1
|
Pei Y, Wu S, Feng Z. Advances and challenges in lipid droplet isolation from animal tissues and cells. Prostaglandins Other Lipid Mediat 2025; 178:106996. [PMID: 40345429 DOI: 10.1016/j.prostaglandins.2025.106996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/24/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
Lipid droplets (LDs) are essential intracellular organelles involved in lipid storage and metabolism, playing critical roles in various cellular processes and diseases. Researchers require efficiently isolate and analyze LDs to understand lipid metabolism and related pathologies. This review summarizes recent advances in LD isolation methods, including traditional techniques such as centrifugation and density gradient centrifugation, as well as emerging technologies like automated and high-throughput approaches. We explore the applications of these methods in lipid metabolism research and discuss the challenges faced by current isolation techniques. Future directions, including automation, single-cell analysis, and integration with advanced analytical tools, are also highlighted to provide insights for the next generation of LD research.
Collapse
Affiliation(s)
- Yangli Pei
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Animal Science and Technology, Foshan University, Foshan, Guangdong 528231, China.
| | - Siyu Wu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Animal Science and Technology, Foshan University, Foshan, Guangdong 528231, China
| | - Zheng Feng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Animal Science and Technology, Foshan University, Foshan, Guangdong 528231, China
| |
Collapse
|
2
|
Sakagami H, Shiroshima T, Nemoto N, Niimura T, Sugawara T, Hara Y, Saito K, Okubo T, Fukaya M. Disruption of Iqsec1 in mice leads to embryonic lethality with reduced large apical vacuoles in the visceral endoderm. FEBS Lett 2025; 599:581-591. [PMID: 39561249 DOI: 10.1002/1873-3468.15058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/01/2024] [Accepted: 10/24/2024] [Indexed: 11/21/2024]
Abstract
Iqsec1 (IQ motif and Sec7 domain-containing protein 1), also known as BRAG2 (Brefeldin A-resistant Arf-GEF 2), is a guanine nucleotide exchange factor that regulates membrane trafficking, cytoskeletal organization, and signal transduction by activating class II and III ADP-ribosylation factors. To investigate the physiological role of Iqsec1 at the whole animal level, we generated Iqsec1-deficient mice using CRISPR/Cas9-mediated gene editing. Nearly all Iqsec1-/- mice (99%) exhibited embryonic lethality with severe growth retardation. Electron microscopy revealed that Iqsec1-/- embryos at embryonic day 8.5 lacked large apical vacuoles in visceral endoderm cells of the yolk sac, compared with controls. These findings suggest that Iqsec1 plays a critical role in embryogenesis, likely through regulation of membrane trafficking in visceral endoderm cells.
Collapse
Affiliation(s)
- Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| | - Tomoko Shiroshima
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| | - Noriko Nemoto
- Bio-imaging Center, Kitasato University School of Medicine, Sagamihara, Japan
| | - Tomoko Niimura
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| | - Takeyuki Sugawara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yoshinobu Hara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| | - Koji Saito
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| | - Tadashi Okubo
- Department of Laboratory Animal Science, Kitasato University School of Medicine, Sagamihara, Japan
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
3
|
Jung W, Yang MJ, Kang MS, Lim J, Choi H, Lee JA, Yoon KS, Kim JB, Park EJ. Didecyldimethylammonium chloride-induced lung fibrosis may be associated with phospholipidosis. Toxicol Appl Pharmacol 2025; 495:117211. [PMID: 39710153 DOI: 10.1016/j.taap.2024.117211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
In the current study, we dosed didecyldimethylammonium chloride (DDAC) in mice by pharyngeal aspiration for 28 days or 90 days (weekly) and tried to elucidate the relationship between lamellar body formation and the lesions. When exposed for 28 days (0, 5, 10, 50, and 100 μg/head), all the mice in the 50 and 100 μg/head groups died since Day 2 after the third dosing (Day 16 after the first dosing). Edema, necrosis of bronchiolar and alveolar epithelium, and fibrinous exudate were observed in the lungs of all the dead mice, and chronic inflammatory lesions were observed in the lung tissues of alive mice. When dosed with DDAC of 0, 1, 4, and 8 μg/head for 13 weeks, the total number of pulmonary cells and the pulmonary levels of pro- and anti-inflammatory cytokines significantly increased, and chronic inflammatory lesions were detected with the production of collagen, collagen fibers, and lamellar body-like structures. Swelling of the nuclear envelope and nucleoplasmic components and generation of lipid droplets were also notably observed in the lung tissues of DDAC (8 μg/head)-treated mice. Furthermore, transcriptomic analysis performed using human bronchial epithelial cells showed that DDAC affected the expression of DNA damage, ER stress, lipid metabolism, and transcription regulation-related genes at 6 h after treatment, as it did 24 h treatment and that early growth response factor 1 gene was added to a list of the most up-regulated genes. Meanwhile, cytokines that are associated with the pathology of chronic lung diseases (IL-11, IL-24, and TGF-β) were slightly increased in the lung of DDAC-treated mice, and only the pulmonary level of CCL-2, but not CXCL-1 and CCL-3, increased in both sexes of mice. More importantly, the GM-CSF level increased dose-dependently in the lungs of both sexes of mice exposed to DDAC. Considering that the wound-healing process can take several weeks to complete, we suggest that DDAC-induced pulmonary fibrosis may be attributable to disruption of the wound-healing process due to continuous exposure to DDAC. We also hypothesize that the formation of lamellar bodies may be attributable to lysosomal accumulation of phospholipids separated from the destroyed lung tissue membrane.
Collapse
Affiliation(s)
- Wonkyun Jung
- College of Medicine, Graduate School, Kyung Hee University, 02447, Republic of Korea
| | - Mi-Jin Yang
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongup 56212, Republic of Korea
| | - Min-Sung Kang
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongup 56212, Republic of Korea
| | - Jiyun Lim
- College of Medicine, Graduate School, Kyung Hee University, 02447, Republic of Korea
| | - Hyosun Choi
- National Instrumentation Center for Environmental management, Seoul National University
| | - Ji Ae Lee
- College of Medicine, Graduate School, Kyung Hee University, 02447, Republic of Korea
| | - Kyung-Sik Yoon
- College of Medicine, Graduate School, Kyung Hee University, 02447, Republic of Korea; Human Health and Environmental Toxins Research Center, Kyung Hee University, 02447, Republic of Korea
| | - Jin-Bae Kim
- Human Health and Environmental Toxins Research Center, Kyung Hee University, 02447, Republic of Korea; Division of Cardiology, Department of Internal Medicine, Kyung-Hee University Hospital, Kyung Hee University, 02447, Republic of Korea
| | - Eun-Jung Park
- College of Medicine, Graduate School, Kyung Hee University, 02447, Republic of Korea; Human Health and Environmental Toxins Research Center, Kyung Hee University, 02447, Republic of Korea.
| |
Collapse
|
4
|
Yousfan A, Moursel N, Hanano A. Encapsulation of paclitaxel into date palm lipid droplets for enhanced brain cancer therapy. Sci Rep 2024; 14:32057. [PMID: 39738802 PMCID: PMC11685383 DOI: 10.1038/s41598-024-83715-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
Paclitaxel, a powerful anticancer drug, is limited by its poor water solubility and systemic toxicity, which hinder its effectiveness against aggressive brain tumors. This study aims to overcome these challenges by exploring novel intranasal delivery methods using lipid droplets (LDs) derived from date palm seeds (DPLDs) and mouse liver (MLLDs). The anticancer efficacy of PTX was evaluated using a comparative intranasal delivery approach. The lipid droplets were fractionated, and their physicochemical and biochemical properties were assessed. Our results showed that both DPLDs and MLLDs were spherical, with average diameters of 257 ± 36 nm and 416 ± 83 nm, respectively, and contained oil-rich cores of 392.5 and 612.4 mg mL-1. The MLLDs displayed a distinct lipid profile with low triglyceride content and high monoglyceride and diglyceride content. Conversely, the DPLDs primarily consisted of triglycerides, with stable granularity at around 83% and 79% for MLLDs and DPLDs, respectively. Both lipid droplets showed high encapsulation efficiencies, reaching 48.6 ± 3.2% and 45.4 ± 2.4% for MLLDs and DPLDs, respectively, after 4 h of incubation. The bio-distribution kinetics of paclitaxel post-intranasal administration demonstrated lower plasma paclitaxel levels in formulations compared to free paclitaxel. Notably, the accumulation of paclitaxel in the brain was significantly higher for paclitaxel-DPLD at early time points, with 1.527 ± 0.1% ID g-1 and 2.4 ± 0.16% ID g-1 at 5 and 30 min, respectively, compared to paclitaxel-MLLD and free paclitaxel. In Conclusion, the study highlights the potential of intranasal DPLD and MLLD formulations for enhanced brain targeting in brain tumor therapy, offering improved paclitaxel delivery and overcoming solubility and toxicity challenges.
Collapse
Affiliation(s)
- Amal Yousfan
- Department of Pharmaceutics and Pharmaceutical Technology, Pharmacy College, Al Andalus University for Medical Sciences, Tartus, Syria
| | - Nour Moursel
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria.
| |
Collapse
|
5
|
Li Z, Hu T, Li R, Li J, Wang Y, Li Y, Lin Y, Wang Y, Jiani X. Effect of DHCR7 on adipocyte differentiation in goats. Anim Biotechnol 2024; 35:2298399. [PMID: 38157229 DOI: 10.1080/10495398.2023.2298399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Cholesterol is regarded as a signaling molecule in regulating the metabolism and function of fat cells, in which 7-Dehydrocholesterol reductase (DHCR7) is a key enzyme that catalyzes the conversion of 7-dehydrocholesterol to cholesterol, however, the exact function of DHCR7 in goat adipocytes remains unknown. Here, the effect of DHCR7 on the formation of subcutaneous and intramuscular fat in goats was investigated in vitro, and the result indicated that the mRNA level of DHCR7 showed a gradual downward trend in subcutaneous adipogenesis, but an opposite trend in intramuscular adipogenesis. In the process of subcutaneous preadipocytes differentiation, overexpression of DHCR7 inhibited the expression of adipocytes differentiation marker genes (CEBP/α, CEBP/β, SREBP1 and AP2), lipid metabolism-related genes (AGPAT6, FASN, SCD1 and LPL), and the lipid accumulation. However, in intramuscular preadipocyte differentiation, DHCR7 overexpression showed a promoting effect on adipocyte differentiation marker genes (CEBP/α, CEBP/β, PPARγ and SREBP1) and lipid metabolism-related genes (GPAM, AGPAT6, DGAT1 and SCD1) expression, and on lipid accumulation. In summary, our work demonstrated that DHCR7 played an important role in regulating adipogenic differentiation and lipid metabolism in preadipocytes in goats, which is of great significance for uncovering the underlying molecular mechanism of adipocyte differentiation and improving goat meat quality.
Collapse
Affiliation(s)
- Zhibin Li
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Protection and Utilization of Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, China
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tingting Hu
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Protection and Utilization of Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, China
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ruiwen Li
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinlan Li
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Protection and Utilization of Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Youli Wang
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Protection and Utilization of Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, China
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanyan Li
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Protection and Utilization of Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, China
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yaqiu Lin
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Protection and Utilization of Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, China
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yong Wang
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Protection and Utilization of Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, China
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xing Jiani
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Protection and Utilization of Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, China
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
6
|
Lin Y, Chen H, Wang L, Su J, Li J, Huang X. Lipase activated endocytosis-like behavior of oil-in-water emulsion. Nat Commun 2024; 15:8517. [PMID: 39353937 PMCID: PMC11445447 DOI: 10.1038/s41467-024-52802-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
Oil-in-water emulsion is a system with extensive applications in foods, cosmetics and coating industries, and it could also be designed into an artificial lipid droplet in recent works. However, the insights into the biophysical dynamic behaviors of such artificial lipid droplets are lacking. Here, we reveal an enzymatic reaction triggered endocytosis-like behavior in the oil-in-water emulsion lipid droplets. A thermodynamically favored recruitment of lipases onto the membrane of the droplets is demonstrated. We confirm that the hydrolysis of tributyrin by lipases can decrease the interfacial tension and increase the compressive force on the membrane, which are the two main driving forces for triggering the endocytosis-like behavior. The endocytosis-like behavior induced various emerging functionalities of the lipid droplets, including proteins, DNA or inorganic particles being efficiently sequestered into the oil droplet with reversible release as well as enhanced cascade enzymatic reaction. Overall, our studies are expected to open up a way to functionalize oil-in-water emulsions capable of life-inspired behaviors and tackle emerging challenges in bottom-up synthetic biology, revealing the unknown dynamic behaviors of lipid droplets in living organisms.
Collapse
Affiliation(s)
- Youping Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Jiaojiao Su
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Junbo Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
7
|
Yang C, Mu GF, Liang X, Yan Q. Gas-Responsive and Gas-Releasing Polymer Assemblies. Chemphyschem 2024; 25:e202400413. [PMID: 38747673 DOI: 10.1002/cphc.202400413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/13/2024] [Indexed: 06/28/2024]
Abstract
In order to explore the unique physiological roles of gas signaling molecules and gasotransmitters in vivo, chemists have engineered a variety of gas-responsive polymers that can monitor their changes in cellular milieu, and gas-releasing polymers that can orchestrate the release of gases. These have advanced their potential applications in the field of bio-imaging, nanodelivery, and theranostics. Since these polymers are of different chain structures and properties, the morphology of their assemblies will manifest distinct transitions after responding to gas or releasing gas. In this review, we summarize the fundamental design rationale of gas-responsive and gas-releasing polymers in structure and their controlled transition in self-assembled morphology and function, as well as present some perspectives in this prosperous field. Emerging challenges faced for the future research are also discussed.
Collapse
Affiliation(s)
- Cuiqin Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No.220, Handan Rd., Shanghai, 200433, China
| | - Gui-Fang Mu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No.220, Handan Rd., Shanghai, 200433, China
| | - Xin Liang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No.220, Handan Rd., Shanghai, 200433, China
| | - Qiang Yan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No.220, Handan Rd., Shanghai, 200433, China
| |
Collapse
|
8
|
Lee J, Mani A, Shin MJ, Krauss RM. Leveraging altered lipid metabolism in treating B cell malignancies. Prog Lipid Res 2024; 95:101288. [PMID: 38964473 PMCID: PMC11347096 DOI: 10.1016/j.plipres.2024.101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/12/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
B cell malignancies, comprising over 80 heterogeneous blood cancers, pose significant prognostic challenges due to intricate oncogenic signaling. Emerging evidence emphasizes the pivotal role of disrupted lipid metabolism in the development of these malignancies. Variations in lipid species, such as phospholipids, cholesterol, sphingolipids, and fatty acids, are widespread across B cell malignancies, contributing to uncontrolled cell proliferation and survival. Phospholipids play a crucial role in initial signaling cascades leading to B cell activation and malignant transformation through constitutive B cell receptor (BCR) signaling. Dysregulated cholesterol and sphingolipid homeostasis support lipid raft integrity, crucial for propagating oncogenic signals. Sphingolipids impact malignant B cell stemness, proliferation, and survival, while glycosphingolipids in lipid rafts modulate BCR activation. Additionally, cancer cells enhance fatty acid-related processes to meet heightened metabolic demands. In obese individuals, the obesity-derived lipids and adipokines surrounding adipocytes rewire lipid metabolism in malignant B cells, evading cytotoxic therapies. Genetic drivers such as MYC translocations also intrinsically alter lipid metabolism in malignant B cells. In summary, intrinsic and extrinsic factors converge to reprogram lipid metabolism, fostering aggressive phenotypes in B cell malignancies. Therefore, targeting altered lipid metabolism has translational potential for improving risk stratification and clinical management of diverse B cell malignancy subtypes.
Collapse
Affiliation(s)
- Jaewoong Lee
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea; Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea; Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA.
| | - Arya Mani
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University, New Haven, CT 06511, USA; Department of Genetics, Yale University, New Haven, CT 06511, USA
| | - Min-Jeong Shin
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea; Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
| | - Ronald M Krauss
- Department of Pediatrics and Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
9
|
Fu X, Zhang S, Liu P. Co-immunoprecipitation for identifying protein-protein interaction on lipid droplets. BIOPHYSICS REPORTS 2024; 10:102-110. [PMID: 38774355 PMCID: PMC11103721 DOI: 10.52601/bpr.2024.240007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/23/2024] [Indexed: 05/24/2024] Open
Abstract
The lipid droplet (LD) is a conserved organelle that exists in almost all organisms, ranging from bacteria to mammals. Dysfunctions in LDs are linked to a range of human metabolic syndromes. The formation of protein complexes on LDs is crucial for maintaining their function. Investigating how proteins interact on LDs is essential for understanding the role of LDs. We have developed an effective method to uncover protein-protein interactions and protein complexes specifically on LDs. In this method, we conduct co-immunoprecipitation (co-IP) experiments using LD proteins extracted directly from isolated LDs, rather than utilizing proteins from cell lysates. To elaborate, we begin by purifying LDs with high-quality and extracting LD-associated proteins. Subsequently, the co-IP experiment is performed on these LD-associated proteins directly, which would enhance the co-IP experiment specificity of LD-associated proteins. This method enables researchers to directly unveil protein complexes on LDs and gain deeper insights into the functional roles of proteins associated with LDs.
Collapse
Affiliation(s)
- Xiaochuan Fu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyan Zhang
- Institute of Infectious Diseases, Beijing Key Laboratory of Emerging Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Institute of Infectious Diseases, Beijing 100015, China
| | - Pingsheng Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Li P, Mei C, Raza SHA, Cheng G, Ning Y, Zhang L, Zan L. Arginine (315) is required for the PLIN2-CGI-58 interface and plays a functional role in regulating nascent LDs formation in bovine adipocytes. Genomics 2024; 116:110817. [PMID: 38431031 DOI: 10.1016/j.ygeno.2024.110817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/02/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Perilipin-2 (PLIN2) can anchor to lipid droplets (LDs) and play a crucial role in regulating nascent LDs formation. Bimolecular fluorescence complementation (BiFC) and flow cytometry were examined to verify the PLIN2-CGI-58 interaction efficiency in bovine adipocytes. GST-Pulldown assay was used to detect the key site arginine315 function in PLIN2-CGI-58 interaction. Experiments were also examined to research these mutations function of PLIN2 in LDs formation during adipocytes differentiation, LDs were measured after staining by BODIPY, lipogenesis-related genes were also detected. Results showed that Leucine (L371A, L311A) and glycine (G369A, G376A) mutations reduced interaction efficiencies. Serine (S367A) mutations enhanced the interaction efficiency. Arginine (R315A) mutations resulted in loss of fluorescence in the cytoplasm and disrupted the interaction with CGI-58, as verified by pulldown assay. R315W mutations resulted in a significant increase in the number of LDs compared with wild-type (WT) PLIN2 or the R315A mutations. Lipogenesis-related genes were either up- or downregulated when mutated PLIN2 interacted with CGI-58. Arginine315 in PLIN2 is required for the PLIN2-CGI-58 interface and could regulate nascent LD formation and lipogenesis. This study is the first to study amino acids on the PLIN2 interface during interaction with CGI-58 in bovine and highlight the role played by PLIN2 in the regulation of bovine adipocyte lipogenesis.
Collapse
Affiliation(s)
- Peiwei Li
- Shaanxi Institute of Zoology, Xi'an, Shaanxi, 710032, China
| | - Chugang Mei
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sayed Haidar Abbas Raza
- Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China; College of Animal Science &Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gong Cheng
- College of Animal Science &Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yue Ning
- College of Animal Science &Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Le Zhang
- School of Physical Education, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Linsen Zan
- College of Animal Science &Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
11
|
Makiyama T, Obama T, Watanabe Y, Chatani M, Azetsu Y, Kawaguchi K, Imanaka T, Itabe H. Behavior of intracellular lipid droplets during cell division in HuH7 hepatoma cells. Exp Cell Res 2023; 433:113855. [PMID: 37995922 DOI: 10.1016/j.yexcr.2023.113855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Intracellular lipid droplets (LDs) are ubiquitous organelles found in many cell types. During mitosis, membranous organelles, including mitochondria, are divided into small pieces and transferred to daughter cells; however, the process of LD transfer to daughter cells is not fully elucidated. Herein, we investigated the behavior of LDs during mitosis in HuH7 human hepatoma cells. While fragments of the Golgi apparatus were scattered in the cytosol during mitosis, intracellular LDs retained their size and spherical morphology as they translocated to the two daughter cells. LDs were initially distributed throughout the cell during prophase but positioned outside the spindle in metaphase, aligning at the far sides of the centrioles. A similar distribution of LDs during mitosis was observed in another hepatocarcinoma HepG2 cells. When the spindle was disrupted by nocodazole treatment or never in mitosis gene A-related kinase 2A knockdown, LDs were localized in the area outside the chromosomes, suggesting that spindle formation is not necessary for LD localization at metaphase. The amount of major LD protein perilipin 2 reduced while LDs were enriched in perilipin 3 during mitosis, indicating the potential alteration of LD protein composition. Conclusively, the behavior of LDs during mitosis is distinct from that of other organelles in hepatocytes.
Collapse
Affiliation(s)
- Tomohiko Makiyama
- Department of Biological Chemistry, Showa University Graduate School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan.
| | - Takashi Obama
- Department of Biological Chemistry, Showa University Graduate School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Yuichi Watanabe
- Department of Biological Chemistry, Showa University Graduate School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Masahiro Chatani
- Department of Pharmacology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Yuki Azetsu
- Department of Pharmacology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Kosuke Kawaguchi
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Tsuneo Imanaka
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan; Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshinkai, Kure City, Hiroshima, 737-0112, Japan
| | - Hiroyuki Itabe
- Department of Biological Chemistry, Showa University Graduate School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| |
Collapse
|
12
|
Cao Z, Zhang Q, Zhou Z, Xu S, Pan B, Zhang S, Zhang G, Zhi Z, Shi Y, Cui L, Liu P. Construction and application of artificial lipoproteins using adiposomes. J Lipid Res 2023; 64:100436. [PMID: 37648212 PMCID: PMC10518588 DOI: 10.1016/j.jlr.2023.100436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Lipoproteins are complex particles comprised of a neutral lipid core wrapped with a phospholipid monolayer membrane and apolipoproteins on the membrane, which is closely associated with metabolic diseases. To facilitate the elucidation of its formation and dynamics, as well as its applications, we developed an in vitro system in which adiposomes, consisting of a hydrophobic core encircled by a monolayer-phospholipid membrane, were engineered into artificial lipoproteins (ALPs) by recruiting one or more kinds of apolipoproteins, for example, apolipoprotein (Apo) A-I, ApoE, ApoA-IV, and ApoB. In vitro and in vivo studies demonstrated the stability and biological activity of ALPs derived from adiposomes, which resembles native lipoproteins. Of note, adiposomes bearing ApoE were internalized via clathrin-mediated endocytosis following LDLR binding and were delivered to lysosomes. On the other hand, adiposomes bearing ApoA-IV mimicked the existing form of endogenous ApoA-IV and exhibited significant improvement in glucose tolerance in mice. In addition, the construction process was simple, precise, reproducible, as well as easy to adjust for mass production. With this experimental system, different apolipoproteins can be recruited to build ALPs for some biological goals and potential applications in biomedicine.
Collapse
Affiliation(s)
- Zhen Cao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qi Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ziyun Zhou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shimeng Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Bin Pan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shuyan Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China; Beijing Institute of Infectious Diseases, Beijing, China; National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
| | - Gaoxin Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Zelun Zhi
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yumeng Shi
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Liujuan Cui
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Pingsheng Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
13
|
Jin Y, Tan Y, Wu J, Ren Z. Lipid droplets: a cellular organelle vital in cancer cells. Cell Death Discov 2023; 9:254. [PMID: 37474495 PMCID: PMC10359296 DOI: 10.1038/s41420-023-01493-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/24/2023] [Accepted: 06/16/2023] [Indexed: 07/22/2023] Open
Abstract
Lipid droplets (LDs) are cellular organelles comprising a core of neutral lipids (glycerides, sterols) encased within a single phospholipid membrane, responsible for storing surplus lipids and furnishing cellular energy. LDs engage in lipid synthesis, catabolism, and transport processes by interacting with other organelles (e.g., endoplasmic reticulum, mitochondria), and they play critical roles in regulating cellular stress and immunity. Recent research has uncovered that an elevated number of LDs is a hallmark of cancer cells, attributable to their enhanced lipid uptake and synthesis capacity, with lipids stored as LDs. Depletion of LDs in cancer cells induces apoptosis, prompting the emergence of small molecule antitumor drugs targeting LDs or key factors (e.g., FASN, SCD1) within the lipid synthesis pathway. Advancements in LD isolation and artificial synthesis have demonstrated their potential applicability in antitumor research. LDs extracted from murine adipose tissue and incubated with lipophilic antitumor drugs yield drug-coated LDs, which promote apoptosis in cancer cells. Furthermore, LDs have been employed as biological lenses to augment the resolution of subcellular structures (microfilaments, microtubules), facilitating the observation of intricate structures within thicker cells, including cancer cells. This review delineates the functional and metabolic mechanisms of LDs in cancer cells and encapsulates recent progress in LD-centered antitumor research, offering novel insights for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Yi Jin
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China
| | - Yanjie Tan
- Institute of Biomedical Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, P. R. China
| | - Jian Wu
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China.
- Hubei Hongshan Laboratory, Wuhan, P. R. China.
| |
Collapse
|
14
|
Sun Y, Heng J, Liu F, Zhang S, Liu P. Isolation and proteomic study of fish liver lipid droplets. BIOPHYSICS REPORTS 2023; 9:120-133. [PMID: 38028150 PMCID: PMC10648235 DOI: 10.52601/bpr.2023.230004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/02/2023] [Indexed: 12/01/2023] Open
Abstract
Lipid droplets (LDs) are a neutral lipid storage organelle that is conserved in almost all species. Excessive storage of neutral lipids in LDs is directly associated with many metabolic syndromes. Zebrafish is a better model animal for the study of LD biology due to its transparent embryonic stage compared to other organisms. However, the study of LDs in fish has been difficult due to the lack of specific LD marker proteins and the limitation of purification technology. In this paper, the purification and proteomic analysis of liver LDs of fish including zebrafish and Carassius auratus were performed for the first time. 259 and 267 proteins were identified respectively. Besides most of the identified proteins were reported in previous LD proteomes of mammals, indicating the similarity between mammal and fish LDs. We also identified many unique proteins of liver LDs in fish that are involved in the regulation of LD dynamics. Through morphological and biochemical analysis, we found that the marker protein Plin2 of zebrafish LD was located on LDs in Huh7 cells. These results will facilitate further study of LDs in fish and liver metabolic diseases using fish as a model animal.
Collapse
Affiliation(s)
- Yuwei Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Heng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyan Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Pingsheng Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Wang Y, Zeng F, Zhao Z, He L, He X, Pang H, Huang F, Chang P. Transmembrane Protein 68 Functions as an MGAT and DGAT Enzyme for Triacylglycerol Biosynthesis. Int J Mol Sci 2023; 24:ijms24032012. [PMID: 36768334 PMCID: PMC9916437 DOI: 10.3390/ijms24032012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Triacylglycerol (TG) biosynthesis is an important metabolic process for intracellular storage of surplus energy, intestinal dietary fat absorption, attenuation of lipotoxicity, lipid transportation, lactation and signal transduction in mammals. Transmembrane protein 68 (TMEM68) is an endoplasmic reticulum (ER)-anchored acyltransferase family member of unknown function. In the current study we show that overexpression of TMEM68 promotes TG accumulation and lipid droplet (LD) formation in a conserved active sites-dependent manner. Quantitative targeted lipidomic analysis showed that diacylglycerol (DG), free fatty acid (FFA) and TG levels were increased by TMEM68 expression. In addition, TMEM68 overexpression affected the levels of several glycerophospholipids, such as phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol, as well as sterol ester contents. TMEM68 exhibited monoacylglycerol acyltransferase (MGAT) and diacylglycerol acyltransferase (DGAT) activities dependent on the conserved active sites in an in vitro assay. The expression of lipogenesis genes, including DGATs, fatty acid synthesis-related genes and peroxisome proliferator-activated receptor γ was upregulated in TMEM68-overexpressing cells. These results together demonstrate for the first time that TMEM68 functions as an acyltransferase and affects lipogenic gene expression, glycerolipid metabolism and TG storage in mammalian cells.
Collapse
|
16
|
Tsuzuki S. A point of view on human fat olfaction - do fatty derivatives serve as cues for awareness of dietary fats? Biomed Res 2023; 44:127-146. [PMID: 37544735 DOI: 10.2220/biomedres.44.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Fat (triglycerides) consumption is critical for the survival of animals, including humans. Being able to smell fat can be advantageous in judging food value. However, fat has poor volatility; thus, olfaction of fat seems impossible. What about fatty acids that comprise fat? Humans smell and discriminate medium-chain fatty acids. However, no conclusive evidence has been provided for the olfactory sense of long-chain fatty acids, including essential acids such as linoleic acid (LA). Instead, humans likely perceive the presence of essential fatty acids through the olfaction of volatile compounds generated by their oxidative breakdown (e.g., hexanal and γ-decalactone). For some people, such scents are pleasing, especially when they come from fruit. Nonetheless, it remains unclear whether the olfaction of these volatiles leads to the recognition of fat per se. Nowadays, people often smell LA-borne aldehydes such as E,E-2,4-decadienal that occur appreciably, for example, from edible oils during deep frying, and are pronely captivated by their characteristic "fatty" note, which can be considered a "pseudo-perception" of fat. However, our preference for such LA-borne aldehyde odors may be a potential cause behind the modern overdose of n-6 fatty acids. This review aims to provide a view of whether and, if any, how we olfactorily perceive dietary fats and raises future purposes related to human fat olfaction, such as investigating sub-olfactory systems for detecting long-chain fatty acids.
Collapse
Affiliation(s)
- Satoshi Tsuzuki
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
17
|
Zhang E. Hepatic PLIN5 Deficiency Impairs Lipogenesis through Mitochondrial Dysfunction. Int J Mol Sci 2022; 23:15598. [PMID: 36555245 PMCID: PMC9779494 DOI: 10.3390/ijms232415598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Regulation of lipid droplets (LDs) metabolism is the core of controlling intracellular fatty acids (FAs) fluxes, and perilipin 5 (PLIN5) plays a key role in this process. Our previous studies have found that hepatic PLIN5 deficiency reduces LDs accumulation, but the trafficking of FAs produced from this pathway and the interaction between mitochondria and LDs in this process are largely unknown. Here, we found that the deficiency of PLIN5 decreases LDs accumulation by increasing FAs efflux. In addition, the decreased lipogenesis of PLIN5-deficient hepatocytes is accompanied by mitochondrial dysfunction, suggesting that PLIN5 plays an important role in mediating the interaction between LDs and mitochondria. Importantly, PLIN5 ablation negates oxidative capacity differences of peri-droplet and cytosolic mitochondria. In summary, these data indicate that PLIN5 plays a vital role in maintaining mitochondrial-mediated lipogenesis, which provides an important new perspective on the regulation of liver lipid storage and the relationship between PLIN5 and mitochondria.
Collapse
Affiliation(s)
- Enxiang Zhang
- Key Laboratory of Growth Regulation and Transformation Research of Zhejiang Province, School of Life Sciences, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, China;
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
18
|
Schwehr BJ, Hartnell D, Massi M, Hackett MJ. Luminescent Metal Complexes as Emerging Tools for Lipid Imaging. Top Curr Chem (Cham) 2022; 380:46. [PMID: 35976575 PMCID: PMC9385838 DOI: 10.1007/s41061-022-00400-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/20/2022] [Indexed: 12/01/2022]
Abstract
Fluorescence microscopy is a key tool in the biological sciences, which finds use as a routine laboratory technique (e.g., epifluorescence microscope) or more advanced confocal, two-photon, and super-resolution applications. Through continued developments in microscopy, and other analytical methods, the importance of lipids as constituents of subcellular organelles, signalling or regulating molecules continues to emerge. The increasing recognition of the importance of lipids to fundamental cell biology (in health and disease) has prompted the development of protocols and techniques to image the distribution of lipids in cells and tissues. A diverse suite of spectroscopic and microscopy tools are continuously being developed and explored to add to the "toolbox" to study lipid biology. A relatively recent breakthrough in this field has been the development and subsequent application of metal-based luminescent complexes for imaging lipids in biological systems. These metal-based compounds appear to offer advantages with respect to their tunability of the photophysical properties, in addition to capabilities centred around selectively targeting specific lipid structures or classes of lipids. The presence of the metal centre also opens the path to alternative imaging modalities that might not be applicable to traditional organic fluorophores. This review examines the current progress and developments in metal-based luminescent complexes to study lipids, in addition to exploring potential new avenues and challenges for the field to take.
Collapse
Affiliation(s)
- Bradley J Schwehr
- School of Molecular and Life Sciences, Curtin University, Perth, WA, 6845, Australia
| | - David Hartnell
- School of Molecular and Life Sciences, Curtin University, Perth, WA, 6845, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6845, Australia
| | - Massimiliano Massi
- School of Molecular and Life Sciences, Curtin University, Perth, WA, 6845, Australia.
| | - Mark J Hackett
- School of Molecular and Life Sciences, Curtin University, Perth, WA, 6845, Australia. .,Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6845, Australia.
| |
Collapse
|
19
|
Chen J, Li S, Ma D, Li L, Zhuang W, Chen M. A lipid droplet-specific fluorescence probe for atherosclerotic plaque imaging. Analyst 2022; 147:3081-3086. [PMID: 35678714 DOI: 10.1039/d1an01937f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The dysregulation of lipid droplets (LDs) is closely related to certain metabolic diseases, while the role of LDs during pathological processes remains mysterious. It would be of great value to monitor the dynamic changes of LDs in a visible way so as to study their biological functions. In this study, we report a LD-specific fluorescence probe TBI for precise LD-targeting imaging in cells and atherosclerotic tissues. TBI exhibited great biocompatibility, remarkable oil-enhanced fluorescence emission, good photostability and impressive intracellular and tissular LD-specific imaging performance. Importantly, TBI could efficiently stain the LDs at a low concentration of 50 nM, and the motion tracking of LDs could be observed via fluorescence imaging. Moreover, TBI could efficiently light up the LD distribution in mouse atherosclerotic plaques with high resolution, which revealed the ultra-structure of atherosclerotic plaques. In conclusion, these results imply that TBI could be a potential tool for investigating the physiological and pathological role of LDs.
Collapse
Affiliation(s)
- Jingruo Chen
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, PR China.
| | - Shufen Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, PR China.
| | - Di Ma
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Lilan Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, PR China.
| | - Weihua Zhuang
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, PR China.
| | - Mao Chen
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, PR China. .,Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.,Department of Cardiology, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, PR China
| |
Collapse
|
20
|
Sar1 Affects the Localization of Perilipin 2 to Lipid Droplets. Int J Mol Sci 2022; 23:ijms23126366. [PMID: 35742827 PMCID: PMC9223735 DOI: 10.3390/ijms23126366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 02/05/2023] Open
Abstract
Lipid droplets (LDs) are intracellular organelles that are ubiquitous in many types of cells. The LD core consists of triacylglycerols (TGs) surrounded by a phospholipid monolayer and surface proteins such as perilipin 2 (PLIN2). Although TGs accumulate in the phospholipid bilayer of the endoplasmic reticulum (ER) and subsequently nascent LDs buds from ER, the mechanism by which LD proteins are transported to LD particles is not fully understood. Sar1 is a GTPase known as a regulator of coat protein complex Ⅱ (COPⅡ) vesicle budding, and its role in LD formation was investigated in this study. HuH7 human hepatoma cells were infected with adenoviral particles containing genes coding GFP fused with wild-type Sar1 (Sar1 WT) or a GTPase mutant form (Sar1 H79G). When HuH7 cells were treated with oleic acid, Sar1 WT formed a ring-like structure around the LDs. The transient expression of Sar1 did not significantly alter the levels of TG and PLIN2 in the cells. However, the localization of PLIN2 to the LDs decreased in the cells expressing Sar1 H79G. Furthermore, the effects of Sar1 on PLIN2 localization to the LDs were verified by the suppression of endogenous Sar1 using the short hairpin RNA technique. In conclusion, it was found that Sar1 has some roles in the intracellular distribution of PLIN2 to LDs in liver cells.
Collapse
|
21
|
Park H, Lee D, Kim JE, Park S, Park JH, Ha CW, Baek M, Yoon SH, Park KH, Lee P, Hahn JS. Efficient production of retinol in Yarrowia lipolytica by increasing stability using antioxidant and detergent extraction. Metab Eng 2022; 73:26-37. [PMID: 35671979 DOI: 10.1016/j.ymben.2022.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022]
Abstract
The demand for bio-based retinol (vitamin A) is currently increasing, however its instability represents a major bottleneck in microbial production. Here, we developed an efficient method to selectively produce retinol in Yarrowia lipolytica. The β-carotene 15,15'-dioxygenase (BCO) cleaves β-carotene into retinal, which is reduced to retinol by retinol dehydrogenase (RDH). Therefore, to produce retinol, we first generated β-carotene-producing strain based on a high-lipid-producer via overexpressing genes including heterologous β-carotene biosynthetic genes, GGS1F43I mutant of endogenous geranylgeranyl pyrophosphate synthase isolated by directed evolution, and FAD1 encoding flavin adenine dinucleotide synthetase, while deleting several genes previously known to be beneficial for carotenoid production. To produce retinol, 11 copies of BCO gene from marine bacterium 66A03 (Mb.Blh) were integrated into the rDNA sites of the β-carotene overproducer. The resulting strain produced more retinol than retinal, suggesting strong endogenous promiscuous RDH activity in Y. lipolytica. The introduction of Mb.BCO led to a considerable reduction in β-carotene level, but less than 5% of the consumed β-carotene could be detected in the form of retinal or retinol, implying severe degradation of the produced retinoids. However, addition of the antioxidant butylated hydroxytoluene (BHT) led to a >20-fold increase in retinol production, suggesting oxidative damage is the main cause of intracellular retinol degradation. Overexpression of GSH2 encoding glutathione synthetase further improved retinol production. Raman imaging revealed co-localization of retinol with lipid droplets, and extraction of retinol using Tween 80 was effective in improving retinol production. By combining BHT treatment and extraction using Tween 80, the final strain CJ2104 produced 4.86 g/L retinol and 0.26 g/L retinal in fed-batch fermentation in a 5-L bioreactor, which is the highest retinol production titer ever reported. This study demonstrates that Y. lipolytica is a suitable host for the industrial production of bio-based retinol.
Collapse
Affiliation(s)
- Hyemin Park
- Bio Research Institutes, CJ CheilJedang, Suwon, 16495, South Korea
| | - Dongpil Lee
- Bio Research Institutes, CJ CheilJedang, Suwon, 16495, South Korea
| | - Jae-Eung Kim
- Bio Research Institutes, CJ CheilJedang, Suwon, 16495, South Korea
| | - Seonmi Park
- Bio Research Institutes, CJ CheilJedang, Suwon, 16495, South Korea
| | - Joo Hyun Park
- Bio Research Institutes, CJ CheilJedang, Suwon, 16495, South Korea
| | - Cheol Woong Ha
- Bio Research Institutes, CJ CheilJedang, Suwon, 16495, South Korea
| | - Minji Baek
- Bio Research Institutes, CJ CheilJedang, Suwon, 16495, South Korea
| | - Seok-Hwan Yoon
- Bio Research Institutes, CJ CheilJedang, Suwon, 16495, South Korea
| | - Kwang Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Peter Lee
- Bio Research Institutes, CJ CheilJedang, Suwon, 16495, South Korea.
| | - Ji-Sook Hahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
22
|
Jurgutis D, Jarockyte G, Poderys V, Dodonova-Vaitkuniene J, Tumkevicius S, Vysniauskas A, Rotomskis R, Karabanovas V. Exploring BODIPY-Based Sensor for Imaging of Intracellular Microviscosity in Human Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms23105687. [PMID: 35628497 PMCID: PMC9143602 DOI: 10.3390/ijms23105687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
BODIPY-based molecular rotors are highly attractive imaging tools for imaging intracellular microviscosity in living cells. In our study, we investigated the ability to detect the microviscosity of biological objects by using BDP-NO2 and BDP-H molecular rotors. We describe in detail the optical properties of BDP-NO2 and BDP-H molecular rotors in aqueous media with and without proteins, together with their accumulation dynamics and localization in live and fixed human breast cancer cells. Furthermore, we investigate the applicability of these molecules to monitor microviscosity in the organelles of human breast cancer cells by fluorescence lifetime imaging microscopy (FLIM). We demonstrate that the BDP-NO2 molecular rotor aggregates in aqueous media and is incompatible with live cell imaging. The opposite effect is observed with BDP-H which preserves its stability in aqueous media, diffuses through the plasma membrane and accumulates in lipid droplets (LDs) and the cytosol of both live and fixed MCF-7 and MDA-MB-231 cancer cells. Finally, by utilizing BDP-H we demonstrate that LD microviscosity is significantly elevated in more malignant MDA-MB-231 human breast cancer cells, as compared to MCF-7 breast cancer cells. Our findings demonstrate that BDP-H is a water-compatible probe that can be successfully applied to measure microviscosity in the LDs of living cells.
Collapse
Affiliation(s)
- Dziugas Jurgutis
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio St. 3b, 08406 Vilnius, Lithuania; (D.J.); (G.J.); (V.P.); (R.R.)
- State Research Institute Center for Physical Sciences and Technology, Sauletekio Ave. 3, 10257 Vilnius, Lithuania;
| | - Greta Jarockyte
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio St. 3b, 08406 Vilnius, Lithuania; (D.J.); (G.J.); (V.P.); (R.R.)
| | - Vilius Poderys
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio St. 3b, 08406 Vilnius, Lithuania; (D.J.); (G.J.); (V.P.); (R.R.)
| | - Jelena Dodonova-Vaitkuniene
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko St. 24, 03225 Vilnius, Lithuania; (J.D.-V.); (S.T.)
| | - Sigitas Tumkevicius
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko St. 24, 03225 Vilnius, Lithuania; (J.D.-V.); (S.T.)
| | - Aurimas Vysniauskas
- State Research Institute Center for Physical Sciences and Technology, Sauletekio Ave. 3, 10257 Vilnius, Lithuania;
| | - Ricardas Rotomskis
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio St. 3b, 08406 Vilnius, Lithuania; (D.J.); (G.J.); (V.P.); (R.R.)
| | - Vitalijus Karabanovas
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio St. 3b, 08406 Vilnius, Lithuania; (D.J.); (G.J.); (V.P.); (R.R.)
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekio Ave. 11, 10223 Vilnius, Lithuania
- Correspondence:
| |
Collapse
|
23
|
Pressly JD, Gurumani MZ, Varona Santos JT, Fornoni A, Merscher S, Al-Ali H. Adaptive and maladaptive roles of lipid droplets in health and disease. Am J Physiol Cell Physiol 2022; 322:C468-C481. [PMID: 35108119 PMCID: PMC8917915 DOI: 10.1152/ajpcell.00239.2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Advances in the understanding of lipid droplet biology have revealed essential roles for these organelles in mediating proper cellular homeostasis and stress response. Lipid droplets were initially thought to play a passive role in energy storage. However, recent studies demonstrate that they have substantially broader functions, including protection from reactive oxygen species, endoplasmic reticulum stress, and lipotoxicity. Dysregulation of lipid droplet homeostasis is associated with various pathologies spanning neurological, metabolic, cardiovascular, oncological, and renal diseases. This review provides an overview of the current understanding of lipid droplet biology in both health and disease.
Collapse
Affiliation(s)
- Jeffrey D. Pressly
- 1Katz Division of Nephrology and Hypertension and Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida,2Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
| | - Margaret Z. Gurumani
- 1Katz Division of Nephrology and Hypertension and Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida,2Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
| | - Javier T. Varona Santos
- 1Katz Division of Nephrology and Hypertension and Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida,2Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
| | - Alessia Fornoni
- 1Katz Division of Nephrology and Hypertension and Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida,2Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
| | - Sandra Merscher
- 1Katz Division of Nephrology and Hypertension and Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida,2Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
| | - Hassan Al-Ali
- 1Katz Division of Nephrology and Hypertension and Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida,2Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida,3Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, Florida,4The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida,5Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida
| |
Collapse
|
24
|
Han C, Zhang ZH, Wang L, Chen XQ, Qu J, Liu K, Wang JY. Two reasonably designed polarity-viscosity sensitive fluorescent probes with large Stokes shift for lighting up lipid droplets in cells. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
25
|
Yako T, Otsu W, Nakamura S, Shimazawa M, Hara H. Lipid Droplet Accumulation Promotes RPE Dysfunction. Int J Mol Sci 2022; 23:ijms23031790. [PMID: 35163712 PMCID: PMC8836556 DOI: 10.3390/ijms23031790] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 01/27/2023] Open
Abstract
Non-exudative age-related macular degeneration (AMD) is an irreversibly progressive retinal degenerative disease characterized by dysfunction and loss of retinal pigment epithelium (RPE). It has been suggested that impaired phagocytosis of the RPE is involved in the progression of non-exudative AMD, but the mechanism is not fully clear. In this study, we investigated the effect of lipid droplet accumulation on RPE function. Compared to young mice, the expression of lipid droplet-associated proteins increased in the RPE-choroidal complex, and lipid droplet in the RPE was observed in aged pigmented mice (12-month-old). Repeated treatment of the photoreceptor outer segment against ARPE-19 resulted in lipid droplets in ARPE-19 cells in vitro. Oleic acid treatment for ARPE-19 cells to form intracellular lipid droplet reduced the POS uptake into the ARPE-19 cells without causing a decrease in cell viability. The suppression of the POS uptake by lipid droplet formation improved by inhibiting lipid droplet formation using triacsin C. Moreover, the amount of intracellular reactive oxygen species was suppressed by the triacsin C treatment. These results indicate that lipid droplet is involved in the RPE dysfunction, and inhibiting lipid droplet formation may be a target for preventing and treating non-exudative AMD.
Collapse
Affiliation(s)
- Tomohiro Yako
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan; (T.Y.); (S.N.); (H.H.)
| | - Wataru Otsu
- Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan;
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan; (T.Y.); (S.N.); (H.H.)
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan; (T.Y.); (S.N.); (H.H.)
- Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan;
- Laboratory of Collaborative Research for Innovative Drug Discovery, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
- Correspondence:
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan; (T.Y.); (S.N.); (H.H.)
- Laboratory of Collaborative Research for Innovative Drug Discovery, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
26
|
Raman Microscopy Techniques to Study Lipid Droplet Composition in Cancer Cells. Methods Mol Biol 2022; 2413:193-209. [PMID: 35044667 PMCID: PMC9939018 DOI: 10.1007/978-1-0716-1896-7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Raman spectroscopy using feature selection schemes has considerable advantages over gas chromatography for the analysis of fatty acids' composition changes. Here, we introduce an educational methodology to demonstrate the potential of micro-Raman spectroscopy to determine with high accuracy the unsaturation or saturation degrees and composition changes of the fatty acids found in the lipid droplets of the LNCaP prostate cancer cells that were treated with various fatty acids. The methodology uses highly discriminatory wavenumbers among fatty acids present in the sample selected by using the Support Vector Machine algorithm.
Collapse
|
27
|
Cui WL, Wang MH, Yang YH, Qu J, Zhang H, Zhu X, Wang JY. A water-soluble polymer fluorescent probe via RAFT polymerization for dynamic monitoring cellular lipid droplet levels and zebrafish imaging. NEW J CHEM 2022. [DOI: 10.1039/d2nj03226k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The realization of dynamic detection of intracellular lipid droplet levels carries far-reaching implications for both the prevention of major diseases and the monitoring of therapeutic environments. Based on such purpose,...
Collapse
|
28
|
Sun J, Li H, Gu X, Tang BZ. Photoactivatable Biomedical Materials Based on Luminogens with Aggregation-Induced Emission (AIE) Characteristics. Adv Healthc Mater 2021; 10:e2101177. [PMID: 34637607 DOI: 10.1002/adhm.202101177] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/21/2021] [Indexed: 12/17/2022]
Abstract
Fluorescence probes with aggregation-induced emission (AIE) property are fascinating and vital in biological fields due to their bright fluorescence in the solid state. In contrast, traditional AIE materials are obscured by the off-target effects and lack of spatial and temporal control. Photoactivatable materials with AIE characteristics, whose physicochemical behaviors can be remotely activated by light, provide great potential in biochemical information acquisition with high spatial and temporal resolution. By using AIE-featured photoactivatable fluorescence probes, accurate analysis of the targets of interest is possible. For example, where, when, and to what extent a process is started or stopped by manipulating the non-invasive light accurately. Thus, many researchers are enthusiastic about developing AIE-featured photoactivatable materials and mainly focus on developing novel molecules by rational molecular structure design, and exploring advanced applications by appropriate molecular functionalization. In this review, the recent achievements of photoactivatable materials with AIE characteristics from the aspects involving inherent mechanism of photoactivity, molecular design strategy, and the corresponding applications in biological fields, are summarized. The biological applications are highlighted and discussed, including photoactivatable bioimaging, diagnosis, and photo-controlled therapy. Finally, the challenges and prospects of the AIE-featured photoactivatable materials are also outlined and discussed.
Collapse
Affiliation(s)
- Jiangman Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Materials Science and Engineering State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Materials Science and Engineering State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Materials Science and Engineering State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Ben Zhong Tang
- Shenzhen Institute of Molecular Aggregate Science and Engineering School of Science and Engineering The Chinese University of Hong Kong (Shenzhen) Shenzhen 518172 China
| |
Collapse
|
29
|
Gilloteaux J, Nicaise C, Sprimont L, Bissler J, Finkelstein JA, Payne WR. Leptin receptor defect with diabetes causes skeletal muscle atrophy in female obese Zucker rats where peculiar depots networked with mitochondrial damages. Ultrastruct Pathol 2021; 45:346-375. [PMID: 34743665 DOI: 10.1080/01913123.2021.1983099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Tibialis anterior muscles of 45-week-old female obese Zucker rats with defective leptin receptor and non-insulin dependent diabetes mellitus (NIDDM) showed a significative atrophy compared to lean muscles, based on histochemical-stained section's measurements in the sequence: oxidative slow twitch (SO, type I) < oxidative fast twitch (FOG, type IIa) < fast glycolytic (FG, type IIb). Both oxidative fiber's outskirts resembled 'ragged' fibers and, in these zones, ultrastructure revealed small clusters of endoplasm-like reticulum filled with unidentified electron contrasted compounds, contiguous and continuous with adjacent mitochondria envelope. The linings appeared crenated stabbed by circular patterns resembling those found of ceramides. The same fibers contained scattered degraded mitochondria that tethered electron contrasted droplets favoring larger depots while mitoptosis were widespread in FG fibers. Based on other interdisciplinary investigations on the lipid depots of diabetes 2 muscles made us to propose these accumulated contrasted contents to be made of peculiar lipids, including acyl-ceramides, as those were only found while diabetes 2 progresses in aging obese rats. These could interfere in NIDDM with mitochondrial oxidative energetic demands and muscle functions.
Collapse
Affiliation(s)
- Jacques Gilloteaux
- Department of Anatomical Sciences, St George's University School of Medicine, K B Taylor Global Scholar's Program at the University of Northumbria, School of Health and Life Sciences, Newcastle upon Tyne, UK.,Unité de Recherches de Physiologie Moleculaire (URPHyM) - Narilis, Département de Médecine, Université de Namur, Namur, Belgium.,Department of Anatomy, Northeast Ohio Medical University (Neomed), Rootstown, OH, USA
| | - Charles Nicaise
- Unité de Recherches de Physiologie Moleculaire (URPHyM) - Narilis, Département de Médecine, Université de Namur, Namur, Belgium
| | - Lindsay Sprimont
- Unité de Recherches de Physiologie Moleculaire (URPHyM) - Narilis, Département de Médecine, Université de Namur, Namur, Belgium
| | - John Bissler
- Department of Anatomy, Northeast Ohio Medical University (Neomed), Rootstown, OH, USA.,Division of Nephrology at St. Jude Children's Research Hospital and Le Bonheur Children's Hospital, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Judith A Finkelstein
- Department of Anatomy, Northeast Ohio Medical University (Neomed), Rootstown, OH, USA
| | - Warren R Payne
- Institute for Sport and Health, Footscray Park Campus, Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
30
|
Wei M, Huang X, Bian C, Sun J, Ji H. ATF6-DGAT pathway is involved in TLR7-induced innate immune response in Ctenopharyngodon idellus kidney cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104197. [PMID: 34228994 DOI: 10.1016/j.dci.2021.104197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
DGAT1 and DGAT2 are two acyl-CoA:diacylglycerol O-acyltransferase (DGAT) enzymes that catalyze the final step in triglyceride (TG) synthesis. TGs are the primary constituents of lipid droplets (LDs). Although it has been demonstrated that LDs modulate immune and inflammatory responses in CIK cells, little is known about whether DGAT1 and DGAT2 involve in this process. Firstly, grass carp DGAT2 was isolated and characterized, encoding 361 amino acids, and all DGAT2 proteins in genomic structures are conserved in vertebrates. Then, using TLR7 agonist, we induced LDs accumulation in CIK cells. Only DGAT1b and DGAT2 were upregulated in forming TLR7 agonist induced-LDs. Next, we utilized small-molecule inhibitors of DGAT1 and DGAT2. The results indicated that DGAT1 inactivation attenuated TG content and the relative expressions of IFNα3, NF-κB, IL-1β, and TNFα genes, whereas DGAT2 inhibition decreased TG content and the relative expressions of MyD88, IRF7, IFNα3, NF-κB, IL-1β, and TNFα genes, implying that DGAT1-generated LDs and DGAT2-generated LDs contribute to TLR7-induced immune response via different signaling pathways. Finally, inhibiting ATF6 effectively decreased DGAT-generated LDs accumulation and the expression of TLR7 signaling-related genes induced by TLR7 agonist, implying that ATF6 UPR pathway may mediate the role of DGAT-generated LDs in TLR7 signaling. Overall, we demonstrate that DGAT1 and DGAT2-catalyzed TAG synthesis may generate different LDs to provide distinct signaling platforms for innate TLR7 signaling.
Collapse
Affiliation(s)
- Mingkui Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaocheng Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Chenchen Bian
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Jian Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
31
|
Shutov AD, Harrington JT, Zhu H, Wang DW, Zhang D, Yakovlev VV. Coherent anti-Stokes Raman scattering microspectroscopy: an emerging technique for non-invasive optical assessment of a local bio-nano-environment. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2021; 27:7201406. [PMID: 35756884 PMCID: PMC9232098 DOI: 10.1109/jstqe.2021.3083687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Raman spectroscopy provides a non-invasive, chemically-specific optical imaging of biological objects without relying on endogenous labels. Nonlinear Raman spectroscopy allows non-invasive imaging at much faster speed with an improved spatial resolution and axial sectioning capability. In this report we propose a novel use of nonlinear Raman spectroscopy as a sensor of local nano-environment. Time-resolved coherent anti-Stokes Raman spectrograms are found to be sensitive to small variations of local structural changes, which are not normally observed using conventional Raman spectroscopy.
Collapse
Affiliation(s)
- Anton D Shutov
- Texas A&M University. He is currently with 10x Genomics, Inc., 6230 Stoneridge Mall Road, Pleasanton, CA 94888 USA
| | - Joseph T Harrington
- Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843 USA
| | - Hanlin Zhu
- Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027 China
| | - Da-Wei Wang
- Interdisciplinary Center of Quantum Information and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics and State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027 China
| | - Delong Zhang
- Interdisciplinary Center of Quantum Information and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics and State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou, Zhejiang 310027 China
| | - Vladislav V Yakovlev
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
32
|
Rahman MA, Kumar R, Sanchez E, Nazarko TY. Lipid Droplets and Their Autophagic Turnover via the Raft-Like Vacuolar Microdomains. Int J Mol Sci 2021; 22:8144. [PMID: 34360917 PMCID: PMC8348048 DOI: 10.3390/ijms22158144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023] Open
Abstract
Although once perceived as inert structures that merely serve for lipid storage, lipid droplets (LDs) have proven to be the dynamic organelles that hold many cellular functions. The LDs' basic structure of a hydrophobic core consisting of neutral lipids and enclosed in a phospholipid monolayer allows for quick lipid accessibility for intracellular energy and membrane production. Whereas formed at the peripheral and perinuclear endoplasmic reticulum, LDs are degraded either in the cytosol by lipolysis or in the vacuoles/lysosomes by autophagy. Autophagy is a regulated breakdown of dysfunctional, damaged, or surplus cellular components. The selective autophagy of LDs is called lipophagy. Here, we review LDs and their degradation by lipophagy in yeast, which proceeds via the micrometer-scale raft-like lipid domains in the vacuolar membrane. These vacuolar microdomains form during nutrient deprivation and facilitate internalization of LDs via the vacuolar membrane invagination and scission. The resultant intra-vacuolar autophagic bodies with LDs inside are broken down by vacuolar lipases and proteases. This type of lipophagy is called microlipophagy as it resembles microautophagy, the type of autophagy when substrates are sequestered right at the surface of a lytic compartment. Yeast microlipophagy via the raft-like vacuolar microdomains is a great model system to study the role of lipid domains in microautophagic pathways.
Collapse
Affiliation(s)
- Muhammad Arifur Rahman
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (M.A.R.); (E.S.)
| | - Ravinder Kumar
- Department of Obstetrics, Gynecology and Reproductive Science, University of California, San Francisco, CA 94143, USA;
| | - Enrique Sanchez
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (M.A.R.); (E.S.)
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Taras Y. Nazarko
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (M.A.R.); (E.S.)
| |
Collapse
|
33
|
Taatjes DJ, Roth J. In focus in HCB. Histochem Cell Biol 2021; 154:347-354. [PMID: 32984928 DOI: 10.1007/s00418-020-01921-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| | - Jürgen Roth
- University of Zurich, 8091, Zurich, Switzerland
| |
Collapse
|
34
|
He C, Wang Y, Xu Q, Xiong Y, Zhu J, Lin Y. Overexpression of Krueppel like factor 3 promotes subcutaneous adipocytes differentiation in goat Capra hircus. Anim Sci J 2021; 92:e13514. [PMID: 33522088 DOI: 10.1111/asj.13514] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 11/28/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022]
Abstract
Previous research reported that KLF3 plays different roles in the regulation of adipose deposition across species. However, the exact function of KLF3 in goat subcutaneous adipocyte remains unknown. Here, the goat KLF3 gene was firstly cloned and showed that the mRNA sequence of the goat KLF3 gene was 1,264 bp (GenBank accession number: KU041753.1) and its coding sequence was 1,037 bp, encoding 345 amino acids with three classic zinc finger domains of KLFs family at its C-terminus. The alignment of the amino acid sequence of KLF3 among various species demonstrated that goat had the highest homology to that of sheep, presenting 99.4% similarity, while the homology similarity to that of mice presented only 93.62% in contrast. Furthermore, KLF3 had highest mRNA level in fat tissue and lowest level in the heart in comparison. Additionally, the mRNA level of KLF3 gradually tended to increase during adipogenesis. Interestingly, overexpression of KLF3 increased lipid accumulation. In line with this, the gain-of-function of KLF3 dramatically elevated the mRNA levels of TG synthetic genes and adipogenic maker genes (p < .01) . Moreover, overexpression of KLF3 upregulated all the potential target genes, except for C/EBPα. These results suggested that KLF3 is a positive regulator for subcutaneous adipocyte differentiation in goats.
Collapse
Affiliation(s)
- Changsheng He
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Chengdu, China.,College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Yong Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Chengdu, China.,College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Qing Xu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Chengdu, China.,College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Chengdu, China.,College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Chengdu, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Chengdu, China.,College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, China
| |
Collapse
|
35
|
Brink JTR, Fourie R, Sebolai O, Albertyn J, Pohl CH. The role of lipid droplets in microbial pathogenesis. J Med Microbiol 2021; 70. [PMID: 34184983 DOI: 10.1099/jmm.0.001383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The nonpolar lipids present in cells are mainly triacylglycerols and steryl esters. When cells are provided with an abundance of nutrients, these storage lipids accumulate. As large quantities of nonpolar lipids cannot be integrated into membranes, they are isolated from the cytosolic environment in lipid droplets. As specialized, inducible cytoplasmic organelles, lipid droplets have functions beyond the regulation of lipid metabolism, in cell signalling and activation, membrane trafficking and control of inflammatory mediator synthesis and secretion. Pathogens, including fungi, viruses, parasites, or intracellular bacteria can induce and may benefit from lipid droplets in infected cells. Here we review biogenesis of lipid droplets as well as the role of lipid droplets in the pathogenesis of selected viruses, bacteria, protists and yeasts.
Collapse
Affiliation(s)
- Jacobus T R Brink
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Ruan Fourie
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Olihile Sebolai
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Jacobus Albertyn
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Carolina H Pohl
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
36
|
Deng Y, Zhou C, Mirza AH, Bamigbade AT, Zhang S, Xu S, Liu P. Rab18 binds PLIN2 and ACSL3 to mediate lipid droplet dynamics. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158923. [PMID: 33713834 DOI: 10.1016/j.bbalip.2021.158923] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 01/16/2023]
Abstract
Lipid droplet (LD) is a vital organelle governing lipid homeostasis and Rab18 has been linked to lipid metabolism. However, the mechanisms of Rab18-mediated LD dynamics in myoblast cells remain elusive. Here, we report that Rab18 plays an important role in oleic acid (OA)-induced LD accumulation in mouse myoblast C2C12 cells. Rab18 was translocated from the endoplasmic reticulum (ER) to LDs during LD accumulation, which was regulated by perilipin 2 (PLIN2), a major LD protein. LD-associated Rab18 bound with the C terminus of PLIN2 and the LD localization of Rab18 was diminished when PLIN2 was depleted. Moreover, loss of function of Rab18 led to reduced triacylglycerol (TAG) level and fewer but larger LDs. In contrast, overexpression of Rab18 resulted in elevated TAG content and LD number. Furthermore, LD-associated Rab18 interacted with acyl-CoA synthetase long-chain family member 3 (ACSL3), which in turn promoted the LD localization of this protein. These data show that Rab18 interacts with PLIN2 and forms a complex with PLIN2 and ACSL3, which plays a critical role in LD accumulation and dynamics of myoblast cells.
Collapse
Affiliation(s)
- Yaqin Deng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang Zhou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ahmed Hammad Mirza
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Adekunle T Bamigbade
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyan Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Shimeng Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Pingsheng Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
37
|
Melana JP, Mignolli F, Stoyanoff T, Aguirre MV, Balboa MA, Balsinde J, Rodríguez JP. The Hypoxic Microenvironment Induces Stearoyl-CoA Desaturase-1 Overexpression and Lipidomic Profile Changes in Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13122962. [PMID: 34199164 PMCID: PMC8231571 DOI: 10.3390/cancers13122962] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Clear cell renal cell carcinoma (ccRCC) is characterized by a high rate of cell proliferation and an extensive accumulation of lipids. Uncontrolled cell growth usually generates areas of intratumoral hypoxia that define the tumor phenotype. In this work, we show that, under these microenvironmental conditions, stearoyl-CoA desaturase-1 is overexpressed. This enzyme induces changes in the cellular lipidomic profile, increasing the oleic acid levels, a metabolite that is essential for cell proliferation. This work supports the idea of considering stearoyl-CoA desaturase-1 as an exploitable therapeutic target in ccRCC. Abstract Clear cell renal cell carcinoma (ccRCC) is the most common histological subtype of renal cell carcinoma (RCC). It is characterized by a high cell proliferation and the ability to store lipids. Previous studies have demonstrated the overexpression of enzymes associated with lipid metabolism, including stearoyl-CoA desaturase-1 (SCD-1), which increases the concentration of unsaturated fatty acids in tumor cells. In this work, we studied the expression of SCD-1 in primary ccRCC tumors, as well as in cell lines, to determine its influence on the tumor lipid composition and its role in cell proliferation. The lipidomic analyses of patient tumors showed that oleic acid (18:1n-9) is one of the major fatty acids, and it is particularly abundant in the neutral lipid fraction of the tumor core. Using a ccRCC cell line model and in vitro-generated chemical hypoxia, we show that SCD-1 is highly upregulated (up to 200-fold), and this causes an increase in the cellular level of 18:1n-9, which, in turn, accumulates in the neutral lipid fraction. The pharmacological inhibition of SCD-1 blocks 18:1n-9 synthesis and compromises the proliferation. The addition of exogenous 18:1n-9 to the cells reverses the effects of SCD-1 inhibition on cell proliferation. These data reinforce the role of SCD-1 as a possible therapeutic target.
Collapse
Affiliation(s)
- Juan Pablo Melana
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (UNNE-CONICET), Corrientes 3400, Argentina; (J.P.M.); (T.S.); (M.V.A.)
| | - Francesco Mignolli
- Instituto de Botánica del Nordeste, Facultad de Ciencias Agrarias (UNNE-CONICET), Universidad Nacional del Nordeste, Corrientes 3400, Argentina;
| | - Tania Stoyanoff
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (UNNE-CONICET), Corrientes 3400, Argentina; (J.P.M.); (T.S.); (M.V.A.)
| | - María V. Aguirre
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (UNNE-CONICET), Corrientes 3400, Argentina; (J.P.M.); (T.S.); (M.V.A.)
| | - María A. Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain;
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain;
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Correspondence: (J.B.); (J.P.R.); Tel.: +34-983-423-062 (J.B.); Tel.: +54-937-9469-4464 (J.P.R.)
| | - Juan Pablo Rodríguez
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (UNNE-CONICET), Corrientes 3400, Argentina; (J.P.M.); (T.S.); (M.V.A.)
- Correspondence: (J.B.); (J.P.R.); Tel.: +34-983-423-062 (J.B.); Tel.: +54-937-9469-4464 (J.P.R.)
| |
Collapse
|
38
|
Wu K, Fan S, Zou L, Zhao F, Ma S, Fan J, Li X, Zhao M, Yan H, Chen J. Molecular Events Occurring in Lipophagy and Its Regulation in Flaviviridae Infection. Front Microbiol 2021; 12:651952. [PMID: 34093468 PMCID: PMC8175637 DOI: 10.3389/fmicb.2021.651952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/21/2021] [Indexed: 12/17/2022] Open
Abstract
Diseases caused by Flaviviridae have a wide global and economic impact due to high morbidity and mortality. Flaviviridae infection usually leads to severe, acute or chronic diseases, such as liver injury and liver cancer resulting from hepatitis C virus (HCV) infection, dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS) caused by dengue virus (DENV). Given the highly complex pathogenesis of Flaviviridae infections, they are still not fully understood at present. Accumulating evidence suggests that host autophagy is disrupted to regulate the life cycle of Flaviviridae. Organelle-specific autophagy is able to selectively target different organelles for quality control, which is essential for regulating cellular homeostasis. As an important sub process of autophagy, lipophagy regulates lipid metabolism by targeting lipid droplets (LDs) and is also closely related to the infection of a variety of pathogenic microorganisms. In this review, we briefly understand the LDs interaction relationship with Flaviviridae infection, outline the molecular events of how lipophagy occurs and the related research progress on the regulatory mechanisms of lipophagy in Flaviviridae infection. Exploring the crosstalk between viral infection and lipophagy induced molecular events may provide new avenues for antiviral therapy.
Collapse
Affiliation(s)
- Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Linke Zou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Feifan Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shengming Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jindai Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Huichao Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
39
|
Zhou Y, Guo Y, Zhu Y, Sun Y, Li W, Li Z, Wei L. Dual PPARγ/ɑ agonist oroxyloside suppresses cell cycle progression by glycolipid metabolism switch-mediated increase of reactive oxygen species levels. Free Radic Biol Med 2021; 167:205-217. [PMID: 33713839 DOI: 10.1016/j.freeradbiomed.2021.02.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/26/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022]
Abstract
Cancer cells prefers to rely on aerobic glycolysis than pyruvate oxidation to meet the high demand of energy for rapidly proliferation. Peroxisome proliferator-activated receptors (PPARs) are a kind of important ligand-inducible transcription factors and play crucial roles in glucose and lipid metabolism. Careful designing of novel agonists for PPARs, may show improvement with the side effects and also increase the therapeutic value for cancer and other metabolic disorder diseases. Compared with normal human liver cells, lower expression or acitivity of PPARs is observed in hepatocellular carcinoma (HCC). In this study, we show that oroxyloside (OAG) is a new dual agonist of PPARγ/ɑ, and inhibits cell proliferation of HCC based on metabolic switch. Via both PPAR-dependent and PPAR-independent regulations on glycolipid metabolic enzymes, OAG shuts down the catabolism of glucose and promotes fatty acids oxidation to generate acetyl-CoA for TCA cycle and oxidative phosphorylation. The metabolic switch induced by OAG results in a marked increase of reactive oxygen species (ROS) levels, leading to rapid dephosphorylation of RB and cell-cycle arrest in G1 phase. Pyruvate dehydrogenase kinase 4 (PDK4) and β-Oxidation are required for the suppression of cell cycle progression by OAG. Together, our findings provide a new drug candidate and a viable therapeutic strategy for HCC based on metabolic reprogram.
Collapse
Affiliation(s)
- Yuxin Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, PR China
| | - Yongjian Guo
- School of Biopharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, PR China
| | - Yejin Zhu
- School of Medicine & Holistic Integrative Medcine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, PR China
| | - Yuening Sun
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, PR China
| | - Wei Li
- Research Center of Basic Medical College, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, PR China
| | - Zhiyu Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, PR China
| | - Libin Wei
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, PR China.
| |
Collapse
|
40
|
Motility Plays an Important Role in the Lifetime of Mammalian Lipid Droplets. Int J Mol Sci 2021; 22:ijms22083802. [PMID: 33916886 PMCID: PMC8067576 DOI: 10.3390/ijms22083802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 01/31/2023] Open
Abstract
The lipid droplet is a kind of organelle that stores neutral lipids in cells. Recent studies have found that in addition to energy storage, lipid droplets also play an important role in biological processes such as resistance to stress, immunity, cell proliferation, apoptosis, and signal transduction. Lipid droplets are formed at the endoplasmic reticulum, and mature lipid droplets participate in various cellular processes. Lipid droplets are decomposed by lipase and lysosomes. In the life of a lipid droplet, the most important thing is to interact with other organelles, including the endoplasmic reticulum, mitochondria, peroxisomes, and autophagic lysosomes. The interaction between lipid droplets and other organelles requires them to be close to each other, which inevitably involves the motility of lipid droplets. In fact, through many microscopic observation techniques, researchers have discovered that lipid droplets are highly dynamic organelles that move quickly. This paper reviews the process of lipid droplet motility, focusing on explaining the molecular basis of lipid droplet motility, the factors that regulate lipid droplet motility, and the influence of motility on the formation and decomposition of lipid droplets. In addition, this paper also proposes several unresolved problems for lipid droplet motility. Finally, this paper makes predictions about the future research of lipid droplet motility.
Collapse
|
41
|
Cui L, Liu P. Two Types of Contact Between Lipid Droplets and Mitochondria. Front Cell Dev Biol 2020; 8:618322. [PMID: 33385001 PMCID: PMC7769837 DOI: 10.3389/fcell.2020.618322] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Lipid droplets (LDs) and mitochondria are essential organelles involved in cellular lipid metabolism and energy homeostasis. Accumulated studies have revealed that the physical contact between these two organelles is important for their functions. Current understanding of the contact between cellular organelles is highly dynamic, fitting a "kiss-and-run" model. The same pattern of contact between LDs and mitochondria has been reported and several proteins are found to mediate this contact, such as perilipin1 (PLIN1) and PLIN5. Another format of the contact has also been found and termed anchoring. LD-anchored mitochondria (LDAM) are identified in oxidative tissues including brown adipose tissue (BAT), skeletal muscle, and heart muscle, and this anchoring between these two organelles is conserved from mouse to monkey. Moreover, this anchoring is generated during the brown/beige adipocyte differentiation. In this review, we will summarize previous studies on the interaction between LDs and mitochondria, categorize the types of the contacts into dynamic and stable/anchored, present their similarities and differences, discuss their potential distinct molecular mechanism, and finally propose a working hypothesis that may explain why and how cells use two patterns of contact between LDs and mitochondria.
Collapse
Affiliation(s)
- Liujuan Cui
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Pingsheng Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
42
|
Changes in lipid and carotenoid metabolism in Chlamydomonas reinhardtii during induction of CO2-concentrating mechanism: Cellular response to low CO2 stress. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
43
|
Sun J, Xu X, Huang X, Ji S, Bian C, Ji H. Nuclear factor-κB subunit p65 is involved in lipopolysaccharide-induced lipid accumulation via regulating DGAT1b in Ctenopharyngodon idellus kidney cells. FISH & SHELLFISH IMMUNOLOGY 2020; 105:71-77. [PMID: 32585360 DOI: 10.1016/j.fsi.2020.05.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Lipopolysaccharide (LPS) can promote the accumulation of triglycerides (TGs) in CIK (Ctenopharyngodon idellus kidney) cells, but the underlying mechanism is unclear. In this study, two genes involved TG synthesis, DGAT1a and DGAT1b, were isolated and characterized from grass carp Ctenopharyngodon idella, which encode peptides of 498 and 501 amino acids, respectively. Phylogenetic and synteny analyses indicated that DGAT1a and DGAT1b could have originated from the teleost-specific genome duplication event. Analysis of the exon-intron structures clarified that genomic structures of all DGAT1 proteins are conserved in vertebrates. DGAT1a mRNA was highly expressed in gut, adipose tissue and heart, while DGAT1b mRNA was highly expressed in liver and kidney. After LPS treatment, only expression of DGAT1b was up-regulated and knockdown of DGAT1b reduced the content of TG, suggesting that DGAT1b is involved in LPS-induced lipid accumulation. To explore the mechanism underlying the transcriptional regulation of DGAT1b in response to LPS, we cloned DGAT1b promoter sequence. Its promoter sequence consists of IRF7, RelA (p65) and RelB binding elements. Dual luciferase assay and q-PCR suggested that the promoter of DGAT1b can be activated by the overexpression of p65, but cannot be triggered by IRF7 and RelB. Mutational analysis shows that the potential p65 binding sites may locate in the region -111/-100 bp of the DGAT1b promoter. These results indicated that DGAT1b is the target gene of NF-κB p65. Finally, inhibiting p65 effectively decreased LPS-induced lipid accumulation. Taken together, we demonstrate that NF-κB p65 takes part in the lipid accumulation by regulating DGAT1b-induced TG synthesis in LPS signalling in CIK cells. The finding that NF-κB p65 links LPS signalling and TG synthesis adds to our growing appreciation of the interplay between immunity and lipid metabolism in fish.
Collapse
Affiliation(s)
- Jian Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xinxin Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaocheng Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Shanghong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Chenchen Bian
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
44
|
Calcaterra V, Regalbuto C, Porri D, Pelizzo G, Mazzon E, Vinci F, Zuccotti G, Fabiano V, Cena H. Inflammation in Obesity-Related Complications in Children: The Protective Effect of Diet and Its Potential Role as a Therapeutic Agent. Biomolecules 2020; 10:E1324. [PMID: 32947869 PMCID: PMC7564478 DOI: 10.3390/biom10091324] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/05/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity is a growing health problem in both children and adults, impairing physical and mental state and impacting health care system costs in both developed and developing countries. It is well-known that individuals with excessive weight gain frequently develop obesity-related complications, which are mainly known as Non-Communicable Diseases (NCDs), including cardiovascular disease, type 2 diabetes mellitus, metabolic syndrome, non-alcoholic fatty liver disease, hypertension, hyperlipidemia and many other risk factors proven to be associated with chronic inflammation, causing disability and reduced life expectancy. This review aims to present and discuss complications related to inflammation in pediatric obesity, the critical role of nutrition and diet in obesity-comorbidity prevention and treatment, and the impact of lifestyle. Appropriate early dietary intervention for the management of pediatric overweight and obesity is recommended for overall healthy growth and prevention of comorbidities in adulthood.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
- Pediatric Unit, “V. Buzzi” Children’s Hospital, 20153 Milan, Italy; (G.Z.); (V.F.)
| | - Corrado Regalbuto
- Pediatric Unit, Fond. IRCCS Policlinico S. Matteo and University of Pavia, 27100 Pavia, Italy; (C.R.); (F.V.)
| | - Debora Porri
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (D.P.); (H.C.)
| | - Gloria Pelizzo
- “L. Sacco” Department of Biomedical and Clinical Science, University of Milan, 20153 Milan, Italy;
- Pediatric Surgery Unit, “V. Buzzi” Children’s Hospital, 20153 Milan, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, 98124 Messina, Italy;
| | - Federica Vinci
- Pediatric Unit, Fond. IRCCS Policlinico S. Matteo and University of Pavia, 27100 Pavia, Italy; (C.R.); (F.V.)
| | - Gianvincenzo Zuccotti
- Pediatric Unit, “V. Buzzi” Children’s Hospital, 20153 Milan, Italy; (G.Z.); (V.F.)
- “L. Sacco” Department of Biomedical and Clinical Science, University of Milan, 20153 Milan, Italy;
| | - Valentina Fabiano
- Pediatric Unit, “V. Buzzi” Children’s Hospital, 20153 Milan, Italy; (G.Z.); (V.F.)
- “L. Sacco” Department of Biomedical and Clinical Science, University of Milan, 20153 Milan, Italy;
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (D.P.); (H.C.)
- Clinical Nutrition and Dietetics Service, Unit of Internal Medicine and Endocrinology, ICS Maugeri IRCCS, 27100 Pavia, Italy
| |
Collapse
|
45
|
Drozdz A, Matusiak K, Setkowicz Z, Ciarach M, Janeczko K, Sandt C, Borondics F, Horak D, Babic M, Chwiej J. FTIR microspectroscopy revealed biochemical changes in liver and kidneys as a result of exposure to low dose of iron oxide nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 236:118355. [PMID: 32344375 DOI: 10.1016/j.saa.2020.118355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Iron oxide nanoparticles (IONPs) have biomedical and biotechnological applications in magnetic imaging, drug-delivery, magnetic separation and purification. The biocompatibility of such particles may be improved by covering them with coating. In presented paper the biochemical anomalies of liver and kidney occurring in animals exposed to d-mannitol-coated iron(III) oxide nanoparticles (M-IONPs) were examined with Fourier transform infrared (FTIR) microspectroscopy. The dose of IONPs used in the study was significantly lower than those used so far in other research. Liver and kidney tissue sections were analysed by chemical mapping of infrared absorption bands originating from proteins, lipids, compounds containing phosphate groups, cholesterol and cholesterol esters. Changes in content and/or structure of the selected biomolecules were evaluated by comparison of the results obtained for animals treated with M-IONPs with those from control group. Biochemical analysis of liver samples demonstrated a few M-IONPs induced anomalies in the organ, mostly concerning the relative content of the selected compounds. The biomolecular changes, following exposition to nanoparticles, were much more intense within the kidney tissue. Biochemical aberrations found in the organ samples indicated at increase of tissue density, anomalies in fatty acids structure as well as changes in relative content of lipids and proteins. The simultaneous accumulation of lipids, phosphate groups as well as cholesterol and cholesterol esters in kidneys of rats exposed to IONPs may indicate that the particles stimulated formation of lipid droplets within the organ.
Collapse
Affiliation(s)
- Agnieszka Drozdz
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland.
| | - Katarzyna Matusiak
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
| | - Zuzanna Setkowicz
- Jagiellonian University, Institute of Zoology and Biomedical Research, Krakow, Poland
| | - Malgorzata Ciarach
- Jagiellonian University, Institute of Zoology and Biomedical Research, Krakow, Poland
| | - Krzysztof Janeczko
- Jagiellonian University, Institute of Zoology and Biomedical Research, Krakow, Poland
| | | | | | - Daniel Horak
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Babic
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Joanna Chwiej
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
| |
Collapse
|
46
|
Greening C, Lithgow T. Formation and function of bacterial organelles. Nat Rev Microbiol 2020; 18:677-689. [PMID: 32710089 DOI: 10.1038/s41579-020-0413-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2020] [Indexed: 01/28/2023]
Abstract
Advances in imaging technologies have revealed that many bacteria possess organelles with a proteomically defined lumen and a macromolecular boundary. Some are bound by a lipid bilayer (such as thylakoids, magnetosomes and anammoxosomes), whereas others are defined by a lipid monolayer (such as lipid bodies), a proteinaceous coat (such as carboxysomes) or have a phase-defined boundary (such as nucleolus-like compartments). These diverse organelles have various metabolic and physiological functions, facilitating adaptation to different environments and driving the evolution of cellular complexity. This Review highlights that, despite the diversity of reported organelles, some unifying concepts underlie their formation, structure and function. Bacteria have fundamental mechanisms of organelle formation, through which conserved processes can form distinct organelles in different species depending on the proteins recruited to the luminal space and the boundary of the organelle. These complex subcellular compartments provide evolutionary advantages as well as enabling metabolic specialization, biogeochemical processes and biotechnological advances. Growing evidence suggests that the presence of organelles is the rule, rather than the exception, in bacterial cells.
Collapse
Affiliation(s)
- Chris Greening
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia.
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia.
| |
Collapse
|
47
|
Jiang G, Jin Y, Li M, Wang H, Xiong M, Zeng W, Yuan H, Liu C, Ren Z, Liu C. Faster and More Specific: Excited-State Intramolecular Proton Transfer-Based Dyes for High-Fidelity Dynamic Imaging of Lipid Droplets within Cells and Tissues. Anal Chem 2020; 92:10342-10349. [PMID: 32615751 DOI: 10.1021/acs.analchem.0c00390] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lipid droplets (LDs), a type of dynamic organelle residing at the center of cellular lipid storage, have been identified to play important roles in multiple biological processes, metabolic disorders, and diseases. The highly dynamic characters of LDs were found to correspond to their physiological and pathological functions. Hence, the fluorescent probes which enable dynamic tracking of LDs should be very helpful for better understanding the mechanisms of LDs involved biological processes and diseases. Herein we present, to the best of our knowledge, the first class of excited-state intramolecular proton transfer (ESIPT) fluorescence dyes (Flp-(11-13, 19)) for dynamic imaging of LDs based on 3-hydroxyflavone (3HF) derivatives. Flp-(11-13, 19) display strong fluorescence from yellow to NIR in lipid but exhibit almost nonfluorescence in aqueous solution. Besides, they also show large Stokes shifts (>150 nm), narrow absorption and emission peaks, and good oil-water separation efficiency, which makes them specifically target and stain LDs with very low background noisy in both living cells and fixed cells. They stain intracellular LDs quite quickly (within 30 s) with very low dosage (as low as 500 nM). Benefitting from these advantages, Flp-(11-13, 19) are applied successfully in tracking the dynamic nature of LDs and accumulation of LDs in both aqueous solution and living cells, 3D imaging of LDs for visualization of their repartition within the cells, and visualizing LDs in tissues of diseases mice models including adipose, skeletal muscle, and fatty liver tissues, underscoring the potential utility of these dyes in both LDs biology research and medical diagnosis of LDs involved diseases.
Collapse
Affiliation(s)
- Gangwei Jiang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Chemical Biology Center, College of Chemistry, and International Joint Research Center for Intelligent Biosensing Technology and Health, Central China Normal University, Wuhan 430079, P. R. China
| | - Yi Jin
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Man Li
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Chemical Biology Center, College of Chemistry, and International Joint Research Center for Intelligent Biosensing Technology and Health, Central China Normal University, Wuhan 430079, P. R. China
| | - Huiling Wang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Chemical Biology Center, College of Chemistry, and International Joint Research Center for Intelligent Biosensing Technology and Health, Central China Normal University, Wuhan 430079, P. R. China
| | - Mengyao Xiong
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Chemical Biology Center, College of Chemistry, and International Joint Research Center for Intelligent Biosensing Technology and Health, Central China Normal University, Wuhan 430079, P. R. China
| | - Weili Zeng
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Chemical Biology Center, College of Chemistry, and International Joint Research Center for Intelligent Biosensing Technology and Health, Central China Normal University, Wuhan 430079, P. R. China
| | - Hong Yuan
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Chemical Biology Center, College of Chemistry, and International Joint Research Center for Intelligent Biosensing Technology and Health, Central China Normal University, Wuhan 430079, P. R. China
| | - Changlin Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Chemical Biology Center, College of Chemistry, and International Joint Research Center for Intelligent Biosensing Technology and Health, Central China Normal University, Wuhan 430079, P. R. China
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Chunrong Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Chemical Biology Center, College of Chemistry, and International Joint Research Center for Intelligent Biosensing Technology and Health, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
48
|
Jin C, Yuan P. Implications of lipid droplets in lung cancer: Associations with drug resistance. Oncol Lett 2020; 20:2091-2104. [PMID: 32782526 PMCID: PMC7399769 DOI: 10.3892/ol.2020.11769] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cells usually show different metabolic patterns compared with healthy cells due to the reprogramming of metabolic processes. The process of lipid metabolism undergoes notable changes, leading to the accumulation of lipid droplets in cells. Additionally, this phenotype is considered an important marker of cancer cells. Lipid droplets are a highly dynamic type of organelle in the cell, which is composed of a neutral lipid core, a monolayer phospholipid membrane and lipid droplet-related proteins. Lipid droplets are involved in several biological processes, including cell proliferation, apoptosis, lipid metabolism, stress, immunity, signal transduction and protein trafficking. Epidermal growth factor receptor (EGFR)-activating mutations are currently the most effective therapeutic targets for non-small cell lung cancer. Several EGFR tyrosine kinase inhibitors (EGFR-TKIs) that target these mutations, including gefitinib, erlotinib, afatinib and osimertinib, have been widely used clinically. However, the development of acquired resistance has a major impact on the efficacy of these drugs. A number of previous studies have reported that the expression of lipid droplets in the tumor tissues of patients with lung cancer are elevated, whereas the association between elevated numbers of lipid droplets and drug resistance has received little attention. The present review describes the potential association between lipid droplets and drug resistance. Furthermore, the mechanisms and implications of lipid droplet accumulation in cancer cells are analyzed, as wells as the mechanism by which lipid droplets suppress endoplasmic reticulum stress and apoptosis, which are essential for the development and treatment of lung cancer.
Collapse
Affiliation(s)
- Chunlai Jin
- Department of Surgery, First People's Hospital of Jinan, Jinan, Shandong 250011, P.R. China
| | - Peng Yuan
- Department of Surgery, First People's Hospital of Jinan, Jinan, Shandong 250011, P.R. China
| |
Collapse
|
49
|
Chang P, Sun T, Heier C, Gao H, Xu H, Huang F. Interaction of the Lysophospholipase PNPLA7 with Lipid Droplets through the Catalytic Region. Mol Cells 2020; 43:286-297. [PMID: 32208367 PMCID: PMC7103881 DOI: 10.14348/molcells.2020.2283] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/28/2020] [Accepted: 02/10/2020] [Indexed: 12/25/2022] Open
Abstract
Mammalian patatin-like phospholipase domain containing proteins (PNPLAs) play critical roles in triglyceride hydrolysis, phospholipids metabolism, and lipid droplet (LD) homeostasis. PNPLA7 is a lysophosphatidylcholine hydrolase anchored on the endoplasmic reticulum which associates with LDs through its catalytic region (PNPLA7-C) in response to increased cyclic nucleotide levels. However, the interaction of PNPLA7 with LDs through its catalytic region is unknown. Herein, we demonstrate that PNPLA7-C localizes to the mature LDs ex vivo and also colocalizes with pre-existing LDs. Localization of PNPLA7-C with LDs induces LDs clustering via non-enzymatic intermolecular associations, while PNPLA7 alone does not induce LD clustering. Residues 742-1016 contains four putative transmembrane domains which act as a LD targeting motif and are required for the localization of PNPLA7-C to LDs. Furthermore, the N-terminal flanking region of the LD targeting motif, residues 681-741, contributes to the LD targeting, whereas the C-terminal flanking region (1169-1326) has an anti-LD targeting effect. Interestingly, the LD targeting motif does not exhibit lysophosphatidylcholine hydrolase activity even though it associates with LDs phospholipid membranes. These findings characterize the specific functional domains of PNPLA7 mediating subcellular positioning and interactions with LDs, as wells as providing critical insights into the structure of this evolutionarily conserved phospholipid-metabolizing enzyme family.
Collapse
Affiliation(s)
- Pingan Chang
- Chongqing Key Laboratory of Big Data for Bio-intelligence, School of Bio-information, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Tengteng Sun
- Chongqing Key Laboratory of Big Data for Bio-intelligence, School of Bio-information, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Christoph Heier
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Hao Gao
- Chongqing Key Laboratory of Big Data for Bio-intelligence, School of Bio-information, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Hongmei Xu
- Chongqing Key Laboratory of Big Data for Bio-intelligence, School of Bio-information, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Feifei Huang
- Chongqing Key Laboratory of Big Data for Bio-intelligence, School of Bio-information, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| |
Collapse
|
50
|
Plant Lipid Bodies Traffic on Actin to Plasmodesmata Motorized by Myosin XIs. Int J Mol Sci 2020; 21:ijms21041422. [PMID: 32093159 PMCID: PMC7073070 DOI: 10.3390/ijms21041422] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Late 19th-century cytologists observed tiny oil drops in shoot parenchyma and seeds, but it was discovered only in 1972 that they were bound by a half unit-membrane. Later, it was found that lipid bodies (LBs) arise from the endoplasmic reticulum. Seeds are known to be packed with static LBs, coated with the LB-specific protein OLEOSIN. As shown here, apices of Populustremula x P. tremuloides also express OLEOSIN genes and produce potentially mobile LBs. In developing buds, PtOLEOSIN (PtOLE) genes were upregulated, especially PtOLE6, concomitant with LB accumulation. To investigate LB mobility and destinations, we transformed Arabidopsis with PtOLE6-eGFP. We found that PtOLE6-eGFP fusion protein co-localized with Nile Red-stained LBs in all cell types. Moreover, PtOLE6-eGFP-tagged LBs targeted plasmodesmata, identified by the callose marker aniline blue. Pharmacological experiments with brefeldin, cytochalasin D, and oryzalin showed that LB-trafficking requires F-actin, implying involvement of myosin motors. In a triple myosin-XI knockout (xi-k/1/2), transformed with PtOLE6-eGFP, trafficking of PtOLE6-eGFP-tagged LBs was severely impaired, confirming that they move on F-actin, motorized by myosin XIs. The data reveal that LBs and OLEOSINs both function in proliferating apices and buds, and that directional trafficking of LBs to plasmodesmata requires the actomyosin system.
Collapse
|