1
|
Phillips R. Diet, Mitochondrial Dysfunction, Vascular Endothelial Damage, and the Microbiome: Drivers of Ocular Degenerative and Inflammatory Diseases. Ophthalmol Ther 2025; 14:1429-1452. [PMID: 40434533 PMCID: PMC12167425 DOI: 10.1007/s40123-025-01160-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
There is abundant evidence in medical literature that Western diet and lifestyle drive the cellular and metabolic processes which underlie chronic non-communicable diseases. However, non-pharmaceutical interventions, which focus on nutrition, the microbiome and lifestyle, to prevent non-communicable diseases are not part of mainstream treatment, for a variety of reasons. Lack of progress in stemming the rise in chronic non-communicable diseases can be attributed to the current 'downstream' medical paradigm which is focused on treating disease and symptoms, rather than preventing disease via an 'upstream' approach, which looks at cause and process. Metabolic abnormalities and obesity have previously been noted as correlated with common chronic ophthalmic conditions such as age related macular degeneration (AMD), glaucoma, ocular inflammation, diabetic retinopathy and retinal vascular occlusive disease. These are ocular manifestations of an underlying common cause. The aim of this paper, using an ophthalmic context, is to provide an overview of the cellular pathophysiological mechanisms that underlie chronic non-communicable diseases, including ophthalmic diseases, and to draw the links between diet and lifestyle, the microbiome and chronic non-communicable diseases.
Collapse
Affiliation(s)
- Russell Phillips
- Flinders Medical Centre, Adelaide, Australia.
- Queen Elizabeth Hospital, Adelaide, Australia.
- Eyemedics, Adelaide, Australia.
- Flinders University, Adelaide, Australia.
- University of Adelaide, Adelaide, Australia.
- Vista Day Surgery, Adelaide, Australia.
| |
Collapse
|
2
|
Lee J, Ortega-Rodriguez U, Madhavarao CN, Ju T, O’Connor T, Ashraf M, Yoon S. Effect of different cell culture media on the production and glycosylation of a monoclonal antibody from a CHO cell line. Cytotechnology 2025; 77:81. [PMID: 40124126 PMCID: PMC11928345 DOI: 10.1007/s10616-025-00733-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/19/2025] [Indexed: 03/25/2025] Open
Abstract
Recombinant monoclonal antibodies (mAbs) are commonly produced using Chinese hamster ovary (CHO) cells and the cell culture medium used in bioreactors influences the yield and quality attributes of the protein drug products. The COVID 19 pandemic revealed a vulnerability in the supply chain for necessary reagents (such as culture medium and raw material) for maintaining un-interrupted production of protein drugs with consistent quality. The supply interruption for the cell culture medium ActiPro™ optimized for producing VRC01, an IgG1-κ mAb, from a CHO-K1 cell line, necessitated the search for alternate media. VRC01 mAb is highly glycosylated and can broadly neutralize several strains of Human Immunodeficiency Virus (HIV). We investigated to see if an alternate medium can be used in the production without impacting quality attributes like glycosylation. In our strategy, we used 3 different commercially available media, performed two sets of experiments-with and without media supplements, Cell boost 7a and Cell boost 7b. Cell growth, volumetric production of the mAb protein and glycosylation pattern were compared to identify an alternative medium. Among the tested media based on cell growth, mAb production potential and glycosylation analysis, ActiCHO™ P was found to be a better alternate medium to ActiPro™ medium than EX-CELL® 325 PF CHO medium to produce VRC01 mAb. Overall, the approach used here to establish the impact of variation in medium on protein therapeutic attributes may be used during product development to build in supply chain resilience in drug manufacturing. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-025-00733-7.
Collapse
Affiliation(s)
- Jaeweon Lee
- Office of Pharmaceutical Quality Research, CDER, U.S. FDA, 10903 New Hampshire Ave, Silver Spring, MD 20993 USA
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA USA
| | - Uriel Ortega-Rodriguez
- Office of Pharmaceutical Quality Research, CDER, U.S. FDA, 10903 New Hampshire Ave, Silver Spring, MD 20993 USA
| | - Chikkathur N. Madhavarao
- Office of Pharmaceutical Quality Research, CDER, U.S. FDA, 10903 New Hampshire Ave, Silver Spring, MD 20993 USA
| | - Tongzhong Ju
- Office of Pharmaceutical Quality Research, CDER, U.S. FDA, 10903 New Hampshire Ave, Silver Spring, MD 20993 USA
| | - Thomas O’Connor
- Office of Pharmaceutical Quality Research, CDER, U.S. FDA, 10903 New Hampshire Ave, Silver Spring, MD 20993 USA
| | - Muhammad Ashraf
- Office of Pharmaceutical Quality Research, CDER, U.S. FDA, 10903 New Hampshire Ave, Silver Spring, MD 20993 USA
| | - Seongkyu Yoon
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA USA
| |
Collapse
|
3
|
Hutton E, Uno Y, Scott E, Robson C, Fascione MA, Signoret N. A general and accessible approach to enrichment and characterisation of natural anti-Neu5Gc antibodies from human samples. RSC Chem Biol 2025:d5cb00073d. [PMID: 40416449 PMCID: PMC12100518 DOI: 10.1039/d5cb00073d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Accepted: 05/12/2025] [Indexed: 05/27/2025] Open
Abstract
N-Glycolylneuraminic acid (Neu5Gc) is a non-human sialic acid which is presented on the surface of human cells following uptake from dietary sources. Antibodies against Neu5Gc have implications for many aspects of human health such as inflammation, xenograft rejection and cancer. However, current methods to detect and study anti-Neu5Gc antibodies require complex synthesis of glycan structures, animal handling expertise, or access to expensive reagents and equipment. Here, we outline a simple workflow to enrich and detect anti-Neu5Gc antibodies from small volume human serological samples. This strategy involves a micro-scale affinity purification step, followed by an indirect ELISA detection step which uses CMAH-transfected human cells as a source of Neu5Gc-containing human glycans in their native context. Parental wild type cells are also used as a paired Neu5Gc-negative control. Using this workflow, Neu5Gc-specific antibodies could be enriched from intravenous immunoglobulin (IVIG) and individual plasma specimens from ten healthy donors. Anti-Neu5Gc antibodies were detected in all donors, regardless of age or sex. The lysate ELISA assay was also sufficiently sensitive to observe reproducible individual differences in the anti-Neu5Gc reactivity of each donor specimen. Importantly, despite this individual variation, enriched antibodies from all donor specimens bound effectively to Neu5Gc-containing glycans presented on the surface of whole human cells, highlighting the potential physiological relevance of these antibodies.
Collapse
Affiliation(s)
- Esme Hutton
- Department of Chemistry, University of York York UK
- Hull York Medical School, University of York York UK
| | - Yumiko Uno
- Department of Chemistry, University of York York UK
- Hull York Medical School, University of York York UK
| | - Emma Scott
- Newcastle University, Centre for Cancer Newcastle UK
| | - Craig Robson
- Newcastle University, Centre for Cancer Newcastle UK
| | | | | |
Collapse
|
4
|
Wu Y, Zhang Z, Xu Y, Zhang Y, Chen L, Zhang Y, Hou K, Yang M, Jin Z, Cai Y, Zhao J, Sun S. A high-resolution N-glycoproteome landscape of aging mouse ovary. Redox Biol 2025; 81:103584. [PMID: 40073759 PMCID: PMC11938160 DOI: 10.1016/j.redox.2025.103584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/19/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Ovarian aging typically precedes the decline of other organ systems, yet its molecular mechanisms remain poorly understood. Glycosylation as one of the most important protein modifications has been especially unexplored in this context. Here, we present the first high-resolution glycoproteomic landscape of aging mouse ovaries, uncovering site-specific N-glycan signatures across subcellular components such as high proportions of complex glycans, core fucosylation, and LacdiNAc branches at the zone pellucida. We report three major glycosylation alterations in aged ovaries: the frequently changed core-fucosylation associated with cell adhesion and immune responses, the decreased LacdiNAc glycans on zona pellucida (ZP) responsible for fertility decline, and the increased sialylated glycans modified by Neu5Ac and Neu5Gc playing different roles in immune activation and responses. Integrated multi-omic analyses further highlight the unique role of glycosylation, distinct from phosphorylation, in regulating key signaling pathways, antigen processing and presentation, complement coagulation cascades, ROS biosynthetic and metabolic processes, as well as cell death. This study offers a novel glycobiological perspective on ovarian aging, broadening our understanding of its molecular mechanisms beyond traditional multi-omic approaches.
Collapse
Affiliation(s)
- Yongqi Wu
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an, 710069, PR China
| | - Zhida Zhang
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an, 710069, PR China
| | - Yongchao Xu
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an, 710069, PR China
| | - Yingjie Zhang
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an, 710069, PR China
| | - Lin Chen
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an, 710069, PR China
| | - Yiwen Zhang
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an, 710069, PR China
| | - Ke Hou
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an, 710069, PR China
| | - Muyao Yang
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an, 710069, PR China
| | - Zhehui Jin
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an, 710069, PR China
| | - Yinli Cai
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an, 710069, PR China
| | - Jiayu Zhao
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an, 710069, PR China
| | - Shisheng Sun
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an, 710069, PR China.
| |
Collapse
|
5
|
Ronzier E, Satpute-Krishnan P. TMED9 coordinates the clearance of misfolded GPI-anchored proteins out of the ER and into the Golgi. PLoS Biol 2025; 23:e3003084. [PMID: 40203033 PMCID: PMC12052135 DOI: 10.1371/journal.pbio.3003084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/05/2025] [Accepted: 02/25/2025] [Indexed: 04/11/2025] Open
Abstract
The p24-family member, TMED9, has recently emerged as a player in secretory pathway protein quality control (PQC) that influences the trafficking and degradation of misfolded proteins. Here, we show that TMED9 plays a central role in the PQC of GPI-anchored proteins (GPI-APs). Typically, upon release from the endoplasmic reticulum (ER)-resident chaperone calnexin, misfolded GPI-APs traffic to the Golgi by an ER-export pathway called Rapid ER stress-induced Export (RESET). From the Golgi, they access the plasma membrane where they are rapidly internalized for lysosomal degradation. We used biochemical and imaging approaches in cultured cells to demonstrate that at steady-state, the majority of misfolded GPI-APs reside in the ER in association with calnexin and TMED9. During RESET, they dissociate from calnexin and increase their association with TMED9. Inhibition of TMED9's function through siRNA-induced depletion or chemical inhibitor, BRD4780, blocked ER-export of misfolded GPI-APs. In contrast, TMED9-inhibition did not prevent ER-export of wild-type GPI-APs, indicating a specific role for TMED9 in GPI-AP PQC. Intriguingly, we discovered that acute treatment with BRD4780 induced a shift in TMED9 localization away from the ER to the downstream Golgi cisternae and blocked the RESET pathway. Upon removal of BRD4780 following acute treatment, TMED9 regained access to the ER where TMED9 was able to associate with the RESET substrate and restore the RESET pathway. These results suggest that TMED9 plays a requisite role in RESET by capturing misfolded GPI-APs that are released by calnexin within the ER and conveying them to the Golgi.
Collapse
Affiliation(s)
- Elsa Ronzier
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Prasanna Satpute-Krishnan
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| |
Collapse
|
6
|
Angerstein AO, Young LEA, Thanasupawat T, Vriend J, Grimsley G, Lun X, Senger DL, Sinha N, Beiko J, Pitz M, Hombach-Klonisch S, Drake RR, Klonisch T. Distinct spatial N-glycan profiles reveal glioblastoma-specific signatures. J Pathol 2025; 265:486-501. [PMID: 39967571 DOI: 10.1002/path.6401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/21/2024] [Accepted: 12/24/2024] [Indexed: 02/20/2025]
Abstract
This study explored the complex interactions between glycosylation patterns, tumour biology, and therapeutic responses to temozolomide (TMZ) in human malignant glioma, specifically CNS WHO grade 3 oligodendroglioma (ODG) and glioblastoma (GB). Using spatial imaging of N-glycans in formalin-fixed paraffin-embedded (FFPE) tissue sections via MALDI-MSI, we analysed the N-glycome in primary and recurrent GB tissues and orthotopic xenografts of patient-derived brain tumour-initiating cells (BTIC) sensitive or resistant to TMZ. We identified unique N-glycosylation profiles, with nontumor brain (NTB) and ODG showing higher levels of bisecting and tri-antennary structures, while GB exhibited more tetra-antennary and sialylated N-glycans. Distinctive sialylation patterns were observed, with specific α2,6 and α2,3 isomeric linkages significantly altered in GB. Moreover, comparative analysis of primary and recurrent GB tissues revealed elevated high mannose N-glycans in primary GB and fucosylated bi- and tri-antennary N-glycans in recurrent GB tissues. Next, in the orthotopic xenografts of TMZ-sensitive and TMZ-resistant patient brain tumour initiating cells (BTIC), we identified potential N-glycan markers for TMZ treatment response and resistance. Finally, we found significantly altered expression of genes involved in N-glycan biosynthesis in malignant glioma, highlighting the crucial role of N-glycans in glioma and therapy resistance. This study lays the foundation for developing glycosylation-based diagnostic biomarkers and targeted therapies, potentially improving clinical outcomes for GB patients. © 2025 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Aaron O Angerstein
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Lyndsay E A Young
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Thatchawan Thanasupawat
- Department of Human Anatomy and Cell Science, University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, Winnipeg, MB, Canada
| | - Jerry Vriend
- Department of Human Anatomy and Cell Science, University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, Winnipeg, MB, Canada
| | - Grace Grimsley
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Xueqing Lun
- Cumming School of Medicine, Arnie Charbonneau Cancer Institute, Calgary, AB, Canada
| | - Donna L Senger
- Cumming School of Medicine, Arnie Charbonneau Cancer Institute, Calgary, AB, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
- Lady Davis Institute for Medical Research, Montreal, QC, Canada
| | - Namita Sinha
- Department of Pathology, University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, Winnipeg, MB, Canada
| | - Jason Beiko
- Department of Surgery, University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, Winnipeg, MB, Canada
| | - Marshall Pitz
- Department of Internal Medicine, University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, Winnipeg, MB, Canada
- Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, MB, Canada
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, Winnipeg, MB, Canada
- Department of Pathology, University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, Winnipeg, MB, Canada
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, Winnipeg, MB, Canada
- Department of Pathology, University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, Winnipeg, MB, Canada
- Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
7
|
Tsai KY, Wei PL, Lee CC, Zumbi CN, Prince GMSH, Batzorig U, Huang CY, Chang YJ. Solute Carrier Family 35 A2 (SLC35A2) Promotes Tumor Progression through MYC-Mediated Pathways in Colorectal Cancer. Int J Med Sci 2025; 22:1992-2009. [PMID: 40303483 PMCID: PMC12035830 DOI: 10.7150/ijms.109767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/13/2025] [Indexed: 05/02/2025] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers, posing a significant threat to human life. Although therapeutic approaches for advanced-stage patients have improved in recent years, there is still room for enhancing treatment response. Recent evidence suggests that dysregulation of nucleotide sugar transporters (NSTs) is associated with the development and progression of tumors. Therefore, this study aims to explore the potential therapeutic and prognostic implications of the solute carrier family 35 A (SLC35A) members in CRC. To achieve this, we performed integrative bioinformatics analysis using various publicly available databases, including GENT2, TCGA, UALCAN, cBioPortal, Kaplan-Meier plotter, The ROC plotter, GDSC, TISIDB, and TIMER. We compared gene expression profiles between CRC tumors and adjacent normal tissues, revealing that only SLC35A2 exhibited significant upregulation in tumors, while the other family members were downregulated. Additionally, higher SLC35A2 expression was found in microsatellite stable (MSS) colorectal tumors. Further analysis of TCGA and GEO datasets showed that patients with high SLC35A2 expression experienced poorer relapse-free survival. Next, we conducted gene set enrichment analysis (GSEA), and the results indicated that the upregulation of SLC35A2 is linked to cellular metabolism pathways, such as MYC Targets V2, Steroid Biosynthesis, Pentose Phosphate Pathway, and TCA Cycle. Furthermore, our CRC cell models revealed the tumor-promoting role of SLC35A2 and discovered that the upregulation of SLC35A2 is associated with chemoresistance against irinotecan. Additionally, we observed a negative correlation between SLC35A2 expression and the infiltration of immune cells, particularly cytotoxic CD8+ T cells and B cells. This suggests the immunomodulatory role of SLC35A2. In summary, SLC35A2 is abnormally upregulated in CRC, and patients with high SLC35A2 expression tend to have poor relapse-free survival. This may be due to its involvement in regulating cancer cell metabolic reprogramming, promoting tumor progression, modulating the immune landscape, and influencing treatment response. Consequently, SLC35A2 could serve as a significant prognostic factor and a potential therapeutic target in CRC.
Collapse
Affiliation(s)
- Kuei-Yen Tsai
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
| | - Po-Li Wei
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan
| | - Cheng-Chin Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Crystal Ngofi Zumbi
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | | | - Uyanga Batzorig
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chien-Yu Huang
- School of Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University 300044, Hsinchu, Taiwan
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Jia Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institue of Medical Sciences, National Defense Medical Center, Taipei 114201, Taiwan
| |
Collapse
|
8
|
Radu KR, Baek KH. Insights on the Role of Sialic Acids in Acute Lymphoblastic Leukemia in Children. Int J Mol Sci 2025; 26:2233. [PMID: 40076855 PMCID: PMC11900591 DOI: 10.3390/ijms26052233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/11/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Sialic acids serve as crucial terminal sugars on glycoproteins or glycolipids present on cell surfaces. These sugars are involved in diverse physiological and pathological processes through their interactions with carbohydrate-binding proteins, facilitating cell-cell communication and influencing the outcomes of bacterial and viral infections. The role of hypersialylation in tumor growth and metastasis has been widely studied. Recent research has highlighted the significance of aberrant sialylation in enabling tumor cells to escape immune surveillance and sustain their malignant behavior. Acute lymphoblastic leukemia (ALL) is a heterogenous hematological malignancy that primarily affects children and is the second leading cause of mortality among individuals aged 1 to 14. ALL is characterized by the uncontrolled proliferation of immature lymphoid cells in the bone marrow, peripheral blood, and various organs. Sialic acid-binding immunoglobulin-like lectins (Siglecs) are cell surface proteins that can bind to sialic acids. Activation of Siglecs triggers downstream reactions, including induction of cell apoptosis. Siglec-7 and Siglec-9 have been reported to promote cancer progression by driving macrophage polarization, and their expressions on natural killer cells can inhibit tumor cell death. This comprehensive review aims to explore the sialylation mechanisms and their effects on ALL in children. Understanding the complex interplay between sialylation and ALL holds great potential for developing novel diagnostic tools and therapeutic interventions in managing this pediatric malignancy.
Collapse
Affiliation(s)
- Kimberley Rinai Radu
- Department of Life Science, Graduate School, CHA University, Seongnam-si 13488, Gyeonggi-do, Republic of Korea;
| | - Kwang-Hyun Baek
- Department of Life Science, Graduate School, CHA University, Seongnam-si 13488, Gyeonggi-do, Republic of Korea;
- Department of Bioconvergence, Graduate School, CHA University, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
| |
Collapse
|
9
|
Yin Y, Liao L, Xu Q, Xie S, Yuan L, Zhou R. Insight into the post-translational modifications in pregnancy and related complications†. Biol Reprod 2025; 112:204-224. [PMID: 39499652 DOI: 10.1093/biolre/ioae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/19/2024] [Indexed: 11/07/2024] Open
Abstract
Successful pregnancy is dependent on a number of essential events, including embryo implantation, decidualization, and placentation. Failure of the above process may lead to pregnancy-related complications, including preeclampsia, gestational diabetes mellitus, preterm birth, and fetal growth restriction, may affect 15% of pregnancies, and lead to increased mortality and morbidity of pregnant women and perinatal infants, as well as the occurrence of short-term and long-term diseases. These complications have distinct etiology and pathogenesis, and the present comprehension is still lacking. Post-translational modifications are important events in epigenetics, altering the properties of proteins through protein hydrolysis or the addition of modification groups to one or more amino acids, with different modification states regulating subcellular localization, protein degradation, protein-protein interaction, signal transduction, and gene transcription. In this review, we focus on the impact of various post-translational modifications on the progress of embryo and placenta development and pregnancy-related complications, which will provide important experimental bases for exploring new insights into the physiology of pregnancy and pathogenesis associated with pregnancy complications.
Collapse
Affiliation(s)
- Yangxue Yin
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Lingyun Liao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Qin Xu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Shuangshuang Xie
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Liming Yuan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Rong Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Felixberger PT, Andrieux G, Maul-Pavicic A, Goldacker S, Harder I, Gutenberger S, Landry JJM, Benes V, Jakob TF, Boerries M, Nitschke L, Voll RE, Warnatz K, Keller B. CD21 low B cells reveal a unique glycosylation pattern with hypersialylation and hyperfucosylation. Front Immunol 2025; 16:1512279. [PMID: 40013136 PMCID: PMC11861550 DOI: 10.3389/fimmu.2025.1512279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/10/2025] [Indexed: 02/28/2025] Open
Abstract
Background The posttranslational modification of cellular macromolecules by glycosylation is considered to contribute to disease pathogenesis in autoimmune and inflammatory conditions. In a subgroup of patients with common variable immunodeficiency (CVID), the occurrence of such complications is associated with an expansion of naïve-like CD21low B cells during a chronic type 1 immune activation. The glycosylation pattern of B cells in CVID patients has not been addressed to date. Objective The objective of this study was to examine the surface glycome of B cells in patients with CVID and associated immune dysregulation. Methods We performed surface lectin staining on B cells from peripheral blood and tonsils, both ex vivo and after in vitro stimulation. Additionally, we examined the expression of glycosylation-related genes by RNAseq in naïve-like CD21low B cells ex vivo, as well as in naïve CD21pos B cells from healthy controls after in vitro stimulation. Results Unlike CD21pos B cells, naïve-like CD21low B cells from CVID patients and CD21low B cells from healthy controls exhibited a unique glycosylation pattern with high levels of α2,6 sialic acids and fucose. This hypersialylation and hyperfucosylation were particularly induced by activation with anti-IgM and interferon-γ (IFN-γ). Transcriptome analysis suggested that naïve-like CD21low B cells possess a comprehensively reorganised glycosylation machinery, with anti-IgM/IFN-γ having the potential to initiate these changes in vitro. Conclusion CD21low B cells are hypersialylated and hyperfucosylated. This may implicate altered lectin-ligand interactions on the cell surface potentially affecting the CD21low B-cell function. These glycome changes appear to be driven by the prominent type I immune response in complicated CVID patients. A better understanding of how altered glycosylation influences immune cell function could lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Peter Tobias Felixberger
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrea Maul-Pavicic
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sigune Goldacker
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ina Harder
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sylvia Gutenberger
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Till Fabian Jakob
- Department of Oto-Rhino-Laryngology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner site Freiburg, a partnership between DKFZ and Medical Center - University of Freiburg, Freiburg, Germany
| | - Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Reinhard Edmund Voll
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Ronzier E, Satpute-Krishnan P. TMED9 coordinates the clearance of misfolded GPI-anchored proteins out of the endoplasmic reticulum and into the Golgi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.27.615420. [PMID: 39974996 PMCID: PMC11838446 DOI: 10.1101/2024.09.27.615420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The p24-family member, TMED9, has recently emerged as a player in secretory pathway protein quality control (PQC) that influences the trafficking and degradation of misfolded proteins. Here we show that TMED9 plays a central role in the PQC of GPI-anchored proteins (GPI-APs). Typically, upon release from the endoplasmic reticulum (ER)-resident chaperone calnexin, misfolded GPI-APs traffic to the Golgi by an ER-export pathway called Rapid ER stress-induced Export (RESET). From the Golgi, they access the plasma membrane where they are rapidly internalized for lysosomal degradation. We used biochemical and imaging approaches in cultured cells to demonstrate that at steady-state, the majority of misfolded GPI-APs reside in the ER in association with calnexin and TMED9. During RESET, they dissociate from calnexin and increase their association with TMED9. Inhibition of TMED9's function through siRNA-induced depletion or chemical inhibitor, BRD4780, blocked ER-export of misfolded GPI-APs. By contrast, TMED9-inhibition did not prevent ER-export of wild type GPI-APs, indicating a specific role for TMED9 in GPI-AP PQC. Intriguingly, we discovered that acute treatment with BRD4780 induced a shift in TMED9 localization away from the ER to the downstream Golgi cisternae and blocked the RESET pathway. Upon removal of BRD4780 following acute treatment, TMED9 regained access to the ER where TMED9 was able to associate with the RESET substrate and restore the RESET pathway. These results suggest that TMED9 plays a requisite role in RESET by capturing misfolded GPI-APs that are released by calnexin within the ER and conveying them to the Golgi.
Collapse
|
12
|
Bhat AA, Altamimi ASA, Goyal A, Goyal K, Kaur I, Kumar S, Sharma N, Kumar MR, Ali H, Thapa R, Negi P, Singh SK, Gupta G. The role of CD95 in modulating CAR T-cell therapy: Challenges and therapeutic opportunities in oncology. Int Immunopharmacol 2025; 144:113675. [PMID: 39608172 DOI: 10.1016/j.intimp.2024.113675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/07/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024]
Abstract
CAR T cell therapy has revolutionized how we deliver cancer treatment, most notably for hematologic cancers, by compelling T cells to recognize and kill tumor cells. Nevertheless, current obstacles to utilizing this therapy in solid tumors and overcoming cancer resistance include radicalization. This review discusses how CD95 modulation can boost CAR T cell efficacy. Traditionally, CD95 was known to execute apoptosis induction, but it plays a dual role in induced cell death or in supporting cancer cell survival. Recent data have demonstrated that cancer cells escape CD95-mediated apoptosis via the downregulation of CD95, caspase 8 mutation, or the expression of the inhibition protein cFLIP. Additionally, the immunosuppressive tumor microenvironment, containing CD95L expressing immune cells, explains CAR T cell therapy resistance. Furthermore, we characterize the therapeutic potential of CD95 targeted approaches, including CD95L inhibition (APG101) and alterations in CAR T cell manufacturing (tyrosine kinase inhibitors to mitigate fratricide). In this review, we highlight the importance of multi-path way strategies combining CD95 modulation with CAR T cell engineering to overcome resistance, specifically to target tumor cells better and sustain CAR T cell persistence to enhance treatment efficacy in solid tumors.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - Irwanjot Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Naveen Sharma
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali 140307, Punjab, India
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, HP 173212, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; School of Medical and Life Sciences, Sunway University, 47500, Sunway City, Malaysia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|
13
|
Jang JY, Moon C, Kim K, Park CS, Jang L, Jeong CM, Lee HS, Byeon H, Kim HH. Structural and quantitative characterization of membrane N-glycans from MIN6 mouse pancreatic beta cells using liquid chromatography-quadrupole-Orbitrap tandem mass spectrometry. J Pharm Biomed Anal 2025; 252:116494. [PMID: 39369550 DOI: 10.1016/j.jpba.2024.116494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
MIN6, a mouse pancreatic beta cell line, is used in diabetes research, and the cellular N-glycoproteins in membrane are important in regulating the metabolism of insulin secretion. However, the identities of N-glycans in MIN6 cells are yet to be fully elucidated. In this study, the structures of N-glycans were analyzed using liquid chromatography-electrospray ionization-higher energy collisional dissociation-tandem mass spectrometry. The abundances (%) of each N-glycan relative to the total N-glycans (100 %) were also obtained. Fifty N-glycans (with relative abundance of each > 0.5 %) were obtained, revealing 22 bisecting N-acetylglucosamine (GlcNAc; associated with cell adhesion and growth; sum of relative abundance of each: 27.1 %), 21 core-fucosylated (associated with glucose sensing and insulin secretion regulation; 28.3 %), and 16 sialylated (N-acetylneuraminic acid; related to the expression of glucose transporters and diabetes;15.5 %) N-glycans. Membranes contained higher bisecting GlcNAc and core-fucosylation, similar sialylation, but less high-mannosylation than the lysate (the cellular contents). Notably, all bisecting GlcNAc N-glycans were categorized into structures with (16.6 %) or without (10.5 %) core-fucosylation and with (6.9 %) or without (20.2 %) sialylation. The bisecting GlcNAc structures were not found in human islets; moreover, sialylation levels were 6.9 times higher than for human islets. These structural characteristics of N-glycans affect their cell adhesion and distribution through homologous interactions between beta cells, leading to increased insulin secretion efficiency. This study is the first to identify the structures and quantities of 50 N-glycans in MIN6 cell membranes that may play an important role in regulating the functions of pancreatic beta cells.
Collapse
Affiliation(s)
- Ji Yeon Jang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Chulmin Moon
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Kyuran Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Chi Soo Park
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Leeseul Jang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Chang Myeong Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Han Seul Lee
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Haeun Byeon
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Ha Hyung Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
14
|
Garádi Z, Dancsó A, Piskarev V, Béni S. From mother's milk to structural insights: 1H- 15N NMR analysis of Lewis X antigen-bearing oligosaccharides isolated from human milk. Carbohydr Polym 2025; 347:122534. [PMID: 39486911 DOI: 10.1016/j.carbpol.2024.122534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/08/2024] [Accepted: 07/21/2024] [Indexed: 11/04/2024]
Abstract
Human milk oligosaccharides (HMOs) are complex unconjugated glycans abundant in breast milk, with vital roles in infant nutrition and health. The structural elucidation of HMOs remains challenging due to their diverse compositions and isomeric complexities. This study presents a novel approach employing 1H-15N NMR correlations to pinpoint and characterize HMOs, LNH, LNnH, and their fucosylated derivatives including those of bearing the Lewis X motif. Isolated from human milk, these hexa-, hepta-, and octasaccharides were extensively analysed by NMR. This enabled their first complete 1H, 13C and 15N resonance assignments. Using 1H-15N HSQC experiments, the distinctive 1H-15N correlations of GlcNAc units within the HMOs provided structural fingerprints, allowing for unequivocal differentiation of isomeric structures and fucosylation patterns. Results demonstrate the potential of 1H-15N NMR spectroscopy in decoding complex HMO structures, offering new perspectives on their detailed structural characterization and contributing to a deeper understanding of their potential benefits.
Collapse
Affiliation(s)
- Zsófia Garádi
- Department of Pharmacognosy, Semmelweis University, Budapest, Hungary; Directorate of Drug Substance Development, Egis Pharmaceuticals PLC, Budapest, Hungary
| | - András Dancsó
- Directorate of Drug Substance Development, Egis Pharmaceuticals PLC, Budapest, Hungary
| | - Vladimir Piskarev
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
| | - Szabolcs Béni
- Department of Analytical Chemistry, Institute of Chemistry, ELTE, Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
15
|
Hunter CD, Cairo CW. Detection Strategies for Sialic Acid and Sialoglycoconjugates. Chembiochem 2024; 25:e202400402. [PMID: 39444251 DOI: 10.1002/cbic.202400402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Indexed: 10/25/2024]
Abstract
Glycoconjugates are a vast class of biomolecules implicated in biological processes important for human health and disease. The structural complexity of glycoconjugates remains a challenge to deciphering their precise biological roles and for their development as biomarkers and therapeutics. Human glycoconjugates on the outside of the cell are modified with sialic (neuraminic) acid residues at their termini. The enzymes that install sialic acids are sialyltransferases (SiaTs), a family of 20 different isoenzymes. The removal and degradation of sialic acids is mediated by neuraminidase (NEU; sialidase) enzymes, of which there are four isoenzymes. In this review, we discuss chemical and biochemical approaches for the detection and analysis of sialoglycoconjugate (SGC) structures and their enzymatic products. The most common methods include affinity probes and synthetic substrates. Fluorogenic and radiolabelled substrates are also important tools for many applications, including screening for enzyme inhibitors. Strategies that give insight into the native substrate-specificity of enzymes that regulate SGCs (SiaT & NEU) are necessary to improve our understanding of the role of sialic acid metabolism in health and disease.
Collapse
Affiliation(s)
- Carmanah D Hunter
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Christopher W Cairo
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
16
|
Yang S, Jeong CM, Park CS, Moon C, Jang L, Jang JY, Lee HS, Kim K, Byeon H, Eom D, Kim HH. Identification and quantification of unreported sialylated N-glycan isomers with α2-3 and α2-6 linkages in the egg yolk protein phosvitin. Food Res Int 2024; 197:115293. [PMID: 39577941 DOI: 10.1016/j.foodres.2024.115293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/02/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024]
Abstract
Phosvitin (PV), a highly phosphorylated protein found in chicken egg yolk, possesses multiple bioactivities (including anti-aging and anticancer) and functional properties (including emulsifier and metal-binding capacities). The carbohydrate moiety attached to PV has been reported, but its N-glycan structure is unknown. In this study, we performed structural and quantitative analyses of N-glycans from PV using liquid chromatography-tandem mass spectrometry (MS/MS). N-glycan structures were identified using observed precursor ion m/z and MS/MS fragment ions. Each quantity was obtained relative to the total N-glycans (100%). Thirty-seven N-glycans were identified, including 22 sialylations with a negative charge (a sum of the relative quantity of each, 96.4%) comprising 13 mono- (31.6%), 7 di- (57.5%), 2 tri- (7.3%) sialylations. The sialylated N-glycan isomers with α2-3 (flexible conformation) and α2-6 (rigid conformation) linkages were distinguished using α2-3- and α2-3,6 sialidase treatments and intensity ratios of the N-acetylglucosamine and sialic acid ions (Ln/Nn) with different fragmentation stabilities. The α2-6/α2-6 (53.8%), α2-6 (31.6%), α2-3/α2-6/α2-6 (6.5%), and α2-3/α2-6 (3.7%) linkages in mono-, di, or tri-antennary structures were identified. These negatively charged structures may affect the emulsification and metal-binding capacity of PV. This is the first study to identify and quantify N-glycans in PV, including predominantly 22 sialylated N-glycan isomers with more rigid α2-6 linkages than α2-3 linkages.
Collapse
Affiliation(s)
- Subin Yang
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Chang Myeong Jeong
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Chi Soo Park
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Chulmin Moon
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Leeseul Jang
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Ji Yeon Jang
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Han Seul Lee
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Kyuran Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Haeun Byeon
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Daeun Eom
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Ha Hyung Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
17
|
Broekhuis JM, Lu D, Aryal RP, Matsumoto Y, Pepi LE, Chaves N, Gomez-Mayorga JL, James BC, Cummings RD. Thyroid Carcinoma Glycoproteins Express Altered N-Glycans with 3-O-Sulfated Galactose Residues. Biomolecules 2024; 14:1482. [PMID: 39766189 PMCID: PMC11727208 DOI: 10.3390/biom14121482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 01/15/2025] Open
Abstract
Aberrant protein glycosylation is a hallmark alteration of cancer and is highly associated with cancer progression. Papillary thyroid cancer (PTC) is the most common type of thyroid cancer, but the N-glycosylation of its glycoproteins has not been well characterized. In this work, we analyzed multiple freshly prepared PTC specimens along with paired normal tissue obtained from thyroidectomies. Glycomic analyses focused on Asn-linked (N)-glycans and employed mass spectrometry (MS), along with Western blot approaches of total solubilized materials that were examined for binding by specific lectins and a monoclonal antibody (mAb) O6, specific for 3-O-sulfated galactose residues. We observed major differences in PTC versus paired normal specimens, as PTC specimens exhibited higher levels of N-glycan branching and bisection with N-acetylglucosamine residues, consistent with RNAseq data. We also found that 3-O-sulfated galactose was present in N-glycans of multiple glycoproteins from both PTC and control specimens, as recognized by the O6 mAb and as confirmed by MS analyses. These results provide new insights into the N-glycans present in glycoproteins of thyroid cancer and context for further studies of these altered glycans as biomarkers and targets for therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (J.M.B.); (D.L.); (R.P.A.); (Y.M.); (L.E.P.); (N.C.); (J.L.G.-M.); (B.C.J.)
| |
Collapse
|
18
|
Habeeb IF, Alao TE, Delgado D, Buffone A. When a negative (charge) is not a positive: sialylation and its role in cancer mechanics and progression. Front Oncol 2024; 14:1487306. [PMID: 39628991 PMCID: PMC11611868 DOI: 10.3389/fonc.2024.1487306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/10/2024] [Indexed: 12/06/2024] Open
Abstract
Sialic acids and sialoglycans are critical actors in cancer progression and metastasis. These terminal sugar residues on glycoproteins and glycolipids modulate key cellular processes such as immune evasion, cell adhesion, and migration. Aberrant sialylation is driven by overexpression of sialyltransferases, resulting in hypersialylation on cancer cell surfaces as well as enhancing tumor aggressiveness. Sialylated glycans alter the structure of the glycocalyx, a protective barrier that fosters cancer cell detachment, migration, and invasion. This bulky glycocalyx also increases membrane tension, promoting integrin clustering and downstream signaling pathways that drive cell proliferation and metastasis. They play a critical role in immune evasion by binding to Siglecs, inhibitory receptors on immune cells, which transmit signals that protect cancer cells from immune-mediated destruction. Targeting sialylation pathways presents a promising therapeutic opportunity to understand the complex roles of sialic acids and sialoglycans in cancer mechanics and progression, which is crucial for developing novel diagnostic and therapeutic strategies that can disrupt these processes and improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Issa Funsho Habeeb
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| | - Toheeb Eniola Alao
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| | - Daniella Delgado
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| | - Alexander Buffone
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
- Chemical and Materials Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| |
Collapse
|
19
|
Zhong X, D’Antona AM, Rouse JC. Mechanistic and Therapeutic Implications of Protein and Lipid Sialylation in Human Diseases. Int J Mol Sci 2024; 25:11962. [PMID: 39596031 PMCID: PMC11594235 DOI: 10.3390/ijms252211962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Glycan structures of glycoproteins and glycolipids on the surface glycocalyx and luminal sugar layers of intracellular membrane compartments in human cells constitute a key interface between intracellular biological processes and external environments. Sialic acids, a class of alpha-keto acid sugars with a nine-carbon backbone, are frequently found as the terminal residues of these glycoconjugates, forming the critical components of these sugar layers. Changes in the status and content of cellular sialic acids are closely linked to many human diseases such as cancer, cardiovascular, neurological, inflammatory, infectious, and lysosomal storage diseases. The molecular machineries responsible for the biosynthesis of the sialylated glycans, along with their biological interacting partners, are important therapeutic strategies and targets for drug development. The purpose of this article is to comprehensively review the recent literature and provide new scientific insights into the mechanisms and therapeutic implications of sialylation in glycoproteins and glycolipids across various human diseases. Recent advances in the clinical developments of sialic acid-related therapies are also summarized and discussed.
Collapse
Affiliation(s)
- Xiaotian Zhong
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA;
| | - Aaron M. D’Antona
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA;
| | - Jason C. Rouse
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA 01810, USA;
| |
Collapse
|
20
|
Xue M, Tan L, Zhang S, Wang JN, Mi X, Si W, Qiao Y, Lao Z, Meng X, Yang Y. Chemoenzymatic synthesis of sialyl-α2,3-lactoside-functionalized BSA conjugate inhibits influenza infection. Eur J Med Chem 2024; 276:116633. [PMID: 38968785 DOI: 10.1016/j.ejmech.2024.116633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024]
Abstract
Influenza remains a global public health threat, and the development of new antivirals is crucial to combat emerging drug-resistant influenza strains. In this study, we report the synthesis and evaluation of a sialyl lactosyl (TS)-bovine serum albumin (BSA) conjugate as a potential multivalent inhibitor of the influenza virus. The key trisaccharide component, TS, was efficiently prepared via a chemoenzymatic approach, followed by conjugation to dibenzocyclooctyne-modified BSA via a strain-promoted azide-alkyne cycloaddition reaction. Biophysical and biochemical assays, including surface plasmon resonance, isothermal titration calorimetry, hemagglutination inhibition, and neuraminidase inhibition, demonstrated the strong binding affinity of TS-BSA to the hemagglutinin (HA) and neuraminidase (NA) proteins of the influenza virus as well as intact virion particles. Notably, TS-BSA exhibited potent inhibitory activity against viral entry and release, preventing cytopathic effects in cell culture. This multivalent presentation strategy highlights the potential of glycocluster-based antivirals for combating influenza and other drug-resistant viral strains.
Collapse
Affiliation(s)
- Mingming Xue
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Lintongqing Tan
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Shuai Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Jia-Ning Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Xue Mi
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Weixue Si
- CanSino Biologics Inc, 185 South Avenue, TEDA West District, Tianjin, 300457, China
| | - Ying Qiao
- CanSino Biologics Inc, 185 South Avenue, TEDA West District, Tianjin, 300457, China
| | - Zhiqi Lao
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Xin Meng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China.
| | - Yang Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China.
| |
Collapse
|
21
|
Peng B, Bartkowiak K, Song F, Nissen P, Schlüter H, Siebels B. Hypoxia-Induced Adaptations of N-Glycomes and Proteomes in Breast Cancer Cells and Their Secreted Extracellular Vesicles. Int J Mol Sci 2024; 25:10216. [PMID: 39337702 PMCID: PMC11432262 DOI: 10.3390/ijms251810216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
The hypoxic tumor microenvironment significantly impacts cellular behavior and intercellular communication, with extracellular vesicles (EVs) playing a crucial role in promoting angiogenesis, metastasis, and host immunosuppression, and presumed cancer progression and metastasis are closely associated with the aberrant surface N-glycan expression in EVs. We hypothesize that hypoxic tumors synthesize specific hypoxia-induced N-glycans in response to or as a consequence of hypoxia. This study utilized nano-LC-MS/MS to integrate quantitative proteomic and N-glycomic analyses of both cells and EVs derived from the MDA-MB-231 breast cancer cell line cultured under normoxic and hypoxic conditions. Whole N-glycome and proteome profiling revealed that hypoxia has an impact on the asparagine N-linked glycosylation patterns and on the glycolysis/gluconeogenesis proteins in cells in terms of altered N-glycosylation for their adaptation to low-oxygen conditions. Distinct N-glycan types, high-mannose glycans like Man3 and Man9, were highly abundant in the hypoxic cells. On the other hand, alterations in the sialylation and fucosylation patterns were observed in the hypoxic cells. Furthermore, hypoxia-induced EVs exhibit a signature consisting of mono-antennary structures and specific N-glycans (H4N3F1S2, H3N3F1S0, and H7N4F3S2; H8N4F1S0 and H8N6F1S2), which are significantly associated with poor prognoses for breast tumors, presumably altering the interactions within the tumor microenvironment to promote tumorigenesis and metastasis. Our findings provide an overview of the N-glycan profiles, particularly under hypoxic conditions, and offer insights into the potential biomarkers for tracking tumor microenvironment dynamics and for developing precision medicine approaches in oncology.
Collapse
Affiliation(s)
- Bojia Peng
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (B.P.); (P.N.); (B.S.)
| | - Kai Bartkowiak
- Department of Tumor Biology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Feizhi Song
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Paula Nissen
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (B.P.); (P.N.); (B.S.)
| | - Hartmut Schlüter
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (B.P.); (P.N.); (B.S.)
| | - Bente Siebels
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (B.P.); (P.N.); (B.S.)
| |
Collapse
|
22
|
Adeniyi M, Gutierrez Reyes CD, Chávez-Reyes J, Marichal-Cancino BA, Solomon J, Fowowe M, Onigbinde S, Flores-Rodriguez JA, Bhuiyan MMAA, Mechref Y. Serum N-Glycan Changes in Rats Chronically Exposed to Glyphosate-Based Herbicides. Biomolecules 2024; 14:1077. [PMID: 39334844 PMCID: PMC11430009 DOI: 10.3390/biom14091077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 09/30/2024] Open
Abstract
Glyphosate, the active ingredient in many herbicides, has been widely used in agriculture since the 1970s. Despite initial beliefs in its safety for humans and animals due to the absence of the shikimate pathway, recent studies have raised concerns about its potential health effects. This study aimed to identify glycomic changes indicative of glyphosate-induced toxicity. Specifically, the study focused on profiling N-glycosylation, a protein post-translational modification increasingly recognized for its involvement in various disorders, including neurological conditions. A comprehensive analysis of rat serum N-glycomics following chronic exposure to glyphosate-based herbicides (GBH) was conducted using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results revealed significant changes in the N-glycan profile, particularly in sialylated and sialofucosylated N-glycans. The analysis of N-glycans across gender subgroups provided insights into gender-specific responses to GBH exposure, with the male rats exhibiting a higher susceptibility to these N-glycan changes compared to females. The validation of significantly altered N-glycans using parallel reaction monitoring (PRM) confirmed their expression patterns. This study provides novel insights into the impact of chronic GBH exposure on serum N-glycan composition, with implications for assessing glyphosate toxicity and its potential neurological implications.
Collapse
Affiliation(s)
- Moyinoluwa Adeniyi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | | | - Jesús Chávez-Reyes
- Center of Basic Sciences, Department of Physiology and Pharmacology, Universidad Autónoma de Aguascalientes, Aguascalientes CP 20131, Mexico
| | - Bruno A Marichal-Cancino
- Center of Basic Sciences, Department of Physiology and Pharmacology, Universidad Autónoma de Aguascalientes, Aguascalientes CP 20131, Mexico
| | - Joy Solomon
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Mojibola Fowowe
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Jorge A Flores-Rodriguez
- Center of Basic Sciences, Department of Physiology and Pharmacology, Universidad Autónoma de Aguascalientes, Aguascalientes CP 20131, Mexico
| | | | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| |
Collapse
|
23
|
YAN J, FENG H, QIU F, WANG H, YIN L, JIN X, ZHAO J, WANG H, YAN X. Effect on serum metabolomics of rats with premature ovarian insufficiency by Zhibian (BL54) through Shuidao (ST28) acupuncture. J TRADIT CHIN MED 2024; 44:722-733. [PMID: 39066533 PMCID: PMC11337248 DOI: 10.19852/j.cnki.jtcm.20231226.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/12/2023] [Indexed: 07/28/2024]
Abstract
OBJECTIVE To analyze the serum metabolic targets of the "Zhibian (BL54) through Shuidao (ST28)" acupuncture technique in cyclophosphamide (CTX)-induced premature ovarian insufficiency (POI) model rats and to elucidate the potential molecular mechanism of acupuncture in improving POI. METHODS We used an intraperitoneal injection of CTX to establish the POI rat model (POI group) and compared serum hormone levels and ovarian histopathological changes to evaluate the effect of the Zhibian (BL54) through Shuidao (ST28) technique (ZS + POI group) on ovarian function. Then, nontargeted metabolomics was performed using rat serum by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). RESULTS After acupuncture intervention, the serum hormone levels and ovarian pathological morphology of POI rats were effectively improved. Moreover, UPLC-Q-TOF/MS results showed that the ZS + POI group showed a significant reversal of the levels of 6 differential metabolites. Among them, the levels of four serum metabolic markers, divanillyltetrahydrofuran ferulate, trans-ferulic acid, tryptamine, and neuraminic acid, increased significantly. Further analysis of biological effects showed that all metabolites were involved in the regulation of reproductive hormone levels and antioxidant and antiapoptotic effects. CONCLUSIONS The "Zhibian (BL54) through Shuidao (ST28)" acupuncture method may improve the ovarian function of POI rats by regulating serum metabolite markers to exert antioxidant and antiapoptotic effects, which provides a theoretical basis for the clinical application of acupuncture in the treatment of POI.
Collapse
Affiliation(s)
- Jing YAN
- 1 Second Clinical College of Shanxi University of Traditional Chinese Medicine, Jinzhong 030619, China
| | - Huimin FENG
- 1 Second Clinical College of Shanxi University of Traditional Chinese Medicine, Jinzhong 030619, China
| | - Fang QIU
- 1 Second Clinical College of Shanxi University of Traditional Chinese Medicine, Jinzhong 030619, China
| | - Haijun WANG
- 1 Second Clinical College of Shanxi University of Traditional Chinese Medicine, Jinzhong 030619, China
| | - Luyun YIN
- 1 Second Clinical College of Shanxi University of Traditional Chinese Medicine, Jinzhong 030619, China
| | - Xiaofei JIN
- 1 Second Clinical College of Shanxi University of Traditional Chinese Medicine, Jinzhong 030619, China
| | - Jiyu ZHAO
- 2 Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hongyang WANG
- 1 Second Clinical College of Shanxi University of Traditional Chinese Medicine, Jinzhong 030619, China
| | - Xiaoqin YAN
- 3 Department of Cervical and Lumbar Vertebral Diseases, Jinzhong Hospital Affiliated to Shanxi University of Traditional Chinese Medicine, Jinzhong 030600, China
| |
Collapse
|
24
|
Fastenau C, Bunce M, Keating M, Wickline J, Hopp SC, Bieniek KF. Distinct patterns of plaque and microglia glycosylation in Alzheimer's disease. Brain Pathol 2024; 34:e13267. [PMID: 38724175 PMCID: PMC11189777 DOI: 10.1111/bpa.13267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/22/2024] [Indexed: 06/23/2024] Open
Abstract
Glycosylation is the most common form of post-translational modification in the brain. Aberrant glycosylation has been observed in cerebrospinal fluid and brain tissue of Alzheimer's disease (AD) cases, including dysregulation of terminal sialic acid (SA) modifications. While alterations in sialylation have been identified in AD, the localization of SA modifications on cellular or aggregate-associated glycans is largely unknown because of limited spatial resolution of commonly utilized methods. The present study aims to overcome these limitations with novel combinations of histologic techniques to characterize the sialylation landscape of O- and N-linked glycans in autopsy-confirmed AD post-mortem brain tissue. Sialylated glycans facilitate important cellular functions including cell-to-cell interaction, cell migration, cell adhesion, immune regulation, and membrane excitability. Previous studies have not investigated both N- and O-linked sialylated glycans in neurodegeneration. In this study, the location and distribution of sialylated glycans were evaluated in three brain regions (frontal cortex, hippocampus, and cerebellum) from 10 AD cases using quantitative digital pathology techniques. Notably, we found significantly greater N-sialylation of the Aβ plaque microenvironment compared with O-sialylation. Plaque-associated microglia displayed the most intense N-sialylation proximal to plaque pathology. Further analyses revealed distinct differences in the levels of N- and O-sialylation between cored and diffuse Aβ plaque morphologies. Interestingly, phosphorylated tau pathology led to a slight increase in N-sialylation and no influence of O-sialylation in these AD brains. Confirming our previous observations in mice with novel histologic approach, these findings support microglia sialylation appears to have a relationship with AD protein aggregates while providing potential targets for therapeutic strategies.
Collapse
Affiliation(s)
- Caitlyn Fastenau
- Department of PharmacologyUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| | - Madison Bunce
- Department of PharmacologyUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| | - Mallory Keating
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| | - Jessica Wickline
- Department of PharmacologyUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| | - Sarah C. Hopp
- Department of PharmacologyUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| | - Kevin F. Bieniek
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
- Department of Pathology and Laboratory MedicineUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| |
Collapse
|
25
|
Wu D, Gong T, Sun Z, Yao X, Wang D, Chen Q, Guo Q, Li X, Guo Y, Lu Y. Dual-crosslinking gelatin-hyaluronic acid methacrylate based biomimetic PDAC desmoplastic niche enhances tumor-associated macrophages recruitment and M2-like polarization. Int J Biol Macromol 2024; 269:131826. [PMID: 38679256 DOI: 10.1016/j.ijbiomac.2024.131826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/18/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
The tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) is characterized by deposition of desmoplastic matrix (including collagen and hyaluronic acid). And the interactions between tumor-associated macrophages (TAMs) and tumor cells play a crucial role in progression of PDAC. Hence, the appropriate model of tumor cell-macrophage interaction within the unique PDAC TME is of significantly important. To this end, a 3D tumor niche based on dual-crosslinking gelatin methacrylate and hyaluronic acid methacrylate hydrogels was constructed to simulate the desmoplastic tumor matrix with matching compressive modulus and composition. The bionic 3D tumor niche creates an immunosuppressive microenvironment characterized by the downregulation of M1 markers and upregulation of M2 markers in TAMs. Mechanistically, RNA-seq analysis revealed that the PI3K-AKT signaling pathway might modulate the phenotypic balance and recruitment of macrophages through regulating SELE and VCAM-1. Furthermore, GO and GSEA revealed the biological process of leukocyte migration and the activation of cytokine-associated signaling were involved. Finally, the 3D tumor-macrophage niches with three different ratios were fabricated which displayed increased M2-like polarization and stemness. The utilization of the 3D tumor niche has the potential to provide a more accurate investigation of the interplay between PDAC tumor cells and macrophages within an in vivo setting.
Collapse
Affiliation(s)
- Di Wu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu province 226001, PR China
| | - Tiancheng Gong
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu province 226001, PR China
| | - Zhongxiang Sun
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu province 226001, PR China
| | - Xihao Yao
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu province 226001, PR China
| | - Dongzhi Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu province 226001, PR China
| | - Qiyang Chen
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu province 226001, PR China
| | - Qingsong Guo
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China
| | - Xiaohong Li
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu province 226001, PR China
| | - Yibing Guo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu province 226001, PR China.
| | - Yuhua Lu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China.
| |
Collapse
|
26
|
Wang LN, Shao YR, Wang PF, Lv J, He DK. Characteristics of phosgene aspiration lung injury analyzed based on transcriptomics and proteomics. Front Genet 2024; 15:1393665. [PMID: 38826806 PMCID: PMC11140124 DOI: 10.3389/fgene.2024.1393665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/26/2024] [Indexed: 06/04/2024] Open
Abstract
Background Phosgene is a chemical material widely used worldwide. No effective method has been developed to reverse its pathological injuries. Some studies have shown that neuronal inflammation in lung tissue is involved, but the specific mechanism has not been reported. Objective To analyze the expression alterations of whole transcriptome gene sequencing bioinformatics and protein expression profile in lung tissue after phosgene aspiration lung injury (P-ALI) and find the main factors and pathways affecting the prognosis of P-ALI. Methods Rat models of P-ALI were made by phosgene. Rats were divided into a P-ALI group and a blank group. Hematoxylin-eosin (HE) staining and lung wet/dry ratio measurement were used to evaluate the lung injury. The levels of inflammatory factors were measured by ELISA. High-throughput sequencing was used to measure the expression profile of each gene. Protein expression profiles were determined by label-free relative quantification of the differential proteome. Results Lung injury such as the disordered structure of alveolar wall and inflammatory factors (IL-1β, IL-18, and IL-33) were significantly increased in the P-ALI group (p < 0.05). There were 225 differentially expressed lncRNAs, including 85 upregulated and 140 downregulated genes. They were also the genomes with the most significant changes in transcriptome gene expression, mainly constituting cytoplasmic, synaptic structures and transporters, and involved in amino acid and carbon metabolism. There were 42 differentially expressed circRNAs, including 25 upregulated genes and 17 downregulated genes, mainly involved in cell composition, growth, differentiation, and division. There were only 10 differentially expressed miRNAs genes, all upregulated and mainly involved in the inflammatory response pathway. Proteome identification showed 79 differentially expressed proteins. KEGG enrichment analysis showed that it was mainly involved in the N-glycan biosynthesis pathway. Conclusion We discovered that differentially regulated genes (lncRNAs, circRNAs, and miRNAs) were primarily associated with neuronal reflexes and synaptic signaling, including neurotransmitter transmission, ion signaling pathway conduction, neuronal projection, and synaptic vesicle circulation. They affected inflammatory factors and other metabolic pathways. This finding could be explored in future studies.
Collapse
Affiliation(s)
- Li-Na Wang
- Department of General Practice, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yi-Ru Shao
- Center of Emergency and Critical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, China
| | - Peng-Fei Wang
- Center of Emergency and Critical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, China
| | - Jiang Lv
- Department of General Practice, Jinshan Hospital, Fudan University, Shanghai, China
| | - Dai-Kun He
- Department of General Practice, Jinshan Hospital, Fudan University, Shanghai, China
- Center of Emergency and Critical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, China
| |
Collapse
|
27
|
Filipsky F, Läubli H. Regulation of sialic acid metabolism in cancer. Carbohydr Res 2024; 539:109123. [PMID: 38669826 DOI: 10.1016/j.carres.2024.109123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Sialic acid, the terminal structure of cell surface glycans, has essential functions in regulating immune response, cell-to-cell communication, and cell adhesion. More importantly, an increased level of sialic acid, termed hypersialylation, has emerged as a commonly observed phenotype in cancer. Therefore, targeting sialic acid ligands (sialoglycans) and their receptors (Siglecs) may provide a new therapeutic approach for cancer immunotherapy. We highlight the complexity of the sialic acid metabolism and its involvement in malignant transformation within individual cancer subtypes. In this review, we focus on the dysregulation of sialylation, the intricate nature of sialic acid synthesis, and clinical perspective. We aim to provide a brief insight into the mechanism of hypersialylation and how our understanding of these processes can be leveraged for the development of novel therapeutics.
Collapse
Affiliation(s)
- Filip Filipsky
- Department of Biomedicine, University Hospital and University of Basel, Switzerland
| | - Heinz Läubli
- Department of Biomedicine, University Hospital and University of Basel, Switzerland; Division of Oncology, University Hospital Basel, Switzerland.
| |
Collapse
|
28
|
Klingler F, Schlossbauer P, Naumann L, Handrick R, Hesse F, Neusüß C, Otte K. Developing microRNAs as engineering tools to modulate monoclonal antibody galactosylation. Biotechnol Bioeng 2024; 121:1355-1365. [PMID: 38079069 DOI: 10.1002/bit.28616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 04/01/2024]
Abstract
N-linked glycosylation is one of the most important post-translational modifications of monoclonal antibodies (mAbs) and is considered to be a critical quality attribute (CQA), as the glycan composition often has immunomodulatory effects. Since terminal galactose residues of mAbs can affect antibody-dependent cellular cytotoxicity (ADCC), complement-dependent cytolysis (CDC) activation, serum half-life, and antiviral activity it has to be monitored, controlled and modulated to ensure therapeutic effects. The ability of small noncoding microRNAs (miRNAs) to modulate glycosylation in Chinese hamster ovary (CHO) production cells was recently reported establishing miRNAs as engineering tools for modulation of protein glycosylation. In this study, we report the characterization and validation of miRNAs as engineering tools for increased (mmu-miR-452-5p, mmu-miR-193b-3p) or decreased (mmu-miR-7646-5p, mmu-miR-7243-3p, mmu-miR-1668, mmu-let-7c-1-3p, mmu-miR-7665-3p, mmu-miR-6403) degree of galactosylation. Furthermore, the biological mode of action regulating gene expression of the galactosylation pathway was characterized as well as their influence on bioprocess-related parameters. Most important, stable plasmid-based overexpression of these miRNAs represents a versatile tool for engineering N-linked galactosylation to achieve favorable phenotypes in cell lines for biopharmaceutical production.
Collapse
Affiliation(s)
- Florian Klingler
- Institute for Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - Patrick Schlossbauer
- Institute for Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - Lukas Naumann
- Department of Chemistry, Aalen University, Aalen, Germany
| | - René Handrick
- Institute for Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - Friedemann Hesse
- Institute for Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | | | - Kerstin Otte
- Institute for Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| |
Collapse
|
29
|
Neu CT, Weilepp L, Bork K, Gesper A, Horstkorte R. GNE deficiency impairs Myogenesis in C2C12 cells and cannot be rescued by ManNAc supplementation. Glycobiology 2024; 34:cwae004. [PMID: 38224318 PMCID: PMC10987290 DOI: 10.1093/glycob/cwae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/19/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024] Open
Abstract
GNE myopathy (GNEM) is a late-onset muscle atrophy, caused by mutations in the gene for the key enzyme of sialic acid biosynthesis, UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE). With an incidence of one to nine cases per million it is an ultra-rare, so far untreatable, autosomal recessive disease. Several attempts have been made to treat GNEM patients by oral supplementation with sialic acid precursors (e.g. N-acetylmannosamine, ManNAc) to restore sarcolemmal sialylation and muscle strength. In most studies, however, no significant improvement was observed. The lack of a suitable mouse model makes it difficult to understand the exact pathomechanism of GNEM and many years of research have failed to identify the role of GNE in skeletal muscle due to the lack of appropriate tools. We established a CRISPR/Cas9-mediated Gne-knockout cell line using murine C2C12 cells to gain insight into the actual role of the GNE enzyme and sialylation in a muscular context. The main aspect of this study was to evaluate the therapeutic potential of ManNAc and N-acetylneuraminic acid (Neu5Ac). Treatment of Gne-deficient C2C12 cells with Neu5Ac, but not with ManNAc, showed a restoration of the sialylation level back to wild type levels-albeit only with long-term treatment, which could explain the rather low therapeutic potential. We furthermore highlight the importance of sialic acids on myogenesis, for C2C12 Gne-knockout myoblasts lack the ability to differentiate into mature myotubes.
Collapse
Affiliation(s)
- Carolin T Neu
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114 Halle (Saale), Germany
| | - Linus Weilepp
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114 Halle (Saale), Germany
| | - Kaya Bork
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114 Halle (Saale), Germany
| | - Astrid Gesper
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114 Halle (Saale), Germany
| | - Rüdiger Horstkorte
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114 Halle (Saale), Germany
| |
Collapse
|
30
|
Chao X, Zhang B, Yang S, Liu X, Zhang J, Zang X, Chen L, Qi L, Wang X, Hu H. Enrichment methods of N-linked glycopeptides from human serum or plasma: A mini-review. Carbohydr Res 2024; 538:109094. [PMID: 38564900 DOI: 10.1016/j.carres.2024.109094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
Human diseases often correlate with changes in protein glycosylation, which can be observed in serum or plasma samples. N-glycosylation, the most common form, can provide potential biomarkers for disease prognosis and diagnosis. However, glycoproteins constitute a relatively small proportion of the total proteins in human serum and plasma compared to the non-glycosylated protein albumin, which constitutes the majority. The detection of microheterogeneity and low glycan abundance presents a challenge. Mass spectrometry facilitates glycoproteomics research, yet it faces challenges due to interference from abundant plasma proteins. Therefore, methods have emerged to enrich N-glycans and N-linked glycopeptides using glycan affinity, chemical properties, stationary phase chemical coupling, bioorthogonal techniques, and other alternatives. This review focuses on N-glycans and N-glycopeptides enrichment in human serum or plasma, emphasizing methods and applications. Although not exhaustive, it aims to elucidate principles and showcase the utility and limitations of glycoproteome characterization.
Collapse
Affiliation(s)
- Xuyuan Chao
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Baoying Zhang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Shengjie Yang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Xizi Liu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, People's Republic of China
| | - Jingyi Zhang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Xin Zang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Lu Chen
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Lu Qi
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Xinghe Wang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China.
| | - Han Hu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, People's Republic of China.
| |
Collapse
|
31
|
Liang G, Madhavarao CN, Morris C, O'Connor T, Ashraf M, Yoon S. Effects of process intensification on homogeneity of an IgG1:κ monoclonal antibody during perfusion culture. Appl Microbiol Biotechnol 2024; 108:274. [PMID: 38530495 PMCID: PMC10965650 DOI: 10.1007/s00253-024-13110-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/01/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
The pharmaceutical industry employs various strategies to improve cell productivity. These strategies include process intensification, culture media improvement, clonal selection, media supplementation and genetic engineering of cells. However, improved cell productivity has inherent risk of impacting product quality attributes (PQA). PQAs may affect the products' efficacy via stability, bioavailability, or in vivo bioactivity. Variations in manufacturing process may introduce heterogeneity in the products by altering the type and extent of N-glycosylation, which is a PQA of therapeutic proteins. We investigated the effect of different cell densities representing increasing process intensification in a perfusion cell culture on the production of an IgG1-κ monoclonal antibody from a CHO-K1 cell line. This antibody is glycosylated both on light chain and heavy chain. Our results showed that the contents of glycosylation of IgG1-κ mAb increased in G0F and fucosylated type glycans as a group, whereas sialylated type glycans decreased, for the mAb whole protein. Overall, significant differences were observed in amounts of G0F, G1F, G0, G2FS1, and G2FS2 type glycans across all process intensification levels. G2FS2 and G2 type N-glycans were predominantly quantifiable from light chain rather than heavy chain. It may be concluded that there is a potential impact to product quality attributes of therapeutic proteins during process intensification via perfusion cell culture that needs to be assessed. Since during perfusion cell culture the product is collected throughout the duration of the process, lot allocation needs careful attention to process parameters, as PQAs are affected by the critical process parameters (CPPs). KEY POINTS: • Molecular integrity may suffer with increasing process intensity. • Galactosylated and sialylated N-glycans may decrease. • Perfusion culture appears to maintain protein charge structure.
Collapse
Affiliation(s)
- George Liang
- Division of Product Quality Research, OTR/OPQ, CDER/FDA, Silver Spring, MD, USA
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, USA
| | | | - Caitlin Morris
- Division of Product Quality Research, OTR/OPQ, CDER/FDA, Silver Spring, MD, USA
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, USA
| | - Thomas O'Connor
- Division of Product Quality Research, OTR/OPQ, CDER/FDA, Silver Spring, MD, USA
| | - Muhammad Ashraf
- Division of Product Quality Research, OTR/OPQ, CDER/FDA, Silver Spring, MD, USA
| | - Seongkyu Yoon
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, USA
| |
Collapse
|
32
|
Yang L, Sheets TP, Feng Y, Yu G, Bajgain P, Hsu KS, So D, Seaman S, Lee J, Lin L, Evans CN, Guest MR, Chari R, St. Croix B. Uncovering receptor-ligand interactions using a high-avidity CRISPR activation screening platform. SCIENCE ADVANCES 2024; 10:eadj2445. [PMID: 38354234 PMCID: PMC10866537 DOI: 10.1126/sciadv.adj2445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
The majority of clinically approved drugs target proteins that are secreted or cell surface bound. However, further advances in this area have been hindered by the challenging nature of receptor deorphanization, as there are still many secreted and cell-bound proteins with unknown binding partners. Here, we developed an advanced screening platform that combines CRISPR-CAS9 guide-mediated gene activation (CRISPRa) and high-avidity bead-based selection. The CRISPRa platform incorporates serial enrichment and flow cytometry-based monitoring, resulting in substantially improved screening sensitivity for well-known yet weak interactions of the checkpoint inhibitor family. Our approach has successfully revealed that siglec-4 exerts regulatory control over T cell activation through a low affinity trans-interaction with the costimulatory receptor 4-1BB. Our highly efficient screening platform holds great promise for identifying extracellular interactions of uncharacterized receptor-ligand partners, which is essential to develop next-generation therapeutics, including additional immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Liping Yang
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Timothy P. Sheets
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, Frederick, MD 21702, USA
| | - Yang Feng
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Guojun Yu
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Pradip Bajgain
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Kuo-Sheng Hsu
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Daeho So
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Steven Seaman
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Jaewon Lee
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Ling Lin
- Proteomic Instability of Cancer Section, MCGP, NCI, NIH, Frederick, MD 21702, USA
| | - Christine N. Evans
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, Frederick, MD 21702, USA
| | - Mary R. Guest
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, Frederick, MD 21702, USA
| | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, Frederick, MD 21702, USA
| | - Brad St. Croix
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| |
Collapse
|
33
|
Liu R, Yu X, Cao X, Wang X, Liang Y, Qi W, Ye Y, Zao X. Downregulation of ST6GAL2 Correlates to Liver Inflammation and Predicts Adverse Prognosis in Hepatocellular Carcinoma. J Inflamm Res 2024; 17:565-580. [PMID: 38318244 PMCID: PMC10843983 DOI: 10.2147/jir.s437291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024] Open
Abstract
Purpose ST6 Beta-Galactoside Alpha-2,6-Sialyltransferase 2 (ST6GAL2), a member of the sialic acid transferase family, is differentially expressed in diverse cancers. However, it remains poorly understood in tumorigenesis and impacts on immune cell infiltration (ICI) in hepatocellular carcinoma (HCC). Patients and Methods Herein, the expression, diagnosis, prognosis, functional enrichment, genetic alterations, immune characteristics, and targeted drugs of ST6GAL2 in HCC were researched by conducting bioinformatics analysis, in vivo, and in vitro experiments. Results ST6GAL2 was remarkably decreased in HCC compared to non-tumor tissues, portending a poor prognosis associated with high DNA methylation levels. Functional enrichment and GSVA analyses revealed that ST6GAL2 might function through the extracellular matrix, PI3K-Akt signaling pathways, and tumor inflammation signature. We found that ST6GAL2 expression was proportional to ICI, immunostimulator, and immune subtypes. ST6GAL2 expression first increased and then decreased during the progression of liver inflammation to HCC. The dysfunctional experiment indicated that ST6GAL2 might exert immunosuppressive effects during HCC progression through regulating ICI. Several broad-spectrum anticancer drugs were obtained by drug sensitivity prediction analysis of ST6GAL2. Conclusion In conclusion, ST6GAL2 was a reliable prognostic biomarker strongly associated with ICI, and could be a potential immunotherapeutic target for HCC.
Collapse
Affiliation(s)
- Ruijia Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
- Institute of Liver Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Xudong Yu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Xu Cao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
- Institute of Liver Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Xuyun Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Yijun Liang
- Institute of Liver Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Wenying Qi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
- Institute of Liver Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Yong’an Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
- Institute of Liver Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
- Institute of Liver Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| |
Collapse
|
34
|
Zhong P, Yang Y, Han T, Huang W, Liu Y, Gong G, Huang L, Lu Y, Wang Z. Comparative Analysis of Free and Glycoconjugates Oligosaccharide Content in Milk from Different Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:670-678. [PMID: 38135877 DOI: 10.1021/acs.jafc.3c06317] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Human milk is important for infant growth, and oligosaccharides are one of its main functional nutrients. To enable a systematic comparison of free oligosaccharide and glycoconjugate content in milk from different species, the phenol-sulfuric acid and resorcinol assays were combined to determine the content. Using real samples, the method revealed that human milk contained the highest amount of total, neutral (9.84 ± 0.31 g/L), and sialylated (3.21 ± 0.11 g/L) free oligosaccharides, followed by goat milk, with neutral (0.135 ± 0.015 g/L) and sialylated (0.192 ± 0.016 g/L) free oligosaccharides and at a distance by bovine and yak milk. The highest total glycoconjugate content was detected in yak milk (0.798 ± 0.011 g/L), followed by human, bovine, and goat milk. These findings suggest that goat milk is the best source of free oligosaccharides in infant formula and functional dairy products and yak milk is the best source of glycoconjugates.
Collapse
Affiliation(s)
- Peiyun Zhong
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yuerong Yang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Tianjiao Han
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Wenqi Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yuxia Liu
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Guiping Gong
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yu Lu
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| |
Collapse
|
35
|
Zhong J, Li J, Burton GJ, Koistinen H, Cheung KW, Ng EHY, Yao Y, Yeung WSB, Lee CL, Chiu PCN. The functional roles of protein glycosylation in human maternal-fetal crosstalk. Hum Reprod Update 2024; 30:81-108. [PMID: 37699855 DOI: 10.1093/humupd/dmad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/20/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND The establishment of maternal-fetal crosstalk is vital to a successful pregnancy. Glycosylation is a post-translational modification in which glycans (monosaccharide chains) are attached to an organic molecule. Glycans are involved in many physiological and pathological processes. Human endometrial epithelium, endometrial gland secretions, decidual immune cells, and trophoblasts are highly enriched with glycoconjugates and glycan-binding molecules important for a healthy pregnancy. Aberrant glycosylation in the placenta and uterus has been linked to repeated implantation failure and various pregnancy complications, but there is no recent review summarizing the functional roles of glycosylation at the maternal-fetal interface and their associations with pathological processes. OBJECTIVE AND RATIONALE This review aims to summarize recent findings on glycosylation, glycosyltransferases, and glycan-binding receptors at the maternal-fetal interface, and their involvement in regulating the biology and pathological conditions associated with endometrial receptivity, placentation and maternal-fetal immunotolerance. Current knowledge limitations and future insights into the study of glycobiology in reproduction are discussed. SEARCH METHODS A comprehensive PubMed search was conducted using the following keywords: glycosylation, glycosyltransferases, glycan-binding proteins, endometrium, trophoblasts, maternal-fetal immunotolerance, siglec, selectin, galectin, repeated implantation failure, early pregnancy loss, recurrent pregnancy loss, preeclampsia, and fetal growth restriction. Relevant reports published between 1980 and 2023 and studies related to these reports were retrieved and reviewed. Only publications written in English were included. OUTCOMES The application of ultrasensitive mass spectrometry tools and lectin-based glycan profiling has enabled characterization of glycans present at the maternal-fetal interface and in maternal serum. The endometrial luminal epithelium is covered with highly glycosylated mucin that regulates blastocyst adhesion during implantation. In the placenta, fucose and sialic acid residues are abundantly presented on the villous membrane and are essential for proper placentation and establishment of maternal-fetal immunotolerance. Glycan-binding receptors, including selectins, sialic-acid-binding immunoglobulin-like lectins (siglecs) and galectins, also modulate implantation, trophoblast functions and maternal-fetal immunotolerance. Aberrant glycosylation is associated with repeated implantation failure, early pregnancy loss and various pregnancy complications. The current limitation in the field is that most glycobiological research relies on association studies, with few studies revealing the specific functions of glycans. Technological advancements in analytic, synthetic and functional glycobiology have laid the groundwork for further exploration of glycans in reproductive biology under both physiological and pathological conditions. WIDER IMPLICATIONS A deep understanding of the functions of glycan structures would provide insights into the molecular mechanisms underlying their involvement in the physiological and pathological regulation of early pregnancy. Glycans may also potentially serve as novel early predictive markers and therapeutic targets for repeated implantation failure, pregnancy loss, and other pregnancy complications.
Collapse
Affiliation(s)
- Jiangming Zhong
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jianlin Li
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Graham J Burton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Hannu Koistinen
- Department of Clinical Chemistry and Haematology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ka Wang Cheung
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yuanqing Yao
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S B Yeung
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Philip C N Chiu
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
36
|
Abstract
The landscape of exosome research has undergone a significant paradigm shift, with a departure from early conceptions of exosomes as vehicles for cellular waste disposal towards their recognition as integral components of cellular communication with therapeutic potential. This chapter presents an exhaustive elucidation of exosome biology, detailing the processes of exosome biogenesis, release, and uptake, and their pivotal roles in signal transduction, tissue repair, regeneration, and intercellular communication. Additionally, the chapter highlights recent innovations and anticipates future directions in exosome research, emphasizing their applicability in clinical settings. Exosomes have the unique ability to navigate through tissue spaces to enter the circulatory system, positioning them as key players in tissue repair. Their contributory role in various processes of tissue repair, although in the nascent stages of investigation, stands out as a promising area of research. These vesicles function as a complex signaling network for intracellular and organ-level communication, critical in both pathological and physiological contexts. The chapter further explores the tissue-specific functionality of exosomes and underscores the advancements in methodologies for their isolation and purification, which have been instrumental in expanding the scope of exosome research. The differential cargo profiles of exosomes, dependent on their cellular origin, position them as prospective diagnostic biomarkers for tissue damage and regenerative processes. Looking ahead, the trajectory of exosome research is anticipated to bring transformative changes to biomedical fields. This includes advancing diagnostic and prognostic techniques that utilize exosomes as non-invasive biomarkers for a plethora of diseases, such as cancer, neurodegenerative, and cardiovascular conditions. Additionally, engineering exosomes through alterations of their native content or surface properties presents a novel frontier, including the synthesis of artificial or hybrid variants with enhanced functional properties. Concurrently, the ethical and regulatory frameworks surrounding exosome research, particularly in clinical translation, will require thorough deliberation. In conclusion, the diverse aspects of exosome research are coalescing to redefine the frontiers of diagnostic and therapeutic methodologies, cementing its importance as a discipline of considerable consequence in the biomedical sciences.
Collapse
Affiliation(s)
- Anita Yadav
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aparajita Nandy
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anu Sharma
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Subhadip Ghatak
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
37
|
Sun X, Feng Y, Ma Q, Wang Y, Ma F. Protein glycosylation: bridging maternal-fetal crosstalk during embryo implantation†. Biol Reprod 2023; 109:785-798. [PMID: 37658761 DOI: 10.1093/biolre/ioad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023] Open
Abstract
Infertility is a challenging health problem that affects 8-15% of couples worldwide. Establishing pregnancy requires successful embryo implantation, but about 85% of unsuccessful pregnancies are due to embryo implantation failure or loss soon after. Factors crucial for successful implantation include invasive blastocysts, receptive endometrium, invasion of trophoblast cells, and regulation of immune tolerance at the maternal-fetal interface. Maternal-fetal crosstalk, which relies heavily on protein-protein interactions, is a critical factor in implantation that involves multiple cellular communication and molecular pathways. Glycosylation, a protein modification process, is closely related to cell growth, adhesion, transport, signal transduction, and recognition. Protein glycosylation plays a crucial role in maternal-fetal crosstalk and can be divided into N-glycosylation and O-glycosylation, which are often terminated by sialylation or fucosylation. This review article examines the role of protein glycosylation in maternal-fetal crosstalk based on two transcriptome datasets from the GEO database (GSE139087 and GSE113790) and existing research, particularly in the context of the mechanism of protein glycosylation and embryo implantation. Dysregulation of protein glycosylation can lead to adverse pregnancy outcomes, such as missed abortion and recurrent spontaneous abortion, underscoring the importance of a thorough understanding of protein glycosylation in the diagnosis and treatment of female reproductive disorders. This knowledge could have significant clinical implications, leading to the development of more effective diagnostic and therapeutic approaches for these conditions.
Collapse
Affiliation(s)
- Xinrui Sun
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Feng
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Qianhong Ma
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Wang
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fang Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
38
|
Poznyak A, Kashirskikh D, Postnov A, Popov M, Sukhorukov V, Orekhov A. Sialic acid as the potential link between lipid metabolism and inflammation in the pathogenesis of atherosclerosis. Braz J Med Biol Res 2023; 56:e12972. [PMID: 38088673 PMCID: PMC10712282 DOI: 10.1590/1414-431x2023e12972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/28/2023] [Indexed: 12/18/2023] Open
Abstract
In the modern world, cardiovascular diseases have a special place among the most common causes of death. Naturally, this widespread problem cannot escape the attention of scientists and researchers. One of the main conditions preceding the development of fatal cardiovascular diseases is atherosclerosis. Despite extensive research into its pathogenesis and possible prevention and treatment strategies, many gaps remain in our understanding of this disease. For example, the concept of multiple low-density lipoprotein modifications was recently stated, in which desialylation is of special importance. Apart from this, sialic acids are known to be important contributors to processes such as endothelial dysfunction and inflammation, which in turn are major components of atherogenesis. In this review, we have collected information on sialic acid metabolism, analyzed various aspects of its implication in atherosclerosis at different stages, and provided an overview of the role of particular groups of enzymes responsible for sialic acid metabolism in the context of atherosclerosis.
Collapse
Affiliation(s)
- A.V. Poznyak
- Institute for Atherosclerosis Research, Moscow, Russia
| | | | - A.Y. Postnov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI “Petrovsky NRCS”), Moscow, Russia
| | - M.A. Popov
- Department of Cardiac Surgery, Moscow Regional Research and Clinical Institute (MONIKI), Moscow, Russia
| | - V.N. Sukhorukov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI “Petrovsky NRCS”), Moscow, Russia
| | - A.N. Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI “Petrovsky NRCS”), Moscow, Russia
| |
Collapse
|
39
|
Schildhauer P, Selke P, Staege MS, Harder A, Scheller C, Strauss C, Horstkorte R, Scheer M, Leisz S. Glycation Interferes with the Expression of Sialyltransferases and Leads to Increased Polysialylation in Glioblastoma Cells. Cells 2023; 12:2758. [PMID: 38067186 PMCID: PMC10706364 DOI: 10.3390/cells12232758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Glioblastoma (GBM) is a highly aggressive brain tumor that often utilizes aerobic glycolysis for energy production (Warburg effect), resulting in increased methylglyoxal (MGO) production. MGO, a reactive dicarbonyl compound, causes protein alterations and cellular dysfunction via glycation. In this study, we investigated the effect of glycation on sialylation, a common post-translational modification implicated in cancer. Our experiments using glioma cell lines, human astrocytes (hA), and primary glioma samples revealed different gene expressions of sialyltransferases among cells, highlighting the complexity of the system. Glycation has a differential effect on sialyltransferase expression, upregulating ST8SIA4 in the LN229 and U251 cell lines and decreasing the expression in normal hA. Subsequently, polysialylation increased in the LN229 and U251 cell lines and decreased in hA. This increase in polysialylation could lead to a more aggressive phenotype due to its involvement in cancer hallmark processes such as immune evasion, resistance to apoptosis, and enhancing invasion. Our findings provide insights into the mechanisms underlying GBM aggressiveness and suggest that targeting glycation and sialylation could be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Paola Schildhauer
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (P.S.); (M.S.)
| | - Philipp Selke
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114 Halle (Saale), Germany
| | - Martin S. Staege
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Anja Harder
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- CURE-NF Research Group, Medical Faculty, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| | - Christian Scheller
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (P.S.); (M.S.)
| | - Christian Strauss
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (P.S.); (M.S.)
| | - Rüdiger Horstkorte
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114 Halle (Saale), Germany
| | - Maximilian Scheer
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (P.S.); (M.S.)
| | - Sandra Leisz
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (P.S.); (M.S.)
| |
Collapse
|
40
|
Bu Q, Dai Y, Zhang H, Li M, Liu H, Huang Y, Zeng A, Qin F, Jiang L, Wang L, Chen Y, Li H, Wang X, Zhao Y, Qin M, Zhao Y, Zhang N, Kuang W, Zhao Y, Cen X. Neurodevelopmental defects in human cortical organoids with N-acetylneuraminic acid synthase mutation. SCIENCE ADVANCES 2023; 9:eadf2772. [PMID: 38000033 PMCID: PMC10672180 DOI: 10.1126/sciadv.adf2772] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/26/2023] [Indexed: 11/26/2023]
Abstract
Biallelic genetic variants in N-acetylneuraminic acid synthase (NANS), a critical enzyme in endogenous sialic acid biosynthesis, are clinically associated with neurodevelopmental disorders. However, the mechanism underlying the neuropathological consequences has remained elusive. Here, we found that NANS mutation resulted in the absence of both sialic acid and protein polysialylation in the cortical organoids and notably reduced the proliferation and expansion of neural progenitors. NANS mutation dysregulated neural migration and differentiation, disturbed synapse formation, and weakened neuronal activity. Single-cell RNA sequencing revealed that NANS loss of function markedly altered transcriptional programs involved in neuronal differentiation and ribosomal biogenesis in various neuronal cell types. Similarly, Nans heterozygous mice exhibited impaired cortical neurogenesis and neurobehavioral deficits. Collectively, our findings reveal a crucial role of NANS-mediated endogenous sialic acid biosynthesis in regulating multiple features of human cortical development, thus linking NANS mutation with its clinically relevant neurodevelopmental disorders.
Collapse
Affiliation(s)
- Qian Bu
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Yanping Dai
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Huaqin Zhang
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Min Li
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haxiaoyu Liu
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan Huang
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Ailing Zeng
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Feng Qin
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Linhong Jiang
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Liang Wang
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yaxing Chen
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongchun Li
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaojie Wang
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yue Zhao
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Meng Qin
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ying Zhao
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ni Zhang
- Mental Health Center of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weihong Kuang
- Mental Health Center of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yinglan Zhao
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaobo Cen
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
41
|
Rømer TB, Khoder-Agha F, Aasted MKM, de Haan N, Horn S, Dylander A, Zhang T, Pallesen EMH, Dabelsteen S, Wuhrer M, Høgsbro CF, Thomsen EA, Mikkelsen JG, Wandall HH. CRISPR-screen identifies ZIP9 and dysregulated Zn2+ homeostasis as a cause of cancer-associated changes in glycosylation. Glycobiology 2023; 33:700-714. [PMID: 36648436 PMCID: PMC10627246 DOI: 10.1093/glycob/cwad003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/02/2023] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION In epithelial cancers, truncated O-glycans, such as the Thomson-nouveau antigen (Tn) and its sialylated form (STn), are upregulated on the cell surface and associated with poor prognosis and immunological escape. Recent studies have shown that these carbohydrate epitopes facilitate cancer development and can be targeted therapeutically; however, the mechanism underpinning their expression remains unclear. METHODS To identify genes directly influencing the expression of cancer-associated O-glycans, we conducted an unbiased, positive-selection, whole-genome CRISPR knockout-screen using monoclonal antibodies against Tn and STn. RESULTS AND CONCLUSIONS We show that knockout of the Zn2+-transporter SLC39A9 (ZIP9), alongside the well-described targets C1GALT1 (C1GalT1) and its molecular chaperone, C1GALT1C1 (COSMC), results in surface-expression of cancer-associated O-glycans. No other gene perturbations were found to reliably induce O-glycan truncation. We furthermore show that ZIP9 knockout affects N-linked glycosylation, resulting in upregulation of oligo-mannose, hybrid-type, and α2,6-sialylated structures as well as downregulation of tri- and tetra-antennary structures. Finally, we demonstrate that accumulation of Zn2+ in the secretory pathway coincides with cell-surface presentation of truncated O-glycans in cancer tissue, and that over-expression of COSMC mitigates such changes. Collectively, the findings show that dysregulation of ZIP9 and Zn2+ induces cancer-like glycosylation on the cell surface by affecting the glycosylation machinery.
Collapse
Affiliation(s)
- Troels Boldt Rømer
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Fawzi Khoder-Agha
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Mikkel Koed Møller Aasted
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Noortje de Haan
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Sabrina Horn
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - August Dylander
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| | - Emil Marek Heymans Pallesen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Sally Dabelsteen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| | - Christine Flodgaard Høgsbro
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Emil Aagaard Thomsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus, Denmark
| | - Jacob Giehm Mikkelsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
42
|
Atashi M, Reyes CDG, Sandilya V, Purba W, Ahmadi P, Hakim MA, Kobeissy F, Plazzi G, Moresco M, Lanuzza B, Ferri R, Mechref Y. LC-MS/MS Quantitation of HILIC-Enriched N-glycopeptides Derived from Low-Abundance Serum Glycoproteins in Patients with Narcolepsy Type 1. Biomolecules 2023; 13:1589. [PMID: 38002271 PMCID: PMC10669497 DOI: 10.3390/biom13111589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Glycoproteomic analysis is always challenging because of low abundance and complex site-specific heterogeneity. Glycoproteins are involved in various biological processes such as cell signaling, adhesion, and cell-cell communication and may serve as potential biomarkers when analyzing different diseases. Here, we investigate glycoproteins in narcolepsy type 1 (NT1) disease, a form of narcolepsy characterized by cataplexy-the sudden onset of muscle paralysis that is typically triggered by intense emotions. In this study, 27 human blood serum samples were analyzed, 16 from NT1 patients and 11 from healthy individuals serving as controls. We quantified hydrophilic interaction liquid chromatography (HILIC)-enriched glycopeptides from low-abundance serum samples of controls and NT1 patients via LC-MS/MS. Twenty-eight unique N-glycopeptides showed significant changes between the two studied groups. The sialylated N-glycopeptide structures LPTQNITFQTESSVAEQEAEFQSPK HexNAc6, Hex3, Neu5Ac2 (derived from the ITIH4 protein) and the structure IVLDPSGSMNIYLVLDGSDSIGASNFTGAK HexNAc5, Hex4, Fuc1 (derived from the CFB protein), with p values of 0.008 and 0.01, respectively, were elevated in NT1 samples compared with controls. In addition, the N-glycopeptide protein sources Ceruloplasmin, Complement factor B, and ITH4 were observed to play an important role in the complement activation and acute-phase response signaling pathways. This may explain the possible association between the biomarkers and pathophysiological effects.
Collapse
Affiliation(s)
- Mojgan Atashi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (M.A.); (C.D.G.R.); (V.S.); (W.P.); (P.A.); (M.A.H.)
| | - Cristian D. Gutierrez Reyes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (M.A.); (C.D.G.R.); (V.S.); (W.P.); (P.A.); (M.A.H.)
| | - Vishal Sandilya
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (M.A.); (C.D.G.R.); (V.S.); (W.P.); (P.A.); (M.A.H.)
| | - Waziha Purba
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (M.A.); (C.D.G.R.); (V.S.); (W.P.); (P.A.); (M.A.H.)
| | - Parisa Ahmadi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (M.A.); (C.D.G.R.); (V.S.); (W.P.); (P.A.); (M.A.H.)
| | - Md. Abdul Hakim
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (M.A.); (C.D.G.R.); (V.S.); (W.P.); (P.A.); (M.A.H.)
| | - Firas Kobeissy
- Department of biochemistry and molecular genetics, Faculty of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 11072020, Lebanon;
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GE 30310, USA
| | - Giuseppe Plazzi
- IRCCS, Instituto delle Scienze Neurologiche di Bologna, 40124 Bologna, Italy; (G.P.); (M.M.)
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Monica Moresco
- IRCCS, Instituto delle Scienze Neurologiche di Bologna, 40124 Bologna, Italy; (G.P.); (M.M.)
| | - Bartolo Lanuzza
- Sleep Research Center, Department of Neurology IC, Oasi Research Institute-IRCCS, 94018 Tronia, Italy; (B.L.); (R.F.)
| | - Raffaele Ferri
- Sleep Research Center, Department of Neurology IC, Oasi Research Institute-IRCCS, 94018 Tronia, Italy; (B.L.); (R.F.)
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (M.A.); (C.D.G.R.); (V.S.); (W.P.); (P.A.); (M.A.H.)
| |
Collapse
|
43
|
Jones RB, Silva AD, Ankenbauer KE, Britain CM, Chakraborty A, Brown JA, Ballinger SW, Bellis SL. Role of the ST6GAL1 sialyltransferase in regulating ovarian cancer cell metabolism. Glycobiology 2023; 33:626-636. [PMID: 37364046 PMCID: PMC10560082 DOI: 10.1093/glycob/cwad051] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023] Open
Abstract
The ST6GAL1 sialyltransferase, which adds α2-6-linked sialic acids to N-glycosylated proteins, is upregulated in many malignancies including ovarian cancer. Through its activity in sialylating select surface receptors, ST6GAL1 modulates intracellular signaling to regulate tumor cell phenotype. ST6GAL1 has previously been shown to act as a survival factor that protects cancer cells from cytotoxic stressors such as hypoxia. In the present study, we investigated a role for ST6GAL1 in tumor cell metabolism. ST6GAL1 was overexpressed (OE) in OV4 ovarian cancer cells, which have low endogenous ST6GAL1, or knocked-down (KD) in ID8 ovarian cancer cells, which have high endogenous ST6GAL1. OV4 and ID8 cells with modulated ST6GAL1 expression were grown under normoxic or hypoxic conditions, and metabolism was assessed using Seahorse technology. Results showed that cells with high ST6GAL1 expression maintained a higher rate of oxidative metabolism than control cells following treatment with the hypoxia mimetic, desferrioxamine (DFO). This enrichment was not due to an increase in mitochondrial number. Glycolytic metabolism was also increased in OV4 and ID8 cells with high ST6GAL1 expression, and these cells displayed greater activity of the glycolytic enzymes, hexokinase and phosphofructokinase. Metabolism maps were generated from the combined Seahorse data, which suggested that ST6GAL1 functions to enhance the overall metabolism of tumor cells. Finally, we determined that OV4 and ID8 cells with high ST6GAL1 expression were more invasive under conditions of hypoxia. Collectively, these results highlight the importance of sialylation in regulating the metabolic phenotype of ovarian cancer cells.
Collapse
Affiliation(s)
- Robert B Jones
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35298, United States
| | - Austin D Silva
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35298, United States
| | - Katherine E Ankenbauer
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35298, United States
| | - Colleen M Britain
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35298, United States
| | - Asmi Chakraborty
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35298, United States
| | - Jamelle A Brown
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35298, United States
| | - Scott W Ballinger
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35298, United States
| | - Susan L Bellis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35298, United States
| |
Collapse
|
44
|
Sun Y, Isaji T, Oyama Y, Xu X, Liu J, Hanamatsu H, Yokota I, Miura N, Furukawa JI, Fukuda T, Gu J. Focal-adhesion kinase regulates the sialylation of N-glycans via the PI4KIIα-PI4P pathway. J Biol Chem 2023; 299:105051. [PMID: 37451482 PMCID: PMC10406863 DOI: 10.1016/j.jbc.2023.105051] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
Sialylation is a terminal glycosylated modification of glycoproteins that regulates critical biological events such as cell adhesion and immune response. Our previous study showed that integrin α3β1 plays a crucial role in regulating the sialylation of N-glycans. However, the underlying mechanism for the regulation remains unclear. This study investigated how sialylation is affected by focal adhesion kinase (FAK), which is a critical downstream signal molecule of integrin β1. We established a stable FAK knockout (KO) cell line using the CRISPR/Cas9 system in HeLa cells. The results obtained from lectin blot, flow cytometric analysis, and MS showed that the sialylation levels were significantly decreased in the KO cells compared with that in wild-type (WT) cells. Moreover, phosphatidylinositol 4-phosphate (PI4P) expression levels were also reduced in the KO cells due to a decrease in the stability of phosphatidylinositol 4-kinase-IIα (PI4KIIα). Notably, the decreased levels of sialylation, PI4P, and the complex formation between GOLPH3 and ST3GAL4 or ST6GAL1, which are the main sialyltransferases for modification of N-glycans, were significantly restored by the re-expression of FAK. Furthermore, the decreased sialylation and phosphorylation of Akt and cell migration caused by FAK deficiency all were restored by overexpressing PI4KIIα, which suggests that PI4KIIα is one of the downstream molecules of FAK. These findings indicate that FAK regulates sialylation via the PI4P synthesis pathway and a novel mechanism is suggested for the integrin-FAK-PI4KIIα-GOLPH3-ST axis modulation of sialylation in N-glycans.
Collapse
Affiliation(s)
- Yuhan Sun
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| | - Yoshiyuki Oyama
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Xing Xu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jianwei Liu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Hisatoshi Hanamatsu
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ikuko Yokota
- Division of Glyco-Systems Biology, Institute for Glyco-Core Research, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Nobuaki Miura
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Jun-Ichi Furukawa
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan; Division of Glyco-Systems Biology, Institute for Glyco-Core Research, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| |
Collapse
|
45
|
Fastenau C, Wickline JL, Smith S, Odfalk KF, Solano L, Bieniek KF, Hopp SC. Increased α-2,6 sialic acid on microglia in amyloid pathology is resistant to oseltamivir. GeroScience 2023; 45:1539-1555. [PMID: 36867284 PMCID: PMC10400525 DOI: 10.1007/s11357-023-00761-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Terminal sialic acid residues are present on most glycoproteins and glycolipids, but levels of sialylation are known to change in the brain throughout the lifespan as well as during disease. Sialic acids are important for numerous cellular processes including cell adhesion, neurodevelopment, and immune regulation as well as pathogen invasion into host cells. Neuraminidase enzymes, also known as sialidases, are responsible for removal of terminal sialic acids in a process known as desialylation. Neuraminidase 1 (Neu1) cleaves the α-2,6 bond of terminal sialic acids. Aging individuals with dementia are often treated with the antiviral medication oseltamivir, which is associated with induction of adverse neuropsychiatric side effects; this drug inhibits both viral and mammalian Neu1. The present study tested whether a clinically relevant antiviral dosing regimen of oseltamivir would disrupt behavior in the 5XFAD mouse model of Alzheimer's disease amyloid pathology or wild-type littermates. While oseltamivir treatment did not impact mouse behavior or modify amyloid plaque size or morphology, a novel spatial distribution of α-2,6 sialic acid residues was discovered in 5XFAD mice that was not present in wild-type littermates. Further analyses revealed that α-2,6 sialic acid residues were not localized the amyloid plaques but instead localized to plaque-associated microglia. Notably, treatment with oseltamivir did not alter α-2,6 sialic acid distribution on plaque-associated microglia in 5XFAD mice which may be due to downregulation of Neu1 transcript levels in 5XFAD mice. Overall, this study suggests that plaque-associated microglia are highly sialylated and are resistant to change with oseltamivir, thus interfering with microglia immune recognition of and response to amyloid pathology.
Collapse
Affiliation(s)
- Caitlyn Fastenau
- Department of Pharmacology, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Jessica L Wickline
- Department of Pharmacology, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Sabrina Smith
- Department of Pharmacology, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Kristian F Odfalk
- Department of Pharmacology, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Leigh Solano
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Kevin F Bieniek
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Sarah C Hopp
- Department of Pharmacology, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio, San Antonio, TX, USA.
| |
Collapse
|
46
|
Vlad DB, Dumitrascu DI, Dumitrascu AL. Golgi's Role in the Development of Possible New Therapies in Cancer. Cells 2023; 12:1499. [PMID: 37296620 PMCID: PMC10252985 DOI: 10.3390/cells12111499] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The Golgi apparatus is an important organelle found in most eukaryotic cells. It plays a vital role in the processing and sorting of proteins, lipids and other cellular components for delivery to their appropriate destinations within the cell or for secretion outside of the cell. The Golgi complex also plays a role in the regulation of protein trafficking, secretion and post-translational modifications, which are significant in the development and progression of cancer. Abnormalities in this organelle have been observed in various types of cancer, although research into chemotherapies that target the Golgi apparatus is still in its early stages. There are a few promising approaches that are being investigated: (1) Targeting the stimulator of interferon genes protein: The STING pathway senses cytosolic DNA and activates several signaling events. It is regulated by numerous post-translational modifications and relies heavily on vesicular trafficking. Based on some observations which state that a decreased STING expression is present in some cancer cells, agonists for the STING pathway have been developed and are currently being tested in clinical trials, showing encouraging results. (2) Targeting glycosylation: Altered glycosylation, which refers to changes in the carbohydrate molecules that are attached to proteins and lipids in cells, is a common feature of cancer cells, and there are several methods that thwart this process. For example, some inhibitors of glycosylation enzymes have been shown to reduce tumor growth and metastasis in preclinical models of cancer. (3) Targeting Golgi trafficking: The Golgi apparatus is responsible for the sorting and trafficking of proteins within the cell, and disrupting this process may be a potential therapeutic approach for cancer. The unconventional protein secretion is a process that occurs in response to stress and does not require the involvement of the Golgi organelles. P53 is the most frequently altered gene in cancer, dysregulating the normal cellular response to DNA damage. The mutant p53 drives indirectly the upregulation of the Golgi reassembly-stacking protein 55kDa (GRASP55). Through the inhibition of this protein in preclinical models, the reduction of the tumoral growth and metastatic capacity have been obtained successfully. This review supports the hypothesis that the Golgi apparatus may be the target of cytostatic treatment, considering its role in the molecular mechanisms of the neoplastic cells.
Collapse
Affiliation(s)
- Dragos-Bogdan Vlad
- Emergency Clinical Hospital of Saint Pantelimon, 021659 Bucharest, Romania;
| | - David-Ioan Dumitrascu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Alina-Laura Dumitrascu
- Emergency Clinical Hospital of Saint Pantelimon, 021659 Bucharest, Romania;
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
47
|
Abstract
Sialic acids (Sias), a group of over 50 structurally distinct acidic saccharides on the surface of all vertebrate cells, are neuraminic acid derivatives. They serve as glycan chain terminators in extracellular glycolipids and glycoproteins. In particular, Sias have significant implications in cell-to-cell as well as host-to-pathogen interactions and participate in various biological processes, including neurodevelopment, neurodegeneration, fertilization, and tumor migration. However, Sia is also present in some of our daily diets, particularly in conjugated form (sialoglycans), such as those in edible bird's nest, red meats, breast milk, bovine milk, and eggs. Among them, breast milk, especially colostrum, contains a high concentration of sialylated oligosaccharides. Numerous reviews have concentrated on the physiological function of Sia as a cellular component of the body and its relationship with the occurrence of diseases. However, the consumption of Sias through dietary sources exerts significant influence on human health, possibly by modulating the gut microbiota's composition and metabolism. In this review, we summarize the distribution, structure, and biological function of particular Sia-rich diets, including human milk, bovine milk, red meat, and egg.
Collapse
Affiliation(s)
- Tiantian Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jianrong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
48
|
Borko V, Friganović T, Weitner T. Glycoproteomics meets thermodynamics: A calorimetric study of the effect of sialylation and synergistic anion on the binding of iron to human serum transferrin. J Inorg Biochem 2023; 244:112207. [PMID: 37054508 DOI: 10.1016/j.jinorgbio.2023.112207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/20/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
The thermodynamic parameters for the binding of ferric ions to human serum transferrin (hTf) as the major mediator of iron transport in blood plasma were determined by isothermal titration calorimetry in the presence of carbonate and oxalate as synergistic anions at pH 7.4. The results indicate that the binding of ferric ions to the two binding sites of hTf is driven both enthalpically and entropically in a lobe-dependent manner: binding to the C-site is mainly enthalpically driven, whereas binding to the N-site is mainly entropically driven. Lower sialic acid content of hTf leads to more exothermic apparent binding enthalpies for both lobes, while the increased apparent binding constants for both sites were found in the presence of carbonate. Sialylation also unequally affected the heat change rates for both sites only in the presence of carbonate, but not in the presence of oxalate. Overall, the results suggest that the desialylated hTf has a higher iron sequestering ability, which may have implications for iron metabolism.
Collapse
|
49
|
Chang X, Obianwuna UE, Wang J, Zhang H, Qi G, Qiu K, Wu S. Glycosylated proteins with abnormal glycosylation changes are potential biomarkers for early diagnosis of breast cancer. Int J Biol Macromol 2023; 236:123855. [PMID: 36868337 DOI: 10.1016/j.ijbiomac.2023.123855] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023]
Abstract
Conventional cancer management relies on tumor type and stage for diagnosis and treatment, which leads to recurrence and metastasis and death in young women. Early detection of proteins in the serum aids diagnosis, progression, and clinical outcomes, possibly improving survival rate of breast cancer patients. In this review, we provided an insight into the influence of aberrant glycosylation on breast cancer development and progression. Examined literatures revealed that mechanisms underlying glycosylation moieties alteration could enhance early detection, monitoring, and therapeutic efficacy in breast cancer patients. This would serve as a guide for the development of new serum biomarkers with higher sensitivity and specificity, providing possible serological biomarkers for breast cancer diagnosis, progression, and treatment.
Collapse
Affiliation(s)
- Xinyu Chang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Uchechukwu Edna Obianwuna
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haijun Zhang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanghai Qi
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Qiu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Shugeng Wu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
50
|
Chen Z, Yu H, Chen X, Chen W, Song W, Li Z. Mutual regulation between glycosylation and transforming growth factor-β isoforms signaling pathway. Int J Biol Macromol 2023; 236:123818. [PMID: 36858092 DOI: 10.1016/j.ijbiomac.2023.123818] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/18/2023] [Accepted: 02/19/2023] [Indexed: 03/02/2023]
Abstract
Transforming growth factor-beta (TGF-β) superfamily members orchestrate a wide breadth of biological processes. Through Sma and Mad (Smad)-related dependent or noncanonical pathways, TGF-β members involve in the occurrence and development of many diseases such as cancers, fibrosis, autoimmune diseases, cardiovascular diseases and brain diseases. Glycosylation is one kind of the most common posttranslational modifications on proteins or lipids. Abnormal protein glycosylation can lead to protein malfunction and biological process disorder, thereby causing serious diseases. Previously, researchers commonly make comprehensive systematic overviews on the roles of TGF-β signaling in a specific disease or biological process. In recent years, more and more evidences associate glycosylation modification with TGF-β signaling pathway, and we can no longer disengage and ignore the roles of glycosylation from TGF-β signaling to make investigation. In this review, we provide an overview of current findings involved in glycosylation within TGF-βs and theirs receptors, and the interaction effects between glycosylation and TGF-β subfamily signaling, concluding that there is an intricate mutual regulation between glycosylation and TGF-β signaling, hoping to present the glycosylation regulatory patterns that concealed in TGF-βs signaling pathways.
Collapse
Affiliation(s)
- Zhuo Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Xiangqin Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Wentian Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Wanghua Song
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China.
| |
Collapse
|