1
|
Scarpitti MR, Pastore B, Tang W, Kearse MG. Characterization of ribosome stalling and no-go mRNA decay stimulated by the fragile X protein, FMRP. J Biol Chem 2024; 300:107540. [PMID: 38971316 PMCID: PMC11338112 DOI: 10.1016/j.jbc.2024.107540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/22/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024] Open
Abstract
Loss of functional fragile X mental retardation protein (FMRP) causes fragile X syndrome and is the leading monogenic cause of autism spectrum disorders and intellectual disability. FMRP is most notably a translational repressor and is thought to inhibit translation elongation by stalling ribosomes as FMRP-bound polyribosomes from brain tissue are resistant to puromycin and nuclease treatment. Here, we present data showing that the C-terminal noncanonical RNA-binding domain of FMRP is essential and sufficient to induce puromycin-resistant mRNA•ribosome complexes. Given that stalled ribosomes can stimulate ribosome collisions and no-go mRNA decay (NGD), we tested the ability of FMRP to drive NGD of its target transcripts in neuroblastoma cells. Indeed, FMRP and ribosomal proteins, but not poly(A)-binding protein, were enriched in isolated nuclease-resistant disomes compared to controls. Using siRNA knockdown and RNA-seq, we identified 16 putative FMRP-mediated NGD substrates, many of which encode proteins involved in neuronal development and function. Increased mRNA stability of four putative substrates was also observed when either FMRP was depleted or NGD was prevented via RNAi. Taken together, these data support that FMRP stalls ribosomes but only stimulates NGD of a small select set of transcripts, revealing a minor role of FMRP that would be misregulated in fragile X syndrome.
Collapse
Affiliation(s)
- MaKenzie R Scarpitti
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Benjamin Pastore
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Wen Tang
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Michael G Kearse
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
2
|
Borisova E, Newman AG, Couce Iglesias M, Dannenberg R, Schaub T, Qin B, Rusanova A, Brockmann M, Koch J, Daniels M, Turko P, Jahn O, Kaplan DR, Rosário M, Iwawaki T, Spahn CMT, Rosenmund C, Meierhofer D, Kraushar ML, Tarabykin V, Ambrozkiewicz MC. Protein translation rate determines neocortical neuron fate. Nat Commun 2024; 15:4879. [PMID: 38849354 PMCID: PMC11161512 DOI: 10.1038/s41467-024-49198-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
The mammalian neocortex comprises an enormous diversity regarding cell types, morphology, and connectivity. In this work, we discover a post-transcriptional mechanism of gene expression regulation, protein translation, as a determinant of cortical neuron identity. We find specific upregulation of protein synthesis in the progenitors of later-born neurons and show that translation rates and concomitantly protein half-lives are inherent features of cortical neuron subtypes. In a small molecule screening, we identify Ire1α as a regulator of Satb2 expression and neuronal polarity. In the developing brain, Ire1α regulates global translation rates, coordinates ribosome traffic, and the expression of eIF4A1. Furthermore, we demonstrate that the Satb2 mRNA translation requires eIF4A1 helicase activity towards its 5'-untranslated region. Altogether, we show that cortical neuron diversity is generated by mechanisms operating beyond gene transcription, with Ire1α-safeguarded proteostasis serving as an essential regulator of brain development.
Collapse
Affiliation(s)
- Ekaterina Borisova
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Andrew G Newman
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Marta Couce Iglesias
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Rike Dannenberg
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Theres Schaub
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Bo Qin
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Alexandra Rusanova
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Research Institute of Medical Genetics, Tomsk, Russia
| | - Marisa Brockmann
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Janina Koch
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Marieatou Daniels
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Paul Turko
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Olaf Jahn
- Neuroproteomics Group, Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
- Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - David R Kaplan
- Program in Neurosciences and Mental Health, Hospital for Sick Children and Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Marta Rosário
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Takao Iwawaki
- Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, 920-0293, Japan
| | - Christian M T Spahn
- Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Christian Rosenmund
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Matthew L Kraushar
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Victor Tarabykin
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Mateusz C Ambrozkiewicz
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
3
|
Eiler DR, Wimberly BT, Bilodeau DY, Taliaferro JM, Reigan P, Rissland OS, Kieft JS. The Giardia lamblia ribosome structure reveals divergence in several biological pathways and the mode of emetine function. Structure 2024; 32:400-410.e4. [PMID: 38242118 PMCID: PMC10997490 DOI: 10.1016/j.str.2023.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/23/2023] [Accepted: 12/23/2023] [Indexed: 01/21/2024]
Abstract
Giardia lamblia is a deeply branching protist and a human pathogen. Its unusual biology presents the opportunity to explore conserved and fundamental molecular mechanisms. We determined the structure of the G. lamblia 80S ribosome bound to tRNA, mRNA, and the antibiotic emetine by cryo-electron microscopy, to an overall resolution of 2.49 Å. The structure reveals rapidly evolving protein and nucleotide regions, differences in the peptide exit tunnel, and likely altered ribosome quality control pathways. Examination of translation initiation factor binding sites suggests these interactions are conserved despite a divergent initiation mechanism. Highlighting the potential of G. lamblia to resolve conserved biological principles; our structure reveals the interactions of the translation inhibitor emetine with the ribosome and mRNA, thus providing insight into the mechanism of action for this widely used antibiotic. Our work defines key questions in G. lamblia and motivates future experiments to explore the diversity of eukaryotic gene regulation.
Collapse
Affiliation(s)
- Daniel R Eiler
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Brian T Wimberly
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Danielle Y Bilodeau
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA BioScience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - J Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA BioScience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Philip Reigan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Olivia S Rissland
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA BioScience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA BioScience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
4
|
Seedhom MO, Dersh D, Holly J, Pavon-Eternod M, Wei J, Angel M, Shores L, David A, Santos J, Hickman H, Yewdell JW. Paradoxical imbalance between activated lymphocyte protein synthesis capacity and rapid division rate. eLife 2024; 12:RP89015. [PMID: 38512721 PMCID: PMC10957176 DOI: 10.7554/elife.89015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Rapid lymphocyte cell division places enormous demands on the protein synthesis machinery. Flow cytometric measurement of puromycylated ribosome-associated nascent chains after treating cells or mice with translation initiation inhibitors reveals that ribosomes in resting lymphocytes in vitro and in vivo elongate at typical rates for mammalian cells. Intriguingly, elongation rates can be increased up to 30% by activation in vivo or fever temperature in vitro. Resting and activated lymphocytes possess abundant monosome populations, most of which actively translate in vivo, while in vitro, nearly all can be stalled prior to activation. Quantitating lymphocyte protein mass and ribosome count reveals a paradoxically high ratio of cellular protein to ribosomes insufficient to support their rapid in vivo division, suggesting that the activated lymphocyte proteome in vivo may be generated in an unusual manner. Our findings demonstrate the importance of a global understanding of protein synthesis in lymphocytes and other rapidly dividing immune cells.
Collapse
Affiliation(s)
- Mina O Seedhom
- National Institute of Allergy and Infectious DiseasesBethesdaUnited States
| | - Devin Dersh
- National Institute of Allergy and Infectious DiseasesBethesdaUnited States
| | - Jaroslav Holly
- National Institute of Allergy and Infectious DiseasesBethesdaUnited States
| | | | - Jiajie Wei
- National Institute of Allergy and Infectious DiseasesBethesdaUnited States
| | - Matthew Angel
- National Institute of Allergy and Infectious DiseasesBethesdaUnited States
| | - Lucas Shores
- National Institute of Allergy and Infectious DiseasesBethesdaUnited States
| | - Alexandre David
- CNRS UMR-5203; INSERM U661; UM1; UM2, Institut de Génomique FonctionnelleMontpellierFrance
| | - Jefferson Santos
- National Institute of Allergy and Infectious DiseasesBethesdaUnited States
| | - Heather Hickman
- National Institute of Allergy and Infectious DiseasesBethesdaUnited States
| | - Jonathan W Yewdell
- National Institute of Allergy and Infectious DiseasesBethesdaUnited States
| |
Collapse
|
5
|
Sidorenko VS, Cohen I, Dorjee K, Minetti CA, Remeta DP, Gao J, Potapova I, Wang HZ, Hearing J, Yen WY, Kim HK, Hashimoto K, Moriya M, Dickman KG, Yin X, Garcia-Diaz M, Chennamshetti R, Bonala R, Johnson F, Waldeck AL, Gupta R, Li C, Breslauer KJ, Grollman AP, Rosenquist TA. Mechanisms of antiviral action and toxicities of ipecac alkaloids: Emetine and dehydroemetine exhibit anti-coronaviral activities at non-cardiotoxic concentrations. Virus Res 2024; 341:199322. [PMID: 38228190 PMCID: PMC10831786 DOI: 10.1016/j.virusres.2024.199322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/18/2024]
Abstract
The emergence of highly infectious pathogens with their potential for triggering global pandemics necessitate the development of effective treatment strategies, including broad-spectrum antiviral therapies to safeguard human health. This study investigates the antiviral activity of emetine, dehydroemetine (DHE), and congeneric compounds against SARS-CoV-2 and HCoV-OC43, and evaluates their impact on the host cell. Concurrently, we assess the potential cardiotoxicity of these ipecac alkaloids. Significantly, our data reveal that emetine and the (-)-R,S isomer of 2,3-dehydroemetine (designated in this paper as DHE4) reduce viral growth at nanomolar concentrations (i.e., IC50 ∼ 50-100 nM), paralleling those required for inhibition of protein synthesis, while calcium channel blocking activity occurs at elevated concentrations (i.e., IC50 ∼ 40-60 µM). Our findings suggest that the antiviral mechanisms primarily involve disruption of host cell protein synthesis and is demonstrably stereoisomer specific. The prospect of a therapeutic window in which emetine or DHE4 inhibit viral propagation without cardiotoxicity renders these alkaloids viable candidates in strategies worthy of clinical investigation.
Collapse
Affiliation(s)
- Viktoriya S Sidorenko
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ira Cohen
- Department of Physiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | - Kunchok Dorjee
- Division of Infectious Diseases, John Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Conceição A Minetti
- Department of Chemistry and Chemical Biology, Rutgers - The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - David P Remeta
- Department of Chemistry and Chemical Biology, Rutgers - The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Junyuan Gao
- Department of Physiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | - Irina Potapova
- Department of Physiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | - Hong Zhan Wang
- Department of Physiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | - Janet Hearing
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | - Wan-Yi Yen
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | - Hwan Keun Kim
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | - Keiji Hashimoto
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Masaaki Moriya
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Kathleen G Dickman
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | - Xingyu Yin
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Rajesh Chennamshetti
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Radha Bonala
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Francis Johnson
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Amanda L Waldeck
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Department of Pharmacy, Stony Brook University Hospital, Stony Brook, New York 11794, USA
| | - Ramesh Gupta
- ChemMaster International Inc., Happauge, New York 11788, USA
| | - Chaoping Li
- Chemistry Service Unit of Shanghai Haoyuan Chemexpress Co., Ltd., Shanghai, PR China 201203
| | - Kenneth J Breslauer
- Department of Chemistry and Chemical Biology, Rutgers - The State University of New Jersey, Piscataway, New Jersey 08854, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Arthur P Grollman
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | - Thomas A Rosenquist
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
6
|
Scarpitti MR, Pastore B, Tang W, Kearse MG. Characterization of ribosome stalling and no-go mRNA decay stimulated by the Fragile X protein, FMRP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.577121. [PMID: 38352534 PMCID: PMC10862907 DOI: 10.1101/2024.02.02.577121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Loss of functional fragile X mental retardation protein (FMRP) causes fragile X syndrome (FXS) and is the leading monogenic cause of autism spectrum disorders and intellectual disability. FMRP is most notably a translational repressor and is thought to inhibit translation elongation by stalling ribosomes as FMRP-bound polyribosomes from brain tissue are resistant to puromycin and nuclease treatment. Here, we present data showing that the C-terminal non-canonical RNA-binding domain of FMRP is essential and sufficient to induce puromycin-resistant mRNA•ribosome complexes. Given that stalled ribosomes can stimulate ribosome collisions and no-go mRNA decay (NGD), we tested the ability of FMRP to drive NGD of its target transcripts in neuroblastoma cells. Indeed, FMRP and ribosomal proteins, but not PABPC1, were enriched in isolated nuclease-resistant disomes compared to controls. Using siRNA knockdown and RNA-seq, we identified 16 putative FMRP-mediated NGD substrates, many of which encode proteins involved in neuronal development and function. Increased mRNA stability of the putative substrates was also observed when either FMRP was depleted or NGD was prevented via RNAi. Taken together, these data support that FMRP stalls ribosomes and can stimulate NGD of a select set of transcripts in cells, revealing an unappreciated role of FMRP that would be misregulated in FXS.
Collapse
|
7
|
Spirin P, Shyrokova E, Vedernikova V, Lebedev T, Prassolov V. Emetine in Combination with Chloroquine Induces Oncolytic Potential of HIV-1-Based Lentiviral Particles. Cells 2022; 11:cells11182829. [PMID: 36139404 PMCID: PMC9497060 DOI: 10.3390/cells11182829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Chloroquine and Emetine are drugs used to treat human parasitic infections. In addition, it has been shown that these drugs have an antiviral effect. Both drugs were also found to cause a suppressive effect on the growth of cancer cells of different origins. Here, using the replication-deficient HIV-1-based lentiviral vector particles, we evaluated the ability of the combination of these drugs to reduce viral transduction efficiency. We showed that these drugs act synergistically to decrease cancer cell growth when added in combination with medium containing lentiviral particles. We found that the combination of these drugs with lentiviral particles decreases the viability of treated cells. Taken together, we state the oncolytic potential of the medium containing HIV-1-based particles provoked by the combination of Chloroquine and Emetine.
Collapse
Affiliation(s)
- Pavel Spirin
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
- Correspondence:
| | - Elena Shyrokova
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Institutskiy per. 9, 141701 Dolgoprudny, Russia
| | - Valeria Vedernikova
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Institutskiy per. 9, 141701 Dolgoprudny, Russia
| | - Timofey Lebedev
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
| | - Vladimir Prassolov
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
| |
Collapse
|
8
|
Smith PR, Loerch S, Kunder N, Stanowick AD, Lou TF, Campbell ZT. Functionally distinct roles for eEF2K in the control of ribosome availability and p-body abundance. Nat Commun 2021; 12:6789. [PMID: 34815424 PMCID: PMC8611098 DOI: 10.1038/s41467-021-27160-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/07/2021] [Indexed: 11/09/2022] Open
Abstract
Processing bodies (p-bodies) are a prototypical phase-separated RNA-containing granule. Their abundance is highly dynamic and has been linked to translation. Yet, the molecular mechanisms responsible for coordinate control of the two processes are unclear. Here, we uncover key roles for eEF2 kinase (eEF2K) in the control of ribosome availability and p-body abundance. eEF2K acts on a sole known substrate, eEF2, to inhibit translation. We find that the eEF2K agonist nelfinavir abolishes p-bodies in sensory neurons and impairs translation. To probe the latter, we used cryo-electron microscopy. Nelfinavir stabilizes vacant 80S ribosomes. They contain SERBP1 in place of mRNA and eEF2 in the acceptor site. Phosphorylated eEF2 associates with inactive ribosomes that resist splitting in vitro. Collectively, the data suggest that eEF2K defines a population of inactive ribosomes resistant to recycling and protected from degradation. Thus, eEF2K activity is central to both p-body abundance and ribosome availability in sensory neurons.
Collapse
Affiliation(s)
- Patrick R. Smith
- grid.267323.10000 0001 2151 7939The University of Texas at Dallas, Department of Biological Sciences, Richardson, TX USA
| | - Sarah Loerch
- grid.443970.dJanelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA ,grid.205975.c0000 0001 0740 6917University of California, Santa Cruz, Department of Chemistry and Biochemistry, Santa Cruz, CA USA
| | - Nikesh Kunder
- grid.267323.10000 0001 2151 7939The University of Texas at Dallas, Department of Biological Sciences, Richardson, TX USA
| | - Alexander D. Stanowick
- grid.267323.10000 0001 2151 7939The University of Texas at Dallas, Department of Biological Sciences, Richardson, TX USA
| | - Tzu-Fang Lou
- grid.267323.10000 0001 2151 7939The University of Texas at Dallas, Department of Biological Sciences, Richardson, TX USA
| | - Zachary T. Campbell
- grid.267323.10000 0001 2151 7939The University of Texas at Dallas, Department of Biological Sciences, Richardson, TX USA ,grid.267323.10000 0001 2151 7939The Center for Advanced Pain Studies (CAPS), University of Texas at Dallas, Richardson, TX USA
| |
Collapse
|
9
|
Abstract
Biomolecular condensates concentrate molecules to facilitate basic biochemical processes, including transcription and DNA replication. While liquid-like condensates have been ascribed various functions, solid-like condensates are generally thought of as amorphous sites of protein storage. Here, we show that solid-like amyloid bodies coordinate local nuclear protein synthesis (LNPS) during stress. On stimulus, translationally active ribosomes accumulate along fiber-like assemblies that characterize amyloid bodies. Mass spectrometry analysis identified regulatory ribosomal proteins and translation factors that relocalize from the cytoplasm to amyloid bodies to sustain LNPS. These amyloidogenic compartments are enriched in newly transcribed messenger RNA by Heat Shock Factor 1 (HSF1). Depletion of stress-induced ribosomal intergenic spacer noncoding RNA (rIGSRNA) that constructs amyloid bodies prevents recruitment of the nuclear protein synthesis machinery, abolishes LNPS, and impairs the nuclear HSF1 response. We propose that amyloid bodies support local nuclear translation during stress and that solid-like condensates can facilitate complex biochemical reactions as their liquid counterparts can.
Collapse
|
10
|
Guo Y, Hinchman MM, Lewandrowski M, Cross ST, Sutherland DM, Welsh OL, Dermody TS, Parker JSL. The multi-functional reovirus σ3 protein is a virulence factor that suppresses stress granule formation and is associated with myocardial injury. PLoS Pathog 2021; 17:e1009494. [PMID: 34237110 PMCID: PMC8291629 DOI: 10.1371/journal.ppat.1009494] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/20/2021] [Accepted: 06/21/2021] [Indexed: 11/19/2022] Open
Abstract
The mammalian orthoreovirus double-stranded (ds) RNA-binding protein σ3 is a multifunctional protein that promotes viral protein synthesis and facilitates viral entry and assembly. The dsRNA-binding capacity of σ3 correlates with its capacity to prevent dsRNA-mediated activation of protein kinase R (PKR). However, the effect of σ3 binding to dsRNA during viral infection is largely unknown. To identify functions of σ3 dsRNA-binding activity during reovirus infection, we engineered a panel of thirteen σ3 mutants and screened them for the capacity to bind dsRNA. Six mutants were defective in dsRNA binding, and mutations in these constructs cluster in a putative dsRNA-binding region on the surface of σ3. Two recombinant viruses expressing these σ3 dsRNA-binding mutants, K287T and R296T, display strikingly different phenotypes. In a cell-type dependent manner, K287T, but not R296T, replicates less efficiently than wild-type (WT) virus. In cells in which K287T virus demonstrates a replication deficit, PKR activation occurs and abundant stress granules (SGs) are formed at late times post-infection. In contrast, the R296T virus retains the capacity to suppress activation of PKR and does not mediate formation of SGs at late times post-infection. These findings indicate that σ3 inhibits PKR independently of its capacity to bind dsRNA. In infected mice, K287T produces lower viral titers in the spleen, liver, lungs, and heart relative to WT or R296T. Moreover, mice inoculated with WT or R296T viruses develop myocarditis, whereas those inoculated with K287T do not. Overall, our results indicate that σ3 functions to suppress PKR activation and subsequent SG formation during viral infection and that these functions correlate with virulence in mice. The σ3 protein of mammalian orthoreoviruses is a double-stranded RNA binding protein that has classically been thought to function by scavenging dsRNA within infected cells and thus prevents activation of cellular sensors of dsRNA such as the kinase PKR. Here we used mutagenesis to identify the region of σ3 responsible for binding dsRNA. Characterization of mutant viruses expressing σ3 proteins incapable of binding dsRNA show that contrary to expectation, dsRNA binding is not required for σ3-mediated inhibition of PKR. We show that one mutant virus (R296T) despite being deficient in dsRNA-binding can inhibit PKR and replicates similar to WT virus. In contrast, another mutant virus (K287T) that bears a σ3 protein that cannot prevent dsRNA-mediated activation of PKR induces stress granules in infected cells and replicates less efficiently than WT virus. In vivo, the K287T mutant is attenuated in its replication and unlike WT virus and the R296T mutant virus does not cause heart disease (myocarditis).
Collapse
Affiliation(s)
- Yingying Guo
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Meleana M. Hinchman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Mercedes Lewandrowski
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Shaun T. Cross
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
| | - Danica M. Sutherland
- Departments of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Olivia L. Welsh
- Departments of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Terence S. Dermody
- Departments of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Departments of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pennsylvania, United States of America
| | - John S. L. Parker
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
11
|
Genetic removal of p70 S6K1 corrects coding sequence length-dependent alterations in mRNA translation in fragile X syndrome mice. Proc Natl Acad Sci U S A 2021; 118:2001681118. [PMID: 33906942 DOI: 10.1073/pnas.2001681118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Loss of the fragile X mental retardation protein (FMRP) causes fragile X syndrome (FXS). FMRP is widely thought to repress protein synthesis, but its translational targets and modes of control remain in dispute. We previously showed that genetic removal of p70 S6 kinase 1 (S6K1) corrects altered protein synthesis as well as synaptic and behavioral phenotypes in FXS mice. In this study, we examined the gene specificity of altered messenger RNA (mRNA) translation in FXS and the mechanism of rescue with genetic reduction of S6K1 by carrying out ribosome profiling and RNA sequencing on cortical lysates from wild-type, FXS, S6K1 knockout, and double knockout mice. We observed reduced ribosome footprint (RF) abundance in the majority of differentially translated genes in the cortices of FXS mice. We used molecular assays to discover evidence that the reduction in RF abundance reflects an increased rate of ribosome translocation, which is captured as a decrease in the number of translating ribosomes at steady state and is normalized by inhibition of S6K1. We also found that genetic removal of S6K1 prevented a positive-to-negative gradation of alterations in translation efficiencies (RF/mRNA) with coding sequence length across mRNAs in FXS mouse cortices. Our findings reveal the identities of dysregulated mRNAs and a molecular mechanism by which reduction of S6K1 prevents altered translation in FXS.
Collapse
|
12
|
Local Protein Translation and RNA Processing of Synaptic Proteins in Autism Spectrum Disorder. Int J Mol Sci 2021; 22:ijms22062811. [PMID: 33802132 PMCID: PMC8001067 DOI: 10.3390/ijms22062811] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heritable neurodevelopmental condition associated with impairments in social interaction, communication and repetitive behaviors. While the underlying disease mechanisms remain to be fully elucidated, dysfunction of neuronal plasticity and local translation control have emerged as key points of interest. Translation of mRNAs for critical synaptic proteins are negatively regulated by Fragile X mental retardation protein (FMRP), which is lost in the most common single-gene disorder associated with ASD. Numerous studies have shown that mRNA transport, RNA metabolism, and translation of synaptic proteins are important for neuronal health, synaptic plasticity, and learning and memory. Accordingly, dysfunction of these mechanisms may contribute to the abnormal brain function observed in individuals with autism spectrum disorder (ASD). In this review, we summarize recent studies about local translation and mRNA processing of synaptic proteins and discuss how perturbations of these processes may be related to the pathophysiology of ASD.
Collapse
|
13
|
Martinez De La Cruz B, Markus R, Malla S, Haig MI, Gell C, Sang F, Bellows E, Sherif MA, McLean D, Lourdusamy A, Self T, Bodi Z, Smith S, Fay M, Macdonald IA, Fray R, Knight HM. Modifying the m 6A brain methylome by ALKBH5-mediated demethylation: a new contender for synaptic tagging. Mol Psychiatry 2021; 26:7141-7153. [PMID: 34663904 PMCID: PMC8872986 DOI: 10.1038/s41380-021-01282-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/02/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023]
Abstract
Synaptic plasticity processes, which underlie learning and memory formation, require RNA to be translated local to synapses. The synaptic tagging hypothesis has previously been proposed to explain how mRNAs are available at specific activated synapses. However how RNA is regulated, and which transcripts are silenced or processed as part of the tagging process is still unknown. Modification of RNA by N6-methyladenosine (m6A/m) influences the cellular fate of mRNA. Here, by advanced microscopy, we showed that m6A demethylation by the eraser protein ALKBH5 occurs at active synaptic ribosomes and at synapses during short term plasticity. We demonstrated that at activated glutamatergic post-synaptic sites, both the YTHDF1 and YTHDF3 reader and the ALKBH5 eraser proteins increase in co-localisation to m6A-modified RNAs; but only the readers showed high co-localisation to modified RNAs during late-stage plasticity. The YTHDF1 and YTHFDF3 readers also exhibited differential roles during synaptic maturation suggesting that temporal and subcellular abundance may determine specific function. m6A-sequencing of human parahippocampus brain tissue revealed distinct white and grey matter m6A methylome profiles indicating that cellular context is a fundamental factor dictating regulated pathways. However, in both neuronal and glial cell-rich tissue, m6A effector proteins are themselves modified and m6A epitranscriptional and posttranslational modification processes coregulate protein cascades. We hypothesise that the availability m6A effector protein machinery in conjunction with RNA modification, may be important in the formation of condensed synaptic nanodomain assemblies through liquid-liquid phase separation. Our findings support that m6A demethylation by ALKBH5 is an intrinsic component of the synaptic tagging hypothesis and a molecular switch which leads to alterations in the RNA methylome, synaptic dysfunction and potentially reversible disease states.
Collapse
Affiliation(s)
- Braulio Martinez De La Cruz
- grid.4563.40000 0004 1936 8868Division of Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK ,grid.415971.f0000 0004 0605 8588Present Address: MRC Laboratory of Molecular Cell Biology, UCL, London, UK
| | - Robert Markus
- grid.4563.40000 0004 1936 8868School of Life Sciences Imaging Facility, University of Nottingham, Nottingham, UK
| | - Sunir Malla
- grid.4563.40000 0004 1936 8868Deep Seq: Next Generation Sequencing Facility, University of Nottingham, Nottingham, UK
| | - Maria Isabel Haig
- grid.4563.40000 0004 1936 8868Division of Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Chris Gell
- grid.4563.40000 0004 1936 8868School of Life Sciences Imaging Facility, University of Nottingham, Nottingham, UK
| | - Fei Sang
- grid.4563.40000 0004 1936 8868Deep Seq: Next Generation Sequencing Facility, University of Nottingham, Nottingham, UK
| | - Eleanor Bellows
- grid.4563.40000 0004 1936 8868Division of Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Mahmoud Awad Sherif
- grid.4563.40000 0004 1936 8868Division of Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Denise McLean
- grid.4563.40000 0004 1936 8868School of Life Sciences Imaging Facility, University of Nottingham, Nottingham, UK
| | - Anbarasu Lourdusamy
- grid.4563.40000 0004 1936 8868Children’s Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Tim Self
- grid.4563.40000 0004 1936 8868School of Life Sciences Imaging Facility, University of Nottingham, Nottingham, UK
| | - Zsuzsanna Bodi
- grid.4563.40000 0004 1936 8868Division of Plant Sciences, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Stuart Smith
- grid.4563.40000 0004 1936 8868Children’s Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Michael Fay
- grid.4563.40000 0004 1936 8868Nanoscale and Microscale Research Centre, University of Nottingham, Nottingham, UK
| | - Ian A. Macdonald
- grid.4563.40000 0004 1936 8868Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Rupert Fray
- grid.4563.40000 0004 1936 8868Division of Plant Sciences, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Helen Miranda Knight
- Division of Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
14
|
Hobson BD, Kong L, Hartwick EW, Gonzalez RL, Sims PA. Elongation inhibitors do not prevent the release of puromycylated nascent polypeptide chains from ribosomes. eLife 2020; 9:60048. [PMID: 32844746 PMCID: PMC7490010 DOI: 10.7554/elife.60048] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/04/2020] [Indexed: 12/21/2022] Open
Abstract
Puromycin is an amino-acyl transfer RNA analog widely employed in studies of protein synthesis. Since puromycin is covalently incorporated into nascent polypeptide chains, anti-puromycin immunofluorescence enables visualization of nascent protein synthesis. A common assumption in studies of local messenger RNA translation is that the anti-puromycin staining of puromycylated nascent polypeptides in fixed cells accurately reports on their original site of translation, particularly when ribosomes are stalled with elongation inhibitors prior to puromycin treatment. However, when we attempted to implement a proximity ligation assay to detect ribosome-puromycin complexes, we found no evidence to support this assumption. We further demonstrated, using biochemical assays and live cell imaging of nascent polypeptides in mammalian cells, that puromycylated nascent polypeptides rapidly dissociate from ribosomes even in the presence of elongation inhibitors. Our results suggest that attempts to define precise subcellular translation sites using anti-puromycin immunostaining may be confounded by release of puromycylated nascent polypeptide chains prior to fixation.
Collapse
Affiliation(s)
- Benjamin D Hobson
- Department of Systems Biology, Columbia University Irving Medical Center, New York, United States.,Medical Scientist Training Program, Columbia University Irving Medical Center, New York, United States
| | - Linghao Kong
- Department of Systems Biology, Columbia University Irving Medical Center, New York, United States
| | - Erik W Hartwick
- Department of Chemistry, Columbia University, New York, United States
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, New York, United States
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, United States.,Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, United States.,Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, United States
| |
Collapse
|
15
|
The science of puromycin: From studies of ribosome function to applications in biotechnology. Comput Struct Biotechnol J 2020; 18:1074-1083. [PMID: 32435426 PMCID: PMC7229235 DOI: 10.1016/j.csbj.2020.04.014] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/19/2020] [Accepted: 04/19/2020] [Indexed: 11/20/2022] Open
Abstract
Puromycin is a naturally occurring aminonucleoside antibiotic that inhibits protein synthesis by ribosome-catalyzed incorporation into the C-terminus of elongating nascent chains, blocking further extension and resulting in premature termination of translation. It is most commonly known as a selection marker for cell lines genetically engineered to express a resistance transgene, but its additional uses as a probe for protein synthesis have proven invaluable across a wide variety of model systems, ranging from purified ribosomes and cell-free translation to intact cultured cells and whole animals. Puromycin is comprised of a nucleoside covalently bound to an amino acid, mimicking the 3′ end of aminoacylated tRNAs that participate in delivery of amino acids to elongating ribosomes. Both moieties can tolerate some chemical substitutions and modifications without significant loss of activity, generating a diverse toolbox of puromycin-based reagents with added functionality, such as biotin for affinity purification or fluorophores for fluorescent microscopy detection. These reagents, as well as anti-puromycin antibodies, have played a pivotal role in advancing our understanding of the regulation and dysregulation of protein synthesis in normal and pathological processes, including immune response and neurological function. This manuscript reviews the current state of puromycin-based research, including structure and mechanism of action, relevant derivatives, use in advanced methodologies and some of the major insights generated using such techniques both in the lab and the clinic.
Collapse
|
16
|
Argüello RJ, Reverendo M, Mendes A, Camosseto V, Torres AG, Ribas de Pouplana L, van de Pavert SA, Gatti E, Pierre P. SunRiSE - measuring translation elongation at single-cell resolution by means of flow cytometry. J Cell Sci 2018; 131:jcs.214346. [PMID: 29700204 DOI: 10.1242/jcs.214346] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/04/2018] [Indexed: 12/30/2022] Open
Abstract
The rate at which ribosomes translate mRNAs regulates protein expression by controlling co-translational protein folding and mRNA stability. Many factors regulate translation elongation, including tRNA levels, codon usage and phosphorylation of eukaryotic elongation factor 2 (eEF2). Current methods to measure translation elongation lack single-cell resolution, require expression of multiple transgenes and have never been successfully applied ex vivo Here, we show, by using a combination of puromycilation detection and flow cytometry (a method we call 'SunRiSE'), that translation elongation can be measured accurately in primary cells in pure or heterogenous populations isolated from blood or tissues. This method allows for the simultaneous monitoring of multiple parameters, such as mTOR or S6K1/2 signaling activity, the cell cycle stage and phosphorylation of translation factors in single cells, without elaborated, costly and lengthy purification procedures. We took advantage of SunRiSE to demonstrate that, in mouse embryonic fibroblasts, eEF2 phosphorylation by eEF2 kinase (eEF2K) mostly affects translation engagement, but has a surprisingly small effect on elongation, except after proteotoxic stress induction.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Rafael J Argüello
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, 13288, Marseille Cedex 9, France
| | - Marisa Reverendo
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, 13288, Marseille Cedex 9, France
| | - Andreia Mendes
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, 13288, Marseille Cedex 9, France
| | - Voahirana Camosseto
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, 13288, Marseille Cedex 9, France
| | - Adrian G Torres
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Lluis Ribas de Pouplana
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain.,Catalan Institute for Research and Advanced Studies (ICREA), P/Lluis Companys 23, 08010 Barcelona, Catalonia, Spain
| | - Serge A van de Pavert
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, 13288, Marseille Cedex 9, France
| | - Evelina Gatti
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, 13288, Marseille Cedex 9, France.,Institute for Research in Biomedicine (iBiMED) and Ilidio Pinho Foundation, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Philippe Pierre
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, 13288, Marseille Cedex 9, France .,Institute for Research in Biomedicine (iBiMED) and Ilidio Pinho Foundation, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
17
|
Battling for Ribosomes: Translational Control at the Forefront of the Antiviral Response. J Mol Biol 2018; 430:1965-1992. [PMID: 29746850 DOI: 10.1016/j.jmb.2018.04.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 01/05/2023]
Abstract
In the early stages of infection, gaining control of the cellular protein synthesis machinery including its ribosomes is the ultimate combat objective for a virus. To successfully replicate, viruses unequivocally need to usurp and redeploy this machinery for translation of their own mRNA. In response, the host triggers global shutdown of translation while paradoxically allowing swift synthesis of antiviral proteins as a strategy to limit collateral damage. This fundamental conflict at the level of translational control defines the outcome of infection. As part of this special issue on molecular mechanisms of early virus-host cell interactions, we review the current state of knowledge regarding translational control during viral infection with specific emphasis on protein kinase RNA-activated and mammalian target of rapamycin-mediated mechanisms. We also describe recent technological advances that will allow unprecedented insight into how viruses and host cells battle for ribosomes.
Collapse
|
18
|
Wang W, Chen S, Das S, Losert W, Parent CA. Adenylyl cyclase A mRNA localized at the back of cells is actively translated in live chemotaxing Dictyostelium. J Cell Sci 2018; 131:jcs.216176. [PMID: 29618632 DOI: 10.1242/jcs.216176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/26/2018] [Indexed: 11/20/2022] Open
Abstract
Dictyostelium discoideum cells transport adenylyl cyclase A (ACA)-containing vesicles to the back of polarized cells to relay exogenous cAMP signals during chemotaxis. Fluorescence in situ hybridization (FISH) experiments showed that ACA mRNA is also asymmetrically distributed at the back of polarized cells. By using the MS2 bacteriophage system, we now visualize the distribution of ACA mRNA in live chemotaxing cells. We found that the ACA mRNA localization is not dependent on the translation of the protein product and requires multiple cis-acting elements within the ACA-coding sequence. We show that ACA mRNA is associated with actively translating ribosomes and is transported along microtubules towards the back of cells. By monitoring the recovery of ACA-YFP after photobleaching, we observed that local translation of ACA-YFP occurs at the back of cells. These data represent a novel functional role for localized translation in the relay of chemotactic signals during chemotaxis.
Collapse
Affiliation(s)
- Weiye Wang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Song Chen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA.,Department of Pharmacology, Michigan Medicine, Ann Arbor, MI 48109, USA.,Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Satarupa Das
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA.,Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Wolfgang Losert
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Carole A Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA .,Department of Pharmacology, Michigan Medicine, Ann Arbor, MI 48109, USA.,Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
19
|
Bastide A, Yewdell JW, David A. The RiboPuromycylation Method (RPM): an Immunofluorescence Technique to Map Translation Sites at the Sub-cellular Level. Bio Protoc 2018; 8:e2669. [PMID: 29552591 PMCID: PMC5856242 DOI: 10.21769/bioprotoc.2669] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/10/2017] [Accepted: 12/18/2017] [Indexed: 01/08/2023] Open
Abstract
While isotopic labeling of amino acids remains the reference method in the field for quantifying translation rate, it does not provide any information on spatial localization of translation sites. The rationale behind developing the ribopuromycylation method (RPM) was primarily to map translation sites at the sub-cellular level while avoiding detection of newly synthesized proteins released from ribosomes. RPM visualizes actively translating ribosomes in cells via standard immunofluorescence microscopy in fixed and permeabilized cells using a puromycin-specific monoclonal antibody to detect puromycylated nascent chains trapped on ribosomes treated with a chain elongation inhibitor.
Collapse
Affiliation(s)
- Amandine Bastide
- IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Jonathan W. Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, USA
| | - Alexandre David
- IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| |
Collapse
|
20
|
Puighermanal E, Biever A, Pascoli V, Melser S, Pratlong M, Cutando L, Rialle S, Severac D, Boubaker-Vitre J, Meyuhas O, Marsicano G, Lüscher C, Valjent E. Ribosomal Protein S6 Phosphorylation Is Involved in Novelty-Induced Locomotion, Synaptic Plasticity and mRNA Translation. Front Mol Neurosci 2017; 10:419. [PMID: 29311811 PMCID: PMC5742586 DOI: 10.3389/fnmol.2017.00419] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/01/2017] [Indexed: 11/29/2022] Open
Abstract
The phosphorylation of the ribosomal protein S6 (rpS6) is widely used to track neuronal activity. Although it is generally assumed that rpS6 phosphorylation has a stimulatory effect on global protein synthesis in neurons, its exact biological function remains unknown. By using a phospho-deficient rpS6 knockin mouse model, we directly tested the role of phospho-rpS6 in mRNA translation, plasticity and behavior. The analysis of multiple brain areas shows for the first time that, in neurons, phospho-rpS6 is dispensable for overall protein synthesis. Instead, we found that phospho-rpS6 controls the translation of a subset of mRNAs in a specific brain region, the nucleus accumbens (Acb), but not in the dorsal striatum. We further show that rpS6 phospho-mutant mice display altered long-term potentiation (LTP) in the Acb and enhanced novelty-induced locomotion. Collectively, our findings suggest a previously unappreciated role of phospho-rpS6 in the physiology of the Acb, through the translation of a selective subclass of mRNAs, rather than the regulation of general protein synthesis.
Collapse
Affiliation(s)
| | - Anne Biever
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Vincent Pascoli
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Su Melser
- INSERM U1215, Université de Bordeaux, NeuroCentre Magendie, Bordeaux, France
| | - Marine Pratlong
- Montpellier GenomiX, BioCampus Montpellier, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Laura Cutando
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Stephanie Rialle
- Montpellier GenomiX, BioCampus Montpellier, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Dany Severac
- Montpellier GenomiX, BioCampus Montpellier, CNRS, INSERM, University of Montpellier, Montpellier, France
| | | | - Oded Meyuhas
- Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Giovanni Marsicano
- INSERM U1215, Université de Bordeaux, NeuroCentre Magendie, Bordeaux, France
| | - Christian Lüscher
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, Geneva, Switzerland.,Clinic of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland
| | - Emmanuel Valjent
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France
| |
Collapse
|
21
|
Aulas A, Fay MM, Szaflarski W, Kedersha N, Anderson P, Ivanov P. Methods to Classify Cytoplasmic Foci as Mammalian Stress Granules. J Vis Exp 2017. [PMID: 28570526 DOI: 10.3791/55656] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cells are often challenged by sudden environmental changes. Stress Granules (SGs), cytoplasmic ribonucleoprotein complexes that form in cells exposed to stress conditions, are implicated in various aspects of cell metabolism and survival. SGs modulate cellular signaling pathways, post-transcriptional gene expression, and stress response programs. The formation of these mRNA-containing granules is directly connected to cellular translation. SG assembly is triggered by inhibited translation initiation, and SG disassembly is promoted by translation activation or by inhibited translation elongation. This relationship is further highlighted by SG composition. Core SG components are stalled translation pre-initiation complexes, mRNA, and selected RNA-binding Proteins (RBPs). The purpose of SG assembly is to conserve cellular energy by sequestering translationally stalled housekeeping mRNAs, allowing for the enhanced translation of stress-responsive proteins. In addition to the core constituents, such as stalled translation preinitiation complexes, SGs contain a plethora of other proteins and signaling molecules. Defects in SG formation can impair cellular adaptation to stress and can thus promote cell death. SGs and similar RNA-containing granules have been linked to a number of human diseases, including neurodegenerative disorders and cancer, leading to the recent interest in classifying and defining RNA granule subtypes. This protocol describes assays to characterize and quantify mammalian SGs.
Collapse
Affiliation(s)
- Anaïs Aulas
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital; Department of Medicine, Harvard Medical School
| | - Marta M Fay
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital; Department of Medicine, Harvard Medical School
| | - Witold Szaflarski
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital; Department of Medicine, Harvard Medical School; Department of Histology and Embryology, Poznan University of Medical Sciences
| | - Nancy Kedersha
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital; Department of Medicine, Harvard Medical School
| | - Paul Anderson
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital; Department of Medicine, Harvard Medical School
| | - Pavel Ivanov
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital; Department of Medicine, Harvard Medical School; The Broad Institute of Harvard and M.I.T.;
| |
Collapse
|
22
|
Seedhom MO, Hickman HD, Wei J, David A, Yewdell JW. Protein Translation Activity: A New Measure of Host Immune Cell Activation. THE JOURNAL OF IMMUNOLOGY 2016; 197:1498-506. [PMID: 27385780 DOI: 10.4049/jimmunol.1600088] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/06/2016] [Indexed: 11/19/2022]
Abstract
We describe the in vivo ribopuromycylation (RPM) method, which uses a puromycin-specific Ab to fluorescently label ribosome-bound puromycylated nascent chains, enabling measurement of translational activity via immunohistochemistry or flow cytometry. Tissue staining provides a unique view of virus-induced activation of adaptive, innate, and stromal immune cells. RPM flow precisely quantitates virus-induced activation of lymphocytes and innate immune cells, and it provides a unique measure of immune cell deactivation and quiescence. Using RPM we find that high endothelial cells in draining lymph nodes rapidly increase translation in the first day of vaccinia virus infection. We also find a population of constitutively activated splenic T cells in naive mice and further that most bone marrow T cells activate 3 d after vaccinia virus infection. Bone marrow T cell activation is nonspecific, IL-12-dependent, and induces innate memory T cell phenotypic markers. Thus, RPM measures translational activity to uniquely identify cell populations that participate in the immune response to pathogens, other foreign substances, and autoantigens.
Collapse
Affiliation(s)
- Mina O Seedhom
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Heather D Hickman
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Jiajie Wei
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Alexandre David
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
23
|
Panas MD, Kedersha N, McInerney GM. Methods for the characterization of stress granules in virus infected cells. Methods 2015; 90:57-64. [PMID: 25896634 PMCID: PMC7128402 DOI: 10.1016/j.ymeth.2015.04.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 12/25/2022] Open
Abstract
Stress granules are induced as a cellular defence against virus infection. We discuss methods for the detection of viral and cellular proteins and RNA in SGs. In addition, we describe a surrogate in vitro assay for SG formation.
Stress granules are induced in many different viral infections, and in turn are inhibited by the expression of viral proteins or RNAs. It is therefore evident that these bodies are not compatible with efficient viral replication, but the mechanism by which they act to restrict viral gene expression or genome replication is not yet understood. This article discusses a number of methods that can be employed to gain a more complete understanding of the relationship between cellular SGs and viral RNA and protein synthesis in cells infected with diverse viruses.
Collapse
Affiliation(s)
- Marc D Panas
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Nancy Kedersha
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA
| | - Gerald M McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
24
|
Amara AAAF. An overview of the molecular and cellular interactions of some bioactive compounds. BIOTECHNOLOGY OF BIOACTIVE COMPOUNDS 2015:525-554. [DOI: 10.1002/9781118733103.ch21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
25
|
Abstract
Viruses require the host translational apparatus to synthesize viral proteins. Host stress response mechanisms that suppress translation, therefore, represent a significant obstacle that viruses must overcome. Here, we report a strategy whereby the mammalian orthoreoviruses compartmentalize the translational machinery within virus-induced inclusions known as viral factories (VF). VF are the sites of reovirus replication and assembly but were thought not to contain ribosomes. It was assumed viral mRNAs exited the VF to undergo translation by the cellular machinery, and proteins reentered the factory to participate in assembly. Here, we used ribopuromycylation to visualize active translation in infected cells. These studies revealed that active translation occurs within VF and that ribosomal subunits and proteins required for translation initiation, elongation, termination, and recycling localize to the factory. Interestingly, we observed components of the 43S preinitiation complex (PIC) concentrating primarily at factory margins, suggesting a spatial and/or dynamic organization of translation within the VF. Similarly, the viral single-stranded RNA binding protein σNS localized to the factory margins and had a tubulovesicular staining pattern that extended a short distance from the margins of the factories and colocalized with endoplasmic reticulum (ER) markers. Consistent with these colocalization studies, σNS was found to associate with both eukaryotic translation initiation factor 3 subunit A (eIF3A) and the ribosomal subunit pS6R. Together, these findings indicate that σNS functions to recruit 43S PIC machinery to the primary site of viral translation within the viral factory. Pathogen-mediated compartmentalization of the translational apparatus provides a novel mechanism by which viruses might avoid host translational suppression. Viruses lack biosynthetic capabilities and depend upon the host for protein synthesis. This dependence requires viruses to evolve mechanisms to coerce the host translational machinery into synthesizing viral proteins in the face of ongoing cellular stress responses that suppress global protein synthesis. Reoviruses replicate and assemble within cytoplasmic inclusions called viral factories. However, synthesis of viral proteins was thought to occur in the cytosol. To identify the site(s) of viral translation, we undertook a microscopy-based approach using ribopuromycylation to detect active translation. Here, we report that active translation occurs within viral factories and that translational factors are compartmentalized within factories. Furthermore, we find that the reovirus nonstructural protein σNS associates with 43S preinitiation complexes at the factory margins, suggesting a role for σNS in translation. Together, virus-induced compartmentalization of the host translational machinery represents a strategy for viruses to spatiotemporally couple viral protein synthesis with viral replication and assembly.
Collapse
|
26
|
The Histochem Cell Biol conspectus: the year 2013 in review. Histochem Cell Biol 2014; 141:337-63. [PMID: 24610091 PMCID: PMC7087837 DOI: 10.1007/s00418-014-1207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2014] [Indexed: 11/29/2022]
Abstract
Herein, we provide a brief synopsis of all manuscripts published in Histochem Cell Biol in the year 2013. For ease of reference, we have divided the manuscripts into the following categories: Advances in Methodologies; Molecules in Health and Disease; Organelles, Subcellular Structures and Compartments; Golgi Apparatus; Intermediate Filaments and Cytoskeleton; Connective Tissue and Extracellular Matrix; Autophagy; Stem Cells; Musculoskeletal System; Respiratory and Cardiovascular Systems; Gastrointestinal Tract; Central Nervous System; Peripheral Nervous System; Excretory Glands; Kidney and Urinary Bladder; and Male and Female Reproductive Systems. We hope that the readership will find this annual journal synopsis of value and serve as a quick, categorized reference guide for “state-of-the-art” manuscripts in the areas of histochemistry, immunohistochemistry, and cell biology.
Collapse
|
27
|
Translation of pre-spliced RNAs in the nuclear compartment generates peptides for the MHC class I pathway. Proc Natl Acad Sci U S A 2013; 110:17951-6. [PMID: 24082107 DOI: 10.1073/pnas.1309956110] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The scanning of maturing mRNAs by ribosomes plays a key role in the mRNA quality control process. When ribosomes first engage with the newly synthesized mRNA, and if peptides are produced, is unclear, however. Here we show that ribosomal scanning of prespliced mRNAs occurs in the nuclear compartment, and that this event produces peptide substrates for the MHC class I pathway. Inserting antigenic peptide sequences in introns that are spliced out before the mRNAs exit the nuclear compartment results in an equal amount of antigenic peptide products as when the peptides are encoded from the main open reading frame (ORF). Taken together with the detection of intron-encoded nascent peptides and RPS6/RPL7-carrying complexes in the perinucleolar compartment, these results show that peptides are produced by a translation event occurring before mRNA splicing. This suggests that ribosomes occupy and scan mRNAs early in the mRNA maturation process, and suggests a physiological role for nuclear mRNA translation, and also helps explain how the immune system tolerates peptides derived from tissue-specific mRNA splice variants.
Collapse
|
28
|
Barhoom S, Farrell I, Shai B, Dahary D, Cooperman BS, Smilansky Z, Elroy-Stein O, Ehrlich M. Dicodon monitoring of protein synthesis (DiCoMPS) reveals levels of synthesis of a viral protein in single cells. Nucleic Acids Res 2013; 41:e177. [PMID: 23965304 PMCID: PMC3794613 DOI: 10.1093/nar/gkt686] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The current report represents a further advancement of our previously reported technology termed Fluorescent transfer RNA (tRNA) for Translation Monitoring (FtTM), for monitoring of active global protein synthesis sites in single live cells. FtTM measures Förster resonance energy transfer (FRET) signals, generated when fluorescent tRNAs (fl-tRNAs), separately labeled as a FRET pair, occupy adjacent sites on the ribosome. The current technology, termed DiCodon Monitoring of Protein Synthesis (DiCoMPS), was developed for monitoring active synthesis of a specific protein. In DiCoMPS, specific fl-tRNA pair combinations are selected for transfection, based on the degree of enrichment of a dicodon sequence to which they bind in the mRNA of interest, relative to the background transcriptome of the cell in which the assay is performed. In this study, we used cells infected with the Epizootic Hemorrhagic Disease Virus 2-Ibaraki and measured, through DiCoMPS, the synthesis of the viral non-structural protein 3 (NS3), which is enriched in the AUA:AUA dicodon. fl-tRNAIleUAU-generated FRET signals were specifically enhanced in infected cells, increased in the course of infection and were diminished on siRNA-mediated knockdown of NS3. Our results establish an experimental approach for the single-cell measurement of the levels of synthesis of a specific viral protein.
Collapse
Affiliation(s)
- Sima Barhoom
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel, Anima Cell Metrology, Inc., Bernardsville, NJ 07924-2270, USA and Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Nevalainen M, Kaakinen M, Metsikkö K. Distribution of mRNA transcripts and translation activity in skeletal myofibers. Cell Tissue Res 2013; 353:539-48. [PMID: 23736382 DOI: 10.1007/s00441-013-1659-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/06/2013] [Indexed: 01/26/2023]
Abstract
We examine the distribution of gene products in skeletal myofibers, which are highly differentiated multinucleated cells exhibiting a specific cellular architecture. In situ hybridization studies of adult rat myofibers with a single nucleus infected with influenza virus suggested that the viral mRNA products were distributed beneath the sarcolemma around the nucleus of origin. In situ hybridization studies with a poly-T oligonucleotide probe to detect endogenous mRNAs indicated their concentration around the nuclei and distribution beneath the sarcolemma in a cross-striated fashion at the A-I junctions (costamers). Labeling with bromouridine resulted in a similar distribution pattern. The ribosomal distribution pattern indicated concentration around the myonuclei but an intracellular component was also seen. Localization of the translating ribosomes by puromycylation revealed prominent spots perinuclearly and in the core regions of the myofibers. These spots flanked Golgi elements. Our results thus suggest that the total mRNA pool is heavily concentrated within the perinuclear and subsarcolemmal regions. However, the ribosomes and the translational activity did not follow this distribution pattern, so the mRNA transcripts were not restricted to a region beneath the sarcolemma. Furthermore, experiments utilizing green fluorescent protein showed the rapid movement of proteins within the endomembrane system, which thus facilitated proteins to reach their site of function irrespective of the site of synthesis.
Collapse
Affiliation(s)
- Mika Nevalainen
- Department of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, P.O. Box 5000, Aapistie 7, FI-90014, Oulu, Finland.
| | | | | |
Collapse
|