1
|
Rogers AWL, Radlinski LC, Nguyen H, Tiffany CR, Carvalho TP, Masson HLP, Goodson ML, Bechtold L, Yamazaki K, Liou MJ, Miller BM, Mahan SP, Young BM, Demars AM, Gretler SR, Larabi AB, Lee JY, Bays DJ, Tsolis RM, Bäumler AJ. Salmonella re-engineers the intestinal environment to break colonization resistance in the presence of a compositionally intact microbiota. Cell Host Microbe 2024; 32:1774-1786.e9. [PMID: 39181125 PMCID: PMC11466686 DOI: 10.1016/j.chom.2024.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/29/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024]
Abstract
The gut microbiota prevents harmful microbes from entering the body, a function known as colonization resistance. The enteric pathogen Salmonella enterica serovar (S.) Typhimurium uses its virulence factors to break colonization resistance through unknown mechanisms. Using metabolite profiling and genetic analysis, we show that the initial rise in luminal pathogen abundance was powered by a combination of aerobic respiration and mixed acid fermentation of simple sugars, such as glucose, which resulted in their depletion from the metabolome. The initial rise in the abundance of the pathogen in the feces coincided with a reduction in the cecal concentrations of acetate and butyrate and an increase in epithelial oxygenation. Notably, these changes in the host environment preceded changes in the microbiota composition. We conclude that changes in the host environment can weaken colonization resistance even in the absence of overt compositional changes in the gut microbiota.
Collapse
Affiliation(s)
- Andrew W L Rogers
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Lauren C Radlinski
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Henry Nguyen
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Connor R Tiffany
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Thaynara Parente Carvalho
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Hugo L P Masson
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Michael L Goodson
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Lalita Bechtold
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Kohei Yamazaki
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA; Laboratory of Veterinary Public Health, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Megan J Liou
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Brittany M Miller
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Scott P Mahan
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Briana M Young
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Aurore M Demars
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Sophie R Gretler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Anaïs B Larabi
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jee-Yon Lee
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Derek J Bays
- Department of Internal Medicine, Division of Infectious Diseases, School of Medicine, University of California at Davis, One Shields Avenue, Sacramento, CA 95817, USA
| | - Renee M Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
2
|
Sakamoto DM, Tamura I, Yi B, Hasegawa S, Saito Y, Yamada N, Takakusagi Y, Kubota SI, Kobayashi M, Harada H, Hanaoka K, Taki M, Nangaku M, Tainaka K, Sando S. Whole-Body and Whole-Organ 3D Imaging of Hypoxia Using an Activatable Covalent Fluorescent Probe Compatible with Tissue Clearing. ACS NANO 2024; 18:5167-5179. [PMID: 38301048 DOI: 10.1021/acsnano.3c12716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Elucidation of biological phenomena requires imaging of microenvironments in vivo. Although the seamless visualization of in vivo hypoxia from the level of whole-body to single-cell has great potential to discover unknown phenomena in biological and medical fields, no methodology for achieving it has been established thus far. Here, we report the whole-body and whole-organ imaging of hypoxia, an important microenvironment, at single-cell resolution using activatable covalent fluorescent probes compatible with tissue clearing. We initially focused on overcoming the incompatibility of fluorescent dyes and refractive index matching solutions (RIMSs), which has greatly hindered the development of fluorescent molecular probes in the field of tissue clearing. The fluorescent dyes compatible with RIMS were then incorporated into the development of activatable covalent fluorescent probes for hypoxia. We combined the probes with tissue clearing, achieving comprehensive single-cell-resolution imaging of hypoxia in a whole mouse body and whole organs.
Collapse
Affiliation(s)
- Daichi M Sakamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Iori Tamura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Bo Yi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Sho Hasegawa
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Yutaro Saito
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Naoki Yamada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yoichi Takakusagi
- Quantum Hyperpolarized MRI Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba-city 263-8555, Japan
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba-city 263-8555, Japan
| | - Shimpei I Kubota
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido 060-0815, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kenjiro Hanaoka
- Division of Analytical Chemistry for Drug Discovery, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Masayasu Taki
- Institute of Transformative Bio-Molecules, Nagoya University, Furo, Chikusa, Nagoya 464-8601, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata 951-8585, Japan
- Gftd DeSci, Gftd DAO, Nishikawa Building, 20 Kikuicho, Shinjuku-ku, Tokyo 162-0044, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
3
|
Elucidation of the control mechanism of dynamic tissues using freezing techniques. Anat Sci Int 2022; 97:165-169. [PMID: 35038144 DOI: 10.1007/s12565-022-00648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 01/05/2022] [Indexed: 11/01/2022]
Abstract
The preparation of histological specimens from animals and humans is a multi-step process comprising tissue collection, fixation, and dehydration, followed by paraffin embedding. Each process can be achieved using different methods and substances. For example, dehydration may not be required depending on the substance used for embedding. The freezing technique described in the present study can be used for tissue collection and fixation. Tissues obtained using "in vivo cryotechnique (IVCT)" reflect blood flow and protein localization in body fluids at the time of tissue collection, making it an indispensable method in histological analyses of the future. This study utilized the IVCT to capture histological images of dynamic objects from multiple viewpoints and elucidate the mechanism underlying their movement control at the molecular level.
Collapse
|
4
|
Yoo W, Zieba JK, Foegeding NJ, Torres TP, Shelton CD, Shealy NG, Byndloss AJ, Cevallos SA, Gertz E, Tiffany CR, Thomas JD, Litvak Y, Nguyen H, Olsan EE, Bennett BJ, Rathmell JC, Major AS, Bäumler AJ, Byndloss MX. High-fat diet-induced colonocyte dysfunction escalates microbiota-derived trimethylamine N-oxide. Science 2021; 373:813-818. [PMID: 34385401 PMCID: PMC8506909 DOI: 10.1126/science.aba3683] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/18/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022]
Abstract
A Western-style, high-fat diet promotes cardiovascular disease, in part because it is rich in choline, which is converted to trimethylamine (TMA) by the gut microbiota. However, whether diet-induced changes in intestinal physiology can alter the metabolic capacity of the microbiota remains unknown. Using a mouse model of diet-induced obesity, we show that chronic exposure to a high-fat diet escalates Escherichia coli choline catabolism by altering intestinal epithelial physiology. A high-fat diet impaired the bioenergetics of mitochondria in the colonic epithelium to increase the luminal bioavailability of oxygen and nitrate, thereby intensifying respiration-dependent choline catabolism of E. coli In turn, E. coli choline catabolism increased levels of circulating trimethlamine N-oxide, which is a potentially harmful metabolite generated by gut microbiota.
Collapse
Affiliation(s)
- Woongjae Yoo
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jacob K Zieba
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nora J Foegeding
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Teresa P Torres
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Catherine D Shelton
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nicolas G Shealy
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Austin J Byndloss
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA 95616, USA
| | - Stephanie A Cevallos
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA 95616, USA
| | - Erik Gertz
- Department of Biological Sciences, California State University, Sacramento, CA 95819, USA
- Agriculture Research Service (ARS-USDA), University of California at Davis, Davis, CA 95616, USA
- Department of Nutrition, University of California at Davis, Davis, CA 95616, USA
| | - Connor R Tiffany
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA 95616, USA
| | - Julia D Thomas
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yael Litvak
- Department of Nutrition, University of California at Davis, Davis, CA 95616, USA
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA 95616, USA
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem 9190401, Israel
| | - Henry Nguyen
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA 95616, USA
| | - Erin E Olsan
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA 95616, USA
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA 95616, USA
- Department of Biological Sciences, California State University, Sacramento, CA 95819, USA
| | - Brian J Bennett
- Department of Biological Sciences, California State University, Sacramento, CA 95819, USA
- Agriculture Research Service (ARS-USDA), University of California at Davis, Davis, CA 95616, USA
- Department of Nutrition, University of California at Davis, Davis, CA 95616, USA
| | - Jeffrey C Rathmell
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Amy S Major
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Agriculture Research Service (ARS-USDA), University of California at Davis, Davis, CA 95616, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA 95616, USA.
| | - Mariana X Byndloss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
5
|
5-Aminosalicylic Acid Ameliorates Colitis and Checks Dysbiotic Escherichia coli Expansion by Activating PPAR-γ Signaling in the Intestinal Epithelium. mBio 2021; 12:mBio.03227-20. [PMID: 33468700 PMCID: PMC7845635 DOI: 10.1128/mbio.03227-20] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
An expansion of Enterobacterales in the fecal microbiota is a microbial signature of dysbiosis that is linked to many noncommunicable diseases, including ulcerative colitis. Here, we used Escherichia coli, a representative of the Enterobacterales, to show that its dysbiotic expansion during colitis can be remediated by modulating host epithelial metabolism. 5-Aminosalicylic acid (5-ASA), a peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist, is a widely used first-line medication for the treatment of ulcerative colitis, but its anti-inflammatory mechanism is not fully resolved. Here, we show that 5-ASA ameliorates colitis in dextran sulfate sodium (DSS)-treated mice by activating PPAR-γ signaling in the intestinal epithelium. DSS-induced colitis was associated with a loss of epithelial hypoxia and a respiration-dependent luminal expansion of Escherichia coli, which could be ameliorated by treatment with 5-ASA. However, 5-ASA was no longer able to reduce inflammation, restore epithelial hypoxia, or blunt an expansion of E. coli in DSS-treated mice that lacked Pparg expression specifically in the intestinal epithelium. These data suggest that the anti-inflammatory activity of 5-ASA requires activation of epithelial PPAR-γ signaling, thus pointing to the intestinal epithelium as a potential target for therapeutic intervention in ulcerative colitis.
Collapse
|
6
|
Lee JY, Cevallos SA, Byndloss MX, Tiffany CR, Olsan EE, Butler BP, Young BM, Rogers AWL, Nguyen H, Kim K, Choi SW, Bae E, Lee JH, Min UG, Lee DC, Bäumler AJ. High-Fat Diet and Antibiotics Cooperatively Impair Mitochondrial Bioenergetics to Trigger Dysbiosis that Exacerbates Pre-inflammatory Bowel Disease. Cell Host Microbe 2020; 28:273-284.e6. [PMID: 32668218 DOI: 10.1016/j.chom.2020.06.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/25/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022]
Abstract
The clinical spectra of irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD) intersect to form a scantily defined overlap syndrome, termed pre-IBD. We show that increased Enterobacteriaceae and reduced Clostridia abundance distinguish the fecal microbiota of pre-IBD patients from IBS patients. A history of antibiotics in individuals consuming a high-fat diet was associated with the greatest risk for pre-IBD. Exposing mice to these risk factors resulted in conditions resembling pre-IBD and impaired mitochondrial bioenergetics in the colonic epithelium, which triggered dysbiosis. Restoring mitochondrial bioenergetics in the colonic epithelium with 5-amino salicylic acid, a PPAR-γ (peroxisome proliferator-activated receptor gamma) agonist that stimulates mitochondrial activity, ameliorated pre-IBD symptoms. As with patients, mice with pre-IBD exhibited notable expansions of Enterobacteriaceae that exacerbated low-grade mucosal inflammation, suggesting that remediating dysbiosis can alleviate inflammation. Thus, environmental risk factors cooperate to impair epithelial mitochondrial bioenergetics, thereby triggering microbiota disruptions that exacerbate inflammation and distinguish pre-IBD from IBS.
Collapse
Affiliation(s)
- Jee-Yon Lee
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA; Chaum Life Center, CHA Bundang Medical Center, School of Medicine, CHA University, Seoul 06062, Republic of Korea; Department of Family Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Stephanie A Cevallos
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Mariana X Byndloss
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Connor R Tiffany
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Erin E Olsan
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Brian P Butler
- School of Veterinary Medicine, St. George's University, Grenada, West Indies
| | - Briana M Young
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Andrew W L Rogers
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Henry Nguyen
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Kyongchol Kim
- Chaum Life Center, CHA Bundang Medical Center, School of Medicine, CHA University, Seoul 06062, Republic of Korea
| | - Sang-Woon Choi
- Chaum Life Center, CHA Bundang Medical Center, School of Medicine, CHA University, Seoul 06062, Republic of Korea
| | - Eunsoo Bae
- Chaum Life Center, CHA Bundang Medical Center, School of Medicine, CHA University, Seoul 06062, Republic of Korea
| | - Je Hee Lee
- ChunLab, Inc., Seoul 06725, Republic of Korea
| | - Ui-Gi Min
- ChunLab, Inc., Seoul 06725, Republic of Korea
| | - Duk-Chul Lee
- Department of Family Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|
7
|
High subzero cryofixation: A technique for observing ice within tissues. Cryobiology 2020; 95:116-122. [PMID: 32450134 DOI: 10.1016/j.cryobiol.2020.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 11/22/2022]
Abstract
While various fixation techniques for observing ice within tissues stored at high sub-zero temperatures currently exist, these techniques require either different fixative solution compositions when assessing different storage temperatures or alteration of the sample temperature to enable alcohol-water substitution. Therefore, high-subzero cryofixation (HSC), was developed to facilitate fixation at any temperature above -80 °C without sample temperature alteration. Rat liver sections (1 cm2) were frozen at a rate of -1 °C/min to -20 °C, stored for 1 h at -20 °C, and processed using classical freeze-substitution (FS) or HSC. FS samples were plunged in liquid nitrogen and held for 1 h before transfer to -80 °C methanol. After 1, 3, or 5 days of -80 °C storage, samples were placed in 3% glutaraldehyde on dry ice and allowed to sublimate. HSC samples were stored in HSC fixative at -20 °C for 1, 3, or 5 days prior to transfer to 4 °C. Tissue sections were paraffin embedded, sliced, and stained prior to quantification of ice size. HSC fixative permeation was linear with time and could be mathematically modelled to determine duration of fixation required for a given tissue depth. Ice grain size within the inner regions of 5 d samples was consistent between HSC and FS processing (p = 0.76); however, FS processing resulted in greater ice grains in the outer region of tissue. This differed significantly from HSC outer regions (p = 0.016) and FS inner regions (p = 0.038). No difference in ice size was observed between HSC inner and outer regions (p = 0.42). This work demonstrates that HSC can be utilized to observe ice formed within liver tissue stored at -20 °C. Unlike isothermal freeze fixation and freeze substitution alternatives, the low melting point of the HSC fixative enables its use at a variety of temperatures without alteration of sample temperature or fixative composition.
Collapse
|
8
|
Cevallos SA, Lee JY, Tiffany CR, Byndloss AJ, Johnston L, Byndloss MX, Bäumler AJ. Increased Epithelial Oxygenation Links Colitis to an Expansion of Tumorigenic Bacteria. mBio 2019; 10:e02244-19. [PMID: 31575772 PMCID: PMC6775460 DOI: 10.1128/mbio.02244-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 12/14/2022] Open
Abstract
Intestinal inflammation is a risk factor for colorectal cancer formation, but the underlying mechanisms remain unknown. Here, we investigated whether colitis alters the colonic microbiota to enhance its cancer-inducing activity. Colitis increased epithelial oxygenation in the colon of mice and drove an expansion of Escherichia coli within the gut-associated microbial community through aerobic respiration. An aerobic expansion of colibactin-producing E. coli was required for the cancer-inducing activity of this pathobiont in a mouse model of colitis-associated colorectal cancer formation. We conclude that increased epithelial oxygenation in the colon is associated with an expansion of a prooncogenic driver species, thereby increasing the cancer-inducing activity of the microbiota.IMPORTANCE One of the environmental factors important for colorectal cancer formation is the gut microbiota, but the habitat filters that control its cancer-inducing activity remain unknown. Here, we show that chemically induced colitis elevates epithelial oxygenation in the colon, thereby driving an expansion of colibactin-producing Escherichia coli, a prooncogenic driver species. These data suggest that elevated epithelial oxygenation is a potential risk factor for colorectal cancer formation because the consequent changes in the gut habitat escalate the cancer-inducing activity of the microbiota.
Collapse
Affiliation(s)
- Stephanie A Cevallos
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Jee-Yon Lee
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Connor R Tiffany
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Austin J Byndloss
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Luana Johnston
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Mariana X Byndloss
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| |
Collapse
|
9
|
Byndloss MX, Olsan EE, Rivera-Chávez F, Tiffany CR, Cevallos SA, Lokken KL, Torres TP, Byndloss AJ, Faber F, Gao Y, Litvak Y, Lopez CA, Xu G, Napoli E, Giulivi C, Tsolis RM, Revzin A, Lebrilla CB, Bäumler AJ. Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion. Science 2017; 357:570-575. [PMID: 28798125 DOI: 10.1126/science.aam9949] [Citation(s) in RCA: 795] [Impact Index Per Article: 99.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/22/2017] [Indexed: 12/12/2022]
Abstract
Perturbation of the gut-associated microbial community may underlie many human illnesses, but the mechanisms that maintain homeostasis are poorly understood. We found that the depletion of butyrate-producing microbes by antibiotic treatment reduced epithelial signaling through the intracellular butyrate sensor peroxisome proliferator-activated receptor γ (PPAR-γ). Nitrate levels increased in the colonic lumen because epithelial expression of Nos2, the gene encoding inducible nitric oxide synthase, was elevated in the absence of PPAR-γ signaling. Microbiota-induced PPAR-γ signaling also limits the luminal bioavailability of oxygen by driving the energy metabolism of colonic epithelial cells (colonocytes) toward β-oxidation. Therefore, microbiota-activated PPAR-γ signaling is a homeostatic pathway that prevents a dysbiotic expansion of potentially pathogenic Escherichia and Salmonella by reducing the bioavailability of respiratory electron acceptors to Enterobacteriaceae in the lumen of the colon.
Collapse
Affiliation(s)
- Mariana X Byndloss
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Erin E Olsan
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Fabian Rivera-Chávez
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Connor R Tiffany
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Stephanie A Cevallos
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Kristen L Lokken
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Teresa P Torres
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Austin J Byndloss
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Franziska Faber
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Yandong Gao
- Department of Biomedical Engineering, College of Engineering, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Yael Litvak
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Christopher A Lopez
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Gege Xu
- Department of Chemistry, College of Letters and Sciences, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Renée M Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Alexander Revzin
- Department of Biomedical Engineering, College of Engineering, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Carlito B Lebrilla
- Department of Chemistry, College of Letters and Sciences, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
10
|
Schadde E, Tsatsaris C, Swiderska-Syn M, Breitenstein S, Urner M, Schimmer R, Booy C, Z'graggen BR, Wenger RH, Spahn DR, Hertl M, Knechtle S, Diehl AM, Schläpfer M, Beck-Schimmer B. Hypoxia of the growing liver accelerates regeneration. Surgery 2017; 161:666-679. [PMID: 27436690 DOI: 10.1016/j.surg.2016.05.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND After portal vein ligation of 1 side of the liver, the other side regenerates at a slow rate. This slow growth may be accelerated to rapid growth by adding a transection between the 2 sides, i.e., performing portal vein ligation and parenchymal transection. We found that in patients undergoing portal vein ligation and parenchymal transection, portal vein hyperflow in the regenerating liver causes a significant reduction of arterial flow due to the hepatic arterial buffer response. We postulated that the reduction of arterial flow induces hypoxia in the regenerating liver and used a rat model to assess hypoxia and its impact on kinetic growth. METHODS A rat model of rapid (portal vein ligation and parenchymal transection) and slow regeneration (portal vein ligation) was established. Portal vein flow and pressure data were collected. Liver regeneration was assessed in rats using computed tomography, proliferation with Ki-67, and hypoxia with pimonidazole and HIF-1α staining. RESULTS The rat model confirmed acceleration of regeneration in portal vein ligation and parenchymal transection as well as the portal vein hyperflow seen in patients. Additionally, tissue hypoxia was observed after portal vein ligation and parenchymal transection, while little hypoxia staining was detected after portal vein ligation. To determine if hypoxia is a consequence or an inciting stimulus of rapid liver regeneration, we used a prolyl-hydroxylase blocker to activate hypoxia signaling pathways in the slow model. This clearly accelerated slow to rapid liver regeneration. Inversely, abrogation of hypoxia led to a blunting of rapid growth to slow growth. The topical application of prolyl-hydroxylase inhibitors on livers in rats induced spontaneous areas of regeneration. CONCLUSION This study shows that pharmacologically induced hypoxic signaling accelerates liver regeneration similar to portal vein ligation and parenchymal transection. Hypoxia is likely an accelerator of liver regeneration. Also, prolyl-hydroxylase inhibitors may be used to enhance liver regeneration pharmaceutically.
Collapse
Affiliation(s)
- Erik Schadde
- Institute of Physiology, Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland; Division of Transplant Surgery, Department of Surgery, Rush University Medical Center, Chicago, IL; Department of Surgery, Cantonal Hospital Winterthur, Zürich, Switzerland.
| | - Christopher Tsatsaris
- Institute of Physiology, Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | | | | | - Martin Urner
- Institute of Physiology, Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland; Institute of Anesthesiology, University Hospital Zürich, Zürich, Switzerland
| | - Roman Schimmer
- Institute of Physiology, Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | - Christa Booy
- Institute of Physiology, Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | - Birgit Roth Z'graggen
- Institute of Physiology, Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | - Roland H Wenger
- Institute of Physiology, Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | - Donat R Spahn
- Institute of Anesthesiology, University Hospital Zürich, Zürich, Switzerland
| | - Martin Hertl
- Division of Transplant Surgery, Department of Surgery, Rush University Medical Center, Chicago, IL
| | - Stuart Knechtle
- Division of Transplantation, Department of Surgery, Duke University, Durham, NC
| | - Ann Mae Diehl
- Division of Hepatology, Department of Gastroenterology, Duke University, Durham, NC
| | - Martin Schläpfer
- Institute of Physiology, Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland; Institute of Anesthesiology, University Hospital Zürich, Zürich, Switzerland
| | - Beatrice Beck-Schimmer
- Institute of Physiology, Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland; Institute of Anesthesiology, University Hospital Zürich, Zürich, Switzerland; Department of Anesthesiology, University of Illinois Chicago, Chicago, IL
| |
Collapse
|
11
|
Lopez CA, Miller BM, Rivera-Chávez F, Velazquez EM, Byndloss MX, Chávez-Arroyo A, Lokken KL, Tsolis RM, Winter SE, Bäumler AJ. Virulence factors enhance Citrobacter rodentium expansion through aerobic respiration. Science 2016; 353:1249-53. [PMID: 27634526 PMCID: PMC5127919 DOI: 10.1126/science.aag3042] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/05/2016] [Indexed: 12/20/2022]
Abstract
Citrobacter rodentium uses a type III secretion system (T3SS) to induce colonic crypt hyperplasia in mice, thereby gaining an edge during its competition with the gut microbiota through an unknown mechanism. Here, we show that by triggering colonic crypt hyperplasia, the C. rodentium T3SS induced an excessive expansion of undifferentiated Ki67-positive epithelial cells, which increased oxygenation of the mucosal surface and drove an aerobic C. rodentium expansion in the colon. Treatment of mice with the γ-secretase inhibitor dibenzazepine to diminish Notch-driven colonic crypt hyperplasia curtailed the fitness advantage conferred by aerobic respiration during C. rodentium infection. We conclude that C. rodentium uses its T3SS to induce histopathological lesions that generate an intestinal microenvironment in which growth of the pathogen is fueled by aerobic respiration.
Collapse
Affiliation(s)
- Christopher A Lopez
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Brittany M Miller
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Fabian Rivera-Chávez
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Eric M Velazquez
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Mariana X Byndloss
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Alfredo Chávez-Arroyo
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Kristen L Lokken
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Renée M Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Sebastian E Winter
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA, USA.
| |
Collapse
|
12
|
Ohno S, Saitoh Y, Ohno N, Terada N. Renaissance of morphological studies: the examination of functional structures in living animal organs using the in vivo cryotechnique. Anat Sci Int 2016; 92:55-78. [DOI: 10.1007/s12565-016-0355-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/27/2016] [Indexed: 11/28/2022]
|
13
|
Yoshii A, Kitahara S, Ueta H, Matsuno K, Ezaki T. Role of uterine contraction in regeneration of the murine postpartum endometrium. Biol Reprod 2014; 91:32. [PMID: 24966392 DOI: 10.1095/biolreprod.114.117929] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The endometrium undergoes continuous repair and regeneration without scarring throughout the reproductive life of women. However, the mechanisms responsible for this complete restoration remain mostly unexplored. We hypothesized that the ischemic state and local hypoxia present after parturition may create a special microenvironment for endometrial healing, and that this ischemia might be caused by reduction in organ volume via postpartum uterine contraction. Here, we developed a mouse model using a combination of cesarean section and the administration of a beta 2 adrenergic receptor agonist (ritodrine hydrochloride) in postpartum mice that had been ovariectomized to exclude the effect of ovarian hormones. Our results revealed that transient hypoxia indeed occurred in postpartum uteri. Furthermore, we found that the number of M2 macrophages, which play a central role in wound healing, peaked on Postpartum Day 3 and gradually decreased thereafter in hypoxic injury sites. Almost concurrently, significant upregulation of vascular endothelial growth factor and transforming growth factor beta (TGFbeta) was observed. In particular, the antifibrotic factor TGFbeta3 was released during the endometrial healing process. These changes were significantly suppressed by inhibition of uterine contraction. Taken together, these results suggest that uterine contraction is essential, not only for hemostasis, but also for endometrial regeneration, leading to a process that involves the activation of macrophages, increased endometrial cell proliferation, and upregulation of nonfibrotic growth factors. This study paves the way to a novel approach for investigating the process of scarless wound healing.
Collapse
Affiliation(s)
- Asuka Yoshii
- Department of Anatomy and Developmental Biology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Shuji Kitahara
- Department of Anatomy and Developmental Biology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Hisashi Ueta
- Department of Anatomy (Macro), Dokkyo Medical University, Tochigi, Japan
| | - Kenjiro Matsuno
- Department of Anatomy (Macro), Dokkyo Medical University, Tochigi, Japan
| | - Taichi Ezaki
- Department of Anatomy and Developmental Biology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
14
|
Wang X, Wu D, Yang L, Gan L, Cederbaum AI. Cytochrome P450 2E1 potentiates ethanol induction of hypoxia and HIF-1α in vivo. Free Radic Biol Med 2013; 63:175-86. [PMID: 23669278 PMCID: PMC3729858 DOI: 10.1016/j.freeradbiomed.2013.05.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/03/2013] [Accepted: 05/03/2013] [Indexed: 12/20/2022]
Abstract
Ethanol induces hypoxia and elevates HIF-1α in the liver. CYP2E1 plays a role in the mechanisms by which ethanol generates oxidative stress, fatty liver, and liver injury. This study evaluated whether CYP2E1 contributes to ethanol-induced hypoxia and activation of HIF-1α in vivo and whether HIF-1α protects against or promotes CYP2E1-dependent toxicity in vitro. Wild-type (WT), CYP2E1-knock-in (KI), and CYP2E1 knockout (KO) mice were fed ethanol chronically; pair-fed controls received isocaloric dextrose. Ethanol produced liver injury in the KI mice to a much greater extent than in the WT and KO mice. Protein levels of HIF-1α and downstream targets of HIF-1α activation were elevated in the ethanol-fed KI mice compared to the WT and KO mice. Levels of HIF prolyl hydroxylase 2, which promotes HIF-1α degradation, were decreased in the ethanol-fed KI mice in association with the increases in HIF-1α. Hypoxia occurred in the ethanol-fed CYP2E1 KI mice as shown by an increased area of staining using the hypoxia-specific marker pimonidazole. Hypoxia was lower in the ethanol-fed WT mice and lowest in the ethanol-fed KO mice and all the dextrose-fed mice. In situ double staining showed that pimonidazole and CYP2E1 were colocalized to the same area of injury in the hepatic centrilobule. Increased protein levels of HIF-1α were also found after acute ethanol treatment of KI mice. Treatment of HepG2 E47 cells, which express CYP2E1, with ethanol plus arachidonic acid (AA) or ethanol plus buthionine sulfoximine (BSO), which depletes glutathione, caused loss of cell viability to a greater extent than in HepG2 C34 cells, which do not express CYP2E1. These treatments elevated protein levels of HIF-1α to a greater extent in E47 cells than in C34 cells. 2-Methoxyestradiol, an inhibitor of HIF-1α, blunted the toxic effects of ethanol plus AA and ethanol plus BSO in the E47 cells in association with inhibition of HIF-1α. The HIF-1α inhibitor also blocked the elevated oxidative stress produced by ethanol/AA or ethanol/BSO in the E47 cells. These results suggest that CYP2E1 plays a role in ethanol-induced hypoxia, oxidative stress, and activation of HIF-1α and that HIF-1α contributes to CYP2E1-dependent ethanol-induced toxicity. Blocking HIF-1α activation and actions may have therapeutic implications for protection against ethanol/CYP2E1-induced oxidative stress, steatosis, and liver injury.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Defeng Wu
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Lili Yang
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Lixia Gan
- Department of Biochemistry and Molecular Biology, The Third Military Medical University, Chongqing, 400038, China
- Co-corresponding author,
| | - Arthur I Cederbaum
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| |
Collapse
|
15
|
Criswell KA, Cook JC, Morse D, Lawton M, Somps C, Obert L, Roy M, Sokolowski S, Koza-Taylor P, Colangelo J, Navetta K, Brady J, Pegg D, Wojcinski Z, Rahbari R, Duddy S, Anderson T. Pregabalin Induces Hepatic Hypoxia and Increases EndothelialCell Proliferation in Mice, a Process Inhibited by DietaryVitamin E Supplementation. Toxicol Sci 2012; 128:42-56. [DOI: 10.1093/toxsci/kfs148] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Application of "in vivo cryotechnique" to morphological and immunohistochemical analyses of living mouse subepicardial microcirculation under various pathological conditions. Appl Immunohistochem Mol Morphol 2011; 20:304-17. [PMID: 22024992 DOI: 10.1097/pai.0b013e318225a2a0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
"In vivo cryotechnique" (IVCT), which involves immediately cryofixing cells and tissues of living animals in situ, can display more native morphology in vivo and eliminate artificial changes in conventional preparations. However, the technical characteristics of IVCT are not known for the practical examination of subepicardial microcirculation of beating heart tissue. Histological sections of subepicardial area were prepared using IVCT and conventional fixation methods: quick freezing, immersion fixation, or perfusion fixation followed by alcohol dehydration, respectively from healthy mice. In addition, changes of erythrocyte shape, T-tubule, and microvasculature in mouse heart from a variety of models (acute increase of left ventricular afterload, myocardial ischemia, and cardiac arrest) were examined by IVCT. With IVCT, flowing erythrocytes, blood flow, microvasculature, and myocyte structure could be well preserved without artificial change of erythrocyte shape and translocation of serum proteins as displayed in conventional preparation samples. Furthermore, in various pathological models prepared by IVCT, T-tubules with albumin immuno-positive staining were arranged in a disorderly way and were decreased in volume in samples of acute increase of left ventricular afterload (IVCT-LAA). This was more evident in acute regional myocardial ischemia (IVCT-IC) and less evident in heart arrest (IVCT-HA). In addition, the leakage of serum proteins from microvasculature into myocyte was found only in IVCT-IC but not in IVCT-LAA and in IVCT-HA. In conclusion, IVCT is a new technique for examining morphology of subepicardial microcirculation without artifacts compared with conventional methods and is a more sensitive fixation technique in detecting pathological changes of the heart.
Collapse
|
17
|
Reinke C, Bevans-Fonti S, Drager LF, Shin MK, Polotsky VY. Effects of different acute hypoxic regimens on tissue oxygen profiles and metabolic outcomes. J Appl Physiol (1985) 2011; 111:881-90. [PMID: 21737828 DOI: 10.1152/japplphysiol.00492.2011] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Obstructive sleep apnea (OSA) causes intermittent hypoxia (IH) during sleep. Both obesity and OSA are associated with insulin resistance and systemic inflammation, which may be attributable to tissue hypoxia. We hypothesized that a pattern of hypoxic exposure determines both oxygen profiles in peripheral tissues and systemic metabolic outcomes, and that obesity has a modifying effect. Lean and obese C57BL6 mice were exposed to 12 h of intermittent hypoxia 60 times/h (IH60) [inspired O₂ fraction (Fi(O₂)) 21-5%, 60/h], IH 12 times/h (Fi(O₂) 5% for 15 s, 12/h), sustained hypoxia (SH; Fi(O₂) 10%), or normoxia while fasting. Tissue oxygen partial pressure (Pti(O₂)) in liver, skeletal muscle and epididymal fat, plasma leptin, adiponectin, insulin, blood glucose, and adipose tumor necrosis factor-α (TNF-α) were measured. In lean mice, IH60 caused oxygen swings in the liver, whereas fluctuations of Pti(O₂) were attenuated in muscle and abolished in fat. In obese mice, baseline liver Pti(O₂) was lower than in lean mice, whereas muscle and fat Pti(O₂) did not differ. During IH, Pti(O₂) was similar in obese and lean mice. All hypoxic regimens caused insulin resistance. In lean mice, hypoxia significantly increased leptin, especially during SH (44-fold); IH60, but not SH, induced a 2.5- to 3-fold increase in TNF-α secretion by fat. Obesity was associated with striking increases in leptin and TNF-α, which overwhelmed effects of hypoxia. In conclusion, IH60 led to oxygen fluctuations in liver and muscle and steady hypoxia in fat. IH and SH induced insulin resistance, but inflammation was increased only by IH60 in lean mice. Obesity caused severe inflammation, which was not augmented by acute hypoxic regimens.
Collapse
Affiliation(s)
- Christian Reinke
- Dept. of Internal Medicine, Division of Pulmonary Diseases, Univ. Hospital Giessen and Marburg GmbH, 35043 Marburg, Germany.
| | | | | | | | | |
Collapse
|
18
|
Differential distribution of blood-derived proteins in xenografted human adenocarcinoma tissues by in vivo cryotechnique and cryobiopsy. Med Mol Morphol 2011; 44:93-102. [PMID: 21717312 DOI: 10.1007/s00795-010-0512-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 04/27/2010] [Indexed: 12/11/2022]
Abstract
Tumor behavior depends on the complex tumor interstitium and microenvironment, which influence transport of fluid and soluble molecules from blood vessels. The purpose of this study was to reveal how complex tumor tissues affect the immunodistribution of serum proteins and time-dependent translocation of bovine serum albumin (BSA) from blood vessels, using relatively differentiated human adenocarcinoma produced by the xenografted A549 cell line. Histological architecture and immunodistribution of the serum proteins in adenocarcinomatous tissues were clearly detected by the in vivo cryotechnique and cryobiopsy. Both albumin and IgG1 were detected in blood vessels, connective tissues around the tumor mass, and the interstitium among tumor cell nests. IgM was mainly detected in blood vessels and connective tissues around the tumor mass but was not detected in the interstitium among the tumor cell nests. At 10 or 30 min after BSA injection, BSA was observed only in blood vessels, but 1 h after the injection, it was also detected in the interstitium and surrounding connective tissues of the tumor mass. The present findings showed topographic variation of molecular permeation in the adenocarcinomatous tumor mass. The interstitial tissues with augmented permeability of serum proteins would increase accessibility of tumor cells to blood-derived molecules.
Collapse
|
19
|
Shi L, Terada N, Saitoh Y, Saitoh S, Ohno S. Immunohistochemical distribution of serum proteins in living mouse heart with In vivo cryotechnique. Acta Histochem Cytochem 2011; 44:61-72. [PMID: 21614167 PMCID: PMC3096083 DOI: 10.1267/ahc.11007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 02/17/2011] [Indexed: 12/12/2022] Open
Abstract
In vivo cryotechnique (IVCT), which immediately cryofixes target organs in situ, was used to clarify the morphological features of beating heart tissue of living mice. IVCT was performed for diastolic heart tissue under the condition of monitoring with electrocardiogram (ECG). Other mouse hearts were prepared with conventional perfusion-fixation (PF-DH) or immersion-fixation followed by dehydration (IM-DH), and quick-freezing of resected heart tissues (FQF). Immunolocalizations of albumin, immunoglobulin G1 (IgG1), intravenously injected bovine serum albumin (BSA), and connexin 43 were examined after different intervals of BSA injection. In the case of IVCT, the exact stop time of beating mouse hearts was recorded by ECG, and open blood vessels with flowing erythrocytes were observed with less artificial tissue shrinkage than with conventional preparation methods. Both albumin and BSA were well preserved in intercalated discs and t-tubules of cardiomyocytes in addition to blood vessels and interstitial matrices. IgG1 was immunolocalized in interstitial matrices of heart tissues in addition to their blood vessels. At 4 hr after BSA injection, it was immunolocalized in the intercalated discs of cardiomyocytes and lost later at 8 hr. IVCT should prove to be more useful for the morphofunctional examination of dynamically changing heart tissue than conventional preparation methods.
Collapse
Affiliation(s)
- Liye Shi
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
- Department of Cardiovascular Medicine, The First Hospital of China Medical University
| | - Nobuo Terada
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Yurika Saitoh
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Sei Saitoh
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Shinichi Ohno
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| |
Collapse
|
20
|
Ohno S, Terada N, Ohno N, Saitoh S, Saitoh Y, Fujii Y. Significance of 'in vivo cryotechnique' for morphofunctional analyses of living animal organs. JOURNAL OF ELECTRON MICROSCOPY 2010; 59:395-408. [PMID: 20667816 DOI: 10.1093/jmicro/dfq058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Our final goal of morphological and immunohistochemical studies is that all findings examined in animal experiments should reflect the physiologically functional background. Therefore, the preservation of original components in cells and tissues of animals is necessary for describing the functional morphology of living animal organs. It is generally accepted that morphological findings of various organs were easily modified by stopping their blood supply. There had been a need to develop a new preparation technique for freezing the living animal organs in vivo and then obtaining acceptable morphology and also immunolocalization of original components in functioning cells and tissues. We already developed the 'in vivo cryotechnique' (IVCT) not only for their morphology, but also for immunohistochemistry of many soluble components in various living animal organs. All physiological processes of cells and tissues were immediately immobilized by IVCT, and every component in the cells and tissues was maintained in situ at the time of freezing. Thus, the ischaemic or anoxic effects on them could be minimized by IVCT. Our specially designed cryoknife with liquid cryogen has solved the morphological and immunohistochemical problems which are inevitable with the conventional preparation methods at a light or electron microscopic level. The IVCT will be extremely useful for arresting transient physiological processes and for maintaining any intracellular components in situ, such as rapidly changing signal molecules, membrane channels and receptors.
Collapse
Affiliation(s)
- Shinichi Ohno
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo City, Yamanashi 409-3898, Japan.
| | | | | | | | | | | |
Collapse
|
21
|
Terada N, Ohno N, Saitoh S, Saitoh Y, Ohno S. Immunoreactivity of glutamate in mouse retina inner segment of photoreceptors with in vivo cryotechnique. J Histochem Cytochem 2009; 57:883-8. [PMID: 19471014 DOI: 10.1369/jhc.2009.953851] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to clarify a previously controversial issue concerning glutamate (Glu) immunoreactivity (IR) in the inner segment (IS) of photoreceptors by using in vivo cryotechnique (IVCT) followed by freeze substitution (FS), which enabled us to analyze the cells and tissues reflecting living states. Eyeballs from anesthetized mice were directly frozen using IVCT. The frozen tissues were processed for FS fixation in acetone containing chemical fixatives, and embedded in paraffin. Deparaffinized sections were immunostained with an anti-Glu antibody. The strongest Glu-IR was obtained in the specimens prepared by FS with paraformaldehyde or a low concentration of glutaraldehyde, whereas no Glu-IR was obtained without the chemical fixatives. The Glu was immunolocalized in the IS, outer and inner plexiform and ganglion cell layers. Thus, the immunolocalization of Glu in the IS was clearly demonstrated using IVCT.
Collapse
Affiliation(s)
- Nobuo Terada
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo-city, Yamanashi 409-3898, Japan.
| | | | | | | | | |
Collapse
|
22
|
Immunolocalization of phospho-Arg-directed protein kinase-substrate in hypoxic kidneys using in vivo cryotechnique. Med Mol Morphol 2009; 42:24-31. [DOI: 10.1007/s00795-008-0430-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 11/28/2008] [Indexed: 01/15/2023]
|
23
|
State-of-the-art technologies, current opinions and developments, and novel findings: news from the field of histochemistry and cell biology. Histochem Cell Biol 2008; 130:1205-51. [PMID: 18985372 DOI: 10.1007/s00418-008-0535-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2008] [Indexed: 10/25/2022]
Abstract
Investigations of cell and tissue structure and function using innovative methods and approaches have again yielded numerous exciting findings in recent months and have added important data to current knowledge, inspiring new ideas and hypotheses in various fields of modern life sciences. Topics and contents of comprehensive expert reviews covering different aspects in methodological advances, cell biology, tissue function and morphology, and novel findings reported in original papers are summarized in the present review.
Collapse
|
24
|
Ohno N, Terada N, Bai Y, Saitoh S, Nakazawa T, Nakamura N, Naito I, Fujii Y, Katoh R, Ohno S. Application of cryobiopsy to morphological and immunohistochemical analyses of xenografted human lung cancer tissues and functional blood vessels. Cancer 2008; 113:1068-79. [PMID: 18623380 DOI: 10.1002/cncr.23701] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Assessment of tissue specimens obtained with common immersion-fixation followed by dehydration (IMDH) is affected by artifacts, which hinder precise evaluation of the histology and microenvironment of tumor tissues. The technical characteristics of cryobiopsy and in vivo cryotechnique (IVCT) where target organs are directly cryofixed in vivo are still unknown in practical examinations of tumor histopathology and microenvironment. METHODS Three lines of human lung cancer cells were subcutaneously injected to the dorsal flank of nude mice, and paraffin sections and cryosections of produced tumors were prepared with cryobiopsy, IVCT, the quick-freezing of the fresh resected tumor tissues, or IMDH. Histological comparison among different methods was conducted, and immunolocalization of immunoglobulin M (IgM), intravenously injected bovine serum albumin (BSA), and vascular endothelial growth factor (VEGF) were examined. RESULTS With both the cryobiopsy and IVCT, cellular morphology and open blood vessels with flowing erythrocytes could be observed without artificial shrinkage, and the volume of blood vessels was not affected by a vascular collapse, which was observed after tissue-resection. In addition, with cryobiopsy and IVCT, IgM was well preserved in functional vessels with blood flow, which could be observed with injected BSA, and the volume of IgM-immunopositive blood vessels was significantly associated with the expression of VEGF. CONCLUSIONS Cryobiopsy could be useful for histological examination of human tumors without morphological artifacts associated with IMDH. Furthermore, it allows direct examination of functional blood vessels and related signaling molecules, thereby providing a better evaluation of the human tumor microenvironment for clinical application.
Collapse
Affiliation(s)
- Nobuhiko Ohno
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Terada N, Ohno N, Saitoh S, Ohno S. Application of “in vivo cryotechnique” to detect erythrocyte oxygen saturation in frozen mouse tissues with confocal Raman cryomicroscopy. J Struct Biol 2008; 163:147-54. [DOI: 10.1016/j.jsb.2008.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 04/24/2008] [Accepted: 04/27/2008] [Indexed: 01/19/2023]
|
26
|
Distribution of immunoglobulin-producing cells in immunized mouse spleens revealed with "in vivo cryotechnique". J Immunol Methods 2008; 331:114-26. [PMID: 18201715 DOI: 10.1016/j.jim.2007.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 11/29/2007] [Accepted: 12/03/2007] [Indexed: 01/19/2023]
Abstract
To identify immunoglobulin (Ig)-producing cells with immunohistochemistry, conventional methods of preparation using chemical fixatives have problems such as the artificial diffusion of components and antigen masking. The "diffusion artifact" is caused by the translocation of soluble proteins like Ig from the serum to cytoplasm or vice versa. We have examined the immunolocalization of serum proteins, such as Ig kappa light chain (Igkappa), IgG1 heavy chain (IgG1), and albumin, in immunized mouse spleens after a peritoneal injection of human hemoglobin. Better preservation of morphology and immunoreactivity was obtained with the "in vivo cryotechnique" (IVCT) followed by freeze-substitution, than with conventional preparative methods. Although Ig-producing cells were not clearly detected in red pulp of 2-day-immunized spleens with the conventional methods, Igkappa-immunopositive cells with rich cytoplasm were detected in the red pulp with IVCT, especially in the subcapsular and peritrabecular areas, where IgG1-immunopositive cells were rarely observed. In 7-day-immunized spleens prepared with IVCT, Igkappa- or IgG1-immunopositive cells were mostly located in peritrabeculae. The development of Ig-producing cells was clarified in the specimens prepared with IVCT, which proved to be useful for analyzing the native morphology and distribution of Ig-producing cells.
Collapse
|
27
|
Abstract
The progress in discerning the structure and function of cells and tissues in health and disease has been achieved to a large extent by the continued development of new reagents for histochemistry, the improvement of existing techniques and new imaging techniques. This review will highlight some advancements made in these fields.
Collapse
|