1
|
Karbanová J, Thamm K, Fargeas CA, Deniz IA, Lorico A, Corbeil D. Prominosomes - a particular class of extracellular vesicles containing prominin-1/CD133? J Nanobiotechnology 2025; 23:61. [PMID: 39881297 PMCID: PMC11776279 DOI: 10.1186/s12951-025-03102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
Extracellular membrane vesicles (EVs) offer promising values in various medical fields, e.g., as biomarkers in liquid biopsies or as native (or bioengineered) biological nanocarriers in tissue engineering, regenerative medicine and cancer therapy. Based on their cellular origin EVs can vary considerably in composition and diameter. Cell biological studies on mammalian prominin-1, a cholesterol-binding membrane glycoprotein, have helped to reveal new donor membranes as sources of EVs. For instance, small EVs can originate from microvilli and primary cilia, while large EVs might be produced by transient structures such as retracting cellular extremities of cancer cells during the mitotic rounding process, and the midbody at the end of cytokinesis. Here, we will highlight the various subcellular origins of prominin-1+ EVs, also called prominosomes, and the potential mechanism(s) regulating their formation. We will further discuss the molecular and cellular characteristics of prominin-1, notably those that have a direct effect on the release of prominin-1+ EVs, a process that might be directly implicated in donor cell reprogramming of stem and cancer stem cells. Prominin-1+ EVs also mediate intercellular communication during embryonic development and adult homeostasis in healthy individuals, while disseminating biological information during diseases.
Collapse
Affiliation(s)
- Jana Karbanová
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
| | - Kristina Thamm
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- denovoMATRIX GmbH, Tatzberg 47, 01307, Dresden, Germany
| | - Christine A Fargeas
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Ilker A Deniz
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Aurelio Lorico
- College of Osteopathic Medicine, Touro University Nevada, 874 American Pacific Drive, Henderson, NV, 89014, USA
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
| |
Collapse
|
2
|
Pleskač P, Fargeas CA, Veselska R, Corbeil D, Skoda J. Emerging roles of prominin-1 (CD133) in the dynamics of plasma membrane architecture and cell signaling pathways in health and disease. Cell Mol Biol Lett 2024; 29:41. [PMID: 38532366 DOI: 10.1186/s11658-024-00554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
Prominin-1 (CD133) is a cholesterol-binding membrane glycoprotein selectively associated with highly curved and prominent membrane structures. It is widely recognized as an antigenic marker of stem cells and cancer stem cells and is frequently used to isolate them from biological and clinical samples. Recent progress in understanding various aspects of CD133 biology in different cell types has revealed the involvement of CD133 in the architecture and dynamics of plasma membrane protrusions, such as microvilli and cilia, including the release of extracellular vesicles, as well as in various signaling pathways, which may be regulated in part by posttranslational modifications of CD133 and its interactions with a variety of proteins and lipids. Hence, CD133 appears to be a master regulator of cell signaling as its engagement in PI3K/Akt, Src-FAK, Wnt/β-catenin, TGF-β/Smad and MAPK/ERK pathways may explain its broad action in many cellular processes, including cell proliferation, differentiation, and migration or intercellular communication. Here, we summarize early studies on CD133, as they are essential to grasp its novel features, and describe recent evidence demonstrating that this unique molecule is involved in membrane dynamics and molecular signaling that affects various facets of tissue homeostasis and cancer development. We hope this review will provide an informative resource for future efforts to elucidate the details of CD133's molecular function in health and disease.
Collapse
Affiliation(s)
- Petr Pleskač
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Christine A Fargeas
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Germany
| | - Renata Veselska
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Germany.
| | - Jan Skoda
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| |
Collapse
|
3
|
Paris J, Wilhelm C, Lebbé C, Elmallah M, Pamoukdjian F, Héraud A, Gapihan G, Walle AVD, Tran VN, Hamdan D, Allayous C, Battistella M, Van Glabeke E, Lim KW, Leboeuf C, Roger S, Falgarone G, Phan AT, Bousquet G. PROM2 overexpression induces metastatic potential through epithelial-to-mesenchymal transition and ferroptosis resistance in human cancers. Clin Transl Med 2024; 14:e1632. [PMID: 38515278 PMCID: PMC10958126 DOI: 10.1002/ctm2.1632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
INTRODUCTION Despite considerable therapeutic advances in the last 20 years, metastatic cancers remain a major cause of death. We previously identified prominin-2 (PROM2) as a biomarker predictive of distant metastases and decreased survival, thus providing a promising bio-target. In this translational study, we set out to decipher the biological roles of PROM2 during the metastatic process and resistance to cell death, in particular for metastatic melanoma. METHODS AND RESULTS Methods and results: We demonstrated that PROM2 overexpression was closely linked to an increased metastatic potential through the increase of epithelial-to-mesenchymal transition (EMT) marker expression and ferroptosis resistance. This was also found in renal cell carcinoma and triple negative breast cancer patient-derived xenograft models. Using an oligonucleotide anti-sense anti-PROM2, we efficaciously decreased PROM2 expression and prevented metastases in melanoma xenografts. We also demonstrated that PROM2 was implicated in an aggravation loop, contributing to increase the metastatic burden both in murine metastatic models and in patients with metastatic melanoma. The metastatic burden is closely linked to PROM2 expression through the expression of EMT markers and ferroptosis cell death resistance in a deterioration loop. CONCLUSION Our results open the way for further studies using PROM2 as a bio-target in resort situations in human metastatic melanoma and also in other cancer types.
Collapse
Affiliation(s)
- Justine Paris
- Université Paris Cité, INSERM, UMR_S942 MASCOTParisFrance
| | - Claire Wilhelm
- Laboratoire Physico Chimie Curie, Institut Curie, CNRSPSL Research UniversityParisFrance
| | - Celeste Lebbé
- Université Paris Cité, INSERMParisFrance
- APHP, Dermatolo‐OncologyHôpital Saint LouisParisFrance
| | - Mohammed Elmallah
- Inserm U1327 ISCHEMIAUniversité de Tours, Faculté de MédecineToursFrance
| | - Frédéric Pamoukdjian
- Université Paris Cité, INSERM, UMR_S942 MASCOTParisFrance
- APHP, Hôpital Avicenne, Médecine GériatriqueBobignyFrance
- Université Sorbonne Paris NordVilletaneuseFrance
| | - Audrey Héraud
- Inserm U1327 ISCHEMIAUniversité de Tours, Faculté de MédecineToursFrance
| | | | - Aurore Van De Walle
- Laboratoire Physico Chimie Curie, Institut Curie, CNRSPSL Research UniversityParisFrance
| | - Van Nhan Tran
- School of Physical and Mathematical SciencesNanyang Technological UniversitySingaporeSingapore
| | - Diaddin Hamdan
- Université Paris Cité, INSERM, UMR_S942 MASCOTParisFrance
- Hôpital La Porte Verte, CancérologieVersaillesFrance
| | - Clara Allayous
- Université Paris Cité, INSERMParisFrance
- APHP, Dermatolo‐OncologyHôpital Saint LouisParisFrance
| | - Maxime Battistella
- Université Paris Cité, INSERMParisFrance
- Pathology DepartmentAPHP, Hôpital Saint LouisParisFrance
| | - Emmanuel Van Glabeke
- Fédération d'Urologie de Seine‐Saint‐Denis, CHI Robert BallangéAulnay‐sous‐BoisFrance
| | - Kah Wai Lim
- School of Physical and Mathematical SciencesNanyang Technological UniversitySingaporeSingapore
| | | | - Sébastien Roger
- Inserm U1327 ISCHEMIAUniversité de Tours, Faculté de MédecineToursFrance
| | - Géraldine Falgarone
- Université Paris Cité, INSERM, UMR_S942 MASCOTParisFrance
- APHP, Hôpital Avicenne, Médecine GériatriqueBobignyFrance
- APHPHôpital Avicenne, Unité de Médecine Ambulatoire (UMA)BobignyFrance
| | - Anh Tuan Phan
- Université Sorbonne Paris NordVilletaneuseFrance
- NTU Institute of Structural BiologyNanyang Technological UniversitySingaporeSingapore
| | - Guilhem Bousquet
- Université Paris Cité, INSERM, UMR_S942 MASCOTParisFrance
- APHP, Hôpital Avicenne, Médecine GériatriqueBobignyFrance
- APHPHôpital Avicenne, Oncologie médicalBobignyFrance
| |
Collapse
|
4
|
Novacescu D, Latcu SC, Bardan R, Daminescu L, Cumpanas AA. Contemporary Biomarkers for Renal Transplantation: A Narrative Overview. J Pers Med 2023; 13:1216. [PMID: 37623466 PMCID: PMC10456039 DOI: 10.3390/jpm13081216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
Renal transplantation (RT) is the preferred treatment for end-stage renal disease. However, clinical challenges persist, i.e., early detection of graft dysfunction, timely identification of rejection episodes, personalization of immunosuppressive therapy, and prediction of long-term graft survival. Biomarkers have emerged as valuable tools to address these challenges and revolutionize RT patient care. Our review synthesizes the existing scientific literature to highlight promising biomarkers, their biological characteristics, and their potential roles in enhancing clinical decision-making and patient outcomes. Emerging non-invasive biomarkers seemingly provide valuable insights into the immunopathology of nephron injury and allograft rejection. Moreover, we analyzed biomarkers with intra-nephron specificities, i.e., glomerular vs. tubular (proximal vs. distal), which can localize an injury in different nephron areas. Additionally, this paper provides a comprehensive analysis of the potential clinical applications of biomarkers in the prediction, detection, differential diagnosis and assessment of post-RT non-surgical allograft complications. Lastly, we focus on the pursuit of immune tolerance biomarkers, which aims to reclassify transplant recipients based on immune risk thresholds, guide personalized immunosuppression strategies, and ultimately identify patients for whom immunosuppression may safely be reduced. Further research, validation, standardization, and prospective studies are necessary to fully harness the clinical utility of RT biomarkers and guide the development of targeted therapies.
Collapse
Affiliation(s)
- Dorin Novacescu
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Silviu Constantin Latcu
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Department of Urology, “Pius Brinzeu” Timisoara County Emergency Hospital, Liviu Rebreanu Boulevard, Nr. 156, 300723 Timisoara, Romania; (R.B.); (L.D.); (A.A.C.)
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Razvan Bardan
- Department of Urology, “Pius Brinzeu” Timisoara County Emergency Hospital, Liviu Rebreanu Boulevard, Nr. 156, 300723 Timisoara, Romania; (R.B.); (L.D.); (A.A.C.)
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Liviu Daminescu
- Department of Urology, “Pius Brinzeu” Timisoara County Emergency Hospital, Liviu Rebreanu Boulevard, Nr. 156, 300723 Timisoara, Romania; (R.B.); (L.D.); (A.A.C.)
| | - Alin Adrian Cumpanas
- Department of Urology, “Pius Brinzeu” Timisoara County Emergency Hospital, Liviu Rebreanu Boulevard, Nr. 156, 300723 Timisoara, Romania; (R.B.); (L.D.); (A.A.C.)
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| |
Collapse
|
5
|
Bayır H, Dixon SJ, Tyurina YY, Kellum JA, Kagan VE. Ferroptotic mechanisms and therapeutic targeting of iron metabolism and lipid peroxidation in the kidney. Nat Rev Nephrol 2023; 19:315-336. [PMID: 36922653 DOI: 10.1038/s41581-023-00689-x] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 03/17/2023]
Abstract
Ferroptosis is a mechanism of regulated necrotic cell death characterized by iron-dependent, lipid peroxidation-driven membrane destruction that can be inhibited by glutathione peroxidase 4. Morphologically, it is characterized by cellular, organelle and cytoplasmic swelling and the loss of plasma membrane integrity, with the release of intracellular components. Ferroptosis is triggered in cells with dysregulated iron and thiol redox metabolism, whereby the initial robust but selective accumulation of hydroperoxy polyunsaturated fatty acid-containing phospholipids is further propagated through enzymatic and non-enzymatic secondary mechanisms, leading to formation of oxidatively truncated electrophilic species and their adducts with proteins. Thus, ferroptosis is dependent on the convergence of iron, thiol and lipid metabolic pathways. The kidney is particularly susceptible to redox imbalance. A growing body of evidence has linked ferroptosis to acute kidney injury in the context of diverse stimuli, such as ischaemia-reperfusion, sepsis or toxins, and to chronic kidney disease, suggesting that ferroptosis may represent a novel therapeutic target for kidney disease. However, further work is needed to address gaps in our understanding of the triggers, execution and spreading mechanisms of ferroptosis.
Collapse
Affiliation(s)
- Hülya Bayır
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Free Radical and Antioxidant Health, Departments of Environmental Health, Pharmacology and Chemical Biology, Chemistry, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pediatrics, Division of Critical Care and Hospital Medicine, Redox Health Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, Departments of Environmental Health, Pharmacology and Chemical Biology, Chemistry, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - John A Kellum
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, Departments of Environmental Health, Pharmacology and Chemical Biology, Chemistry, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Jászai J, Thamm K, Karbanová J, Janich P, Fargeas CA, Huttner WB, Corbeil D. Prominins control ciliary length throughout the animal kingdom: New lessons from human prominin-1 and zebrafish prominin-3. J Biol Chem 2020; 295:6007-6022. [PMID: 32201384 DOI: 10.1074/jbc.ra119.011253] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/18/2020] [Indexed: 01/18/2023] Open
Abstract
Prominins (proms) are transmembrane glycoproteins conserved throughout the animal kingdom. They are associated with plasma membrane protrusions, such as primary cilia, as well as extracellular vesicles derived thereof. Primary cilia host numerous signaling pathways affected in diseases known as ciliopathies. Human PROM1 (CD133) is detected in both somatic and cancer stem cells and is also expressed in terminally differentiated epithelial and photoreceptor cells. Genetic mutations in the PROM1 gene result in retinal degeneration by impairing the proper formation of the outer segment of photoreceptors, a modified cilium. Here, we investigated the impact of proms on two distinct examples of ciliogenesis. First, we demonstrate that the overexpression of a dominant-negative mutant variant of human PROM1 (i.e. mutation Y819F/Y828F) significantly decreases ciliary length in Madin-Darby canine kidney cells. These results contrast strongly to the previously observed enhancing effect of WT PROM1 on ciliary length. Mechanistically, the mutation impeded the interaction of PROM1 with ADP-ribosylation factor-like protein 13B, a key regulator of ciliary length. Second, we observed that in vivo knockdown of prom3 in zebrafish alters the number and length of monocilia in the Kupffer's vesicle, resulting in molecular and anatomical defects in the left-right asymmetry. These distinct loss-of-function approaches in two biological systems reveal that prom proteins are critical for the integrity and function of cilia. Our data provide new insights into ciliogenesis and might be of particular interest for investigations of the etiologies of ciliopathies.
Collapse
Affiliation(s)
- József Jászai
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany; Institute of Anatomy, Medizinische Fakultät der Technischen Universität Dresden, Fiedlerstrasse 42, 01307 Dresden, Germany.
| | - Kristina Thamm
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany
| | - Jana Karbanová
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany
| | - Peggy Janich
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany
| | - Christine A Fargeas
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany
| | - Wieland B Huttner
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Denis Corbeil
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany.
| |
Collapse
|
7
|
Li W, Zhu Y, Zhang K, Yu X, Lin H, Wu W, Peng Y, Sun J. PROM2 promotes gemcitabine chemoresistance via activating the Akt signaling pathway in pancreatic cancer. Exp Mol Med 2020; 52:409-422. [PMID: 32123287 PMCID: PMC7156657 DOI: 10.1038/s12276-020-0390-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 11/08/2019] [Accepted: 12/16/2019] [Indexed: 12/24/2022] Open
Abstract
In recent years, the deoxycytidine analogue gemcitabine (2′,2′,-difluorodeoxycytidine) has become the first-line chemotherapeutic agent for patients with pancreatic cancer. However, due to the intrinsic resistance of pancreatic cancer cells, gemcitabine-based chemotherapy yields limited disease control, with >85% disease progression at 6 months from diagnosis. Therefore, elucidating the mechanisms of chemoresistance is a critical step in improving cancer therapy, especially for the treatment of pancreatic cancer. We show PROM2, a transmembrane glycoprotein, is ubiquitously upregulated in pancreatic cancer cell. We also found higher PROM2 expression is associated with shortened overall and disease-free survival times in patients diagnosed with pancreatic cancer. We provide evidence that PROM2 promotes chemoresistance to gemcitabine both in vivo and in vitro. Mechanistically, we demonstrate that PROM2 could directly interacted with Akt and activates the Akt signaling pathway, which thus inhibiting gemcitabine-induced apoptosis. As further evidence, we show PROM2 expression and Akt phosphorylation both promote gemcitabine chemoresistance, and cause poorer survival in clinical samples with pancreatic cancer. Combining gemcitabine with the Akt inhibitor MK-2206 facilitated significant tumor shrinkage and dramatically elevated the survival status in mice xenografted with pancreatic cancer cells. Our findings not only establish PROM2 as a novel positive regulator of the Akt signaling pathway and a candidate prognostic indicator of gemcitabine response, but also provide a neo-therapeutic approach for patients resistant to gemcitabine treatment. A cell membrane protein called PROM2 promotes the resistance of pancreatic cancer to the anti-cancer drug gemcitabine, suggesting PROM2 and the molecular signaling pathway it stimulates could be targeted by new treatments. Researchers in China led by Jian Sun at Sun Yat-Sen University, Guangzhou, investigated the role of PROM2 in cultured human pancreatic cancer cells and in a mouse model of pancreatic cancer. Production and activity of PROM2 were increased in cancer cells, leading to increased resistance to gemcitabine. The researchers found that PROM2’s promotion of gemcitabine resistance was linked to its ability to bind to another protein called Akt. This interaction stimulates the Akt signaling pathway, sustaining cancer cells. Combining gemcitabine therapy with an Akt pathway inhibitor restored cancer cell sensitivity to gemcitabine, revealing a potential approach to developing drugs to overcome gemcitabine resistance.
Collapse
Affiliation(s)
- Wenbin Li
- Department of Hepatobiliary and pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yue Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Vascular and Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Kelin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Surgical Intensive Care Unit, Sun Yat‑sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xianhuan Yu
- Department of Hepatobiliary and pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Haoming Lin
- Department of Hepatobiliary and pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Wenrui Wu
- Department of Hepatobiliary and pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yaorong Peng
- Department of Hepatobiliary and pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Jian Sun
- Department of Hepatobiliary and pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
8
|
Brown CW, Amante JJ, Chhoy P, Elaimy AL, Liu H, Zhu LJ, Baer CE, Dixon SJ, Mercurio AM. Prominin2 Drives Ferroptosis Resistance by Stimulating Iron Export. Dev Cell 2019; 51:575-586.e4. [PMID: 31735663 PMCID: PMC8316835 DOI: 10.1016/j.devcel.2019.10.007] [Citation(s) in RCA: 405] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/28/2019] [Accepted: 10/11/2019] [Indexed: 12/20/2022]
Abstract
Ferroptosis, regulated cell death characterized by the iron-dependent accumulation of lethal lipid reactive oxygen species, contributes to tissue homeostasis and numerous pathologies, and it may be exploited for therapy. Cells differ in their sensitivity to ferroptosis, however, and a key challenge is to understand mechanisms that contribute to resistance. Using RNA-seq to identify genes that contribute to ferroptosis resistance, we discovered that pro-ferroptotic stimuli, including inhibition of the lipid hydroperoxidase GPX4 and detachment from the extracellular matrix, induce expression of prominin2, a pentaspanin protein implicated in regulation of lipid dynamics. Prominin2 facilitates ferroptosis resistance in mammary epithelial and breast carcinoma cells. Mechanistically, prominin2 promotes the formation of ferritin-containing multivesicular bodies (MVBs) and exosomes that transport iron out of the cell, inhibiting ferroptosis. These findings reveal that ferroptosis resistance can be driven by a prominin2-MVB-exosome-ferritin pathway and have broad implications for iron homeostasis, intracellular trafficking, and cancer.
Collapse
Affiliation(s)
- Caitlin W Brown
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - John J Amante
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Peter Chhoy
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ameer L Elaimy
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Haibo Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Christina E Baer
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA; Sanderson Center for Optical Examination, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Arthur M Mercurio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
9
|
Santelli A, Sun IO, Eirin A, Abumoawad AM, Woollard JR, Lerman A, Textor S, Puranik AS, Lerman LO. Senescent Kidney Cells in Hypertensive Patients Release Urinary Extracellular Vesicles. J Am Heart Assoc 2019; 8:e012584. [PMID: 31433703 PMCID: PMC6585370 DOI: 10.1161/jaha.119.012584] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022]
Abstract
Background Hypertension may be associated with renal cellular injury. Cells in distress release extracellular vesicles (EVs), and their numbers in urine may reflect renal injury. Cellular senescence, an irreversible growth arrest in response to a noxious milieu, is characterized by release of proinflammatory cytokines. We hypothesized that EVs released by senescent nephron cells can be identified in urine of patients with hypertension. Methods and Results We recruited patients with essential hypertension (EH) or renovascular hypertension and healthy volunteers (n=14 each). Renal oxygenation was assessed using magnetic resonance imaging and blood samples collected from both renal veins for cytokine-level measurements. EVs isolated from urine samples were characterized by imaging flow cytometry based on specific markers, including p16 (senescence marker), calyxin (podocytes), urate transporter 1 (proximal tubules), uromodulin (ascending limb of Henle's loop), and prominin-2 (distal tubules). Overall percentage of urinary p16+ EVs was elevated in EH and renovascular hypertension patients compared with healthy volunteers and correlated inversely with renal function and directly with renal vein cytokine levels. Urinary levels of p16+/urate transporter 1+ were elevated in all hypertensive subjects compared with healthy volunteers, whereas p16+/prominin-2+ levels were elevated only in EH versus healthy volunteers and p16+/uromodulin+ in renovascular hypertension versus EH. Conclusions Levels of p16+ EVs are elevated in urine of hypertensive patients and may reflect increased proximal tubular cellular senescence. In EH, EVs originate also from distal tubules and in renovascular hypertension from Henle's loop. Hence, urinary EVs levels may be useful to identify intrarenal sites of cellular senescence.
Collapse
Affiliation(s)
- Adrian Santelli
- Division of Nephrology and HypertensionMayo ClinicRochesterMN
- Department of PhysiopathologyHospital de ClinicasMontevideoUruguay
| | - In O. Sun
- Division of Nephrology and HypertensionMayo ClinicRochesterMN
| | - Alfonso Eirin
- Division of Nephrology and HypertensionMayo ClinicRochesterMN
| | | | | | - Amir Lerman
- Department of Cardiovascular DiseasesMayo ClinicRochesterMN
| | | | | | | |
Collapse
|
10
|
Thamm K, Šimaitė D, Karbanová J, Bermúdez V, Reichert D, Morgenstern A, Bornhäuser M, Huttner WB, Wilsch‐Bräuninger M, Corbeil D. Prominin‐1 (CD133) modulates the architecture and dynamics of microvilli. Traffic 2018; 20:39-60. [DOI: 10.1111/tra.12618] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 10/13/2018] [Accepted: 10/14/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Kristina Thamm
- Tissue Engineering LaboratoriesBiotechnology Center and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden Dresden Germany
| | - Deimantė Šimaitė
- Tissue Engineering LaboratoriesBiotechnology Center and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden Dresden Germany
| | - Jana Karbanová
- Tissue Engineering LaboratoriesBiotechnology Center and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden Dresden Germany
| | - Vicente Bermúdez
- Tissue Engineering LaboratoriesBiotechnology Center and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden Dresden Germany
| | - Doreen Reichert
- Tissue Engineering LaboratoriesBiotechnology Center and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden Dresden Germany
| | - Anne Morgenstern
- Tissue Engineering LaboratoriesBiotechnology Center and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden Dresden Germany
| | - Martin Bornhäuser
- Medical Clinic and Polyclinic IUniversity Hospital Carl Gustav Carus Dresden Germany
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics Dresden Germany
| | | | - Denis Corbeil
- Tissue Engineering LaboratoriesBiotechnology Center and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden Dresden Germany
| |
Collapse
|
11
|
Lyu Z, Mao Z, Li Q, Xia Y, Liu Y, He Q, Wang Y, Zhao H, Lu Z, Zhou Q. PPARγ maintains the metabolic heterogeneity and homeostasis of renal tubules. EBioMedicine 2018; 38:178-190. [PMID: 30420298 PMCID: PMC6306377 DOI: 10.1016/j.ebiom.2018.10.072] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/22/2018] [Accepted: 10/31/2018] [Indexed: 02/03/2023] Open
Abstract
Background The renal tubules, which have distant metabolic features and functions in different segments, reabsorb >99% of approximately 180 l of water and 25,000 mmol of Na + daily. Defective metabolism in renal tubules is involved in the pathobiology of kidney diseases. However, the mechanisms underlying the metabolic regulation in renal tubules remain to be defined. Methods We quantitatively compared the proteomes of the isolated proximal tubules (PT) and distal tubules (DT) from C57BL/6 mouse using tandem mass tag (TMT) labeling-based quantitative mass spectrometry. Bioinformatics analysis of the differentially expressed proteins revealed the significant differences between PT and DT in metabolism pathway. We also performed in vitro and in vivo assays to investigate the molecular mechanism underlying the distant metabolic features in PT and DT. Findings We demonstrate that the renal proximal tubule (PT) has high expression of lipid metabolism enzymes, which is transcriptionally upregulated by abundantly expressed PPARα/γ. In contrast, the renal distal tubule (DT) has elevated glycolytic enzyme expression, which is mediated by highly expressed c-Myc. Importantly, PPARγ transcriptionally enhances the protease iRhom2 expression in PT, which suppresses EGF expression and secretion and subsequent EGFR-dependent glycolytic gene expression and glycolysis. PPARγ inhibition reduces iRhom2 expression and increases EGF and GLUT1 expression in PT in mice, resulting in renal tubule hypertrophy, tubulointerstitial fibrosis and damaged kidney functions, which are rescued by 2-deoxy-d-glucose treatment. Interpretation These findings delineate instrumental mechanisms underlying the active lipid metabolism and suppressed glycolysis in PT and active glycolysis in DT and reveal critical roles for PPARs and c-Myc in maintaining renal metabolic homeostasis. FUND: This work was supported by the National Natural Science Foundation of China (grants 81572076 and 81873932; to Q.Z.), the Applied Development Program of the Science and Technology Committee of Chongqing (cstc2014yykfB10003; Q.Z.), the Program of Populace Creativities Workshops of the Science and Technology Committee of Chongqing (Q.Z.), the special demonstration programs for innovation and application of techniques (cstc2018jscx-mszdX0022) from the Science and Technology Committee of Chongqing (Q.Z.).
Collapse
Affiliation(s)
- Zhongshi Lyu
- The Division of Molecular Nephrology, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The School of Laboratory Medicine, Chongqing Medical University, Chongqing, People's Republic of China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zhaomin Mao
- The Division of Molecular Nephrology, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The School of Laboratory Medicine, Chongqing Medical University, Chongqing, People's Republic of China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Qianyin Li
- The Division of Molecular Nephrology, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The School of Laboratory Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yan Xia
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yamin Liu
- The Division of Molecular Nephrology, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The School of Laboratory Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| | - Qingling He
- The Division of Molecular Nephrology, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The School of Laboratory Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hui Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Zhimin Lu
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Qin Zhou
- The Division of Molecular Nephrology, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The School of Laboratory Medicine, Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
12
|
Verschuren EHJ, Mohammed SG, Leonhard WN, Overmars-Bos C, Veraar K, Hoenderop JGJ, Bindels RJM, Peters DJM, Arjona FJ. Polycystin-1 dysfunction impairs electrolyte and water handling in a renal precystic mouse model for ADPKD. Am J Physiol Renal Physiol 2018; 315:F537-F546. [PMID: 29767557 DOI: 10.1152/ajprenal.00622.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The PKD1 gene encodes polycystin-1 (PC1), a mechanosensor triggering intracellular responses upon urinary flow sensing in kidney tubular cells. Mutations in PKD1 lead to autosomal dominant polycystic kidney disease (ADPKD). The involvement of PC1 in renal electrolyte handling remains unknown since renal electrolyte physiology in ADPKD patients has only been characterized in cystic ADPKD. We thus studied the renal electrolyte handling in inducible kidney-specific Pkd1 knockout (iKsp- Pkd1-/-) mice manifesting a precystic phenotype. Serum and urinary electrolyte determinations indicated that iKsp- Pkd1-/- mice display reduced serum levels of magnesium (Mg2+), calcium (Ca2+), sodium (Na+), and phosphate (Pi) compared with control ( Pkd1+/+) mice and renal Mg2+, Ca2+, and Pi wasting. In agreement with these electrolyte disturbances, downregulation of key genes for electrolyte reabsorption in the thick ascending limb of Henle's loop (TA;, Cldn16, Kcnj1, and Slc12a1), distal convoluted tubule (DCT; Trpm6 and Slc12a3) and connecting tubule (CNT; Calb1, Slc8a1, and Atp2b4) was observed in kidneys of iKsp- Pkd1-/- mice compared with controls. Similarly, decreased renal gene expression of markers for TAL ( Umod) and DCT ( Pvalb) was observed in iKsp- Pkd1-/- mice. Conversely, mRNA expression levels in kidney of genes encoding solute and water transporters in the proximal tubule ( Abcg2 and Slc34a1) and collecting duct ( Aqp2, Scnn1a, and Scnn1b) remained comparable between control and iKsp- Pkd1-/- mice, although a water reabsorption defect was observed in iKsp- Pkd1-/- mice. In conclusion, our data indicate that PC1 is involved in renal Mg2+, Ca2+, and water handling and its dysfunction, resulting in a systemic electrolyte imbalance characterized by low serum electrolyte concentrations.
Collapse
Affiliation(s)
- Eric H J Verschuren
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Sami G Mohammed
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Wouter N Leonhard
- Department of Human Genetics, Leiden University Medical Centre , Leiden , The Netherlands
| | - Caro Overmars-Bos
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Kimberly Veraar
- Department of Human Genetics, Leiden University Medical Centre , Leiden , The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Centre , Leiden , The Netherlands
| | - Francisco J Arjona
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands
| |
Collapse
|
13
|
Dowland SN, Madawala RJ, Poon CE, Lindsay LA, Murphy CR. Prominin-2 Prevents the Formation of Caveolae in Normal and Ovarian Hyperstimulated Pregnancy. Reprod Sci 2017; 25:1231-1242. [PMID: 29113580 DOI: 10.1177/1933719117737842] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
During early pregnancy, uterine epithelial cells (UECs) become less adherent to the underlying basal lamina and are subsequently removed so the blastocyst can invade the underlying stroma. This process involves the removal of focal adhesions from the basal plasma membrane of UECs. These focal adhesions are thought to be internalized by caveolae, which significantly increase in abundance at the time of blastocyst implantation. A recent in vitro study indicated that prominin-2 prevents the formation of caveolae by sequestering membrane cholesterol. The present study examines whether prominin-2 affects the formation of caveolae and loss of focal adhesions in UECs during normal and ovarian hyperstimulation (OH) pregnancy in the rat. At the time of fertilization during normal pregnancy, prominin-2 is distributed throughout the basolateral plasma membrane. However, at the time of implantation and coincident with an increase in caveolae, prominin-2 is lost from the basal plasma membrane. In contrast, prominin-2 remains in the basolateral plasma membrane throughout OH pregnancy. Transmission electron microscopy showed that this membrane contained few caveolae throughout OH pregnancy. Our results indicate that prominin-2 prevents the formation of caveolae. We suggest the retention of prominin-2 in the basal plasma membrane during OH pregnancy prevents the formation of caveolae and is responsible for the retention of focal adhesions in this membrane, thereby contributing to the reduced implantation rate observed after such treatments.
Collapse
Affiliation(s)
- Samson N Dowland
- 1 Cell and Reproductive Biology Laboratory, School of Medical Sciences (Discipline of Anatomy and Histology) and The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Romanthi J Madawala
- 1 Cell and Reproductive Biology Laboratory, School of Medical Sciences (Discipline of Anatomy and Histology) and The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Connie E Poon
- 1 Cell and Reproductive Biology Laboratory, School of Medical Sciences (Discipline of Anatomy and Histology) and The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Laura A Lindsay
- 1 Cell and Reproductive Biology Laboratory, School of Medical Sciences (Discipline of Anatomy and Histology) and The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Christopher R Murphy
- 1 Cell and Reproductive Biology Laboratory, School of Medical Sciences (Discipline of Anatomy and Histology) and The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Zhou Y, He Q, Chen J, Liu Y, Mao Z, Lyu Z, Ni D, Long Y, Ju P, Liu J, Gu Y, Zhou Q. The expression patterns of Tetratricopeptide repeat domain 36 (Ttc36). Gene Expr Patterns 2016; 22:37-45. [PMID: 27826126 DOI: 10.1016/j.gep.2016.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/20/2016] [Accepted: 11/02/2016] [Indexed: 02/05/2023]
Abstract
Tetratricopeptide repeat domain 36 (Ttc36), whose coding protein belongs to tetratricopeptide repeat (TPR) motif family, has not been studied extensively. We for the first time showed that Ttc36 is evolutionarily conserved across mammals by bioinformatics. Rabbit anti-mouse Ttc36 polyclonal antibody was generated by injecting synthetic full-length peptides through "antigen intersection" strategy. Subsequently, we characterized Ttc36 expression profile in mouse, showing its expression in liver and kidney both from embryonic day 15.5 (E15.5) until adult, as well as in testis. Immunofluorescence staining showed that Ttc36 is diffusely expressed in liver, however, specifically in kidney cortex. Thus, we further compare Ttc36 with proximal tubules (PT) marker Lotus Tetragonolobus Lectin (LTL) and distal tubules (DT) marker Calbindin-D28k respectively by double immunofluorescence staining. Results showed the co-localization of Ttc36 with LTL rather than Calbindin-D28k. Collectively, on the basis of the expression pattern, Ttc36 is specifically expressed in proximal distal tubules.
Collapse
Affiliation(s)
- Yuru Zhou
- Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China; The Seventh Class of 2012 Year Entry, The Third Clinical College, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Qingling He
- Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Jihui Chen
- Department of Dermatology, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| | - Yunhong Liu
- Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Zhaomin Mao
- Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Zhongshi Lyu
- Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Dongsheng Ni
- Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Yaoshui Long
- Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Pan Ju
- Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Jianing Liu
- Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Yuping Gu
- Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Qin Zhou
- Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
15
|
Abstract
Mammalian tissues are always exposed to diverse threats from pathological conditions and
aging. Therefore, the molecular systems that protect the cells from these threats are
indispensable for cell survival. A variety of diseases, including neurodegenerative
diseases, cause intracellular damage and disturb homeostasis. Heat shock transcription
factor 1 (HSF1) positively regulates heat shock protein (Hsp) and maintains the precise
folding of proteins. Moreover, HSF1 induces the non-Hsp genes expression, and degrades
damaged/misfolded protein. Recently, my colleagues and I revealed non-Hsp genes have more
protective roles than Hsps at the cellular level. However, whether these protective
systems are similarly important to cellular defense in each tissue is still elusive. In
this study, I compared polyglutamine (polyQ) protein aggregations/inclusion development in
each tissue of WT- and HSF1KO-Huntington’s disease (HD) mice, and examined the expression
of the eight non-Hsp HSF1 target genes that have a strong suppressive effect on polyQ
protein aggregation. Of these genes, Nfatc2, Pdzk3, Cryab, Csrp2, and Prame were detected
in most tissues, but the other genes were not. Surprisingly, the obvious effect of HSF1
deficiency on the expression of these five genes was detected in only heart, spleen, and
stomach. In addition, polyQ protein aggregations/inclusion was not detected in any tissues
of WT-HD and HSF1KO-HD mice, but higher level of pre-aggregative polyQ protein was
detected in HSF1KO-HD tissues. These results indicate non-Hsp genes are indispensable for
the maintenance of intracellular homeostasis in mammalian tissues, resulting in whole body
homeostasis.
Collapse
Affiliation(s)
- Naoki Hayashida
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| |
Collapse
|
16
|
Singh RD, Schroeder AS, Scheffer L, Holicky EL, Wheatley CL, Marks DL, Pagano RE. Prominin-2 expression increases protrusions, decreases caveolae and inhibits Cdc42 dependent fluid phase endocytosis. Biochem Biophys Res Commun 2013; 434:466-72. [PMID: 23583380 DOI: 10.1016/j.bbrc.2013.03.097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 03/26/2013] [Indexed: 11/18/2022]
Abstract
BACKGROUND Membrane protrusions play important roles in biological processes such as cell adhesion, wound healing, migration, and sensing of the external environment. Cell protrusions are a subtype of membrane microdomains composed of cholesterol and sphingolipids, and can be disrupted by cholesterol depletion. Prominins are pentaspan membrane proteins that bind cholesterol and localize to plasma membrane (PM) protrusions. Prominin-1 is of great interest as a marker for stem and cancer cells, while Prominin-2 (Prom2) is reportedly restricted to epithelial cells. AIM To characterize the effects of Prom-2 expression on PM microdomain organization. METHODS Prom2-fluorescent protein was transfected in human skin fibroblasts (HSF) and Chinese hamster ovary (CHO) cells for PM raft and endocytic studies. Caveolae at PM were visualized using transmission electron microscopy. Cdc42 activation was measured and caveolin-1 knockdown was performed using siRNAs. RESULTS Prom2 expression in HSF and CHO cells caused extensive Prom2-positive protrusions that co-localized with lipid raft markers. Prom2 expression significantly decreased caveolae at the PM, reduced caveolar endocytosis and increased caveolin-1 phosphorylation. Prom2 expression also inhibited Cdc42-dependent fluid phase endocytosis via decreased Cdc42 activation. Effects on endocytosis were reversed by addition of cholesterol. Knockdown of caveolin-1 by siRNA restored Cdc42 dependent fluid phase endocytosis in Prom2-expressing cells. CONCLUSIONS Prom2 protrusions primarily localize to lipid rafts and recruit cholesterol into protrusions and away from caveolae, leading to increased phosphorylation of caveolin-1, which inhibits Cdc42-dependent endocytosis. This study provides a new insight for the role for prominins in the regulation of PM lipid organization.
Collapse
Affiliation(s)
- Raman Deep Singh
- Departments of Medicine, Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Wittig D, Jászai J, Corbeil D, Funk RHW. Immunohistochemical localization and characterization of putative mesenchymal stem cell markers in the retinal capillary network of rodents. Cells Tissues Organs 2013; 197:344-59. [PMID: 23571553 DOI: 10.1159/000346661] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2012] [Indexed: 11/19/2022] Open
Abstract
Perivascular cells of microvascular niches are the prime candidates for being a reservoire of mesenchymal stem cell (MSC)-like cells in many tissues and organs that could serve as a potential source of cells and a target of novel cell-based therapeutic approaches. In the present study, by utilising typical markers of pericytes (neuronal-glial antigen 2, NG2, a chondroitin sulphate proteoglycan) and those of MSCs (CD146 and CD105) and primitive pluripotent cells (sex-determining region Y-box 2, Sox2), the phenotypic traits and the distribution of murine and rat retinal perivascular cells were investigated in situ. Our findings indicate that retinal microvessels of juvenile rodents are highly covered by NG2-positive branching processes of pericytic (perivascular) cells that are less prominent in mature capillary networks of the adult retina. In the adult rodent retinal vascular bed, NG2 labeling is mainly confined to membranes of the cell body resulting in a pearl-chain-like distribution along the vessels. Retinal pericytes, which were identified by their morphology and NG2 expression, simultaneously express CD146. Furthermore, CD146-positive cells located at small arteriole-to-capillary branching points appear more intensely stained than elsewhere. Evidence for a differential expression of the two markers around capillaries that would hint at a clonal heterogeneity among pericytic cells, however, is lacking. In contrast, the expression of CD105 is exclusively restricted to vascular endothelial cells and Sox2 is detected neither in perivascular nor in endothelial cells. In dissociated retinal cultures, however, simultaneous expression of NG2 and CD105 was observed. Collectively, our data indicate that vascular wall resident retinal pericytes share some phenotypic features (i.e. CD146 expression) with archetypal MSCs, which is even more striking in dissociated retinal cultures (i.e. CD105 expression). These findings might have implications for the treatment of retinal pathologies.
Collapse
Affiliation(s)
- Dierk Wittig
- Institute of Anatomy, TU Dresden, Dresden, Germany.
| | | | | | | |
Collapse
|
18
|
Fargeas CA. Prominin-2 and Other Relatives of CD133. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 777:25-40. [PMID: 23161073 DOI: 10.1007/978-1-4614-5894-4_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Several molecules related to prominin-1/CD133, which was first characterized as a marker of mouse neuroepithelial stem cells and human hematopoietic stem cells, have been identified in various species. In mammals, a second prominin gene, prominin-2, has been identified and characterized, whereas in nonmammalian species, up to three prominin genes are potentially expressed. The structural similarities between prominin-1 and prominin-2 are, to some extent, reflected by their biochemical properties; both proteins are selectively concentrated in specific plasma membrane subdomains that protrude into the extracellular space and are released in small extracellular membrane vesicles. In contrast to the apically confined prominin-1, prominin-2 is distributed in a nonpolarized apico-basolateral fashion in polarized epithelial cells and appears to be expressed in separate epithelial cells. Their distinctive localization in plasma membrane protrusions is a hallmark of prominins, validating the naming of the family after its first identified member. Insights into the distinctive and/or complementary roles of the two prominins may be obtained by analyzing the evolutionary history of these proteins and the characteristics of orthologs and paralogs in more distantly related species. In addition, the characterization of prominins may shed light on the still elusive function of CD133.
Collapse
Affiliation(s)
- Christine A Fargeas
- Tissue Engineering Laboratories (BIOTEC), Technische Universität Dresden, Tatzberg 47-51, D-01307, Dresden, Germany,
| |
Collapse
|
19
|
Sykes AM, Huttner WB. Prominin-1 (CD133) and the Cell Biology of Neural Progenitors and Their Progeny. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 777:89-98. [PMID: 23161077 DOI: 10.1007/978-1-4614-5894-4_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Our group discovered prominin-1 in search for markers to study the cell polarity of neural stem and progenitor cells in the developing brain. Over the past 15 years, prominin-1, also called CD133, has not only become a frequently used marker of neural stem cells and neural cancer stem cells, as is in fact the case of somatic (cancer) stem cells in general, but has also been used to understand the symmetric versus asymmetric division of the neural stem cells in the context of their apical-basal polarity. Moreover, studying prominin-1 on neural stem cells has revealed a novel fate of the midbody, that is, midbody release, and key differences in this release between normal stem cells and cancer-derived cells. Other subcellular aspects of neural stem cells, the understanding of which has been promoted by studying prominin-1, pertain to the organization of plasma membrane protrusions and the membrane microdomains they contain. Of particular relevance in this context is the primary cilium of neuroepithelial cells and its transformation into the outer segment of retinal photoreceptor cells, a process in which prominin-1 exerts a vital role.
Collapse
Affiliation(s)
- Alex M Sykes
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany
| | | |
Collapse
|
20
|
Bussolati B, Moggio A, Collino F, Aghemo G, D'Armento G, Grange C, Camussi G. Hypoxia modulates the undifferentiated phenotype of human renal inner medullary CD133+ progenitors through Oct4/miR-145 balance. Am J Physiol Renal Physiol 2012; 302:F116-28. [DOI: 10.1152/ajprenal.00184.2011] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Low-oxygen tension is an important component of the stem cell microenvironment. In rodents, renal resident stem cells have been described in the papilla, a relatively hypoxic region of the kidney. In the present study, we found that CD133+ cells, previously described as renal progenitors in the human cortex, were enriched in the renal inner medulla and localized within the Henle's loop and thin limb segments. Once isolated, the CD133+ cell population expressed renal embryonic and stem-related transcription factors and was able to differentiate into mature renal epithelial cells. When injected subcutaneously in immunodeficient mice within Matrigel, CD133+ cells generated canalized structures positive for renal specific markers of different nephron segments. Oct4A levels and differentiation potential of papillary CD133+ cells were higher than those of CD133+ cells from cortical tubuli. Hypoxia was able to promote the undifferentiated phenotype of CD133+ progenitors from papilla. Hypoxia stimulated clonogenicity, proliferation, vascular endothelial growth factor synthesis, and expression of CD133 that were in turn reduced by epithelial differentiation with parallel HIF-1α downregulation. In addition, hypoxia downregulated microRNA-145 and promoted the synthesis of Oct4A. Epithelial differentiation increased microRNA-145 and reduced Oct4 level, suggesting a balance between Oct4 and microRNA-145. MicroRNA-145 overexpression in CD133+ cells induced downrelation of Oct4A at the protein level, inhibited cell proliferation, and stimulated terminal differentiation. This study underlines the role of the hypoxic microenvironment in controlling the proliferation and maintaining a progenitor phenotype and stem/progenitor properties of CD133+ cells of the nephron. This mechanism may be at the basis of the maintenance of a CD133+ population in the papillary region and may be involved in renal regeneration after injury.
Collapse
Affiliation(s)
- Benedetta Bussolati
- Department of Internal Medicine, Research Center for Experimental Medicine and Center for Molecular Biotechnology, and
| | - Aldo Moggio
- Department of Internal Medicine, Research Center for Experimental Medicine and Center for Molecular Biotechnology, and
| | - Federica Collino
- Department of Internal Medicine, Research Center for Experimental Medicine and Center for Molecular Biotechnology, and
| | - Giulia Aghemo
- Department of Internal Medicine, Research Center for Experimental Medicine and Center for Molecular Biotechnology, and
| | - Giuseppe D'Armento
- Department of Biomedical Sciences and Human Oncology, University of Torino, Torino, Italy
| | - Cristina Grange
- Department of Internal Medicine, Research Center for Experimental Medicine and Center for Molecular Biotechnology, and
| | - Giovanni Camussi
- Department of Internal Medicine, Research Center for Experimental Medicine and Center for Molecular Biotechnology, and
| |
Collapse
|
21
|
Hübner S, Efthymiadis A. Histochemistry and cell biology: the annual review 2010. Histochem Cell Biol 2011; 135:111-40. [PMID: 21279376 DOI: 10.1007/s00418-011-0781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2011] [Indexed: 10/18/2022]
Abstract
This review summarizes recent advances in histochemistry and cell biology which complement and extend our knowledge regarding various aspects of protein functions, cell and tissue biology, employing appropriate in vivo model systems in conjunction with established and novel approaches. In this context several non-expected results and discoveries were obtained which paved the way of research into new directions. Once the reader embarks on reading this review, it quickly becomes quite obvious that the studies contribute not only to a better understanding of fundamental biological processes but also provide use-oriented aspects that can be derived therefrom.
Collapse
Affiliation(s)
- Stefan Hübner
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstrasse 6, 97070 Würzburg, Germany.
| | | |
Collapse
|