1
|
Yang Q, Zhu L, Ye M, Zhang B, Zhan P, Li H, Zou W, Liu J. Tumor Suppressor 4.1N/EPB41L1 is Epigenetic Silenced by Promoter Methylation and MiR-454-3p in NSCLC. Front Genet 2022; 13:805960. [PMID: 35795202 PMCID: PMC9251189 DOI: 10.3389/fgene.2022.805960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
Non–small-cell lung cancer (NSCLC) is divided into three major histological types, namely, lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), and large-cell lung carcinoma (LCLC). We previously identified that 4.1N/EPB41L1 acts as a tumor suppressor and is reduced in NSCLC patients. In the current study, we explored the underlying epigenetic mechanisms of 4.1N/EPB41L1 reduction in NSCLC. The 4.1N/EPB41L1 gene promoter region was highly methylated in LUAD and LUSC patients. LUAD patients with higher methylation level in the 4.1N/EPB41L1 gene promoter (TSS1500, cg13399773 or TSS200, cg20993403) had a shorter overall survival time (Log-rank p = 0.02 HR = 1.509 or Log-rank p = 0.016 HR = 1.509), whereas LUSC patients with higher methylation level in the 4.1N/EPB41L1 gene promoter (TSS1500 cg13399773, TSS1500 cg07030373 or TSS200 cg20993403) had a longer overall survival time (Log-rank p = 0.045 HR = 0.5709, Log-rank p = 0.018 HR = 0.68 or Log-rank p = 0.014 HR = 0.639, respectively). High methylation of the 4.1N/EPB41L1 gene promoter appeared to be a relatively early event in LUAD and LUSC. DNA methyltransferase inhibitor 5-Aza-2′-deoxycytidine restored the 4.1N/EPB41L1 expression at both the mRNA and protein levels. MiR-454-3p was abnormally highly expressed in NSCLC and directly targeted 4.1N/EPB41L1 mRNA. MiR-454-3p expression was significantly correlated with 4.1N/EPB41L1 expression in NSCLC patients (r = −0.63, p < 0.0001). Therefore, we concluded that promoter hypermethylation of the 4.1N/EPB41L1 gene and abnormally high expressed miR-454-3p work at different regulation levels but in concert to restrict 4.1N/EPB41L1 expression in NSCLC. Taken together, this work contributes to elucidate the underlying epigenetic disruptions of 4.1N/EPB41L1 deficiency in NSCLC.
Collapse
Affiliation(s)
- Qin Yang
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- School of Medical Laboratory, Shao Yang University, Shaoyang, China
| | - Lin Zhu
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, China
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan Univers ity, Changsha, China
| | - Bin Zhang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Peihe Zhan
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Hui Li
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Molecular Science and Biomedicine Laboratory, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, China
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan Univers ity, Changsha, China
- *Correspondence: Jing Liu, ; Wen Zou, ; Hui Li,
| | - Wen Zou
- Department of Oncology, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
- *Correspondence: Jing Liu, ; Wen Zou, ; Hui Li,
| | - Jing Liu
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- *Correspondence: Jing Liu, ; Wen Zou, ; Hui Li,
| |
Collapse
|
2
|
Wang H, Parra M, Conboy JG, Hillyer CD, Mohandas N, An X. Selective effects of protein 4.1N deficiency on neuroendocrine and reproductive systems. Sci Rep 2020; 10:16947. [PMID: 33046791 PMCID: PMC7550591 DOI: 10.1038/s41598-020-73795-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 09/14/2020] [Indexed: 12/02/2022] Open
Abstract
Protein 4.1N, a member of the protein 4.1 family, is highly expressed in the brain. But its function remains to be fully defined. Using 4.1N−/− mice, we explored the function of 4.1N in vivo. We show that 4.1N−/− mice were born at a significantly reduced Mendelian ratio and exhibited high mortality between 3 to 5 weeks of age. Live 4.1N−/− mice were smaller than 4.1N+/+ mice. Notably, while there were no significant differences in organ/body weight ratio for most of the organs, the testis/body and ovary/body ratio were dramatically decreased in 4.1N−/− mice, demonstrating selective effects of 4.1N deficiency on the development of the reproductive systems. Histopathology of the reproductive organs showed atrophy of both testis and ovary. Specifically, in the testis there is a lack of spermatogenesis, lack of leydig cells and lack of mature sperm. Similarly, in the ovary there is a lack of follicular development and lack of corpora lutea formation, as well as lack of secretory changes in the endometrium. Examination of pituitary glands revealed that the secretory granules were significantly decreased in pituitary glands of 4.1N−/− compared to 4.1N+/+. Moreover, while GnRH was expressed in both neuronal cell body and axons in the hypothalamus of 4.1N+/+ mice, it was only expressed in the cell body but not the axons of 4.1N-/- mice. Our findings uncover a novel role for 4.1N in the axis of hypothalamus-pituitary gland-reproductive system.
Collapse
Affiliation(s)
- Hua Wang
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY, 10065, USA.,Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, and Peking University Third Hospital, Beijing, 100191, China
| | - Marilyn Parra
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - John G Conboy
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | | | - Narla Mohandas
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY, 10065, USA
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, 310 East 67th St, New York, NY, 10065, USA.
| |
Collapse
|
3
|
王 成, 康 巧, 丁 聪, 李 雅, 梁 桃, 张 成, 王 文, 王 婷. [Construction of a stable 4.1R gene knockout cell model in RAW264.7 cells using CRISPR/Cas9 technique]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:1609-1614. [PMID: 29292253 PMCID: PMC6744011 DOI: 10.3969/j.issn.1673-4254.2017.12.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To construct a cell model of 4.1R gene knockout in murine macrophage cell line RAW264.7 using CRISPR/Cas9 technique. METHODS Three high?grade small?guide RNAs (sgRNAs) that could specifically identify 4.1R gene were synthesized and inserted into lentiCRISPRv2 plasmid. RAW264.7 cells were infected with sgRNA?Cas9 lentivirus from 293T cells transfected with the recombinant sgRNA?lentiCRISPRv2 plasmid, and the positive cells were screened using puromycin and the monoclonal cells were obtained. The expression of 4.1R protein in the monoclonal cells was measured by Western blotting, and the mutation site was confirmed by sequence analysis. Result A 4.1R gene knockout RAW264.7 cell line was obtained, which showed a 19?bp deletion mutation in the 4.1R gene sequence and obviously enhanced proliferation. CONCLUSION We successfully constructed a 4.1R gene knockout macrophage cell line using CRISPR/Cas9 technique, which may facilitate further investigation of the function of 4.1R in macrophages.
Collapse
Affiliation(s)
- 成博 王
- />郑州大学生命科学学院,河南 郑州 450000School of Life Sciences, Zhengzhou University, Zhengzhou 45000, China
| | - 巧珍 康
- />郑州大学生命科学学院,河南 郑州 450000School of Life Sciences, Zhengzhou University, Zhengzhou 45000, China
| | - 聪 丁
- />郑州大学生命科学学院,河南 郑州 450000School of Life Sciences, Zhengzhou University, Zhengzhou 45000, China
| | - 雅雯 李
- />郑州大学生命科学学院,河南 郑州 450000School of Life Sciences, Zhengzhou University, Zhengzhou 45000, China
| | - 桃桃 梁
- />郑州大学生命科学学院,河南 郑州 450000School of Life Sciences, Zhengzhou University, Zhengzhou 45000, China
| | - 成龙 张
- />郑州大学生命科学学院,河南 郑州 450000School of Life Sciences, Zhengzhou University, Zhengzhou 45000, China
| | - 文 王
- />郑州大学生命科学学院,河南 郑州 450000School of Life Sciences, Zhengzhou University, Zhengzhou 45000, China
| | - 婷 王
- />郑州大学生命科学学院,河南 郑州 450000School of Life Sciences, Zhengzhou University, Zhengzhou 45000, China
| |
Collapse
|
4
|
Jiang S, He H, Tan L, Wang L, Su Z, Liu Y, Zhu H, Zhang M, Hou FF, Li A. Proteomic and phosphoproteomic analysis of renal cortex in a salt-load rat model of advanced kidney damage. Sci Rep 2016; 6:35906. [PMID: 27775022 PMCID: PMC5075906 DOI: 10.1038/srep35906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 10/07/2016] [Indexed: 12/21/2022] Open
Abstract
Salt plays an essential role in the progression of chronic kidney disease and hypertension. However, the mechanisms underlying pathogenesis of salt-induced kidney damage remain largely unknown. Here, Sprague-Dawley rats, that underwent 5/6 nephrectomy (5/6Nx, a model of advanced kidney damage) or sham operation, were treated for 2 weeks with a normal or high-salt diet. We employed aTiO2 enrichment, iTRAQ labeling and liquid-chromatography tandem mass spectrometry strategy for proteomic and phosphoproteomic profiling of the renal cortex. We found 318 proteins differentially expressed in 5/6Nx group relative to sham group, and 310 proteins significantly changed in response to salt load in 5/6Nx animals. Totally, 1810 unique phosphopeptides corresponding to 550 phosphoproteins were identified. We identified 113 upregulated and 84 downregulated phosphopeptides in 5/6Nx animals relative to sham animals. Salt load induced 78 upregulated and 91 downregulated phosphopeptides in 5/6Nx rats. The differentially expressed phospholproteins are important transporters, structural molecules, and receptors. Protein-protein interaction analysis revealed that the differentially phosphorylated proteins in 5/6Nx group, Polr2a, Srrm1, Gsta2 and Pxn were the most linked. Salt-induced differential phosphoproteins, Myh6, Lmna and Des were the most linked. Altered phosphorylation levels of lamin A and phospholamban were validated. This study will provide new insight into pathogenetic mechanisms of chronic kidney disease and salt sensitivity.
Collapse
Affiliation(s)
- Shaoling Jiang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hanchang He
- The First People's Foshan Hospital, Foshan, China
| | - Lishan Tan
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liangliang Wang
- Division of Nephrology, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510405, P.R. China
| | - Zhengxiu Su
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yufeng Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongguo Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Menghuan Zhang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Aiqing Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
4.1N is involved in a flotillin-1/β-catenin/Wnt pathway and suppresses cell proliferation and migration in non-small cell lung cancer cell lines. Tumour Biol 2016; 37:12713-12723. [DOI: 10.1007/s13277-016-5146-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/11/2016] [Indexed: 01/14/2023] Open
|
6
|
Chen L, Wang T, Wang Y, Zhang J, Qi Y, Weng H, Kang Q, Guo X, Baines AJ, Mohandas N, An X. Protein 4.1G Regulates Cell Adhesion, Spreading, and Migration of Mouse Embryonic Fibroblasts through the β1 Integrin Pathway. J Biol Chem 2015; 291:2170-80. [PMID: 26644476 DOI: 10.1074/jbc.m115.658591] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Indexed: 12/12/2022] Open
Abstract
Protein 4.1G is a membrane skeletal protein that can serve as an adapter between transmembrane proteins and the underlying membrane skeleton. The function of 4.1G remains largely unexplored. Here, using 4.1G knockout mouse embryonic fibroblasts (MEFs) as a model system, we explored the function of 4.1G in motile cells. We show that the adhesion, spreading, and migration of 4.1G(-/-) MEF cells are impaired significantly. We further show that, although the total cellular expression of β1 integrin is unchanged, the surface expression of β1 integrin and its active form are decreased significantly in 4.1G(-/-) MEF cells. Moreover, the phosphorylation of focal adhesion kinase, a downstream component of the integrin-mediated signal transduction pathway, is suppressed in 4.1G(-/-) MEF cells. Co-immunoprecipitation experiments and in vitro binding assays showed that 4.1G binds directly to β1 integrin via its membrane-binding domain. These findings identified a novel role of 4.1G in cell adhesion, spreading, and migration in MEF cells by modulating the surface expression of β1 integrin and subsequent downstream signal transduction.
Collapse
Affiliation(s)
- Lixiang Chen
- From the College of Life Science, Zhengzhou University, Science Road 100, Zhengzhou 450001, China, the Red Cell Physiology Laboratory and
| | - Ting Wang
- From the College of Life Science, Zhengzhou University, Science Road 100, Zhengzhou 450001, China
| | - Yaomei Wang
- From the College of Life Science, Zhengzhou University, Science Road 100, Zhengzhou 450001, China
| | - Jingxin Zhang
- From the College of Life Science, Zhengzhou University, Science Road 100, Zhengzhou 450001, China
| | - Yuanming Qi
- From the College of Life Science, Zhengzhou University, Science Road 100, Zhengzhou 450001, China
| | - Haibo Weng
- From the College of Life Science, Zhengzhou University, Science Road 100, Zhengzhou 450001, China, Membrane Biology Laboratory, New York Blood Center, New York, New York 10065, and
| | - Qiaozhen Kang
- From the College of Life Science, Zhengzhou University, Science Road 100, Zhengzhou 450001, China
| | | | - Anthony J Baines
- the School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| | | | - Xiuli An
- From the College of Life Science, Zhengzhou University, Science Road 100, Zhengzhou 450001, China, Membrane Biology Laboratory, New York Blood Center, New York, New York 10065, and
| |
Collapse
|
7
|
Zhang L, Hu A, Li M, Zhang H, Ren C, An X, Liu C. 4.1N suppresses hypoxia-induced epithelial-mesenchymal transition in epithelial ovarian cancer cells. Mol Med Rep 2015; 13:837-44. [PMID: 26648170 DOI: 10.3892/mmr.2015.4634] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 10/29/2015] [Indexed: 11/06/2022] Open
Abstract
Protein 4.1N (4.1N) is a member of the protein 4.1 family and is essential for the regulation of cell adhesion, motility and signaling. Previous studies have suggested that 4.1N may serve a tumor suppressor role. However, the molecular mechanisms remain unclear. In the current study, the role of 4.1N in the downregulation of hypoxia‑induced factor 1α (HIF‑1α) under hypoxic conditions and therefore the suppression of hypoxia induced epithelial‑mesenchymal transition (EMT) was investigated. The data were obtained from overexpressed and knockdown 4.1N epithelial ovarian cancer (EOC) cell lines. It was identified that 4.1N was capable of regulating the sub‑cellular localization and expression levels of HIF‑1α, by which 4.1N served a dominant role in the suppression of hypoxia‑induced EMT and associated genes. Collectively, the data of the current study identified 4.1N as an inhibitor of hypoxia‑induced tumor progression in EOC cells and highlighted its potential role in EOC therapy.
Collapse
Affiliation(s)
- Letian Zhang
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Ajin Hu
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Mengrui Li
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Hongquan Zhang
- Department of Histology and Embryology, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Caixia Ren
- Department of Histology and Embryology, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Xiuli An
- College of Life Science, Zhengzhou University, Zhengzhou, Henan 450051, P.R. China
| | - Congrong Liu
- Department of Pathology, School of Basic Medical Sciences, Third Hospital, Peking University Health Science Center, Beijing 100191, P.R. China
| |
Collapse
|
8
|
Chen X, Guan X, Zhang H, Xie X, Wang H, Long J, Cai T, Li S, Liu Z, Zhang Y. DAL-1 attenuates epithelial-to mesenchymal transition in lung cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:3. [PMID: 25609022 PMCID: PMC4307741 DOI: 10.1186/s13046-014-0117-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 12/22/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Epithelial-to mesenchymal transition (EMT) involves in metastasis, causing loss of epithelial polarity. Metastasis is the major cause of carcinoma-induced death, but mechanisms are poorly understood. Here we identify differentially expressed in adenocarcinoma of the lung-1 (DAL-1), a protein belongs to the membrane-associated cytoskeleton protein 4.1 family, as an efficient suppressor of EMT in lung cancer. METHODS The relationship between DAL-1 and EMT markers were analyzed by using immunohistochemistry in the clinical lung cancer tissues. Quantitative real-time PCR and western blot were used to characterize the expression of the EMT indicator mRNAs and proteins in DAL-1 overexpressed or knockdown cells. DAL-1 combined proteins were assessed by co-immunoprecipitation. RESULTS DAL-1 levels were strongly reduced even lost in lymph node metastasis and advanced pathological stage of human lung carcinomas. Overexpression of DAL-1 altered the expression of numerous EMT markers, such as E-cadherin, β-catenin Vimentin and N-cadherin expression, meanwhile changed the morphological shape of lung cancer cells, and whereas silencing DAL-1 had an opposite effect. DAL-1 directly combined with E-cadherin promoter and regulated its expression that could be the reason for impairing EMT and decreasing cell migration and invasion. Strikingly, HSPA5 was found as DAL-1 direct binding protein. CONCLUSIONS These results suggest that tumor suppressor DAL-1 could also attenuate EMT and be important for tumor metastasis in the early transformation process in lung cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yajie Zhang
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, 195# Dongfeng West Road, Guangzhou 510180, Guangdong, People's Republic of China.
| |
Collapse
|
9
|
Wang Z, Zhang J, Ye M, Zhu M, Zhang B, Roy M, Liu J, An X. Tumor suppressor role of protein 4.1B/DAL-1. Cell Mol Life Sci 2014; 71:4815-30. [PMID: 25183197 PMCID: PMC11113756 DOI: 10.1007/s00018-014-1707-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 07/21/2014] [Accepted: 08/15/2014] [Indexed: 12/14/2022]
Abstract
Protein 4.1B/DAL-1 is a membrane skeletal protein that belongs to the protein 4.1 family. Protein 4.1B/DAL-1 is localized to sites of cell-cell contact and functions as an adapter protein, linking the plasma membrane to the cytoskeleton or associated cytoplasmic signaling effectors and facilitating their activities in various pathways. Protein 4.1B/DAL-1 is involved in various cytoskeleton-associated processes, such as cell motility and adhesion. Moreover, protein 4.1B/DAL-1 also plays a regulatory role in cell growth, differentiation, and the establishment of epithelial-like cell structures. Protein 4.1B/DAL-1 is normally expressed in multiple human tissues, but loss of its expression or prominent down-regulation of its expression is frequently observed in corresponding tumor tissues and tumor cell lines, suggesting that protein 4.1B/DAL-1 is involved in the molecular pathogenesis of these tumors and acts as a potential tumor suppressor. This review will focus on the structure of protein 4.1B/DAL-1, 4.1B/DAL-1-interacting molecules, 4.1B/DAL-1 inactivation and tumor progression, and anti-tumor activity of the 4.1B/DAL-1.
Collapse
Affiliation(s)
- Zi Wang
- Molecular Biology Research Center, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, 410078 China
| | - Ji Zhang
- Molecular Biology Research Center, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, 410078 China
- Department of Hematology, The First Affiliated Hospital, University of South China, Hengyang, 421001 China
| | - Mao Ye
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082 China
| | - Min Zhu
- Molecular Biology Research Center, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, 410078 China
| | - Bin Zhang
- Department of Histology and Embryology, Xiangya School Medicine, Central South University, Changsha, 410083 China
| | - Mridul Roy
- Molecular Biology Research Center, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, 410078 China
| | - Jing Liu
- Molecular Biology Research Center, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, 410078 China
- State Key Laboratory of Medical Genetics, Central South University, 110 Xiangya Road, Changsha, 410078 China
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, 310 E 67th Street, New York, 10065 USA
| |
Collapse
|
10
|
Zhang J, Yang S, An C, Wang J, Yan H, Huang Y, Song J, Yin C, Baines AJ, Mohandas N, An X. Comprehensive characterization of protein 4.1 expression in epithelium of large intestine. Histochem Cell Biol 2014; 142:529-39. [PMID: 24912669 DOI: 10.1007/s00418-014-1224-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2014] [Indexed: 11/24/2022]
Abstract
The protein 4.1 family consists of four members, 4.1R, 4.1N, 4.1B and 4.1G, each encoded by a distinct gene. All 4.1 mRNAs undergo extensive alternative splicing. Functionally, they usually serve as adapters that link actin-based cytoskeleton to plasma membrane proteins. It has been reported that 4.1 proteins are expressed in most animal cell types and tissues including epithelial cells and epithelial tissues. However, the expression of 4.1 proteins in large intestine has not been well characterized. In the present study, we performed RT-PCR, western blot and immunohistochemistry analysis to characterize the transcripts, the protein expression and cellular localization of 4.1 proteins in the epithelia of mouse large intestine. We show that multiple transcripts derive from each gene, including eight 4.1R isoforms, four 4.1N isoforms, four 4.1B isoforms and six 4.1G isoforms. However, at the protein level, only one or two major bands were detected, implying that not all transcripts are translated and/or the proteins do not accumulate at detectable levels. Immunohistochemistry revealed that 4.1R, 4.1N and 4.1B are all expressed at the lateral membrane as well as cytoplasm of epithelial cells, suggesting a potentially redundant role of these proteins. Our findings not only provide new insights into the structure of protein 4.1 genes but also lay the foundation for future functional studies.
Collapse
Affiliation(s)
- Jingxin Zhang
- Department of Biophysics, Peking University Health Science Center, Xueyuan Road, Haidian District, Beijing, 100191, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Cheng CL, Molday RS. Interaction of 4.1G and cGMP-gated channels in rod photoreceptor outer segments. J Cell Sci 2013; 126:5725-34. [PMID: 24144699 DOI: 10.1242/jcs.137679] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In photoreceptors, the assembly of signaling molecules into macromolecular complexes is important for phototransduction and maintaining the structural integrity of rod outer segments (ROSs). However, the molecular composition and formation of these complexes are poorly understood. Using immunoprecipitation and mass spectrometry, 4.1G was identified as a new interacting partner for the cyclic-nucleotide gated (CNG) channels in ROSs. 4.1G is a widely expressed multifunctional protein that plays a role in the assembly and stability of membrane protein complexes. Multiple splice variants of 4.1G were cloned from bovine retina. A smaller splice variant of 4.1G selectively interacted with CNG channels not associated with peripherin-2-CNG channel complex. A combination of truncation studies and domain-binding assays demonstrated that CNG channels selectively interacted with 4.1G through their FERM and CTD domains. Using immunofluorescence, labeling of 4.1G was seen to be punctate and partially colocalized with CNG channels in the ROS. Our studies indicate that 4.1G interacts with a subset of CNG channels in the ROS and implicate this protein-protein interaction in organizing the spatial arrangement of CNG channels in the plasma membrane of outer segments.
Collapse
Affiliation(s)
- Christiana L Cheng
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | |
Collapse
|
12
|
Xi C, Ren C, Hu A, Lin J, Yao Q, Wang Y, Gao Z, An X, Liu C. Defective expression of Protein 4.1N is correlated to tumor progression, aggressive behaviors and chemotherapy resistance in epithelial ovarian cancer. Gynecol Oncol 2013; 131:764-71. [PMID: 23994105 DOI: 10.1016/j.ygyno.2013.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/16/2013] [Accepted: 08/08/2013] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Protein 4.1N (4.1N) is a member of the Protein 4.1 family that is involved in cellular processes such as cell adhesion, migration and signaling. In this study, we evaluated the expression of 4.1N protein and its potential roles in epithelial ovarian cancer (EOC) tumorigenesis and progression. METHODS 4.1N protein expression was investigated in a total of 280 samples including 74 normal tissues, 35 benign, 30 borderline and 141 malignant epithelial ovarian tumors by immunohistochemistry. Correlation between 4.1N expression levels and clinicopathologic features was statistically analyzed. The expression of 4.1N in EOC cell lines was examined by western blotting. RESULTS Immunohistochemistry analysis revealed that, although there was no loss of 4.1N expression in normal tissues and benign tumors, absence of Protein 4.1N was significantly more common in EOCs (44.0%) than in borderline tumors (3.3%) (p<0.001). Furthermore, loss or decreased expression of 4.1N protein expression was correlated with malignant potential of the tumors (14.3% in benign tumors, 56.7% in borderline tumors and 92.9% in malignancy) (p<0.001). In EOC samples, loss of 4.1N protein was significantly associated with advanced-stage (p=0.004), ascites (p=0.009), omental metastasis (p=0.018), suboptimal debulking (p=0.024), poorly histological differentiation (p=0.009), high-grade serous carcinoma (p=0.001), short progression-free-survival (p=0.018) and poor chemosensitivity to first-line chemotherapy (p=0.029). Moreover, western blotting analysis revealed that expression of 4.1N protein was lost in 4/8 (50%) EOC cell lines. CONCLUSIONS 4.1N protein expression level was significantly decreased during malignant transformation of epithelial ovarian tumors and that loss of 4.1N expression was closely correlated to poorly differentiated and biologically aggressive EOCs.
Collapse
Affiliation(s)
- Chenguang Xi
- Department of Pathology, Peking University Health Science Center, Beijing 100191, China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
The linoleic acid derivative DCP-LA increases membrane surface localization of the α7 ACh receptor in a protein 4.1N-dependent manner. Biochem J 2013; 450:303-9. [DOI: 10.1042/bj20121348] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In yeast two-hybrid screening, protein 4.1N, a scaffolding protein, was identified as a binding partner of the α7 ACh (acetylcholine) receptor. For rat hippocampal slices, the linoleic acid derivative DCP-LA {8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid} increased the association of the α7 ACh receptor with 4.1N, and the effect was inhibited by GF109203X, an inhibitor of PKC (protein kinase C), although DCP-LA did not induce PKC phosphorylation of 4.1N. For PC-12 cells, the presence of the α7 ACh receptor in the plasma membrane fraction was significantly suppressed by knocking down 4.1N. DCP-LA increased the presence of the α7 ACh receptor in the plasma membrane fraction, and the effect was still inhibited by knocking down 4.1N. In the monitoring of α7 ACh receptor mobilization, DCP-LA enhanced signal intensities for the α7 ACh receptor at the membrane surface in PC-12 cells, which was clearly prevented by knocking down 4.1N. Taken together, the results of the present study show that 4.1N interacts with the α7 ACh receptor and participates in the receptor tethering to the plasma membrane. The results also indicate that DCP-LA increases membrane surface localization of the α7 ACh receptor in a 4.1N-dependent manner under the control of PKC, but without phosphorylating 4.1N.
Collapse
|
14
|
Lack of protein 4.1G causes altered expression and localization of the cell adhesion molecule nectin-like 4 in testis and can cause male infertility. Mol Cell Biol 2011; 31:2276-86. [PMID: 21482674 DOI: 10.1128/mcb.01105-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Protein 4.1G is a member of the protein 4.1 family, which in general serves as adaptors linking transmembrane proteins to the cytoskeleton. 4.1G is thought to be widely expressed in many cells and tissues, but its function remains largely unknown. To explore the function of 4.1G in vivo, we generated 4.1G(-/-) mice and bred the mice in two backgrounds: C57BL/6 (B6) and 129/Sv (129) hybrids (B6-129) and inbred B6. Although the B6 4.1G(-/-) mice showed no obvious abnormalities, deficiency of 4.1G in B6-129 hybrids was associated with male infertility. Histological examinations of these 4.1G(-/-) mice revealed atrophy, impaired cell-cell contact and sloughing off of spermatogenic cells in seminiferous epithelium, and lack of mature spermatids in the epididymis. Ultrastructural examination revealed enlarged intercellular spaces between spermatogenic and Sertoli cells as well as the spermatid deformities. At the molecular level, 4.1G is associated with the nectin-like 4 (NECL4) adhesion molecule. Importantly, the expression of NECL4 was decreased, and the localization of NECL4 was altered in 4.1G(-/-) testis. Thus, our findings imply that 4.1G plays a role in spermatogenesis by mediating cell-cell adhesion between spermatogenic and Sertoli cells through its interaction with NECL4 on Sertoli cells. Additionally, the finding that infertility is present in B6-129 but not on the B6 background suggests the presence of a major modifier gene(s) that influences 4.1G function and is associated with male infertility.
Collapse
|
15
|
Hübner S, Efthymiadis A. Histochemistry and cell biology: the annual review 2010. Histochem Cell Biol 2011; 135:111-40. [PMID: 21279376 DOI: 10.1007/s00418-011-0781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2011] [Indexed: 10/18/2022]
Abstract
This review summarizes recent advances in histochemistry and cell biology which complement and extend our knowledge regarding various aspects of protein functions, cell and tissue biology, employing appropriate in vivo model systems in conjunction with established and novel approaches. In this context several non-expected results and discoveries were obtained which paved the way of research into new directions. Once the reader embarks on reading this review, it quickly becomes quite obvious that the studies contribute not only to a better understanding of fundamental biological processes but also provide use-oriented aspects that can be derived therefrom.
Collapse
Affiliation(s)
- Stefan Hübner
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstrasse 6, 97070 Würzburg, Germany.
| | | |
Collapse
|