1
|
Vanhecke D, Nyengaard JR, Haenni B, Schipke J, Ochs M. Ultrastructural analysis of lamellar bodies in type II alveolar epithelial cells in the human lung. Am J Physiol Lung Cell Mol Physiol 2025; 328:L113-L119. [PMID: 39437759 DOI: 10.1152/ajplung.00284.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024] Open
Abstract
Pulmonary surfactant is produced by type II alveolar epithelial cells (AEC2) and stored in lamellar bodies (LBs) before secretion. Here, we characterize AEC2 and their LBs in the human lung ultrastructurally and quantitatively. Five human lungs were analyzed by transmission electron microscopy, serial section electron tomography, and stereology. A human lung contained about 24 billion AEC2 with a mean size of about 650 µm3. The number of AEC2 as well as the total volume of LBs per lung, about 1.9 mL, strongly correlated with total lung volume. A single AEC2 contained an LB volume of about 74 µm3. This amount was packed in about 324 LBs with a mean size of 0.24 µm3. Three morphologically distinct subpopulations of LBs were identified: 1) isolated LBs which make up the majority (average 300 per AEC2), 2) LBs connected to each other via pores (average 23 per AEC2), and 3) LBs connected to the plasma membrane via a fusion pore (average 1 per AEC2). Along this sequence of subpopulations, the mean size of LBs increased. LBs that were connected either with each other or to the plasma membrane contained about 14% of an AEC2's LB volume. This is in line with the concept of an intermediate surfactant pool, stored in LBs either directly or indirectly connected to the plasma membrane. In summary, this study provides quantitative reference data on surfactant-storing LBs in AEC2 as well as morphological evidence for an intermediate surfactant pool in the human lung.NEW & NOTEWORTHY Human lung type II alveolar epithelial cells (AEC2) and their surfactant-storing lamellar bodies (LBs) are characterized quantitatively and ultrastructurally by transmission electron microscopy, serial section electron tomography, and stereology. On average, the 24 billion AEC2 in a human lung contain 324 LBs each. An intermediate surfactant pool in the human lung, comprising LBs in AEC2 not only directly but also indirectly connected to the plasma membrane via inter-LB connections, is demonstrated morphologically and characterized quantitatively.
Collapse
Affiliation(s)
- Dimitri Vanhecke
- BioNanomaterials, Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Jens Randel Nyengaard
- Section for Stereology and Microscopy, Core Centre for Molecular Morphology, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Beat Haenni
- Microscopic Anatomy and Structural Biology, Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Julia Schipke
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Matthias Ochs
- Institute of Functional Anatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| |
Collapse
|
2
|
Schierz AK, Rößler G, Schneider JP, Tschanz SA, Werlein C, Jonigk DD, Schipke J, Mühlfeld C. Distribution and volume of mitochondria in alveolar epithelial type 1 cells in infant and adult human lungs. Histochem Cell Biol 2024; 163:7. [PMID: 39557665 PMCID: PMC11573795 DOI: 10.1007/s00418-024-02332-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/20/2024]
Abstract
Alveolar epithelial type I (AE1) cells with their wide spatial expansion form approximately 95% of the outer surface area of the air-blood barrier inside the lung. Serial block-face scanning electron microscopy (SBF-SEM) investigations led to the hypothesis that AE1 cell mitochondria are preferentially distributed as aggregates in those parts of AE1 cells that are located above connective tissue pillars between capillaries, thus not increasing the thickness of the diffusion distance for oxygen and carbon dioxide. Furthermore, it was hypothesised that postnatal development requires adapting the amount and distribution of mitochondria in AE1 cells. Human lung samples from three infant (26 and 30 days, 6 months) and three adult (20, 39 and 40 years) samples were investigated by light microscopy, transmission electron microscopy and stereology. The volume fraction of mitochondria was similar in infant and adult lungs with a mean value of 6.3%. The ratio between mitochondrial profiles on top of capillaries or above connective tissue pillars was approximately 3:1 in infants and adults. However, regarding the volume of both cytoplasmic compartments, infants showed a higher number of mitochondrial profiles on top of capillaries while adults showed a higher number above connective tissue pillars. Samples of three additional adult lungs were analysed by confocal laser scanning microscopy. Again, mitochondria were not preferentially found as aggregates above connective tissue pillars. In conclusion, AE1 cell mitochondria were not preferentially found as aggregates, showed the same volume density in infants and adults but differed in distribution between the age groups.
Collapse
Affiliation(s)
- Arne K Schierz
- Hannover Medical School, Institute of Functional and Applied Anatomy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Giacomo Rößler
- Hannover Medical School, Institute of Functional and Applied Anatomy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jan Philipp Schneider
- Hannover Medical School, Institute of Functional and Applied Anatomy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Stefan A Tschanz
- University of Bern, Institute of Anatomy, Baltzerstrasse 2, 3008, Bern, Switzerland
| | - Christopher Werlein
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Hannover Medical School, Institute of Pathology, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Danny D Jonigk
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Institute of Pathology, University Clinics of RWTH University, Aachen, Germany
| | - Julia Schipke
- Hannover Medical School, Institute of Functional and Applied Anatomy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Christian Mühlfeld
- Hannover Medical School, Institute of Functional and Applied Anatomy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.
| |
Collapse
|
3
|
Paget TL, Larcombe AN, Pinniger GJ, Tsioutsias I, Schneider JP, Parkinson-Lawrence EJ, Orgeig S. Mucopolysaccharidosis (MPS IIIA) mice have increased lung compliance and airway resistance, decreased diaphragm strength, and no change in alveolar structure. Am J Physiol Lung Cell Mol Physiol 2024; 326:L713-L726. [PMID: 38469649 DOI: 10.1152/ajplung.00445.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 12/18/2023] [Accepted: 01/18/2024] [Indexed: 03/13/2024] Open
Abstract
Mucopolysaccharidosis type IIIA (MPS IIIA) is characterized by neurological and skeletal pathologies caused by reduced activity of the lysosomal hydrolase, sulfamidase, and the subsequent primary accumulation of undegraded heparan sulfate (HS). Respiratory pathology is considered secondary in MPS IIIA and the mechanisms are not well understood. Changes in the amount, metabolism, and function of pulmonary surfactant, the substance that regulates alveolar interfacial surface tension and modulates lung compliance and elastance, have been reported in MPS IIIA mice. Here we investigated changes in lung function in 20-wk-old control and MPS IIIA mice with a closed and open thoracic cage, diaphragm contractile properties, and potential parenchymal remodeling. MPS IIIA mice had increased compliance and airway resistance and reduced tissue damping and elastance compared with control mice. The chest wall impacted lung function as observed by an increase in airway resistance and a decrease in peripheral energy dissipation in the open compared with the closed thoracic cage state in MPS IIIA mice. Diaphragm contractile forces showed a decrease in peak twitch force, maximum specific force, and the force-frequency relationship but no change in muscle fiber cross-sectional area in MPS IIIA mice compared with control mice. Design-based stereology did not reveal any parenchymal remodeling or destruction of alveolar septa in the MPS IIIA mouse lung. In conclusion, the increased storage of HS which leads to biochemical and biophysical changes in pulmonary surfactant also affects lung and diaphragm function, but has no impact on lung or diaphragm structure at this stage of the disease.NEW & NOTEWORTHY Heparan sulfate storage in the lungs of mucopolysaccharidosis type IIIA (MPS IIIA) mice leads to changes in lung function consistent with those of an obstructive lung disease and includes an increase in lung compliance and airway resistance and a decrease in tissue elastance. In addition, diaphragm muscle contractile strength is reduced, potentially further contributing to lung function impairment. However, no changes in parenchymal lung structure were observed in mice at 20 wk of age.
Collapse
Affiliation(s)
- Tamara L Paget
- Mechanisms in Cell Biology and Diseases Research Concentration, Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Alexander N Larcombe
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, Western Australia, Australia
- Occupation, Environment & Safety, School of Population Health, Curtin University, Perth, Western Australia, Australia
| | - Gavin J Pinniger
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Irene Tsioutsias
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Jan Philipp Schneider
- Hannover Medical School, Institute of Functional and Applied Anatomy, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Emma J Parkinson-Lawrence
- Mechanisms in Cell Biology and Diseases Research Concentration, Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sandra Orgeig
- Mechanisms in Cell Biology and Diseases Research Concentration, Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
4
|
Heydemann L, Ciurkiewicz M, Beythien G, Becker K, Schughart K, Stanelle-Bertram S, Schaumburg B, Mounogou-Kouassi N, Beck S, Zickler M, Kühnel M, Gabriel G, Beineke A, Baumgärtner W, Armando F. Hamster model for post-COVID-19 alveolar regeneration offers an opportunity to understand post-acute sequelae of SARS-CoV-2. Nat Commun 2023; 14:3267. [PMID: 37277327 PMCID: PMC10241385 DOI: 10.1038/s41467-023-39049-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/26/2023] [Indexed: 06/07/2023] Open
Abstract
COVID-19 survivors often suffer from post-acute sequelae of SARS-CoV-2 infection (PASC). Current evidence suggests dysregulated alveolar regeneration as a possible explanation for respiratory PASC, which deserves further investigation in a suitable animal model. This study investigates morphological, phenotypical and transcriptomic features of alveolar regeneration in SARS-CoV-2 infected Syrian golden hamsters. We demonstrate that CK8+ alveolar differentiation intermediate (ADI) cells occur following SARS-CoV-2-induced diffuse alveolar damage. A subset of ADI cells shows nuclear accumulation of TP53 at 6- and 14-days post infection (dpi), indicating a prolonged arrest in the ADI state. Transcriptome data show high module scores for pathways involved in cell senescence, epithelial-mesenchymal transition, and angiogenesis in cell clusters with high ADI gene expression. Moreover, we show that multipotent CK14+ airway basal cell progenitors migrate out of terminal bronchioles, aiding alveolar regeneration. At 14 dpi, ADI cells, peribronchiolar proliferates, M2-macrophages, and sub-pleural fibrosis are observed, indicating incomplete alveolar restoration. The results demonstrate that the hamster model reliably phenocopies indicators of a dysregulated alveolar regeneration of COVID-19 patients. The results provide important information on a translational COVID-19 model, which is crucial for its application in future research addressing pathomechanisms of PASC and in testing of prophylactic and therapeutic approaches for this syndrome.
Collapse
Affiliation(s)
- Laura Heydemann
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Małgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Georg Beythien
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Kathrin Becker
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Klaus Schughart
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Institute of Virology Münster, University of Münster, Münster, Germany
| | | | - Berfin Schaumburg
- Department for Viral Zoonoses-One Health, Leibniz Institute for Virology, Hamburg, Germany
| | - Nancy Mounogou-Kouassi
- Department for Viral Zoonoses-One Health, Leibniz Institute for Virology, Hamburg, Germany
| | - Sebastian Beck
- Department for Viral Zoonoses-One Health, Leibniz Institute for Virology, Hamburg, Germany
| | - Martin Zickler
- Department for Viral Zoonoses-One Health, Leibniz Institute for Virology, Hamburg, Germany
| | - Mark Kühnel
- Institute of Pathology, Hannover Medical School (MHH), Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover Medical School (MHH), Hannover, Germany
| | - Gülsah Gabriel
- Department for Viral Zoonoses-One Health, Leibniz Institute for Virology, Hamburg, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany.
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| |
Collapse
|
5
|
Al-Rekabi Z, Dondi C, Faruqui N, Siddiqui NS, Elowsson L, Rissler J, Kåredal M, Mudway I, Larsson-Callerfelt AK, Shaw M. Uncovering the cytotoxic effects of air pollution with multi-modal imaging of in vitro respiratory models. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221426. [PMID: 37063998 PMCID: PMC10090883 DOI: 10.1098/rsos.221426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Annually, an estimated seven million deaths are linked to exposure to airborne pollutants. Despite extensive epidemiological evidence supporting clear associations between poor air quality and a range of short- and long-term health effects, there are considerable gaps in our understanding of the specific mechanisms by which pollutant exposure induces adverse biological responses at the cellular and tissue levels. The development of more complex, predictive, in vitro respiratory models, including two- and three-dimensional cell cultures, spheroids, organoids and tissue cultures, along with more realistic aerosol exposure systems, offers new opportunities to investigate the cytotoxic effects of airborne particulates under controlled laboratory conditions. Parallel advances in high-resolution microscopy have resulted in a range of in vitro imaging tools capable of visualizing and analysing biological systems across unprecedented scales of length, time and complexity. This article considers state-of-the-art in vitro respiratory models and aerosol exposure systems and how they can be interrogated using high-resolution microscopy techniques to investigate cell-pollutant interactions, from the uptake and trafficking of particles to structural and functional modification of subcellular organelles and cells. These data can provide a mechanistic basis from which to advance our understanding of the health effects of airborne particulate pollution and develop improved mitigation measures.
Collapse
Affiliation(s)
- Zeinab Al-Rekabi
- Department of Chemical and Biological Sciences, National Physical Laboratory, Teddington, UK
| | - Camilla Dondi
- Department of Chemical and Biological Sciences, National Physical Laboratory, Teddington, UK
| | - Nilofar Faruqui
- Department of Chemical and Biological Sciences, National Physical Laboratory, Teddington, UK
| | - Nazia S. Siddiqui
- Faculty of Medical Sciences, University College London, London, UK
- Kingston Hospital NHS Foundation Trust, Kingston upon Thames, UK
| | - Linda Elowsson
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jenny Rissler
- Bioeconomy and Health, RISE Research Institutes of Sweden, Lund, Sweden
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Monica Kåredal
- Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Ian Mudway
- MRC Centre for Environment and Health, Imperial College London, London, UK
- National Institute of Health Protection Research Unit in Environmental Exposures and Health, London, UK
- Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | | | - Michael Shaw
- Department of Chemical and Biological Sciences, National Physical Laboratory, Teddington, UK
- Department of Computer Science, University College London, London, UK
| |
Collapse
|
6
|
Neelakantan S, Xin Y, Gaver DP, Cereda M, Rizi R, Smith BJ, Avazmohammadi R. Computational lung modelling in respiratory medicine. J R Soc Interface 2022; 19:20220062. [PMID: 35673857 PMCID: PMC9174712 DOI: 10.1098/rsif.2022.0062] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/03/2022] [Indexed: 11/12/2022] Open
Abstract
Computational modelling of the lungs is an active field of study that integrates computational advances with lung biophysics, biomechanics, physiology and medical imaging to promote individualized diagnosis, prognosis and therapy evaluation in lung diseases. The complex and hierarchical architecture of the lung offers a rich, but also challenging, research area demanding a cross-scale understanding of lung mechanics and advanced computational tools to effectively model lung biomechanics in both health and disease. Various approaches have been proposed to study different aspects of respiration, ranging from compartmental to discrete micromechanical and continuum representations of the lungs. This article reviews several developments in computational lung modelling and how they are integrated with preclinical and clinical data. We begin with a description of lung anatomy and how different tissue components across multiple length scales affect lung mechanics at the organ level. We then review common physiological and imaging data acquisition methods used to inform modelling efforts. Building on these reviews, we next present a selection of model-based paradigms that integrate data acquisitions with modelling to understand, simulate and predict lung dynamics in health and disease. Finally, we highlight possible future directions where computational modelling can improve our understanding of the structure-function relationship in the lung.
Collapse
Affiliation(s)
- Sunder Neelakantan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Yi Xin
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Donald P. Gaver
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Maurizio Cereda
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rahim Rizi
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bradford J. Smith
- Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatric Pulmonary and Sleep Medicine, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Reza Avazmohammadi
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, USA
- Department of Cardiovascular Sciences, Houston Methodist Academic Institute, Houston, TX, USA
| |
Collapse
|
7
|
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| | - Jürgen Roth
- University of Zurich, 8091, Zurich, Switzerland
| |
Collapse
|
8
|
Lettau M, Timm S, Dittmayer C, Lopez-Rodriguez E, Ochs M. The ultrastructural heterogeneity of lung surfactant revealed by serial section electron tomography: Insights into the 3D architecture of human tubular myelin. Am J Physiol Lung Cell Mol Physiol 2022; 322:L873-L881. [PMID: 35438000 DOI: 10.1152/ajplung.00020.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Weibel's hypothetical 3D model in 1966 provided first ultrastructural details into tubular myelin (TM), a unique, complex surfactant subtype found in the hypophase of the alveolar lining layer. Although initial descriptions by electron microscopy (EM) were already published in the 1950s, a uniform morphological differentiation from other intraalveolar surfactant subtypes is still missing and potential structure-function relationships remain enigmatic. Technical developments in volume EM methods now allow a more detailed reinvestigation. To address unanswered ultrastructural questions, we analyzed ultrathin sections of humanized SP-A1/SP-A2 co-expressing mouse as well as human lung samples by conventional transmission EM. We combined these 2D information with 3D analysis of single- and dual-axis electron tomography of serial sections for high z-resolution (in a range of a few nm) and extended volumes of up to 1 µm total z-information. This study reveals that TM constitutes a heterogeneous surfactant organization mainly comprised of distorted parallel membrane planes with local intersections, which are distributed all over the TM substructure. These intersecting membrane planes form, among other various polygons, the well-known 2D "lattice", respectively 3D quadratic tubules, which in many analyzed spots of human alveoli appear to be less abundant than also observed non-concentric 3D lamellae. The additional application of serial section electron tomography to conventional transmission EM demonstrates a high heterogeneity of TM membrane networks, which indicates dynamic transformations between its substructures. Our method provides an ideal basis for further in and ex vivo structural analyses of surfactant under various conditions at nanometer scale.
Collapse
Affiliation(s)
- Marie Lettau
- Institute of Functional Anatomy, Charité , Berlin, Germany
| | - Sara Timm
- Core Facility Electron Microscopy, Charité , Berlin, Germany
| | | | | | - Matthias Ochs
- Institute of Functional Anatomy, Charité , Berlin, Germany.,German Center for Lung Research, Berlin, Germany
| |
Collapse
|
9
|
Compositional, structural and functional properties of discrete coexisting complexes within bronchoalveolar pulmonary surfactant. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1864:183808. [PMID: 34687755 DOI: 10.1016/j.bbamem.2021.183808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 11/23/2022]
Abstract
Lung surfactant (LS) stabilizes the respiratory surface by forming a film at the alveolar air-liquid interface that reduces surface tension and minimizes the work of breathing. Typically, this surface-active agent has been isolated from animal lungs both for research and biomedical applications. However, these materials are constituted by complex membranous architectures including surface-active and inactive lipid/protein assemblies. In this work, we describe the composition, structure and surface activity of discrete membranous entities that are part of a LS preparation isolated from bronchoalveolar lavages of porcine lungs. Seven different fractions could be resolved from whole surfactant subjected to sucrose density gradient centrifugation. Detailed compositional characterization revealed differences in protein and cholesterol content but no distinct saturated:unsaturated phosphatidylcholine ratios. Moreover, no significant differences were detected regarding apparent hydration at the headgroup region of membranes, as reported by the probe Laurdan, and lipid chain mobility analysed by electron spin resonance (ESR) in spite of the variety of membranous assemblies observed by transmission electron microscopy. In addition, six of the seven separated LS subfractions formed similar, essentially disordered-like, interfacial films and performed efficient surface activity, under physiologically relevant conditions. Altogether, our work show that a LS isolated from porcine lungs is comprised by a heterogenous population of membranous assemblies lacking freshly secreted unused LS complexes sustaining highly dehydrated and ordered membranous assemblies as previously reported. We propose that surfactant subfractions may illustrate intermediates in sequential structural steps within the structural transformations occurring along the respiratory compression-expansion cycles.
Collapse
|
10
|
|
11
|
Mühlfeld C. Stereology and three-dimensional reconstructions to analyze the pulmonary vasculature. Histochem Cell Biol 2021; 156:83-93. [PMID: 34272602 PMCID: PMC8397636 DOI: 10.1007/s00418-021-02013-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2021] [Indexed: 02/05/2023]
Abstract
The pulmonary vasculature consists of a large arterial and venous tree with a vast alveolar capillary network (ACN) in between. Both conducting blood vessels and the gas-exchanging capillaries are part of important human lung diseases, including bronchopulmonary dysplasia, pulmonary hypertension and chronic obstructive pulmonary disease. Morphological tools to investigate the different parts of the pulmonary vasculature quantitatively and in three dimensions are crucial for a better understanding of the contribution of the blood vessels to the pathophysiology and effects of lung diseases. In recent years, new stereological methods and imaging techniques have expanded the analytical tool box and therefore the conclusive power of morphological analyses of the pulmonary vasculature. Three of these developments are presented and discussed in this review article, namely (1) stereological quantification of the number of capillary loops, (2) serial block-face scanning electron microscopy of the ACN and (3) labeling of branching generations in light microscopic sections based on arterial tree segmentations of micro-computed tomography data sets of whole lungs. The implementation of these approaches in research work requires expertise in lung preparation, multimodal imaging at different scales, an advanced IT infrastructure and expertise in image analysis. However, they are expected to provide important data that cannot be obtained by previously existing methodology.
Collapse
Affiliation(s)
- Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. .,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany. .,Research Core Unit Electron Microscopy, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
12
|
Ochs M, Timm S, Elezkurtaj S, Horst D, Meinhardt J, Heppner FL, Weber-Carstens S, Hocke AC, Witzenrath M. Collapse induration of alveoli is an ultrastructural finding in a COVID-19 patient. Eur Respir J 2021; 57:13993003.04165-2020. [PMID: 33446606 PMCID: PMC7815985 DOI: 10.1183/13993003.04165-2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/23/2020] [Indexed: 01/09/2023]
Abstract
The delicate alveolar blood–air barrier is a primary target in coronavirus disease 2019 (COVID-19). Its micro-architecture consists of an alveolar epithelium composed of type I and type II cells and covered with surfactant, a thin interstitium and a capillary endothelium. Of particular relevance for the pathogenesis of severe COVID-19 is the infection of type II alveolar epithelial cells [1]. Based on their dual function as producers of surfactant and as precursors for both epithelial cell types, surfactant alterations and aberrant epithelial regeneration can be expected. Electron microscopy reveals collapse induration with alveolar epithelial cell death, basal lamina denudation, collapse and sealing of alveoli in a COVID-19 patient, implicating surfactant dysfunction and alveolar instability in fibrosis initiationhttps://bit.ly/38yEX2g
Collapse
Affiliation(s)
- Matthias Ochs
- Institute of Functional Anatomy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Center for Lung Research (DZL), Berlin, Germany.,Core Facility Electron Microscopy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sara Timm
- Core Facility Electron Microscopy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sefer Elezkurtaj
- Dept of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Horst
- Dept of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jenny Meinhardt
- Dept of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frank L Heppner
- Dept of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Cluster of Excellence, NeuroCure, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Steffen Weber-Carstens
- Dept of Anesthesiology and Operative Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas C Hocke
- German Center for Lung Research (DZL), Berlin, Germany.,Dept of Infectious Diseases and Respiratory Medicine, Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Witzenrath
- German Center for Lung Research (DZL), Berlin, Germany.,Dept of Infectious Diseases and Respiratory Medicine, Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
13
|
Structural hallmarks of lung surfactant: Lipid-protein interactions, membrane structure and future challenges. Arch Biochem Biophys 2021; 703:108850. [PMID: 33753033 DOI: 10.1016/j.abb.2021.108850] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/20/2021] [Accepted: 03/16/2021] [Indexed: 11/23/2022]
Abstract
Lung surfactant (LS) is an outstanding example of how a highly regulated and dynamic membrane-based system has evolved to sustain a wealth of structural reorganizations in order to accomplish its biophysical function, as it coats and stabilizes the respiratory air-liquid interface in the mammalian lung. The present review dissects the complexity of the structure-function relationships in LS through an updated description of the lipid-protein interactions and the membrane structures that sustain its synthesis, secretion, interfacial performance and recycling. We also revise the current models and the biophysical techniques employed to study the membranous architecture of LS. It is important to consider that the structure and functional properties of LS are often studied in bulk or under static conditions, in spite that surfactant function is strongly connected with a highly dynamic behaviour, sustained by very polymorphic structures and lipid-lipid, lipid-protein and protein-protein interactions that reorganize in precise spatio-temporal coordinates. We have tried to underline the evidences available of the existence of such structural dynamism in LS. A last important aspect is that the synthesis and assembly of LS is a strongly regulated intracellular process to ensure the establishment of the proper interactions driving LS surface activity, while protecting the integrity of other cell membranes. The use of simplified lipid models or partial natural materials purified from animal tissues could be too simplistic to understand the true molecular mechanisms defining surfactant function in vivo. In this line, we will bring into the attention of the reader the methodological challenges and the questions still open to understand the structure-function relationships of LS at its full biological relevance.
Collapse
|
14
|
Abstract
Since its entry into biomedical research in the first half of the twentieth century, electron microscopy has been a valuable tool for lung researchers to explore the lung's delicate ultrastructure. Among others, it proved the existence of a continuous alveolar epithelium and demonstrated the surfactant lining layer. With the establishment of serial sectioning transmission electron microscopy, as the first "volume electron microscopic" technique, electron microscopy entered the third dimension and investigations of the lung's three-dimensional ultrastructure became possible. Over the years, further techniques, ranging from electron tomography over serial block-face and focused ion beam scanning electron microscopy to array tomography became available. All techniques cover different volumes and resolutions, and, thus, different scientific questions. This review gives an overview of these techniques and their application in lung research, focusing on their fields of application and practical implementation. Furthermore, an introduction is given how the output raw data are processed and the final three-dimensional models can be generated.
Collapse
Affiliation(s)
- Jan Philipp Schneider
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, 30625 Hannover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
15
|
Mühlfeld C, Wrede C, Molnár V, Rajces A, Brandenberger C. The plate body: 3D ultrastructure of a facultative organelle of alveolar epithelial type II cells involved in SP-A trafficking. Histochem Cell Biol 2021; 155:261-269. [PMID: 32880000 PMCID: PMC7910259 DOI: 10.1007/s00418-020-01912-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2020] [Indexed: 12/14/2022]
Abstract
Plate bodies are facultative organelles occasionally described in the adult lungs of various species, including sheep and goat. They consist of multiple layers of plate-like cisterns with an electron dense middle bar. The present study was performed to elucidate the three-dimensional (3D) characteristics of this organelle and its presumed function in surfactant protein A (SP-A) biology. Archived material of four adult goat lungs and PFA-fixed lung samples of two adult sheep lungs were used for the morphological and immunocytochemical parts of this study, respectively. 3D imaging was performed by electron tomography and focused ion beam scanning electron microscopy (FIB-SEM). Immuno gold labeling was used to analyze whether plate bodies are positive for SP-A. Transmission electron microscopy revealed the presence of plate bodies in three of four goat lungs and in both sheep lungs. Electron tomography and FIB-SEM characterized the plate bodies as layers of two up to over ten layers of membranous cisterns with the characteristic electron dense middle bar. The membranes of the plates were in connection with the rough endoplasmic reticulum and showed vesicular inclusions in the middle of the plates and a vesicular network at the sides of the organelle. Immuno gold labeling revealed the presence of SP-A in the vesicular network of plate bodies but not in the characteristic plates themselves. In conclusion, the present study clearly proves the connection of plate bodies with the rough endoplasmic reticulum and the presence of a vesicular network as part of the organelle involved in SP-A trafficking.
Collapse
Affiliation(s)
- Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Research (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, 30625, Hannover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Research (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, 30625, Hannover, Germany
| | | | - Alexandra Rajces
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Christina Brandenberger
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Research (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.
| |
Collapse
|
16
|
Knudsen L, Brandenberger C, Ochs M. Stereology as the 3D tool to quantitate lung architecture. Histochem Cell Biol 2020; 155:163-181. [PMID: 33051774 PMCID: PMC7910236 DOI: 10.1007/s00418-020-01927-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2020] [Indexed: 01/12/2023]
Abstract
Stereology is the method of choice for the quantitative assessment of biological objects in microscopy. It takes into account the fact that, in traditional microscopy such as conventional light and transmission electron microscopy, although one has to rely on measurements on nearly two-dimensional sections from fixed and embedded tissue samples, the quantitative data obtained by these measurements should characterize the real three-dimensional properties of the biological objects and not just their “flatland” appearance on the sections. Thus, three-dimensionality is a built-in property of stereological sampling and measurement tools. Stereology is, therefore, perfectly suited to be combined with 3D imaging techniques which cover a wide range of complementary sample sizes and resolutions, e.g. micro-computed tomography, confocal microscopy and volume electron microscopy. Here, we review those stereological principles that are of particular relevance for 3D imaging and provide an overview of applications of 3D imaging-based stereology to the lung in health and disease. The symbiosis of stereology and 3D imaging thus provides the unique opportunity for unbiased and comprehensive quantitative characterization of the three-dimensional architecture of the lung from macro to nano scale.
Collapse
Affiliation(s)
- Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Christina Brandenberger
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Matthias Ochs
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, Philippstr. 11, 10115, Berlin, Germany. .,German Center for Lung Research (DZL), Berlin, Germany.
| |
Collapse
|
17
|
Lopez-Rodriguez E, Ochs M. Reply to: Comments on “Air Space Distension Precedes Spontaneous Fibrotic Remodeling and Impaired Cholesterol Metabolism in the Absence of Surfactant Protein C”. Am J Respir Cell Mol Biol 2020; 63:399-402. [DOI: 10.1165/rcmb.2020-0158le] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
18
|
Ochs M, Hegermann J, Lopez-Rodriguez E, Timm S, Nouailles G, Matuszak J, Simmons S, Witzenrath M, Kuebler WM. On Top of the Alveolar Epithelium: Surfactant and the Glycocalyx. Int J Mol Sci 2020; 21:ijms21093075. [PMID: 32349261 PMCID: PMC7246550 DOI: 10.3390/ijms21093075] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/14/2022] Open
Abstract
Gas exchange in the lung takes place via the air-blood barrier in the septal walls of alveoli. The tissue elements that oxygen molecules have to cross are the alveolar epithelium, the interstitium and the capillary endothelium. The epithelium that lines the alveolar surface is covered by a thin and continuous liquid lining layer. Pulmonary surfactant acts at this air-liquid interface. By virtue of its biophysical and immunomodulatory functions, surfactant keeps alveoli open, dry and clean. What needs to be added to this picture is the glycocalyx of the alveolar epithelium. Here, we briefly review what is known about this glycocalyx and how it can be visualized using electron microscopy. The application of colloidal thorium dioxide as a staining agent reveals differences in the staining pattern between type I and type II alveolar epithelial cells and shows close associations of the glycocalyx with intraalveolar surfactant subtypes such as tubular myelin. These morphological findings indicate that specific spatial interactions between components of the surfactant system and those of the alveolar epithelial glycocalyx exist which may contribute to the maintenance of alveolar homeostasis, in particular to alveolar micromechanics, to the functional integrity of the air-blood barrier, to the regulation of the thickness and viscosity of the alveolar lining layer, and to the defence against inhaled pathogens. Exploring the alveolar epithelial glycocalyx in conjunction with the surfactant system opens novel physiological perspectives of potential clinical relevance for future research.
Collapse
Affiliation(s)
- Matthias Ochs
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
- German Center for Lung Research (DZL), 10117 Berlin, Germany; (M.W.); (W.M.K.)
- Correspondence:
| | - Jan Hegermann
- Research Core Unit Electron Microscopy and Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany;
| | - Elena Lopez-Rodriguez
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Sara Timm
- Core Facility Electron Microscopy, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Geraldine Nouailles
- Department of Infectious Diseases and Respiratory Medicine, and Division of Pulmonary Inflammation, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Jasmin Matuszak
- Institute of Physiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.M.); (S.S.)
| | - Szandor Simmons
- Institute of Physiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.M.); (S.S.)
| | - Martin Witzenrath
- German Center for Lung Research (DZL), 10117 Berlin, Germany; (M.W.); (W.M.K.)
- Department of Infectious Diseases and Respiratory Medicine, and Division of Pulmonary Inflammation, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Wolfgang M. Kuebler
- German Center for Lung Research (DZL), 10117 Berlin, Germany; (M.W.); (W.M.K.)
- Institute of Physiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.M.); (S.S.)
| |
Collapse
|
19
|
Wrede C, Hegermann J, Mühlfeld C. Novel cell contact between podocyte microprojections and parietal epithelial cells analyzed by volume electron microscopy. Am J Physiol Renal Physiol 2020; 318:F1246-F1251. [PMID: 32249613 DOI: 10.1152/ajprenal.00097.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Podocytes are highly specialized cells with a clear cell polarity. It is known that in health and disease, microvilli protrude from the apical surface of the podocytes into the urinary space. As a basis to better understand the podocyte microprojections/microvilli, the present study analyzed their spatial localization, extension, and contact site with parietal epithelial cells (PECs). Using different electron microscopic (EM) techniques, we analyzed renal corpuscles of healthy young adult male C57BL/6 mice fixed by vascular perfusion. Serial block-face scanning EM was used to visualize entire corpuscles, focused ion beam scanning EM was performed to characterize microprojection/microvilli-rich regions at higher magnification, and transmission EM of serial sections was used to analyze the contact zone between podocyte microprojections and PECs. Numerous microprojections originating from the primary processes of podocytes were present in the urinary space in all regions of the corpuscle. They often reached the apical surface of the PEC but did not make junctional contacts. At high resolution, it was observed that the glycocalyx of both cells was in contact. Depending on the distance between podocytes and PECs, these microprojections had a stretched or coiled state. The present study shows that microprojections/microvilli of podocytes are a physiological feature of healthy mouse kidneys and are frequently in contact with the apical surface of PECs, thus spanning the urinary space. It is proposed that podocyte microprojections serve mechanosensory or communicative functions between podocytes and PECs.
Collapse
Affiliation(s)
- Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| |
Collapse
|
20
|
Schneider JP, Wrede C, Mühlfeld C. The Three-Dimensional Ultrastructure of the Human Alveolar Epithelium Revealed by Focused Ion Beam Electron Microscopy. Int J Mol Sci 2020; 21:ijms21031089. [PMID: 32041332 PMCID: PMC7038159 DOI: 10.3390/ijms21031089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/22/2020] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
Thin type 1 alveolar epithelial (AE1) and surfactant producing type 2 alveolar epithelial (AE2) cells line the alveoli in the lung and are essential for normal lung function. Function is intimately interrelated to structure, so that detailed knowledge of the epithelial ultrastructure can significantly enhance our understanding of its function. The basolateral surface of the cells or the epithelial contact sites are of special interest, because they play an important role in intercellular communication or stabilizing the epithelium. The latter is in particular important for the lung with its variable volume. The aim of the present study was to investigate the three-dimensional (3D) ultrastructure of the human alveolar epithelium focusing on contact sites and the basolateral cell membrane of AE2 cells using focused ion beam electron microscopy and subsequent 3D reconstructions. The study provides detailed surface reconstructions of two AE1 cell domains and two AE2 cells, showing AE1/AE1, AE1/AE2 and AE2/AE2 contact sites, basolateral microvilli pits at AE2 cells and small AE1 processes beneath AE2 cells. Furthermore, we show reconstructions of a surfactant secretion pore, enlargements of the apical AE1 cell surface and long folds bordering grooves on the basal AE1 cell surface. The functional implications of our findings are discussed. These findings may lay the structural basis for further molecular investigations.
Collapse
Affiliation(s)
- Jan Philipp Schneider
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (C.W.); (C.M.)
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Correspondence:
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (C.W.); (C.M.)
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (C.W.); (C.M.)
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
21
|
Špiclin Ž, McClelland J, Kybic J, Goksel O. Enabling Manual Intervention for Otherwise Automated Registration of Large Image Series. BIOMEDICAL IMAGE REGISTRATION 2020. [PMCID: PMC7279934 DOI: 10.1007/978-3-030-50120-4_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Aligning thousands of images from serial imaging techniques can be a cumbersome task. Methods ([2, 11, 21]) and programs for automation exist (e.g. [1, 4, 10]) but often need case-specific tuning of many meta-parameters (e.g. mask, pyramid-scales, denoise, transform-type, method/metric, optimizer and its parameters). Other programs, that apparently only depend on a few parameter often just hide many of the remaining ones (initialized with default values), often cannot handle challenging cases satisfactorily. Instead of spending much time on the search for suitable meta-parameters that yield a usable result for the complete image series, the described approach allows to intervene by manually aligning problematic image pairs. The manually found transform is then used by the automatic alignment as an initial transformation that is then optimized as in the pure automatic case. Therefore the manual alignment does not have to be very precise. This way the worst case time consumption is limited and can be estimated (manual alignment of the whole series) in contrast to tuning of meta-parameters of pure auto-alignment of complete series which can hardly be guessed.
Collapse
Affiliation(s)
- Žiga Špiclin
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Jamie McClelland
- Centre for Medical Image Computing, University College London, London, UK
| | - Jan Kybic
- Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Orcun Goksel
- Computer Vision Lab, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Hegermann J, Wrede C, Fassbender S, Schliep R, Ochs M, Knudsen L, Mühlfeld C. Volume-CLEM: a method for correlative light and electron microscopy in three dimensions. Am J Physiol Lung Cell Mol Physiol 2019; 317:L778-L784. [DOI: 10.1152/ajplung.00333.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Generation of three-dimensional (3D) data sets from serial sections of tissues imaged by light microscopy (LM) allows identification of rare structures by morphology or fluorescent labeling. Here, we demonstrate a workflow for correlative LM and electron microscopy (EM) from 3D LM to 3D EM, using the same sectioned material for both methods consecutively. The new approach is easy to reproduce in routine EM laboratories and applicable to a wide range of organs and research questions.
Collapse
Affiliation(s)
- Jan Hegermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, Hanover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, Hanover, Germany
| | - Susanne Fassbender
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany
| | - Ronja Schliep
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany
| | - Matthias Ochs
- Institute of Vegetative Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, The German Center for Lung Research (DZL), Berlin, Germany
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Research (BREATH), Member of The German Center for Lung Research (DZL), Hannover, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Research (BREATH), Member of The German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
23
|
Buchacker T, Mühlfeld C, Wrede C, Wagner WL, Beare R, McCormick M, Grothausmann R. Assessment of the Alveolar Capillary Network in the Postnatal Mouse Lung in 3D Using Serial Block-Face Scanning Electron Microscopy. Front Physiol 2019; 10:1357. [PMID: 31824323 PMCID: PMC6881265 DOI: 10.3389/fphys.2019.01357] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022] Open
Abstract
The alveolar capillary network (ACN) has a large surface area that provides the basis for an optimized gas exchange in the lung. It needs to adapt to morphological changes during early lung development and alveolarization. Structural alterations of the pulmonary vasculature can lead to pathological functional conditions such as in bronchopulmonary dysplasia and various other lung diseases. To understand the development of the ACN and its impact on the pathogenesis of lung diseases, methods are needed that enable comparative analyses of the complex three-dimensional structure of the ACN at different developmental stages and under pathological conditions. In this study a newborn mouse lung was imaged with serial block-face scanning electron microscopy (SBF-SEM) to investigate the ACN and its surrounding structures before the alveolarization process begins. Most parts but not all of the examined ACN contain two layers of capillaries, which were repeatedly connected with each other. A path from an arteriole to a venule was extracted and straightened to allow cross-sectional visualization of the data along the path within a plane. This allows a qualitative characterization of the structures that erythrocytes pass on their way through the ACN. One way to define regions of the ACN supplied by specific arterioles is presented and used for analyses. Pillars, possibly intussusceptive, were found in the vasculature but no specific pattern was observed in regard to parts of the saccular septa. This study provides 3D information with a resolution of about 150 nm on the microscopic structure of a newborn mouse lung and outlines some of the potentials and challenges of SBF-SEM for 3D analyses of the ACN.
Collapse
Affiliation(s)
- Tobias Buchacker
- Institute of Functional and Applied Anatomy, Medizinische Hochschule Hannover, Hanover, Germany.,Biomedical Research in Endstage and Obstructive Lung Research (BREATH), Member of the German Center for Lung Research, Hanover, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Medizinische Hochschule Hannover, Hanover, Germany.,Biomedical Research in Endstage and Obstructive Lung Research (BREATH), Member of the German Center for Lung Research, Hanover, Germany.,REBIRTH Cluster of Excellence, Hanover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Medizinische Hochschule Hannover, Hanover, Germany.,Biomedical Research in Endstage and Obstructive Lung Research (BREATH), Member of the German Center for Lung Research, Hanover, Germany.,Research Core Unit Electron Microscopy, Hannover Medical School, Hanover, Germany
| | - Willi L Wagner
- Department of Diagnostic and Interventional Radiology (DIR), University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Richard Beare
- Department of Medicine, Monash University, Melbourne, VIC, Australia.,Developmental Imaging, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | | | - Roman Grothausmann
- Institute of Functional and Applied Anatomy, Medizinische Hochschule Hannover, Hanover, Germany.,Biomedical Research in Endstage and Obstructive Lung Research (BREATH), Member of the German Center for Lung Research, Hanover, Germany
| |
Collapse
|
24
|
Knudsen L, Ochs M. The micromechanics of lung alveoli: structure and function of surfactant and tissue components. Histochem Cell Biol 2018; 150:661-676. [PMID: 30390118 PMCID: PMC6267411 DOI: 10.1007/s00418-018-1747-9] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2018] [Indexed: 12/14/2022]
Abstract
The mammalian lung´s structural design is optimized to serve its main function: gas exchange. It takes place in the alveolar region (parenchyma) where air and blood are brought in close proximity over a large surface. Air reaches the alveolar lumen via a conducting airway tree. Blood flows in a capillary network embedded in inter-alveolar septa. The barrier between air and blood consists of a continuous alveolar epithelium (a mosaic of type I and type II alveolar epithelial cells), a continuous capillary endothelium and the connective tissue layer in-between. By virtue of its respiratory movements, the lung has to withstand mechanical challenges throughout life. Alveoli must be protected from over-distension as well as from collapse by inherent stabilizing factors. The mechanical stability of the parenchyma is ensured by two components: a connective tissue fiber network and the surfactant system. The connective tissue fibers form a continuous tensegrity (tension + integrity) backbone consisting of axial, peripheral and septal fibers. Surfactant (surface active agent) is the secretory product of type II alveolar epithelial cells and covers the alveolar epithelium as a biophysically active thin and continuous film. Here, we briefly review the structural components relevant for gas exchange. Then we describe our current understanding of how these components function under normal conditions and how lung injury results in dysfunction of alveolar micromechanics finally leading to lung fibrosis.
Collapse
Affiliation(s)
- Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. .,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany. .,REBIRTH Cluster of Excellence, Hannover, Germany.
| |
Collapse
|
25
|
Mühlfeld C, Neves J, Brandenberger C, Hegermann J, Wrede C, Altamura S, Muckenthaler MU. Air-blood barrier thickening and alterations of alveolar epithelial type 2 cells in mouse lungs with disrupted hepcidin/ferroportin regulatory system. Histochem Cell Biol 2018; 151:217-228. [PMID: 30280242 DOI: 10.1007/s00418-018-1737-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2018] [Indexed: 11/28/2022]
Abstract
Iron accumulates in the lungs of patients with common respiratory diseases or transfusion-dependent beta-thalassemia. Based on our previous work, we hypothesized that systemic iron overload affects the alveolar region of the lung and in particular the surfactant producing alveolar epithelial type II (AE2) cells. Mice with a point mutation in the iron exporter ferroportin, a model for human hemochromatosis type 4 were compared to wildtype mice (n = 5 each). Lungs were fixed and prepared for light and electron microscopy (EM) according to state-of-the-art protocols to detect subcellular iron localization by scanning EM/EDX and to perform design-based stereology. Iron was detected as electron dense particles in membrane-bound organelles, likely lysosomes, in AE1 cells. AE2 cells were higher in number but had a lower mean volume in mutated mice. Lamellar body volume per AE2 cell was lower but total volume of lamellar bodies in the lung was comparable to wildtype mice. While the volume of alveoli was lower in mutated mice, the volume of alveolar ducts as well as the surface area, volume and the mean thickness and composition of the septa was similar in both genotypes. The thickness of the air-blood barrier was greater in the mutated than in the WT mice. In conclusion, disruption of systemic iron homeostasis affects the ultrastructure of interalveolar septa which is characterized by membrane-bound iron storage in AE1 cells, thickening of the air-blood barrier and hyperplasia and hypotrophy of AE2 cells despite normal total intracellular surfactant pools. The functional relevance of these findings requires further analysis to better understand the impact of iron on intra-alveolar surfactant function.
Collapse
Affiliation(s)
- Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. .,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany. .,Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany.
| | - Joana Neves
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Christina Brandenberger
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany.,Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany.,Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany.,Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Sandro Altamura
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Martina U Muckenthaler
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
26
|
Abstract
Array tomography encompasses light and electron microscopy modalities that offer unparalleled opportunities to explore three-dimensional cellular architectures in extremely fine structural and molecular detail. Fluorescence array tomography achieves much higher resolution and molecular multiplexing than most other fluorescence microscopy methods, while electron array tomography can capture three-dimensional ultrastructure much more easily and rapidly than traditional serial-section electron microscopy methods. A correlative fluorescence/electron microscopy mode of array tomography furthermore offers a unique capacity to merge the molecular discrimination strengths of multichannel fluorescence microscopy with the ultrastructural imaging strengths of electron microscopy. This essay samples the first decade of array tomography, highlighting applications in neuroscience.
Collapse
|
27
|
Mühlfeld C, Wrede C, Knudsen L, Buchacker T, Ochs M, Grothausmann R. Recent developments in 3-D reconstruction and stereology to study the pulmonary vasculature. Am J Physiol Lung Cell Mol Physiol 2018; 315:L173-L183. [DOI: 10.1152/ajplung.00541.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Alterations of the pulmonary vasculature are an important feature of human lung diseases such as chronic obstructive pulmonary disease, pulmonary hypertension, and bronchopulmonary dysplasia. Experimental studies to investigate the pathogenesis or a therapeutic intervention in animal models of these diseases often require robust, meaningful, and efficient morphometric data that allow for appropriate statistical testing. The gold standard for obtaining such data is design-based stereology. However, certain morphological characteristics of the pulmonary vasculature make the implementation of stereological methods challenging. For example, the alveolar capillary network functions according to the sheet flow principle, thus making unbiased length estimations impossible and requiring other strategies to obtain mechanistic morphometric data. Another example is the location of pathological changes along the branches of the vascular tree. For developmental defects like in bronchopulmonary dysplasia or for pulmonary hypertension, it is important to know whether certain segments of the vascular tree are preferentially altered. This cannot be overcome by traditional stereological methods but requires the combination of a three-dimensional data set and stereology. The present review aims at highlighting the great potential while discussing the major challenges (such as time consumption and data volume) of this combined approach. We hope to raise interest in the potential of this approach and thus stimulate solutions to overcome the existing challenges.
Collapse
Affiliation(s)
- Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Tobias Buchacker
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Roman Grothausmann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
28
|
Weibel ER. Lung morphometry: the link between structure and function. Cell Tissue Res 2016; 367:413-426. [PMID: 27981379 DOI: 10.1007/s00441-016-2541-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/18/2016] [Indexed: 10/20/2022]
Abstract
The study of the structural basis of gas exchange function in the lung depends on the availability of quantitative information that concerns the structures establishing contact between the air in the alveoli and the blood in the alveolar capillaries, which can be entered into physiological equations for predicting oxygen uptake. This information is provided by morphometric studies involving stereological methods and allows estimates of the pulmonary diffusing capacity of the human lung that agree, in experimental studies, with the maximal oxygen consumption. The basis for this "machine lung" structure lies in the complex design of the cells building an extensive air-blood barrier with minimal cell mass.
Collapse
Affiliation(s)
- Ewald R Weibel
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3000, Bern 9, Switzerland.
| |
Collapse
|
29
|
In focus in HCB: from cell biology to tissue structure and function. Histochem Cell Biol 2016; 146:645-646. [PMID: 27796529 DOI: 10.1007/s00418-016-1511-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2016] [Indexed: 10/20/2022]
|