1
|
Godwin JS, Michel JM, Libardi CA, Kavazis AN, Fry CS, Frugé AD, McCashland M, Vechetti IJ, McCarthy JJ, Mobley CB, Roberts MD. Resistance exercise and mechanical overload upregulate vimentin for skeletal muscle remodeling. Am J Physiol Cell Physiol 2025; 328:C1509-C1525. [PMID: 40178318 DOI: 10.1152/ajpcell.01028.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/10/2025] [Accepted: 03/19/2025] [Indexed: 04/05/2025]
Abstract
We adopted a proteomic and follow-through approach to investigate how mechanical overload (MOV) potentially affects novel targets in skeletal muscle, and how a perturbation in this response could potentially affect the adaptive response. First, we determined that 10 wk of resistance training in 15 college-aged females increased sarcolemmal-associated protein content (+10.1%, P < 0.05). Sarcolemmal protein isolates were then queried using mass spectrometry-based proteomics, ∼10% (38/387) of proteins putatively associated with the sarcolemma or extracellular matrix (ECM) were upregulated (>1.5-fold, P < 0.05), and one target (intermediate filament vimentin; VIM) warranted further investigation due to its correlation to myofiber hypertrophy (r = 0.652, P = 0.009). VIM expression was then examined in 4-mo-old C57BL/6J mice following 10 and 20 days of plantaris MOV via synergist ablation. Relative to Sham (control) mice, VIM mRNA and protein content was significantly higher in MOV mice, and immunohistochemistry indicated that VIM predominantly resided in the ECM. MOV experiments were replicated in Pax7-DTA (satellite cell depleted) mice, which reduced VIM in the ECM by ∼74%. A third MOV experiment was performed in C57BL/6 mice intramuscularly injected with either AAV9-scrambled (control) or AAV9-VIM-shRNA. Although VIM-shRNA mice possessed lower VIM in the ECM (∼45%), plantaris masses in response to MOV were similar between groups. However, VIM-shRNA mice possessed smaller and more centrally nucleated MyHCemb-positive fibers in response to MOV. In summary, skeletal muscle VIM appears to be enriched in the ECM following MOV, satellite cells may regulate its expression, and a disruption in expression during MOV leads to an excessive regenerative phenotype.NEW & NOTEWORTHY Our highly integrative approach suggests that skeletal muscle vimentin seems to function as a mechanosensitive protein that becomes enriched in the extracellular matrix following MOV. Satellite cells may play a role in regulating their expression, and an exaggerated regenerative response occurs when vimentin expression becomes dysregulated during mechanical overload. Although these data implicate vimentin in aiding with tissue remodeling following MOV, more data are needed to determine the functional ramifications of VIM response deficiencies.
Collapse
Affiliation(s)
- Joshua S Godwin
- Nutrabolt Applied and Molecular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - J Max Michel
- Nutrabolt Applied and Molecular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of Sao Carlos, Sao Carlos, Brazil
| | - Andreas N Kavazis
- Nutrabolt Applied and Molecular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Christopher S Fry
- Department of Athletic Training & Clinical Nutrition, University of Kentucky, Lexington, Kentucky, United States
| | - Andrew D Frugé
- Nutrabolt Applied and Molecular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama, United States
- College of Nursing, Auburn University, Auburn, Alabama, United States
| | - Mariah McCashland
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, Nebraska, United States
| | - Ivan J Vechetti
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, Nebraska, United States
| | - John J McCarthy
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States
| | - C Brooks Mobley
- Nutrabolt Applied and Molecular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Michael D Roberts
- Nutrabolt Applied and Molecular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama, United States
| |
Collapse
|
2
|
Cizkova D, Zurmanova JM, Gerykova L, Kouvelas A, Heles M, Elsnicova B, Galatik F, Silhavy J, Pravenec M, Mokry J. Nestin expression in intact and hypertrophic myocardium of spontaneously hypertensive rats during aging. J Muscle Res Cell Motil 2024; 45:41-51. [PMID: 36690826 PMCID: PMC11096222 DOI: 10.1007/s10974-023-09641-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/15/2023] [Indexed: 01/25/2023]
Abstract
Nestin is a unique intermediate filament expressed for a short period in the developing heart. It was also documented in several cell types of the adult myocardium under pathological conditions such as myocardial infarction or fibrosis. However, circumstances of nestin re-occurrence in the diseased or aging heart have not been elucidated yet. In this work we immunohistochemically detected nestin to determine its expression and distribution pattern in the left ventricular myocardium of normotensive Wistar Kyoto (WKY) rats and in the hypertrophic ones of spontaneously hypertensive (SHR) rats, both at the age of 1 and 1.5 year. No nestin+ cells were identified in the intact myocardium of 1-year-old WKY rats, whereas in the aged 1.5-year-old WKY rats nestin+ endothelial cells in some blood vessels were discovered. In the hypertrophic myocardium of all SHR rats, nestin was rarely detected in desmin+ vimentin- cardiomyocytes and in some vimentin+ interstitial cells often accumulated in clusters, varying in intensity of desmin immunoreactivity. Moreover, nestin was infrequently expressed in the endothelial cells of some myocardial blood vessels in 1-year-old SHR rats, but not in 1.5-year-old ones. Quantitative image analysis of nestin expression in the myocardium confirmed significant increase in 1.5-year-old WKY rats and in SHR rats of both ages compared to the intact 1-year-old WKY rats. This study firstly documents nestin re-expression indicating cytoskeletal remodelling in different cell types of the aging intact and chronically pressure over-loaded hypertrophied myocardium. Our findings confirm nestin involvement in complex changes during myocardial hypertrophy and progressive aging.
Collapse
Affiliation(s)
- Dana Cizkova
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Jitka M Zurmanova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Lucie Gerykova
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Alexandros Kouvelas
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Mario Heles
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbara Elsnicova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Frantisek Galatik
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Silhavy
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jaroslav Mokry
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
3
|
Wu J, Tian C, Jiao J, Yan Q, Zhou C, Tan Z. The epithelial transcriptome and mucosal microbiota are altered for goats fed with a low-protein diet. Front Microbiol 2023; 14:1237955. [PMID: 37731924 PMCID: PMC10507412 DOI: 10.3389/fmicb.2023.1237955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Feeding low protein (LP) diet to animals impose severe challenge to animals' immune homeostasis. However, limited knowledge about the underlying adaption mechanism of host and ruminal microbiota responding to LP diet were well understood. Herein, this study was performed to examine the changes in relative abundance of ruminal microbiota and host ruminal mucosal transcriptome profiles in response to a LP diet. Methods A total of twenty-four female Xiangdong balck goats with similar weight (20.64 ± 2.40 kg) and age (8 ± 0.3 months) were randomly assigned into two groups, LP (5.52% crude protein containing diet) and CON (10.77% crude protein containing diet) groups. Upon completion of the trial, all goats were slaughtered after a 16-hour fasting period in LiuYang city (N 28°15', E 113°63') in China. HE staining, free amino acids measurement, transcriptome analysis and microbiome analysis were applied to detect the morphology alterations, free amino acids profile alterations and the shift in host ruminal mucosal transcriptome and ruminal microbiota communities. Results Firstly, the results showed that feeding LP diet to goats decreased the rumen papilla width (P = 0.043), surface area (P = 0.013) and total ruminal free amino acids concentration (P = 0.016). Secondly, microbiome analysis indicated that 9 microbial genera, including Eubacterium and Prevotella, were enriched in LP group while 11 microbial genera, including Butyrivibrio and Ruminococcus, were enriched in CON group. Finally, in terms of immune-related genes, the expression levels of genes involved in tight junction categories (e.g., MYH11, PPP2R2C, and MYL9) and acquired immunity (e.g., PCP4 and CXCL13) were observed to be upregulated in the LP group when compared to the CON group. Conclusion Under the LP diet, the rumen exhibited increased relative abundance of pathogenic microbiota and VFA-degrading microbiota, leading to disruptions in immune homeostasis within the host's ruminal mucosa. These findings indicate that the ruminal microbiota interacts with host results in the disruption in animals' immune homeostasis under LP diet challenge.
Collapse
Affiliation(s)
- Jian Wu
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Changxin Tian
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinzhen Jiao
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Qiongxian Yan
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Chuanshe Zhou
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Zhiliang Tan
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| |
Collapse
|
4
|
Dalmao-Fernandez A, Aizenshtadt A, Bakke HG, Krauss S, Rustan AC, Thoresen GH, Kase ET. Development of three-dimensional primary human myospheres as culture model of skeletal muscle cells for metabolic studies. Front Bioeng Biotechnol 2023; 11:1130693. [PMID: 37034250 PMCID: PMC10076718 DOI: 10.3389/fbioe.2023.1130693] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction: Skeletal muscle is a major contributor to whole-body energy homeostasis and the utilization of fatty acids and glucose. At present, 2D cell models have been the most used cellular models to study skeletal muscle energy metabolism. However, the transferability of the results to in vivo might be limited. This project aimed to develop and characterize a skeletal muscle 3D cell model (myospheres) as an easy and low-cost tool to study molecular mechanisms of energy metabolism. Methods and results: We demonstrated that human primary myoblasts form myospheres without external matrix support and carry structural and molecular characteristics of mature skeletal muscle after 10 days of differentiation. We found significant metabolic differences between the 2D myotubes model and myospheres. In particular, myospheres showed increased lipid oxidative metabolism than the 2D myotubes model, which oxidized relatively more glucose and accumulated more oleic acid. Discussion and conclusion: These analyses demonstrate model differences that can have an impact and should be taken into consideration for studying energy metabolism and metabolic disorders in skeletal muscle.
Collapse
Affiliation(s)
- Andrea Dalmao-Fernandez
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- *Correspondence: Andrea Dalmao-Fernandez,
| | - Aleksandra Aizenshtadt
- Hybrid Technology Hub Centre of Excellence, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hege G. Bakke
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Stefan Krauss
- Hybrid Technology Hub Centre of Excellence, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Arild C. Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - G. Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eili Tranheim Kase
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Su W, van Wijk SW, Brundel BJJM. Desmin variants: Trigger for cardiac arrhythmias? Front Cell Dev Biol 2022; 10:986718. [PMID: 36158202 PMCID: PMC9500482 DOI: 10.3389/fcell.2022.986718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Desmin (DES) is a classical type III intermediate filament protein encoded by the DES gene. Desmin is abundantly expressed in cardiac, skeletal, and smooth muscle cells. In these cells, desmin interconnects several protein-protein complexes that cover cell-cell contact, intracellular organelles such as mitochondria and the nucleus, and the cytoskeletal network. The extra- and intracellular localization of the desmin network reveals its crucial role in maintaining the structural and mechanical integrity of cells. In the heart, desmin is present in specific structures of the cardiac conduction system including the sinoatrial node, atrioventricular node, and His-Purkinje system. Genetic variations and loss of desmin drive a variety of conditions, so-called desminopathies, which include desmin-related cardiomyopathy, conduction system-related atrial and ventricular arrhythmias, and sudden cardiac death. The severe cardiac disease outcomes emphasize the clinical need to understand the molecular and cellular role of desmin driving desminopathies. As the role of desmin in cardiomyopathies has been discussed thoroughly, the current review is focused on the role of desmin impairment as a trigger for cardiac arrhythmias. Here, the molecular and cellular mechanisms of desmin to underlie a healthy cardiac conduction system and how impaired desmin triggers cardiac arrhythmias, including atrial fibrillation, are discussed. Furthermore, an overview of available (genetic) desmin model systems for experimental cardiac arrhythmia studies is provided. Finally, potential implications for future clinical treatments of cardiac arrhythmias directed at desmin are highlighted.
Collapse
Affiliation(s)
- Wei Su
- Physiology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Stan W. van Wijk
- Physiology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Bianca J. J. M. Brundel
- Physiology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- *Correspondence: Bianca J. J. M. Brundel,
| |
Collapse
|
6
|
Soglia F, Bordini M, Mazzoni M, Zappaterra M, Di Nunzio M, Clavenzani P, Davoli R, Meluzzi A, Sirri F, Petracci M. The evolution of vimentin and desmin in Pectoralis major muscles of broiler chickens supports their essential role in muscle regeneration. Front Physiol 2022; 13:970034. [PMID: 36134328 PMCID: PMC9483144 DOI: 10.3389/fphys.2022.970034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Vimentin (VIM) and desmin (DES) are muscle-specific proteins having crucial roles in maintaining the lateral organization and alignment of the sarcomeric structure during myofibrils’ regeneration. The present experiment was designed to ascertain the evolution of VIM and DES in Pectoralis major muscles (PM) of fast-growing (FG) and medium-growing (MG) meat-type chickens both at the protein and gene levels. MG broilers were considered as a control group whereas the evolution of VIM and DES over the growth period was evaluated in FG by collecting samples at different developmental stages (7, 14, 21, 28, 35, and 42 days). After performing a preliminary classification of the samples based on their histological features, 5 PM/sampling time/genotype were selected for western blot, immunohistochemistry (IHC), and gene expression analyses. Overall, the findings obtained at the protein level mirrored those related to their encoding genes, although a potential time lag required to observe the consequences of gene expression was evident. The two- and 3-fold higher level of the VIM-based heterodimer observed in FG at d 21 and d 28 in comparison with MG of the same age might be ascribed to the beginning and progressive development of the regenerative processes. This hypothesis is supported by IHC highlighting the presence of fibers to co-expressing VIM and DES. In addition, gene expression analyses suggested that, unlike VIM common sequence, VIM long isoform may not be directly implicated in muscle regeneration. As for DES content, the fluctuating trends observed for both the native protein and its heterodimer in FG might be ascribed to its importance for maintaining the structural organization of the regenerating fibers. Furthermore, the higher expression level of the DES gene in FG in comparison with MG further supported its potential application as a marker of muscle fibers’ regeneration. In conclusion, the findings of the present research seem to support the existence of a relationship between the occurrence of muscle regeneration and the growth rate of meat-type chickens and corroborate the potential use of VIM and DES as molecular markers of these cellular processes.
Collapse
Affiliation(s)
- Francesca Soglia
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Martina Bordini
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Maurizio Mazzoni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Martina Zappaterra
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum–University of Bologna, Bologna, Italy
- *Correspondence: Martina Zappaterra,
| | - Mattia Di Nunzio
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Paolo Clavenzani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Roberta Davoli
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Adele Meluzzi
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Federico Sirri
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Massimiliano Petracci
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum–University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Xu J, Wang Y, Gomez-Salazar MA, Hsu GCY, Negri S, Li Z, Hardy W, Ding L, Peault B, James AW. Bone-forming perivascular cells: Cellular heterogeneity and use for tissue repair. Stem Cells 2021; 39:1427-1434. [PMID: 34252260 PMCID: PMC8830593 DOI: 10.1002/stem.3436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/31/2021] [Accepted: 06/25/2021] [Indexed: 11/11/2022]
Abstract
Mesenchymal progenitor cells are broadly distributed across perivascular niches-an observation conserved between species. One common histologic zone with a high frequency of mesenchymal progenitor cells within mammalian tissues is the tunica adventitia, the outer layer of blood vessel walls populated by cells with a fibroblastic morphology. The diversity and functions of (re)generative cells present in this outermost perivascular niche are under intense investigation; we have reviewed herein our current knowledge of adventitial cell potential with a somewhat narrow focus on bone formation. Antigens of interest to functionally segregate adventicytes are discussed, including CD10, CD107a, aldehyde dehydrogenase isoforms, and CD140a, among others. Purified adventicytes (such as CD10+ , CD107alow , and CD140a+ cells) have stronger osteogenic potential and promote bone formation in vivo. Recent bone tissue engineering applications of adventitial cells are also presented. A better understanding of perivascular progenitor cell subsets may represent a beneficial advance for future efforts in tissue repair and bioengineering.
Collapse
Affiliation(s)
- Jiajia Xu
- Department of Pathology, Johns Hopkins University, 21205
| | - Yiyun Wang
- Department of Pathology, Johns Hopkins University, 21205
| | | | | | - Stefano Negri
- Department of Pathology, Johns Hopkins University, 21205
| | - Zhao Li
- Department of Pathology, Johns Hopkins University, 21205
| | - Winters Hardy
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, 90095
| | - Lijun Ding
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology; Clinical Center for Stem Cell Research, Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Center For Cardiovascular Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Bruno Peault
- Center For Cardiovascular Sciences, University of Edinburgh, Edinburgh, United Kingdom
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, 90095
| | - Aaron W. James
- Department of Pathology, Johns Hopkins University, 21205
| |
Collapse
|
8
|
Barrett P, Quick TJ, Mudera V, Player DJ. Generating intrafusal skeletal muscle fibres in vitro: Current state of the art and future challenges. J Tissue Eng 2020; 11:2041731420985205. [PMID: 34956586 PMCID: PMC8693220 DOI: 10.1177/2041731420985205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/12/2020] [Indexed: 01/18/2023] Open
Abstract
Intrafusal fibres are a specialised cell population in skeletal muscle, found within the muscle spindle. These fibres have a mechano-sensory capacity, forming part of the monosynaptic stretch-reflex arc, a key component responsible for proprioceptive function. Impairment of proprioception and associated dysfunction of the muscle spindle is linked with many neuromuscular diseases. Research to-date has largely been undertaken in vivo or using ex vivo preparations. These studies have provided a foundation for our understanding of muscle spindle physiology, however, the cellular and molecular mechanisms which underpin physiological changes are yet to be fully elucidated. Therefrom, the use of in vitro models has been proposed, whereby intrafusal fibres can be generated de novo. Although there has been progress, it is predominantly a developing and evolving area of research. This narrative review presents the current state of art in this area and proposes the direction of future work, with the aim of providing novel pre-clinical and clinical applications.
Collapse
Affiliation(s)
- Philip Barrett
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK
| | - Tom J Quick
- Peripheral Nerve Injury Research Unit, Royal National Orthopaedic Hospital, Stanmore, UK
- UCL Centre for Nerve Engineering, University College London, London, UK
| | - Vivek Mudera
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK
| | - Darren J Player
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK
| |
Collapse
|
9
|
Hughes DC, Baehr LM, Driscoll JR, Lynch SA, Waddell DS, Bodine SC. Identification and characterization of Fbxl22, a novel skeletal muscle atrophy-promoting E3 ubiquitin ligase. Am J Physiol Cell Physiol 2020; 319:C700-C719. [PMID: 32783651 DOI: 10.1152/ajpcell.00253.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Muscle-specific E3 ubiquitin ligases have been identified in muscle atrophy-inducing conditions. The purpose of the current study was to explore the functional role of F-box and leucine-rich protein 22 (Fbxl22), and a newly identified splice variant (Fbxl22-193), in skeletal muscle homeostasis and neurogenic muscle atrophy. In mouse C2C12 muscle cells, promoter fragments of the Fbxl22 gene were cloned and fused with the secreted alkaline phosphatase reporter gene to assess the transcriptional regulation of Fbxl22. The tibialis anterior muscles of male C57/BL6 mice (12-16 wk old) were electroporated with expression plasmids containing the cDNA of two Fbxl22 splice variants and tissues collected after 7, 14, and 28 days. Gastrocnemius muscles of wild-type and muscle-specific RING finger 1 knockout (MuRF1 KO) mice were electroporated with an Fbxl22 RNAi or empty plasmid and denervated 3 days posttransfection, and tissues were collected 7 days postdenervation. The full-length gene and novel splice variant are transcriptionally induced early (after 3 days) during neurogenic muscle atrophy. In vivo overexpression of Fbxl22 isoforms in mouse skeletal muscle leads to evidence of myopathy/atrophy, suggesting that both are involved in the process of neurogenic muscle atrophy. Knockdown of Fbxl22 in the muscles of MuRF1 KO mice resulted in significant additive muscle sparing 7 days after denervation. Targeting two E3 ubiquitin ligases appears to have a strong additive effect on protecting muscle mass loss with denervation, and these findings have important implications in the development of therapeutic strategies to treat muscle atrophy.
Collapse
Affiliation(s)
- David C Hughes
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Leslie M Baehr
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Julia R Driscoll
- Department of Biology, University of North Florida, Jacksonville, Florida
| | - Sarah A Lynch
- Department of Biology, University of North Florida, Jacksonville, Florida
| | - David S Waddell
- Department of Biology, University of North Florida, Jacksonville, Florida
| | - Sue C Bodine
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
10
|
Liu L, Broszczak DA, Broadbent JA, Singh DP, Steck R, Parker TJ, Peake JM. Comparative label-free mass spectrometric analysis of temporal changes in the skeletal muscle proteome after impact trauma in rats. Am J Physiol Endocrinol Metab 2020; 318:E1022-E1037. [PMID: 32255681 DOI: 10.1152/ajpendo.00433.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Proteomics offers the opportunity to identify and quantify many proteins and to explore how they correlate and interact with each other in biological networks. This study aimed to characterize changes in the muscle proteome during the destruction, repair, and early-remodeling phases after impact trauma in male Wistar rats. Muscle tissue was collected from uninjured control rats and rats that were euthanized between 6 h and 14 days after impact injury. Muscle tissue was analyzed using unbiased, data-independent acquisition LC-MS/MS. We identified 770 reviewed proteins in the muscle tissue, 296 of which were differentially abundant between the control and injury groups (P ≤ 0.05). Around 50 proteins showed large differences (≥10-fold) or a distinct pattern of abundance after injury. These included proteins that have not been identified previously in injured muscle, such as ferritin light chain 1, fibrinogen γ-chain, fibrinogen β-chain, osteolectin, murinoglobulin-1, T-kininogen 2, calcium-regulated heat-stable protein 1, macrophage-capping protein, retinoid-inducible serine carboxypeptidase, ADP-ribosylation factor 4, Thy-1 membrane glycoprotein, and ADP-ribosylation factor-like protein 1. Some proteins increased between 6 h and 14 days, whereas other proteins increased in a more delayed pattern at 7 days after injury. Bioinformatic analysis revealed that various biological processes, including regulation of blood coagulation, fibrinolysis, regulation of wound healing, tissue regeneration, acute inflammatory response, and negative regulation of the immune effector process, were enriched in injured muscle tissue. This study advances the understanding of early muscle healing after muscle injury and lays a foundation for future mechanistic studies on interventions to treat muscle injury.
Collapse
Affiliation(s)
- Lian Liu
- Queensland University of Technology, School of Biomedical Sciences, Brisbane, Australia
- Queensland University of Technology, Institute of Health and Biomedical Innovation, Brisbane, Australia
| | - Daniel A Broszczak
- Queensland University of Technology, School of Biomedical Sciences, Brisbane, Australia
- Queensland University of Technology, Institute of Health and Biomedical Innovation, Brisbane, Australia
| | - James A Broadbent
- Queensland University of Technology, School of Biomedical Sciences, Brisbane, Australia
- Queensland University of Technology, Institute of Health and Biomedical Innovation, Brisbane, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, St. Lucia, Australia
| | - Daniel P Singh
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Roland Steck
- Queensland University of Technology, Medical Engineering Research Facility, Institute of Health and Biomedical Innovation, Brisbane, Australia
| | - Tony J Parker
- Queensland University of Technology, School of Biomedical Sciences, Brisbane, Australia
- Queensland University of Technology, Institute of Health and Biomedical Innovation, Brisbane, Australia
| | - Jonathan M Peake
- Queensland University of Technology, School of Biomedical Sciences, Brisbane, Australia
- Queensland University of Technology, Institute of Health and Biomedical Innovation, Brisbane, Australia
| |
Collapse
|
11
|
Filip S, Mokrý J, Forostyak O, Dayanithi G. The extracellular matrix and Ca(2+)signaling mechanisms. Physiol Res 2019; 68:161-170. [DOI: 10.33549/physiolres.934081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The extracellular matrix (ECM) consists of proteins, glycosaminoglycans and glycoproteins, that support the dynamic interactions between cells, including intercellular communication, cell attachment, cell differentiation, cell growth and migration. As such, the ECM represents an essential and very sensitive system within the tissue microenvironment that is involved in processes such as tissue regeneration and carcinogenesis. The aim of the present review is to evaluate its diversity through Ca(2+) signaling and its role in muscle cell function. Here, we discuss some methodological approaches dissecting Ca(2+) handling mechanisms in myogenic and non-myogenic cells, e.g. the importance of Ca(2+) and calpains in muscle dystrophy. We also consider the reconstruction of skeletal muscle by colonization of decellularized ECM with muscle-derived cells isolated from skeletal muscle. Therefore, it is necessary to establish new methodological procedures based on Ca(2+) signaling in skeletal muscle cells and their effect on ECM homeostasis, allowing the monitoring of skeletal muscle reconstruction and organ repair.
Collapse
Affiliation(s)
- S. Filip
- Charles University, Faculty of Medicine, Dept. of Oncology and Radiotherapy, Hradec Králové, Czech Republic.
| | | | | | | |
Collapse
|
12
|
Singh DP, Barani Lonbani Z, Woodruff MA, Parker TJ, Steck R, Peake JM. Effects of Topical Icing on Inflammation, Angiogenesis, Revascularization, and Myofiber Regeneration in Skeletal Muscle Following Contusion Injury. Front Physiol 2017; 8:93. [PMID: 28326040 PMCID: PMC5339266 DOI: 10.3389/fphys.2017.00093] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/06/2017] [Indexed: 01/01/2023] Open
Abstract
Contusion injuries in skeletal muscle commonly occur in contact sport and vehicular and industrial workplace accidents. Icing has traditionally been used to treat such injuries under the premise that it alleviates pain, reduces tissue metabolism, and modifies vascular responses to decrease swelling. Previous research has examined the effects of icing on inflammation and microcirculatory dynamics following muscle injury. However, whether icing influences angiogenesis, collateral vessel growth, or myofiber regeneration remains unknown. We compared the effects of icing vs. a sham treatment on the presence of neutrophils and macrophages; expression of CD34, von Willebrands factor (vWF), vascular endothelial growth factor (VEGF), and nestin; vessel volume; capillary density; and myofiber regeneration in skeletal after muscle contusion injury in rats. Muscle tissue was collected 1, 3, 7, and 28 d after injury. Compared with uninjured rats, muscles in rats that sustained the contusion injury exhibited major necrosis, inflammation, and increased expression of CD34, vWF, VEGF, and nestin. Compared with the sham treatment, icing attenuated and/or delayed neutrophil and macrophage infiltration; the expression of vWF, VEGF, and nestin; and the change in vessel volume within muscle in the first 7 d after injury (P < 0.05). By contrast, icing did not influence capillary density in muscle 28 d after injury (P = 0.59). The percentage of immature myofibers relative to the total number of fibers was greater in the icing group than in the sham group 28 d after injury (P = 0.026), but myofiber cross-sectional area did not differ between groups after 7 d (P = 0.35) and 28 d (P = 0.30). In conclusion, although icing disrupted inflammation and some aspects of angiogenesis/revascularization, these effects did not result in substantial differences in capillary density or muscle growth.
Collapse
Affiliation(s)
- Daniel P Singh
- Tissue Repair and Regeneration Group, Institute of Health and Biomedical Innovation, Queensland University of Technology Brisbane, QLD, Australia
| | - Zohreh Barani Lonbani
- Tissue Repair and Regeneration Group, Institute of Health and Biomedical Innovation, Queensland University of Technology Brisbane, QLD, Australia
| | - Maria A Woodruff
- Biofabrication and Tissue Morphology Group, Institute of Health and Biomedical Innovation, Queensland University of Technology Brisbane, QLD, Australia
| | - Tony J Parker
- Tissue Repair and Regeneration Group, Institute of Health and Biomedical Innovation, Queensland University of TechnologyBrisbane, QLD, Australia; School of Biomedical Sciences, Queensland University of TechnologyBrisbane, QLD, Australia
| | - Roland Steck
- Medical Engineering Research Facility, Queensland University of Technology Brisbane, QLD, Australia
| | - Jonathan M Peake
- Tissue Repair and Regeneration Group, Institute of Health and Biomedical Innovation, Queensland University of TechnologyBrisbane, QLD, Australia; School of Biomedical Sciences, Queensland University of TechnologyBrisbane, QLD, Australia
| |
Collapse
|
13
|
Chaponnier C, Gabbiani G. Monoclonal antibodies against muscle actin isoforms: epitope identification and analysis of isoform expression by immunoblot and immunostaining in normal and regenerating skeletal muscle. F1000Res 2016; 5:416. [PMID: 27335638 PMCID: PMC4893938 DOI: 10.12688/f1000research.8154.2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2016] [Indexed: 11/20/2022] Open
Abstract
Higher vertebrates (mammals and birds) express six different highly conserved actin isoforms that can be classified in three subgroups: 1) sarcomeric actins, α-skeletal (α-SKA) and α-cardiac (α-CAA), 2) smooth muscle actins (SMAs), α-SMA and γ-SMA, and 3) cytoplasmic actins (CYAs), β-CYA and γ-CYA. The variations among isoactins, in each subgroup, are due to 3-4 amino acid differences located in their acetylated N-decapeptide sequence. The first monoclonal antibody (mAb) against an actin isoform (α-SMA) was produced and characterized in our laboratory in 1986 (Skalli et al., 1986) . We have further obtained mAbs against the 5 other isoforms. In this report, we focus on the mAbs anti-α-SKA and anti-α-CAA obtained after immunization of mice with the respective acetylated N-terminal decapeptides using the Repetitive Immunizations at Multiple Sites Strategy (RIMMS). In addition to the identification of their epitope by immunoblotting, we describe the expression of the 2 sarcomeric actins in mature skeletal muscle and during muscle repair after micro-lesions. In particular, we analyze the expression of α-CAA, α-SKA and α-SMA by co-immunostaining in a time course frame during the muscle repair process. Our results indicate that a restricted myocyte population expresses α-CAA and suggest a high capacity of self-regeneration in muscle cells. These antibodies may represent a helpful tool for the follow-up of muscle regeneration and pathological changes.
Collapse
Affiliation(s)
- Christine Chaponnier
- Department of Pathology-Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Giulio Gabbiani
- Department of Pathology-Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
14
|
Alibardi L. Ultrastructural immunolocalization of nestin in the regenerating tail of lizards shows its presence during cytoskeletal modifications in the epidermis, muscles and nerves. Tissue Cell 2015; 47:178-85. [DOI: 10.1016/j.tice.2015.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/07/2015] [Accepted: 01/14/2015] [Indexed: 10/24/2022]
|
15
|
Liang ZW, Wang Z, Chen H, Li C, Zhou T, Yang Z, Yang X, Yang Y, Gao G, Cai W. Nestin-mediated cytoskeletal remodeling in endothelial cells: novel mechanistic insight into VEGF-induced cell migration in angiogenesis. Am J Physiol Cell Physiol 2014; 308:C349-58. [PMID: 25500739 DOI: 10.1152/ajpcell.00121.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nestin is highly expressed in poorly differentiated and newly formed proliferating endothelial cells (ECs); however, the role of this protein in angiogenesis remains unknown. Additionally, the cytoskeleton and associated cytoskeleton-binding proteins mediate the migration of vascular ECs. Therefore, the aim of the present study was to determine whether VEGF regulates the cytoskeleton, as well as other associated proteins, to promote the migration of vascular ECs. The coexpression of nestin and CD31 during angiogenesis in alkali-burned rat corneas was examined via immunohistochemical analysis. Western blot analyses revealed that the exposure of human umbilical vein endothelial cells (HUVECs) to hypoxia promoted nestin expression in vitro. Additionally, nestin silencing via siRNA significantly inhibited many of the process associated with VEGF-induced angiogenesis, including tube formation and the migration and proliferation of HUVECs. Moreover, FITC-phalloidin labeling revealed that F-actin filaments were successfully organized into microfilaments in VEGF-treated cells, suggesting a network rearrangement accomplished via F-actin that contrasted with the uniform and loose actin filament network observed in the siRNA-nestin cells. The results of the present study highlight the key role played by nestin in activated HUVECs during angiogenesis. The inhibition of the ERK pathway suppressed the nestin expression induced by VEGF in the HUVECs. Therefore, our study provides the first evidence that nestin-mediated cytoskeleton remodeling in ECs occurs via filopodia formation along the cell edge, facilitating both filopodia localization and cell polarization and ultimately promoting HUVEC migration via VEGF induction, which may be associated with ERK pathway activation.
Collapse
Affiliation(s)
- Zhen-Wei Liang
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zheng Wang
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Hui Chen
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China; Center for Disease Model Animals, Sun Yat-sen University, Guangzhou, China, Guangzhou, Guangdong Province, China
| | - Cen Li
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ti Zhou
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhonghan Yang
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xia Yang
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yanfang Yang
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Guoquan Gao
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou, Guangdong Province, China; Key Laboratory of Functional Molecules from Marine Microorganisms (Sun Yat-sen University), Department of Education of Guangdong Province, Guangzhou, Guangdong Province, China; and
| | - Weibin Cai
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou, Guangdong Province, China; Center for Disease Model Animals, Sun Yat-sen University, Guangzhou, China, Guangzhou, Guangdong Province, China
| |
Collapse
|
16
|
Cornachione AS, Cação-Benedini LO, Chesca DL, Martinez EZ, Mattiello-Sverzut AC. Effects of eccentric exercise in rehabilitation of phasic and tonic muscles after leg immobilization in rats. Acta Histochem 2014; 116:1216-24. [PMID: 25078116 DOI: 10.1016/j.acthis.2014.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 07/06/2014] [Accepted: 07/07/2014] [Indexed: 11/30/2022]
Abstract
Eccentric exercise is an essential resource for skeletal muscle rehabilitation following muscle disuse however, abnormalities linked to the tissue recuperation require further research. Our aim was analyze the adaptation ability of rehabilitated muscular tissue in rats during different periods of eccentric training after 10 days of limb immobilization. Twenty-seven Wistar rats were divided into six groups: immobilized 10 days, immobilized and eccentric trained for 10 days, immobilized and eccentric trained for 21 days, and three age-matched control groups. After sacrifice, soleus and plantaris muscles were frozen, cut and stained for general histology using hematoxylin and eosin and Gomori trichrome methods and immunohistochemical methods for fiber typing (mATPase, NADH2-TR), for capillaries (CD31) and intermediate filaments (desmin, vimentin) and high resolution microscopy of resin embedded material. Immobilization resulted in more intense morphological alterations in soleus muscles such as formation of target fibers, nuclear centralization, a reduction in the number of type I fibers, diameter of type I, IIA, IIAD fibers, and capillaries. After 10 days of eccentric training, increases in the nuclear centralization and the number of lobulated fibers were observed. This period was insufficient to reestablish the capillary/fiber (C/F) ratio and distribution of fiber types as that observed in the control group. However, 21 days of rehabilitation allowed the reversal of all morphological and quantitative abnormalities. For the plantaris muscles, 10-days of training restored their basic characteristics. Despite the fact that immobilization affected soleus and plantaris muscles, 10 days of eccentric training was insufficient to restore the morphological characteristics of soleus muscles, which was not the case observed in plantaris muscle.
Collapse
Affiliation(s)
- Anabelle S Cornachione
- Department of Biomechanics, Medicine and Rehabilitation of the Locomotor Apparatus, School of Medicine of Ribeirão Preto, University of São Paulo, SP, Brazil.
| | - Letícia O Cação-Benedini
- Department of Biomechanics, Medicine and Rehabilitation of the Locomotor Apparatus, School of Medicine of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Deise Lucia Chesca
- Department of Pathology, School of Medicine of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Edson Z Martinez
- Department of Social Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Ana Claudia Mattiello-Sverzut
- Department of Biomechanics, Medicine and Rehabilitation of the Locomotor Apparatus, School of Medicine of Ribeirão Preto, University of São Paulo, SP, Brazil.
| |
Collapse
|
17
|
Wen D, Ni L, You L, Zhang L, Gu Y, Hao CM, Chen J. Upregulation of nestin in proximal tubules may participate in cell migration during renal repair. Am J Physiol Renal Physiol 2012; 303:F1534-44. [PMID: 22993065 DOI: 10.1152/ajprenal.00083.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The characteristics of renal tubular progenitor/precursor cells and the role of renal tubule regeneration in the repair of remnant kidneys (RKs) after nephrectomy are not well known. In the present study of a murine model of subtotal nephrectomy, we used immunofluorescence (IF), immunoblot analysis, and in situ hybridization methods to demonstrate that nestin expression was transiently upregulated in tubule cells near the incision edges of RKs. The nestin-positive tubules were immature proximal tubules that colabeled with lotus tetragonolobus agglutinin but not with markers of mature tubules (aquaporin-1, Tamm-Horsfall protein, and aquaporin-2). In addition, many of the nestin-expressing tubule cells were actively proliferative cells, as indicated by colabeling with bromodeoxyuridine. Double-label IF and immunoblot analysis also showed that the upregulation of tubular nestin was associated with enhanced transforming growth factor-β1 (TGF-β1) expression in the incision edge of RKs but not α-smooth muscle actin, which is a marker of fibrosis. In cultured human kidney proximal tubule cells (HKC), immunoblot analysis indicated that TGF-β1 induced nestin expression and loss of E-cadherin expression, suggesting an association of nestin expression and cellular dedifferentiation. Knockdown of nestin expression by a short hairpin RNA-containing plasmid led to decreased migration of HKC cells that were induced by TGF-β1. Taken together, our results suggest that the tubule repair that occurs during the recovery process following nephrectomy may involve TGF-β1-induced nestin expression in immature renal proximal tubule cells and the promotion of renal cell migration.
Collapse
Affiliation(s)
- Donghai Wen
- Division of Nephrology, Huashan Hospital, Shanghai Medical College, Fudan Univ., Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Lokireddy S, Wijesoma IW, Sze SK, McFarlane C, Kambadur R, Sharma M. Identification of atrogin-1-targeted proteins during the myostatin-induced skeletal muscle wasting. Am J Physiol Cell Physiol 2012; 303:C512-29. [PMID: 22673621 DOI: 10.1152/ajpcell.00402.2011] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Atrogin-1, a muscle-specific E3 ligase, targets MyoD for degradation through the ubiquitin-proteasome-mediated system. Myostatin, a member of the transforming growth factor-β superfamily, potently inhibits myogenesis by lowering MyoD levels. While atrogin-1 is upregulated by myostatin, it is currently unknown whether atrogin-1 plays a role in mediating myostatin signaling to regulate myogenesis. In this report, we have confirmed that atrogin-1 increasingly interacts with MyoD upon recombinant human myostatin (hMstn) treatment. The absence of atrogin-1, however, led to elevated MyoD levels and permitted the differentiation of atrogin-1(-/-) primary myoblast cultures despite the presence of exogenous myostatin. Furthermore, inactivation of atrogin-1 rescued myoblasts from growth inhibition by hMstn. Therefore, these results highlight the central role of atrogin-1 in regulating myostatin signaling during myogenesis. Currently, there are only two known targets of atrogin-1. Thus, we next characterized the associated proteins of atrogin-1 in control and hMstn-treated C2C12 cell cultures by stably expressing tagged atrogin-1 in myoblasts and myotubes, and sequencing the coimmunoprecipitated proteome. We found that atrogin-1 putatively interacts with sarcomeric proteins, transcriptional factors, metabolic enzymes, components of translation, and spliceosome formation. In addition, we also identified that desmin and vimentin, two components of the intermediate filament in muscle, directly interacted with and were degraded by atrogin-1 in response to hMstn. In summary, the muscle wasting effects of the myostatin-atrogin-1 axis are not only limited to the degradation of MyoD and eukaryotic translation initiation factor 3 subunit f, but also encompass several proteins that are involved in a wide variety of cellular activities in the muscle.
Collapse
|
19
|
Renno WM, Al-Maghrebi M, Al-Banaw A. (−)-Epigallocatechin-3-gallate (EGCG) attenuates functional deficits and morphological alterations by diminishing apoptotic gene overexpression in skeletal muscles after sciatic nerve crush injury. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:807-22. [DOI: 10.1007/s00210-012-0758-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/17/2012] [Indexed: 01/09/2023]
|
20
|
Spassov A, Gredes T, Pavlovic D, Gedrange T, Lehmann C, Lucke S, Kunert-Keil C. Talin, vinculin and nestin expression in orofacial muscles of dystrophin deficient mdx mice. Arch Immunol Ther Exp (Warsz) 2012; 60:137-43. [PMID: 22307364 DOI: 10.1007/s00005-012-0167-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 09/26/2011] [Indexed: 01/29/2023]
Abstract
The activity of cytoskeletal proteins like talin, vinculin and nestin increases in muscle that regenerates. Little is known about their role or at least their expression in the process of regeneration in masticatory muscles of mdx mice, a model of Duchenne muscular dystrophy. To determine a potential role of cytoskeletal proteins in the regeneration process of mdx masticatory muscles, we examined the expression of talin 1, talin 2, vinculin and nestin in 100-day-old control and mdx mice using quantitative RT-PCR, Western blot analyses and histochemistry. The protein expression of talin 1, talin 2, nestin and vinculin in mdx muscles remained unchanged as compared with normal mice. However, in mdx masseter it was found a relative increase of nestin compared to controls. The protein expression of talin 1 and vinculin tended to be increased in mdx tongue and talin 2 to diminish in mdx masseter and temporal muscle. In mdx mice, we found significantly lower percentage of transcripts coding for nestin, talin 1, talin 2 and vinculin in masseter (p < 0.05) and temporal muscle (p < 0.001). In contrast, the mRNA expression of nestin was found to be increased in mdx tongue. Activated satellite cells, myoblasts and immature regenerated muscle fibres in mdx masseter and temporal revealed positive staining for nestin. The findings of the presented work suggest dystrophin-lack-associated changes in the expression of cytoskeletal proteins in mdx masticatory muscles could be compensatory for dystrophin absence. The expression of nestin may serve as an indicator for the regeneration in the orofacial muscles.
Collapse
Affiliation(s)
- Alexander Spassov
- Department of Orthodontics, Faculty of Medicine, University of Greifswald, Rotgerberstr. 8, 17489, Greifswald, Germany.
| | | | | | | | | | | | | |
Collapse
|
21
|
Hyder CL, Isoniemi KO, Torvaldson ES, Eriksson JE. Insights into intermediate filament regulation from development to ageing. J Cell Sci 2011; 124:1363-72. [PMID: 21502133 DOI: 10.1242/jcs.041244] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intermediate filament (IF) proteins comprise a large family with more than 70 members. Initially, IFs were assumed to provide only structural reinforcement for the cell. However, IFs are now known to be dynamic structures that are involved in a wide range of cellular processes during all stages of life, from development to ageing, and during homeostasis and stress. This Commentary discusses some lesser-known functional and regulatory aspects of IFs. We specifically address the emerging roles of nestin in myogenesis and cancer cell migration, and examine exciting evidence on the regulation of nestin and lamin A by the notch signalling pathway, which could have repercussions for our understanding of the roles of IF proteins in development and ageing. In addition, we discuss the modulation of the post-translational modifications of neuronally expressed IFs and their protein-protein interactions, as well as IF glycosylation, which not only has a role in stress and ageing, but might also regulate IFs during development. Although many of these recent findings are still preliminary, they nevertheless open new doors to explore the functionality of the IF family of proteins.
Collapse
Affiliation(s)
- Claire L Hyder
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
| | | | | | | |
Collapse
|
22
|
Saha S, Dey SK, Das P, Jana SS. Increased expression of nonmuscle myosin IIs is associated with 3MC-induced mouse tumor. FEBS J 2011; 278:4025-34. [PMID: 21848673 DOI: 10.1111/j.1742-4658.2011.08306.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Administration of the chemical carcinogen, 3-methylcholanthrene (3MC), in the hind leg induces the progressive formation of tumors in mice within 110 days. Previous reports suggest that transformation of muscle cells to atypical cells is one of the causes of tumor formation. Molecular events that lead to transformation of normal cells to atypical cells are not well understood. Here, we investigate the effect of 3MC on the expression of nonmuscle myosin IIs (NM IIs) which are known to be involved in cell migration, division and adhesion. Mass spectroscopy analysis reveals that tumor tissue contains 64.5% NM II-A, 34% II-B and only 1.5% II-C of total NM IIs, whereas these three isoforms of NM IIs are undetectable by mass spectroscopy in normal tissue associated with the tumor (NTAT) from the hind leg. Quantification of heavy chain mRNAs of NM II suggests that tumor tissue contains 25.7-fold and 19.03-fold more of NM II-A and II-B, respectively, compared with NTAT. Unlike NM II-B, which is detected only after tumor formation, II-A is detectable as early as day 7 after a second dose of 3MC. Immunofluorescence confocal microscopy reveals that fibroblast cells which are sparsely distributed in normal tissue are densely populated but of atypical shape in the tumor. These findings suggest that transformation of fibroblasts or non-fibroblast cells to atypical, cancerous cells is associated with increased levels of NM II-A and NM II-B expression in the 3MC-induced tumor mouse model. 3MC-induced transformation is further demonstrated in C2C12 myotubes.
Collapse
Affiliation(s)
- Shekhar Saha
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | | | | | | |
Collapse
|
23
|
Hazard D, Fernandez X, Pinguet J, Chambon C, Letisse F, Portais JC, Wadih-Moussa Z, Rémignon H, Molette C. Functional genomics of the muscle response to restraint and transport in chickens. J Anim Sci 2011; 89:2717-30. [PMID: 21512117 DOI: 10.2527/jas.2010-3288] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In the present study, we used global approaches (proteomics, transcriptomics, and metabolomics) to assess the molecular basis of the muscle response to stress in chickens. A restraint test, combined with transport for 2 h (RT test) was chosen as the potentially stressful situation. Chickens (6 wk old) were either nontreated (control chickens) or submitted to the RT test (treated chickens). The RT test induced a 6-fold increase in corticosterone concentrations, suggesting hypothalamic-pituitary-adrenal axis activation. The RT test decreased the relative abundance of several hexose phosphates [glucose-1-P (G1P), glucose-6-P (G6P), fructose-6-P (F6P), and mannose-6-P (M6P)] in thigh muscle. In addition, 55 transcripts, among which 39 corresponded to unique annotated genes, were significantly up- (12 genes) or downregulated (27 genes) by treatment. Similarly, 45 proteic spots, among which 29 corresponded to unique annotated proteins, were overexpressed (11 proteins), underexpressed (14 proteins), or only expressed in treated chickens. Integrative analysis of differentially expressed genes and proteins showed that most transcripts and proteins belong to 2 networks whose genes were mainly related with cytoskeleton structure or carbohydrate metabolism. Whereas the decrease in energetic metabolites suggested an activation of glycogenolysis and glycolysis in response to the RT test, the reduced expression of genes and proteins involved in these pathways suggested the opposite. We hypothesized that the prolonged RT test resulted in a repression of glycogenolysis and glycolysis in thigh muscle of chickens. The down-expression of genes and proteins involved in the formation of fiber stress after the RT test suggests a reinforcement of myofibrils in response to stress.
Collapse
Affiliation(s)
- D Hazard
- Université de Toulouse, INPT ENSAT, UMR1289 Tissus Animaux Nutrition Digestion Ecosystème et Métabolisme, F-31326 Castanet-Tolosan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Improved muscle strength and mobility in the dy(2J)/dy(2J) mouse with merosin deficient congenital muscular dystrophy treated with Glatiramer acetate. Neuromuscul Disord 2010; 20:267-72. [PMID: 20304648 DOI: 10.1016/j.nmd.2010.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 01/29/2010] [Accepted: 02/01/2010] [Indexed: 01/01/2023]
Abstract
The therapeutic effect of Glatiramer acetate, an immune modulating agent, was evaluated in the dy(2J)/dy(2J) mouse with merosin deficient congenital muscular dystrophy, which is a milder variant of the dy/dy mouse. The treated mice showed significant improvement in hind limb muscle strength measured by electronic grip strength meter and in motor performance quantified by video detection software. Glatiramer acetate treatment was associated with significantly increased expression of regeneration transcription factors MyoD and myogenin, and attenuation of the fibrosis markers vimentin and fibronectin. No effective treatment is currently available in congenital muscular dystrophy and Glatiramer acetate may present a new potential treatment for this disorder.
Collapse
|
25
|
Extending the knowledge in histochemistry and cell biology. Histochem Cell Biol 2009; 133:1-40. [PMID: 19946696 DOI: 10.1007/s00418-009-0665-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2009] [Indexed: 01/21/2023]
Abstract
Central to modern Histochemistry and Cell Biology stands the need for visualization of cellular and molecular processes. In the past several years, a variety of techniques has been achieved bridging traditional light microscopy, fluorescence microscopy and electron microscopy with powerful software-based post-processing and computer modeling. Researchers now have various tools available to investigate problems of interest from bird's- up to worm's-eye of view, focusing on tissues, cells, proteins or finally single molecules. Applications of new approaches in combination with well-established traditional techniques of mRNA, DNA or protein analysis have led to enlightening and prudent studies which have paved the way toward a better understanding of not only physiological but also pathological processes in the field of cell biology. This review is intended to summarize articles standing for the progress made in "histo-biochemical" techniques and their manifold applications.
Collapse
|