1
|
Guo R, Xie X, Ren Q, Liew PX. New insights on extramedullary granulopoiesis and neutrophil heterogeneity in the spleen and its importance in disease. J Leukoc Biol 2025; 117:qiae220. [PMID: 39514106 DOI: 10.1093/jleuko/qiae220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Indexed: 11/16/2024] Open
Abstract
Neutrophils are traditionally viewed as uncomplicated exterminators that arrive quickly at sites of infection, kill pathogens, and then expire. However, recent studies employing modern transcriptomics coupled with novel imaging modalities have discovered that neutrophils exhibit significant heterogeneity within organs and have complex functional roles ranging from tissue homeostasis to cancer and chronic pathologies. This has revised the view that neutrophils are simplistic butchers, and there has been a resurgent interest in neutrophils. The spleen was described as a granulopoietic organ more than 4 decades ago, and studies indicate that neutrophils are briefly retained in the spleen before returning to circulation after proliferation. Transcriptomic studies have discovered that splenic neutrophils are heterogeneous and distinct compared with those in blood. This suggests that a unique hematopoietic niche exists in the splenic microenvironment, i.e., capable of programming neutrophils in the spleen. During severe systemic inflammation with an increased need of neutrophils, the spleen can adapt by producing neutrophils through emergency granulopoiesis. In this review, we describe the structure and microanatomy of the spleen and examine how cells within the splenic microenvironment help to regulate splenic granulopoiesis. A focus is placed on exploring the increase in splenic granulopoiesis to meet host needs during infection and inflammation. Emerging technologies such as single-cell RNA sequencing, which provide valuable insight into splenic neutrophil development and heterogeneity, are also discussed. Finally, we examine how tumors subvert this natural pathway in the spleen to generate granulocytic suppressor cells to promote tumor growth.
Collapse
Affiliation(s)
- Rongxia Guo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Xuemei Xie
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 77 Ave Louis Pasteur, Boston, MA 02115, United States
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin 300020, China
- Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences, 288 Nanjing Road, Heping District, Tianjin 300020, China
| | - Pei Xiong Liew
- Immunology Center of Georgia, Augusta University, 1410 Laney Walker Blvd, Augusta, GA 30912, United States
- Department of Cellular Biology and Anatomy, Augusta University, 1434 Laney Walker Blvd, Augusta, GA 30912, United States
| |
Collapse
|
2
|
Alexandre YO, Mueller SN. Splenic stromal niches in homeostasis and immunity. Nat Rev Immunol 2023; 23:705-719. [PMID: 36973361 DOI: 10.1038/s41577-023-00857-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 03/29/2023]
Abstract
The spleen is a gatekeeper of systemic immunity where immune responses against blood-borne pathogens are initiated and sustained. Non-haematopoietic stromal cells construct microanatomical niches in the spleen that make diverse contributions to physiological spleen functions and regulate the homeostasis of immune cells. Additional signals from spleen autonomic nerves also modify immune responses. Recent insight into the diversity of the splenic fibroblastic stromal cells has revised our understanding of how these cells help to orchestrate splenic responses to infection and contribute to immune responses. In this Review, we examine our current understanding of how stromal niches and neuroimmune circuits direct the immunological functions of the spleen, with a focus on T cell immunity.
Collapse
Affiliation(s)
- Yannick O Alexandre
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Prenzler S, Rudrawar S, Waespy M, Kelm S, Anoopkumar-Dukie S, Haselhorst T. The role of sialic acid-binding immunoglobulin-like-lectin-1 (siglec-1) in immunology and infectious disease. Int Rev Immunol 2023; 42:113-138. [PMID: 34494938 DOI: 10.1080/08830185.2021.1931171] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Siglec-1, also known as Sialoadhesin (Sn) and CD169 is highly conserved among vertebrates and with 17 immunoglobulin-like domains is Siglec-1 the largest member of the Siglec family. Expression of Siglec-1 is found primarily on dendritic cells (DCs), macrophages and interferon induced monocyte. The structure of Siglec-1 is unique among siglecs and its function as a receptor is also different compared to other receptors in this class as it contains the most extracellular domains out of all the siglecs. However, the ability of Siglec-1 to internalize antigens and to pass them on to lymphocytes by allowing dendritic cells and macrophages to act as antigen presenting cells, is the main reason that has granted Siglec-1's key role in multiple human disease states including atherosclerosis, coronary artery disease, autoimmune diseases, cell-cell signaling, immunology, and more importantly bacterial and viral infections. Enveloped viruses for example have been shown to manipulate Siglec-1 to increase their virulence by binding to sialic acids present on the virus glycoproteins allowing them to spread or evade immune response. Siglec-1 mediates dissemination of HIV-1 in activated tissues enhancing viral spread via infection of DC/T-cell synapses. Overall, the ability of Siglec-1 to bind a variety of target cells within the immune system such as erythrocytes, B-cells, CD8+ granulocytes and NK cells, highlights that Siglec-1 is a unique player in these essential processes.
Collapse
Affiliation(s)
- Shane Prenzler
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Santosh Rudrawar
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Mario Waespy
- Centre for Biomolecular Interactions Bremen, Department of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Sørge Kelm
- Centre for Biomolecular Interactions Bremen, Department of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Shailendra Anoopkumar-Dukie
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Thomas Haselhorst
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
4
|
Börner K, Teichmann SA, Quardokus EM, Gee JC, Browne K, Osumi-Sutherland D, Herr BW, Bueckle A, Paul H, Haniffa M, Jardine L, Bernard A, Ding SL, Miller JA, Lin S, Halushka MK, Boppana A, Longacre TA, Hickey J, Lin Y, Valerius MT, He Y, Pryhuber G, Sun X, Jorgensen M, Radtke AJ, Wasserfall C, Ginty F, Ho J, Sunshine J, Beuschel RT, Brusko M, Lee S, Malhotra R, Jain S, Weber G. Anatomical structures, cell types and biomarkers of the Human Reference Atlas. Nat Cell Biol 2021; 23:1117-1128. [PMID: 34750582 PMCID: PMC10079270 DOI: 10.1038/s41556-021-00788-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 09/29/2021] [Indexed: 02/05/2023]
Abstract
The Human Reference Atlas (HRA) aims to map all of the cells of the human body to advance biomedical research and clinical practice. This Perspective presents collaborative work by members of 16 international consortia on two essential and interlinked parts of the HRA: (1) three-dimensional representations of anatomy that are linked to (2) tables that name and interlink major anatomical structures, cell types, plus biomarkers (ASCT+B). We discuss four examples that demonstrate the practical utility of the HRA.
Collapse
Affiliation(s)
- Katy Börner
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA.
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ellen M Quardokus
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - James C Gee
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristen Browne
- Department of Health and Human Services, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David Osumi-Sutherland
- European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge, UK
| | - Bruce W Herr
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Andreas Bueckle
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Hrishikesh Paul
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Muzlifah Haniffa
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Laura Jardine
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | - Shin Lin
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Avinash Boppana
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Teri A Longacre
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - John Hickey
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yiing Lin
- Department of Surgery, Washington University in St Louis, St Louis, MO, USA
| | - M Todd Valerius
- Harvard Institute of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yongqun He
- Department of Microbiology and Immunology, and Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gloria Pryhuber
- Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - Xin Sun
- Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Marda Jorgensen
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Andrea J Radtke
- Center for Advanced Tissue Imaging, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Clive Wasserfall
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Fiona Ginty
- Biology and Applied Physics, General Electric Research, Niskayuna, NY, USA
| | - Jonhan Ho
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joel Sunshine
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Rebecca T Beuschel
- Center for Advanced Tissue Imaging, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Maigan Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Sujin Lee
- Division of Vascular Surgery and Endovascular Therapy, Massachusetts General Hospital, Boston, MA, USA
| | - Rajeev Malhotra
- Harvard Institute of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Vascular Surgery and Endovascular Therapy, Massachusetts General Hospital, Boston, MA, USA
| | - Sanjay Jain
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Griffin Weber
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Taatjes DJ, Roth J. In focus in HCB. Histochem Cell Biol 2021; 155:319-322. [PMID: 33774757 DOI: 10.1007/s00418-021-01976-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| | - Jürgen Roth
- University of Zurich, CH-8091, Zurich, Switzerland
| |
Collapse
|
6
|
Steiniger BS, Pfeffer H, Guthe M, Lobachev O. Exploring human splenic red pulp vasculature in virtual reality: details of sheathed capillaries and the open capillary network. Histochem Cell Biol 2021; 155:341-354. [PMID: 33074357 PMCID: PMC8021519 DOI: 10.1007/s00418-020-01924-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2020] [Indexed: 02/07/2023]
Abstract
We reconstructed serial sections of a representative adult human spleen to clarify the unknown arrangement of the splenic microvasculature, such as terminal arterioles, sheathed capillaries, the red pulp capillary network and venules. The resulting 3D model was evaluated in virtual reality (VR). Capillary sheaths often occurred after the second or third branching of a terminal arteriole and covered its capillary side or end branches. The sheaths started directly after the final smooth muscle cells of the arteriole and consisted of cuboidal CD271++ stromal sheath cells surrounded and infiltrated by B lymphocytes and macrophages. Some sheaths covered up to four sequential capillary bifurcations thus forming bizarre elongated structures. Each sheath had a unique form. Apart from symmetric dichotomous branchings inside the sheath, sheathed capillaries also gave off side branches, which crossed the sheath and freely ended at its surface. These side branches are likely to distribute materials from the incoming blood to sheath-associated B lymphocytes and macrophages and thus represent the first location for recognition of blood-borne antigens in the spleen. A few non-sheathed bypasses from terminal arterioles to the red pulp capillary network also exist. Red pulp venules are primarily supplied by sinuses, but they also exhibit a few connections to the capillary network. Thus, the human splenic red pulp harbors a primarily open microcirculation with a very minor closed part.
Collapse
Affiliation(s)
- Birte S Steiniger
- Institute of Anatomy and Cell Biology, University of Marburg, Robert-Koch-Str.8, 35037, Marburg, Germany.
| | - Henriette Pfeffer
- Institute of Anatomy and Cell Biology, University of Marburg, Robert-Koch-Str.8, 35037, Marburg, Germany
| | - Michael Guthe
- Visual Computing, Institute of Computer Science, University of Bayreuth, 95440, Bayreuth, Germany
| | - Oleg Lobachev
- Visual Computing, Institute of Computer Science, University of Bayreuth, 95440, Bayreuth, Germany
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625, Hannover, Germany
- Leibniz-Fachhochschule School of Business, 30539, Hannover, Germany
| |
Collapse
|
7
|
Abstract
In contrast to other lymphoid tissues making up the immune system, the spleen as its biggest organ is directly linked into the blood circulation. Beside its main task to filter out microorganism, proteins, and overaged or pathologically altered blood cells, also humoral and cellular immune responses are initiated in this organ. The spleen is not palpable during a physical examination in most but not all healthy patients. A correct diagnosis of splenomegaly in children and adolescents must take into account age-dependent size reference values. Ultrasound examination is nowadays used to measure the spleen size and to judge on reasons for morphological alterations in associated with an increase in organ size. An enormous amount of possible causes has to be put in consideration if splenomegaly is diagnosed. Among these are infectious agents, hematologic disorders, infiltrative diseases, hyperplasia of the white pulp, congestion, and changes in the composition and structure of the white pulp by immunologically mediated diseases. This review attempts to discuss a comprehensive list of differential diagnoses to be considered clinically in children and young adolescents.
Collapse
Affiliation(s)
- Meinolf Suttorp
- Pediatric Hemato-Oncology, Medical Faculty, Technical University Dresden, Dresden, Germany.,Division of Pediatric Oncology, Hematology and Palliative Medicine Section, Department of Pediatrics and Adolescent Medicine, University Medicine Rostock, Rostock, Germany
| | - Carl Friedrich Classen
- Division of Pediatric Oncology, Hematology and Palliative Medicine Section, Department of Pediatrics and Adolescent Medicine, University Medicine Rostock, Rostock, Germany
| |
Collapse
|
8
|
Marinkovic D, Marinkovic T. Putative role of marginal zone B cells in pathophysiological processes. Scand J Immunol 2020; 92:e12920. [PMID: 32594535 DOI: 10.1111/sji.12920] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/21/2020] [Indexed: 12/16/2022]
Abstract
The maintenance of inner integrity of an organism is founded on the proper performance of two immunity branches, innate and adaptive immune responses. Recently, it became apparent that subset of splenic B cells named marginal zone B cells (MZB cells) exhibits unique developmental and functional features that bridge these two immunity branches. Strategically positioned at the site where blood and lymph are filtered, MZB cells represent a population of sentinels that rapidly proliferate and differentiate into IgM plasmablast cells when encountered with blood-borne, thymus-independent (TI) Ags. Moreover, MZB cells have intrinsic capability to induce potent CD4+ helper T cell response and cytokine production upon stimulation with soluble antigens. Due to their ability to overcome a time gap prior the establishment of the full adaptive response towards pathogens, MZB cells connect and direct innate and adaptive immunity. An additional interesting characteristic of MZB cells is capacity to function as regulatory cells in autoimmune processes. MZB cells may also contribute to the control of autoimmunity via the induction of tolerance by apoptotic cells. Importantly, in the clear association with inflammation and autoimmunity, MZB cells may transform into MALT lymphoma, representing a concurrence point for the infection, immunity and malignancy. This paper presents an insight into the complex biology of marginal zone B cells and their role in intertwining and directing innate and adaptive immune processes at the physiological and pathological level.
Collapse
Affiliation(s)
- Dragan Marinkovic
- Faculty of Special Education and Rehabilitation, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
9
|
Steiniger BS, Raimer L, Ecke A, Stuck BA, Cetin Y. Plasma cells, plasmablasts, and AID +/CD30 + B lymphoblasts inside and outside germinal centres: details of the basal light zone and the outer zone in human palatine tonsils. Histochem Cell Biol 2020; 154:55-75. [PMID: 32172287 PMCID: PMC7343761 DOI: 10.1007/s00418-020-01861-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2020] [Indexed: 12/31/2022]
Abstract
Plasma cells (PCs) in human palatine tonsils are predominantly located in the germinal centres (GCs), in the subepithelial space and near the deep connective tissue septa surrounding each crypt. We analysed the location, phenotype, and proliferation of GC PCs by immunohistology comparing them to PCs in the other two locations. Most PCs in GCs were strongly positive for CD38, CD138, CD27, IRF4, and intracellular (ic) IgG. They often accumulated in the basal light zone, but could also be found scattered in the entire light zone. In addition, rows of PCs occurred at the surface of the GC bordering the mantle zone, i.e., in the outer zone, and at the surface of the dark zone. The latter cells were often continuous with PCs in the extrafollicular area. The vast majority of GC PCs were negative for Ki-67. Only a few Ki-67+ plasmablasts, predominantly icIgG+ or icIgM+, were found inside GCs. In certain GCs PCs accumulated around capillaries and the adjacent perikarya of follicular dendritic cells (FDCs). Newly formed PCs might migrate from the basal to the superficial part of the light zone and then back to the dark zone surface to leave the GC. This guarantees an even distribution of secreted Ig for exchange with immune complexes on FDCs. The surface of the dark zone may also be an exit site for Ki-67+CD30+ B lymphoblasts, which seed perifollicular and extrafollicular sites. We speculate that these cells tend to downmodulate CD20 and activation-induced deaminase and further up-regulate CD30 when developing into pre-plasmablasts.
Collapse
Affiliation(s)
- Birte S Steiniger
- Institute of Anatomy and Cell Biology, University of Marburg, Robert-Koch-Str. 8, 35037, Marburg, Germany.
| | - Linda Raimer
- Institute of Anatomy and Cell Biology, University of Marburg, Robert-Koch-Str. 8, 35037, Marburg, Germany
| | - Anja Ecke
- Department of Otorhinolaryngology, University Hospital Marburg, University of Marburg, Marburg, Germany
| | - Boris A Stuck
- Department of Otorhinolaryngology, University Hospital Marburg, University of Marburg, Marburg, Germany
| | - Yalcin Cetin
- Institute of Anatomy and Cell Biology, University of Marburg, Robert-Koch-Str. 8, 35037, Marburg, Germany
| |
Collapse
|
10
|
Almenar S, Rios-Navarro C, Ortega M, Molina P, Ferrandez-Izquierdo A, Ruiz-Sauri A. Anatomy, immunohistochemistry, and numerical distribution of human splenic microvessels. Ann Anat 2019; 224:161-171. [PMID: 31121286 DOI: 10.1016/j.aanat.2019.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 11/25/2022]
Abstract
The microvascular architecture of the spleen plays an important role in the immunological function of this organ. The different types of vessels are related to different reticular cells each with their own immunomodulatory functions. The present study describes an immunohistochemical and morphometric analysis of the various types of vessels in 21 human autopsy non-pathological splenic samples. On an area of 785,656.37 μm2 for each sample, we classified and quantified the type and number of vascular structures, each according to their morphology and immunohistochemical profile, and obtained the ratios between them. The distribution of trabecular vessels and the characteristics of the venules are reviewed. In our material the so-called "cavernous perimarginal sinus" (anatomical structure previously described by Schmidt et al., 1988) was observed and interpreted as a curvilinear venule shaped by the follicle in contact with the trabecular vein. Our material comprised 261 trabeculae (containing 269 arterial sections and 508 venous sections), 30,621 CD34+ capillaries, 7739 CD271+ sheathed capillaries, 2588 CD169+ sheathed capillaries, and 31,124 CD8+ sinusoids. The total area (TA) (14,765,714.88 μm2) occupied by the sinusoidal sections of the 21 cases was much higher than the TA of the capillary sections (1,700,269.83 μm2). Similarly, the TA (651,985 μm2) occupied by the sections of the trabecular veins was much higher than the TA of the trabecular arteries (88,594 μm2). The total number of CD34+ capillaries and of sinusoids CD8+ was similar for the sum of the 21 cases, nevertheless there were large differences in each case. Statistically the hypothesis that the number of capillaries and sinusoids are present with the same frequency is discarded. In view of the absence of a numerical correlation between capillaries and sinusoids, we postulate that very possibly the arterial and the venous vascular trees are two anatomically independent structures separated by the splenic cords. We believe that this is the first work where splenic microvascularization is simultaneously approached from a morphometric and immunohistochemical point of view.
Collapse
Affiliation(s)
- S Almenar
- Department of Pathology, Faculty of Medicine, Universitat de Valencia, Valencia, Spain
| | | | - M Ortega
- Department of Pathology, Faculty of Medicine, Universitat de Valencia, Valencia, Spain
| | - P Molina
- Department of Pathology, Faculty of Medicine, Universitat de Valencia, Valencia, Spain; Forensic Pathology Service, Institute of Legal Medicine and Forensic Sciences, Valencia, Spain
| | - A Ferrandez-Izquierdo
- Department of Pathology, Faculty of Medicine, Universitat de Valencia, Valencia, Spain; Institute of Health Research INCLIVA, Valencia, Spain
| | - A Ruiz-Sauri
- Department of Pathology, Faculty of Medicine, Universitat de Valencia, Valencia, Spain; Institute of Health Research INCLIVA, Valencia, Spain.
| |
Collapse
|
11
|
Red pulp macrophages in the human spleen are a distinct cell population with a unique expression of Fc-γ receptors. Blood Adv 2019; 2:941-953. [PMID: 29692344 DOI: 10.1182/bloodadvances.2017015008] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/06/2018] [Indexed: 12/14/2022] Open
Abstract
Tissue-resident macrophages in the spleen play a major role in the clearance of immunoglobulin G (IgG)-opsonized blood cells, as occurs in immune thrombocytopenia (ITP) and autoimmune hemolytic anemia (AIHA). Blood cells are phagocytosed via the Fc-γ receptors (FcγRs), but little is known about the FcγR expression on splenic red pulp macrophages in humans, with only a few previous studies that showed conflicting results. We developed a novel method to specifically isolate red pulp macrophages from 82 human spleens. Surface expression of various receptors and phagocytic capacity was analyzed by flow cytometry and immunofluorescence of tissue sections. Red pulp macrophages were distinct from splenic monocytes and blood monocyte-derived macrophages on various surface markers. Human red pulp macrophages predominantly expressed the low-affinity receptors FcγRIIa and FcγRIIIa. In contrast to blood monocyte-derived macrophages, red pulp macrophages did not express the inhibitory FcγRIIb. Red pulp macrophages expressed very low levels of the high-affinity receptor FcγRI. Messenger RNA transcript analysis confirmed this expression pattern. Unexpectedly and despite these differences in FcγR expression, phagocytosis of IgG-opsonized blood cells by red pulp macrophages was dependent on the same FcγRs as phagocytosis by blood monocyte-derived macrophages, especially in regarding the response to IV immunoglobulin. Concluding, we show the distinct nature of splenic red pulp macrophages in human subjects. Knowledge on the FcγR expression and usage of these cells is important for understanding and improving treatment strategies for autoimmune diseases such as ITP and AIHA.
Collapse
|
12
|
van Dinther D, Lopez Venegas M, Veninga H, Olesek K, Hoogterp L, Revet M, Ambrosini M, Kalay H, Stöckl J, van Kooyk Y, den Haan JMM. Activation of CD8⁺ T Cell Responses after Melanoma Antigen Targeting to CD169⁺ Antigen Presenting Cells in Mice and Humans. Cancers (Basel) 2019; 11:cancers11020183. [PMID: 30764534 PMCID: PMC6406251 DOI: 10.3390/cancers11020183] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 12/30/2022] Open
Abstract
The lack of tumor-reactive T cells is one reason why immune checkpoint inhibitor therapies still fail in a significant proportion of melanoma patients. A vaccination that induces melanoma-specific T cells could potentially enhance the efficacy of immune checkpoint inhibitors. Here, we describe a vaccination strategy in which melanoma antigens are targeted to mouse and human CD169 and thereby induce strong melanoma antigen-specific T cell responses. CD169 is a sialic acid receptor expressed on a subset of mouse splenic macrophages that captures antigen from the blood and transfers it to dendritic cells (DCs). In human and mouse spleen, we detected CD169+ cells at an equivalent location using immunofluorescence microscopy. Immunization with melanoma antigens conjugated to antibodies (Abs) specific for mouse CD169 efficiently induced gp100 and Trp2-specific T cell responses in mice. In HLA-A2.1 transgenic mice targeting of the human MART-1 peptide to CD169 induced strong MART-1-specific HLA-A2.1-restricted T cell responses. Human gp100 peptide conjugated to Abs specific for human CD169 bound to CD169-expressing monocyte-derived DCs (MoDCs) and resulted in activation of gp100-specific T cells. Together, these data indicate that Ab-mediated antigen targeting to CD169 is a potential strategy for the induction of melanoma-specific T cell responses in mice and in humans.
Collapse
Affiliation(s)
- Dieke van Dinther
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands.
| | - Miguel Lopez Venegas
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands.
- DC4U B.V., De Corridor 21E, 3621 ZA Breukelen, The Netherlands.
| | - Henrike Veninga
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands.
| | - Katarzyna Olesek
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands.
| | - Leoni Hoogterp
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands.
| | - Mirjam Revet
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands.
| | - Martino Ambrosini
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands.
- DC4U B.V., De Corridor 21E, 3621 ZA Breukelen, The Netherlands.
| | - Hakan Kalay
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands.
| | - Johannes Stöckl
- Institute of Immunology, Center of Pathophysiology, Immunology and Infectiology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Yvette van Kooyk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands.
- DC4U B.V., De Corridor 21E, 3621 ZA Breukelen, The Netherlands.
| | - Joke M M den Haan
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Steiniger BS, Wilhelmi V, Berthold M, Guthe M, Lobachev O. Locating human splenic capillary sheaths in virtual reality. Sci Rep 2018; 8:15720. [PMID: 30356180 PMCID: PMC6200800 DOI: 10.1038/s41598-018-34105-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/09/2018] [Indexed: 11/21/2022] Open
Abstract
Stromal capillary sheath cells in human spleens strongly express CD271, the low affinity nerve growth factor receptor p75. Serial sections of a representative adult human spleen were double-stained for CD271 versus smooth muscle alpha actin (SMA) plus CD34 to visualise capillary sheaths, the arterial tree and endothelial cells by transmitted light. Preliminary three-dimensional (3D) reconstructions of single regions were inspected in virtual reality (VR). This method showed that a large number of CD271+ sheaths occur in a post-arteriolar position often surrounding capillaries located close to divisions of arterioles. The length and diameter of capillary sheaths are rather heterogeneous. Long sheaths were observed to accompany one or two generations of capillary branches. We hypothesise that human splenic capillary sheaths may attract recirculating B-lymphocytes from the open circulation of the red pulp to start their migration into white pulp follicles along branches of the arterial tree. In addition, they may provide sites of interaction among sheath macrophages and B-lymphocytes. Our innovative approach allows stringent quality control by inserting the original immunostained serial sections into the 3D model for viewing and annotation in VR. Longer series of sections will allow to unequivocally localise most of the capillary sheaths in a given volume.
Collapse
Affiliation(s)
- B S Steiniger
- Institute of Anatomy and Cell Biology, University of Marburg, Marburg, D-35037, Germany.
| | - V Wilhelmi
- Institute of Anatomy and Cell Biology, University of Marburg, Marburg, D-35037, Germany
| | - M Berthold
- Visual Computing, Institute of Computer Science, University of Bayreuth, Bayreuth, D- 95440, Germany
| | - M Guthe
- Visual Computing, Institute of Computer Science, University of Bayreuth, Bayreuth, D- 95440, Germany
| | - O Lobachev
- Visual Computing, Institute of Computer Science, University of Bayreuth, Bayreuth, D- 95440, Germany
| |
Collapse
|
14
|
van Dinther D, Veninga H, Revet M, Hoogterp L, Olesek K, Grabowska J, Borg EGF, Kalay H, van Kooyk Y, den Haan JMM. Comparison of Protein and Peptide Targeting for the Development of a CD169-Based Vaccination Strategy Against Melanoma. Front Immunol 2018; 9:1997. [PMID: 30237798 PMCID: PMC6135888 DOI: 10.3389/fimmu.2018.01997] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/14/2018] [Indexed: 12/13/2022] Open
Abstract
CD169+ macrophages are part of the innate immune system and capture pathogens that enter secondary lymphoid organs such as the spleen and the lymph nodes. Their strategic location in the marginal zone of the spleen and the subcapsular sinus in the lymph node enables them to capture antigens from the blood and the lymph respectively. Interestingly, these specific CD169+ macrophages do not destroy the antigens they obtain, but instead, transfer it to B cells and dendritic cells (DCs) which facilitates the induction of strong adaptive immune responses. This latter characteristic of the CD169+ macrophages can be exploited by specifically targeting tumor antigens to CD169+ macrophages for the induction of specific T cell immunity. In the current study we target protein and peptide antigen as antibody-antigen conjugates to CD169+ macrophages. We monitored the primary, memory, and recall T cell responses and evaluated the anti-tumor immune responses after immunization. In conclusion, both protein and peptide targeting to CD169 resulted in strong primary, memory, and recall T cell responses and protective immunity against melanoma, which indicates that both forms of antigen can be further explored as anti-cancer vaccination strategy.
Collapse
Affiliation(s)
- Dieke van Dinther
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Henrike Veninga
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Mirjam Revet
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Leoni Hoogterp
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Katarzyna Olesek
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Joanna Grabowska
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ellen G F Borg
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Hakan Kalay
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Yvette van Kooyk
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Joke M M den Haan
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
15
|
Golub R, Tan J, Watanabe T, Brendolan A. Origin and Immunological Functions of Spleen Stromal Cells. Trends Immunol 2018; 39:503-514. [PMID: 29567327 DOI: 10.1016/j.it.2018.02.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 01/20/2023]
Abstract
The mammalian spleen is a peripheral lymphoid organ that plays a central role in host defense. Consequently, the lack of spleen is often associated with immunodeficiency and increased risk of overwhelming infections. Growing evidence suggests that non-hematopoietic stromal cells are central players in spleen development, organization, and immune functions. In addition to its immunological role, the spleen also provides a site for extramedullary hematopoiesis (EMH) in response to injuries. A deeper understanding of the biology of stromal cells is therefore essential to fully comprehend how these cells modulate the immune system during normal and pathological conditions. Here, we review the specificities of the different mouse spleen stromal cell subsets and complement the murine studies with human data when available.
Collapse
Affiliation(s)
- Rachel Golub
- Unit for Lymphopoiesis, Immunology Department, INSERM U1223, University Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Institut Pasteur, Paris, France.
| | - Jonathan Tan
- Clem Jones Research Centre for Regenerative Medicine, Faculty of Health Sciences & Medicine, Bond University, Gold Coast, Australia
| | - Takeshi Watanabe
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Andrea Brendolan
- Unit of Lymphoid Organ Development, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
16
|
Steiniger BS, Ulrich C, Berthold M, Guthe M, Lobachev O. Capillary networks and follicular marginal zones in human spleens. Three-dimensional models based on immunostained serial sections. PLoS One 2018; 13:e0191019. [PMID: 29420557 PMCID: PMC5805169 DOI: 10.1371/journal.pone.0191019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 12/27/2017] [Indexed: 12/21/2022] Open
Abstract
We have reconstructed small parts of capillary networks in the human splenic white pulp using serial sections immunostained for CD34 alone or for CD34 and CD271. The three-dimensional (3D) models show three types of interconnected networks: a network with very few long capillaries inside the white pulp originating from central arteries, a denser network surrounding follicles plus periarterial T-cell regions and a network in the red pulp. Capillaries of the perifollicular network and the red pulp network have open ends. Perifollicular capillaries form an arrangement similar to a basketball net located in the outer marginal zone. The marginal zone is defined by MAdCAM-1+ marginal reticular stromal cells. Perifollicular capillaries are connected to red pulp capillaries surrounded by CD271+ stromal capillary sheath cells. The scarcity of capillaries inside the splenic white pulp is astonishing, as non-polarised germinal centres with proliferating B-cells occur in adult human spleens. We suggest that specialized stromal marginal reticular cells form a barrier inside the splenic marginal zone, which together with the scarcity of capillaries guarantees the maintenance of gradients necessary for positioning of migratory B- and T-lymphocytes in the human splenic white pulp.
Collapse
Affiliation(s)
- Birte S. Steiniger
- Institute of Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| | - Christine Ulrich
- Institute of Psychology, University of Marburg, Marburg, Germany
| | - Moritz Berthold
- Institute of Computer Sciences, University of Bayreuth, Bayreuth, Germany
| | - Michael Guthe
- Institute of Computer Sciences, University of Bayreuth, Bayreuth, Germany
| | - Oleg Lobachev
- Institute of Computer Sciences, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
17
|
Lametschwandtner A, Radner C, Minnich B. Microvascularization of the spleen in larval and adultXenopus laevis: Histomorphology and scanning electron microscopy of vascular corrosion casts. J Morphol 2016; 277:1559-1569. [DOI: 10.1002/jmor.20595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/07/2016] [Accepted: 08/15/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Alois Lametschwandtner
- University of Salzburg, Department of Cell Biology and Physiology Division of Animal Structure & Function, Vascular and Performance Biology Research Group; Hellbrunnerstrasse 34 A-5020 Salzburg Austria, Europe
| | - Christine Radner
- University of Salzburg, Department of Cell Biology and Physiology Division of Animal Structure & Function, Vascular and Performance Biology Research Group; Hellbrunnerstrasse 34 A-5020 Salzburg Austria, Europe
| | - Bernd Minnich
- University of Salzburg, Department of Cell Biology and Physiology Division of Animal Structure & Function, Vascular and Performance Biology Research Group; Hellbrunnerstrasse 34 A-5020 Salzburg Austria, Europe
| |
Collapse
|
18
|
Lobachev O, Ulrich C, Steiniger BS, Wilhelmi V, Stachniss V, Guthe M. Feature-based multi-resolution registration of immunostained serial sections. Med Image Anal 2016; 35:288-302. [PMID: 27494805 DOI: 10.1016/j.media.2016.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 07/03/2016] [Accepted: 07/21/2016] [Indexed: 10/21/2022]
Abstract
The form and exact function of the blood vessel network in some human organs, like spleen and bone marrow, are still open research questions in medicine. In this paper, we propose a method to register the immunohistological stainings of serial sections of spleen and bone marrow specimens to enable the visualization and visual inspection of blood vessels. As these vary much in caliber, from mesoscopic (millimeter-range) to microscopic (few micrometers, comparable to a single erythrocyte), we need to utilize a multi-resolution approach. Our method is fully automatic; it is based on feature detection and sparse matching. We utilize a rigid alignment and then a non-rigid deformation, iteratively dealing with increasingly smaller features. Our tool pipeline can already deal with series of complete scans at extremely high resolution, up to 620 megapixels. The improvement presented increases the range of represented details up to smallest capillaries. This paper provides details on the multi-resolution non-rigid registration approach we use. Our application is novel in the way the alignment and subsequent deformations are computed (using features, i.e. "sparse"). The deformations are based on all images in the stack ("global"). We also present volume renderings and a 3D reconstruction of the vascular network in human spleen and bone marrow on a level not possible before. Our registration makes easy tracking of even smallest blood vessels possible, thus granting experts a better comprehension. A quantitative evaluation of our method and related state of the art approaches with seven different quality measures shows the efficiency of our method. We also provide z-profiles and enlarged volume renderings from three different registrations for visual inspection.
Collapse
Affiliation(s)
- Oleg Lobachev
- Visual Computing of University Bayreuth, 95440 Bayreuth, Germany.
| | - Christine Ulrich
- Psychology of Philipps-University Marburg, 35037 Marburg, Germany
| | - Birte S Steiniger
- Institute of Anatomy and Cell Biology of Philipps-University Marburg 35037 Marburg, Germany
| | - Verena Wilhelmi
- Institute of Anatomy and Cell Biology of Philipps-University Marburg 35037 Marburg, Germany
| | - Vitus Stachniss
- Restorative Dentistry and Endodontics of Philipps-University Marburg, 35037 Marburg, Germany
| | - Michael Guthe
- Visual Computing of University Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
19
|
Steiniger BS. Human spleen microanatomy: why mice do not suffice. Immunology 2015; 145:334-46. [PMID: 25827019 DOI: 10.1111/imm.12469] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 02/06/2023] Open
Abstract
The microanatomical structure of the spleen has been primarily described in mice and rats. This leads to terminological problems with respect to humans and their species-specific splenic microstructure. In mice, rats and humans the spleen consists of the white pulp embedded in the red pulp. In the white pulp, T and B lymphocytes form accumulations, the periarteriolar lymphatic sheaths and the follicles, located around intermediate-sized arterial vessels, the central arteries. The red pulp is a reticular connective tissue containing all types of blood cells. The spleen of mice and rats exhibits an additional well-delineated B-cell compartment, the marginal zone, between white and red pulp. This area is, however, absent in human spleen. Human splenic secondary follicles comprise three zones: a germinal centre, a mantle zone and a superficial zone. In humans, arterioles and sheathed capillaries in the red pulp are surrounded by lymphocytes, especially by B cells. Human sheathed capillaries are related to the splenic ellipsoids of most other vertebrates. Such vessels are lacking in rats or mice, which form an evolutionary exception. Capillary sheaths are composed of endothelial cells, pericytes, special stromal sheath cells, macrophages and B lymphocytes. Human spleens most probably host a totally open circulation system, as connections from capillaries to sinuses were not found in the red pulp. Three stromal cell types of different phenotype and location occur in the human white pulp. Splenic white and red pulp structure is reviewed in rats, mice and humans to encourage further investigations on lymphocyte recirculation through the spleen.
Collapse
Affiliation(s)
- Birte S Steiniger
- Institute of Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| |
Collapse
|
20
|
The Histochemistry and Cell Biology pandect: the year 2014 in review. Histochem Cell Biol 2015; 143:339-68. [PMID: 25744491 DOI: 10.1007/s00418-015-1313-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2015] [Indexed: 02/07/2023]
Abstract
This review encompasses a brief synopsis of the articles published in 2014 in Histochemistry and Cell Biology. Out of the total of 12 issues published in 2014, two special issues were devoted to "Single-Molecule Super-Resolution Microscopy." The present review is divided into 11 categories, providing an easy format for readers to quickly peruse topics of particular interest to them.
Collapse
|
21
|
Steiniger BS, Wilhelmi V, Seiler A, Lampp K, Stachniss V. Heterogeneity of stromal cells in the human splenic white pulp. Fibroblastic reticulum cells, follicular dendritic cells and a third superficial stromal cell type. Immunology 2014; 143:462-77. [PMID: 24890772 DOI: 10.1111/imm.12325] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 05/22/2014] [Accepted: 05/27/2014] [Indexed: 12/28/2022] Open
Abstract
At least three phenotypically and morphologically distinguishable types of branched stromal cells are revealed in the human splenic white pulp by subtractive immunohistological double-staining. CD271 is expressed in fibroblastic reticulum cells of T-cell zones and in follicular dendritic cells of follicles. In addition, there is a third CD2711- and CD271+/) stromal cell population surrounding T-cell zones and follicles. At the surface of follicles the third population consists of individually variable partially overlapping shells of stromal cells exhibiting CD90 (Thy-1), MAdCAM-1, CD105 (endoglin), CD141 (thrombomodulin) and smooth muscle α-actin (SMA) with expression of CD90 characterizing the broadest shell and SMA the smallest. In addition, CXCL12, CXCL13 and CCL21 are also present in third-population stromal cells and/or along fibres. Not only CD27+ and switched B lymphocytes, but also scattered IgD++ B lymphocytes and variable numbers of CD4+ T lymphocytes often occur close to the third stromal cell population or one of its subpopulations at the surface of the follicles. In contrast to human lymph nodes, neither podoplanin nor RANKL (CD254) were detected in adult human splenic white pulp stromal cells. The superficial stromal cells of the human splenic white pulp belong to a widespread cell type, which is also found at the surface of red pulp arterioles surrounded by a mixed T-cell/B-cell population. Superficial white pulp stromal cells differ from fibroblastic reticulum cells and follicular dendritic cells not only in humans, but apparently also in mice and perhaps in rats. However, the phenotype of white pulp stromal cells is species-specific and more heterogeneous than described so far.
Collapse
Affiliation(s)
- Birte S Steiniger
- Institute of Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| | | | | | | | | |
Collapse
|