmental glomerulosclerosis (FSGS) with massive proteinuria. Concomitant degeneration of cochlear sensory epithelia was reported as well. These symptoms were associated with significantly shorter lifespan. Coincidental with the onset of FSGS, there was hardly any mtDNA left in the glomerular tufts. These results demonstrate that Mpv17 controls mtDNA copy number by a highly tissue- and possibly cytotype-specific mechanism.
Collapse
Affiliation(s)
- Carlo Viscomi
- Unit of Molecular Neurogenetics – Pierfranco and Luisa Mariani Center for the Study of Mitochondrial Disorders in Children
| | - Antonella Spinazzola
- Unit of Molecular Neurogenetics – Pierfranco and Luisa Mariani Center for the Study of Mitochondrial Disorders in Children
| | - Marco Maggioni
- Service of Pathology, San Paolo University Hospital, Milan, Italy
| | - Erika Fernandez-Vizarra
- Unit of Molecular Neurogenetics – Pierfranco and Luisa Mariani Center for the Study of Mitochondrial Disorders in Children
| | - Valeria Massa
- Unit of Molecular Neurogenetics – Pierfranco and Luisa Mariani Center for the Study of Mitochondrial Disorders in Children
| | - Claudio Pagano
- Department of Medical and Surgical Sciences, University of Padova School of Medicine, Padova, Italy
| | - Roberto Vettor
- Department of Medical and Surgical Sciences, University of Padova School of Medicine, Padova, Italy
| | - Marina Mora
- Unit of Neuromuscular Diseases, IRCCS Foundation Neurological Institute ‘C. Besta’, Milan, Italy
| | - Massimo Zeviani
- Unit of Molecular Neurogenetics – Pierfranco and Luisa Mariani Center for the Study of Mitochondrial Disorders in Children
| |
Collapse
|
19
|
Abstract
Discoidin domain receptor 1 (DDR1) is a tyrosine kinase receptor that is activated by native collagen. The physiological functions of DDR1 include matrix homeostasis and cell growth, adhesion, branching, and migration, but the specific role of DDR1 in the development and function of the inner ear has not been analyzed. Here, we show that deletion of the DDR1 gene in mouse is associated with a severe decrease in auditory function and substantial structural alterations in the inner ear. Immunohistochemical analysis demonstrated DDR1 expression in several locations in the cochlea, mostly associated with basement membrane and fibrillar collagens; in particular in basal cells of the stria vascularis, type III fibrocytes, and cells lining the basilar membrane of the organ of Corti. In the stria vascularis, loss of DDR1 function resulted in altered morphology of the basal cells and accumulation of electron-dense matrix within the strial epithelial layer in conjunction with a focal and progressive deterioration of strial cells. Cell types in proximity to the basilar membrane, such as Claudius', inner and outer sulcus cells, also showed marked ultrastructural alterations. Changes in the organ of Corti, such as deterioration of the supporting cells, specifically the outer hair cells, Deiters', Hensen's and bordering cells, are likely to interfere with mechanical properties of the organ and may be responsible for the hearing loss observed in DDR1-null mice. These findings may also have relevance to the role of DDR1 in other disease processes, for example, those affecting the kidney.
Collapse
|
20
|
Taatjes DJ, Zuber C, Roth J. The histochemistry and cell biology vade mecum: a review of 2005–2006. Histochem Cell Biol 2006; 126:743-88. [PMID: 17149649 DOI: 10.1007/s00418-006-0253-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2006] [Indexed: 02/07/2023]
Abstract
The procurement of new knowledge and understanding in the ever expanding discipline of cell biology continues to advance at a breakneck pace. The progress in discerning the physiology of cells and tissues in health and disease has been driven to a large extent by the continued development of new probes and imaging techniques. The recent introduction of semi-conductor quantum dots as stable, specific markers for both fluorescence light microscopy and electron microscopy, as well as a virtual treasure-trove of new fluorescent proteins, has in conjunction with newly introduced spectral imaging systems, opened vistas into the seemingly unlimited possibilities for experimental design. Although it oftentimes proves difficult to predict what the future will hold with respect to advances in disciplines such as cell biology and histochemistry, it is facile to look back on what has already occurred. In this spirit, this review will highlight some advancements made in these areas in the past 2 years.
Collapse
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology, Microscopy Imaging Center, College of Medicine, University of Vermont, Burlington, VT 05405, USA.
| | | | | |
Collapse
|
21
|
Hoshii T, Takeo T, Nakagata N, Takeya M, Araki K, Yamamura KI. LGR4 regulates the postnatal development and integrity of male reproductive tracts in mice. Biol Reprod 2006; 76:303-13. [PMID: 17079737 DOI: 10.1095/biolreprod.106.054619] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The roles of the leucine-rich repeat domain containing G protein-coupled receptor (GPCR) 4 (Lgr4), which is one of the orphan GPCRs, were analyzed with the Lgr4 hypomorphic mutant mouse line (Lgr4(Gt)). This homozygous mutant had only one-tenth the normal transcription level; furthermore, 60% of them survived to adulthood. The homozygous male was infertile, showing morphologic abnormalities in both the testes and the epididymides. In the testes, luminal swelling, loss of germinal epithelium in the seminiferous tubules, and rete testis dilation were observed. Cauda epididymidis sperm were immotile. Rete testis dilation was due to a water reabsorption failure caused by a decreased expression of an estrogen receptor (ESR1) and SLC9A3 in the efferent ducts. Although we found differential regulation of ESR1 expression in the efferent ducts and the epididymis, the role of ESR1 in the epididymis remains unclear. The epididymis contained short and dilated tubules and completely lacked its initial segment. In the caput region, we observed multilamination and distortion of the basement membranes (BMs) with an accumulation of laminin. Rupture of swollen epididymal ducts was observed, leading to an invasion of macrophages into the lumen. Male infertility was probably due to the combination of a developmental defect of the epididymis and the rupture of the epithelium resulting in the immotile spermatozoa. These results indicate that Lgr4 has pivotal roles to play in the regulation of ESR1 expression, the control of duct elongation through BM remodeling, and the regional differentiation of the caput epididymidis.
Collapse
MESH Headings
- Animals
- Animals, Newborn/growth & development
- Animals, Newborn/metabolism
- Animals, Newborn/physiology
- Cell Line
- Down-Regulation
- Epididymis/abnormalities
- Epididymis/growth & development
- Epididymis/metabolism
- Estrogen Receptor alpha/metabolism
- Female
- Genitalia, Male/growth & development
- Genitalia, Male/metabolism
- Homozygote
- Infertility, Male/genetics
- Laminin/metabolism
- Macrophages/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Mutant Strains
- Microscopy, Electron
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Rete Testis/metabolism
- Rete Testis/pathology
- Rete Testis/ultrastructure
- Sodium-Hydrogen Exchanger 3
- Sodium-Hydrogen Exchangers/metabolism
- Sperm Motility
- Survival Analysis
- Testis/abnormalities
Collapse
Affiliation(s)
- Takayuki Hoshii
- Division of Developmental Genetics, Institute of Molecular Embryology and Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Taatjes DJ, Roth J. Recent progress in histochemistry and cell biology: the state of the art 2005. Histochem Cell Biol 2005; 124:547-74. [PMID: 16283358 DOI: 10.1007/s00418-005-0110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2005] [Indexed: 10/25/2022]
Abstract
Advances in the field of histochemistry, a multidisciplinary area including the detection, localization and functional characterization of molecules in single cells and complex tissues, often drives the attainment of new knowledge in the broadly defined discipline of cell biology. These two disciplines, histochemistry and cell biology, have been joined in this journal to facilitate the flow of information with celerity from technical advancement in histochemical procedures, to their utilization in experimental models. This review summarizes advancements in these fields during the past year.
Collapse
Affiliation(s)
- Douglas J Taatjes
- Microscopy Imaging Center, Department of Pathology, College of Medicine, University of Vermont, Burlington, VT 05405, USA.
| | | |
Collapse
|