1
|
D'Aquila PS. Dopamine, activation of ingestion and evaluation of response efficacy: a focus on the within-session time-course of licking burst number. Psychopharmacology (Berl) 2024; 241:1111-1124. [PMID: 38702473 PMCID: PMC11106101 DOI: 10.1007/s00213-024-06600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
RATIONALE Evidence on the effect of dopamine D1-like and D2-like receptor antagonists on licking microstructure and the forced swimming response led us to suggest that (i) dopamine on D1-like receptors plays a role in activating reward-directed responses and (ii) the level of response activation is reboosted based on a process of evaluation of response efficacy requiring dopamine on D2-like receptors. A main piece of evidence in support of this hypothesis is the observation that the dopamine D2-like receptor antagonist raclopride induces a within-session decrement of burst number occurring after the contact with the reward. The few published studies with a detailed analysis of the time-course of this measure were conducted in our laboratory. OBJECTIVES The aim of this review is to recapitulate and discuss the evidence in support of the analysis of the within-session burst number as a behavioural substrate for the study of the mechanisms governing ingestion, behavioural activation and the related evaluation processes, and its relevance in the analysis of drug effects on ingestion. CONCLUSIONS The evidence gathered so far suggests that the analysis of the within-session time-course of burst number provides an important behavioural substrate for the study of the mechanisms governing ingestion, behavioural activation and the related evaluation processes, and might provide decisive evidence in the analysis of the effects of drugs on ingestion. However, further evidence from independent sources is necessary to validate the use and the proposed interpretation of this measure.
Collapse
Affiliation(s)
- Paolo S D'Aquila
- Dipartimento di Scienze Biomediche, Università di Sassari, Viale S. Pietro 43/b, Sassari, 07100, Italy.
| |
Collapse
|
2
|
Zhang W, Dong XY, Huang R. Gut Microbiota in Ischemic Stroke: Role of Gut Bacteria-Derived Metabolites. Transl Stroke Res 2023; 14:811-828. [PMID: 36279071 DOI: 10.1007/s12975-022-01096-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/05/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022]
Abstract
Ischemic stroke (IS) remains a leading cause of death and long-term disability globally. Several mechanisms including glutamate excitotoxicity, calcium overload, neuroinflammation, oxidative stress, mitochondrial damage, and apoptosis are known to be involved in the pathogenesis of IS, but the underlying pathophysiology mechanisms of IS are not fully clarified. During the past decade, gut microbiota were recognized as a key regulator to affect the health of the host either directly or via their metabolites. Recent studies indicate that gut bacterial dysbiosis is closely related to hypertension, diabetes, obesity, dyslipidemia, and metabolic syndrome, which are the main risk factors for cardiovascular diseases. Increasing evidence indicates that IS can lead to perturbation in gut microbiota and increased permeability of the gut mucosa, known as "leaky gut," resulting in endotoxemia and bacterial translocation. In turn, gut dysbiosis and impaired intestinal permeability can alter gut bacterial metabolite signaling profile from the gut to the brain. Microbiota-derived products and metabolites, such as short-chain fatty acids (SCFAs), bile acids (BAs), trimethylamine N-oxide (TMAO), lipopolysaccharides (LPS), and phenylacetylglutamine (PAGln) can exert beneficial or detrimental effects on various extraintestinal organs, including the brain, liver, and heart. These metabolites have been increasingly acknowledged as biomarkers and mediators of IS. However, the specific role of the gut bacterial metabolites in the context of stroke remains incompletely understood. In-depth studies on these products and metabolites may provide new insight for the development of novel therapeutics for IS.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao Yu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rui Huang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Kirov TV, Atanasova DY, Lazarov NE. Neurochemical profile of the myenteric plexus in the rat colorectal region. Anat Rec (Hoboken) 2023; 306:2292-2301. [PMID: 35716375 DOI: 10.1002/ar.25019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/04/2022] [Accepted: 06/03/2022] [Indexed: 11/09/2022]
Abstract
The enteric nervous system, a major subdivision of the autonomic nervous system, is known for its neurochemical heterogeneity and complexity. The myenteric plexus, one of its two principal components, primarily controls peristalsis and its dysfunction may lead to a number of gastrointestinal motility disorders. The myenteric neurons have been described to use a wide variety of neurotransmitters although no evidence has been reported for the existence of adrenergic neurons in the hindgut. This study aims at elucidating the chemical coding of neurons in the myenteric plexus of the rat colon and anorectal region with particular emphasis on cholinergic and the so-called nonadrenergic, noncholinergic (NANC) transmitter systems. The immunostaining for choline acetyltransferase revealed an intense staining of the myenteric ganglia with clear delineation of their neuronal cell bodies and without local distributional differences in the colonic region. The myenteric ATPergic structures were mostly limited to fiber bundles surrounding unstained myenteric neurons and penetrating the two muscle layers. We also observed an abundance of intensely stained varicose substance P-immunopositive fibers, ensheathing the immunonegative myenteric neuronal cell bodies in a basket-like manner. Applying NADPH-diaphorase histochemistry and nitric oxide synthase immunohistochemistry, we were able to demonstrate numerous nitrergic somata of myenteric neurons with Dogiel Type I morphology. Apart from the observed nitrergic distributional patterns, no distinct variations were found in the staining intensity or distribution of myenteric structures in the colon and anorectal area. Our results suggest that myenteric neurons in the distal intestinal portion utilize a broad spectrum of enteric transmitters, including classical and NANC transmitters.
Collapse
Affiliation(s)
- Todor V Kirov
- Department of Anatomy and Histology, Medical University of Sofia, Sofia, Bulgaria
| | - Dimitrinka Y Atanasova
- Department of Anatomy, Faculty of Medicine, Trakia University, Stara Zagora, Bulgaria
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Nikolai E Lazarov
- Department of Anatomy and Histology, Medical University of Sofia, Sofia, Bulgaria
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
4
|
Masliukov PM, Emanuilov AI, Budnik AF. Sympathetic innervation of the development, maturity, and aging of the gastrointestinal tract. Anat Rec (Hoboken) 2023; 306:2249-2263. [PMID: 35762574 DOI: 10.1002/ar.25015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/21/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022]
Abstract
The sympathetic nervous system inhibits gut motility, secretion, and blood flow in the gut microvasculature and can modulate gastrointestinal inflammation. Sympathetic neurons signal via catecholamines, neuropeptides, and gas mediators. In the current review, we summarize the current understanding of the mature sympathetic innervation of the gastrointestinal tract with a focus mainly on the prevertebral sympathetic ganglia as the main output to the gut. We also highlight recent work regarding the developmental processes of sympathetic innervation. The anatomy, neurochemistry, and connections of the sympathetic prevertebral ganglia with different parts of the gut are considered in adult organisms during prenatal and postnatal development and aging. The processes and mechanisms that control the development of sympathetic neurons, including their migratory pathways, neuronal differentiation, and aging, are reviewed.
Collapse
Affiliation(s)
- Petr M Masliukov
- Department of Normal Physiology, Yaroslavl State Medical University, Yaroslavl, Russia
| | - Andrey I Emanuilov
- Department of Human Anatomy, Yaroslavl State Medical University, Yaroslavl, Russia
| | - Antonina F Budnik
- Department of Normal and Pathological Anatomy, Kabardino-Balkarian State University named after H.M. Berbekov, Nalchik, Russia
| |
Collapse
|
5
|
Angoa-Pérez M, Zagorac B, Francescutti DM, Shaffer ZD, Theis KR, Kuhn DM. Cocaine hydrochloride, cocaine methiodide and methylenedioxypyrovalerone (MDPV) cause distinct alterations in the structure and composition of the gut microbiota. Sci Rep 2023; 13:13754. [PMID: 37612353 PMCID: PMC10447462 DOI: 10.1038/s41598-023-40892-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023] Open
Abstract
Cocaine is a highly addictive psychostimulant drug of abuse that constitutes an ongoing public health threat. Emerging research is revealing that numerous peripheral effects of this drug may serve as conditioned stimuli for its central reinforcing properties. The gut microbiota is emerging as one of these peripheral sources of input to cocaine reward. The primary objective of the present study was to determine how cocaine HCl and methylenedioxypyrovalerone, both of which powerfully activate central reward pathways, alter the gut microbiota. Cocaine methiodide, a quaternary derivative of cocaine that does not enter the brain, was included to assess peripheral influences on the gut microbiota. Both cocaine congeners caused significant and similar alterations of the gut microbiota after a 10-day course of treatment. Contrary to expectations, the effects of cocaine HCl and MDPV on the gut microbiota were most dissimilar. Functional predictions of metabolic alterations caused by the treatment drugs reaffirmed that the cocaine congeners were similar whereas MDPV was most dissimilar from the other two drugs and controls. It appears that the monoamine transporters in the gut mediate the effects of the treatment drugs. The effects of the cocaine congeners and MDPV on the gut microbiome may form the basis of interoceptive cues that can influence their abuse properties.
Collapse
Affiliation(s)
- Mariana Angoa-Pérez
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA.
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Branislava Zagorac
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dina M Francescutti
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zachary D Shaffer
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kevin R Theis
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Donald M Kuhn
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
6
|
López-Pingarrón L, Almeida H, Soria-Aznar M, Reyes-Gonzales MC, Rodríguez-Moratinos AB, Muñoz-Hoyos A, García JJ. Interstitial Cells of Cajal and Enteric Nervous System in Gastrointestinal and Neurological Pathology, Relation to Oxidative Stress. Curr Issues Mol Biol 2023; 45:3552-3572. [PMID: 37185756 PMCID: PMC10136929 DOI: 10.3390/cimb45040232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
The enteric nervous system (ENS) is organized into two plexuses-submucosal and myenteric-which regulate smooth muscle contraction, secretion, and blood flow along the gastrointestinal tract under the influence of the rest of the autonomic nervous system (ANS). Interstitial cells of Cajal (ICCs) are mainly located in the submucosa between the two muscle layers and at the intramuscular level. They communicate with neurons of the enteric nerve plexuses and smooth muscle fibers and generate slow waves that contribute to the control of gastrointestinal motility. They are also involved in enteric neurotransmission and exhibit mechanoreceptor activity. A close relationship appears to exist between oxidative stress and gastrointestinal diseases, in which ICCs can play a prominent role. Thus, gastrointestinal motility disorders in patients with neurological diseases may have a common ENS and central nervous system (CNS) nexus. In fact, the deleterious effects of free radicals could affect the fine interactions between ICCs and the ENS, as well as between the ENS and the CNS. In this review, we discuss possible disturbances in enteric neurotransmission and ICC function that may cause anomalous motility in the gut.
Collapse
Affiliation(s)
- Laura López-Pingarrón
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - Henrique Almeida
- i3S-Instituto de Investigação e Inovação em Saúde, Porto University, 4200-135 Porto, Portugal
- Department of Biomedicine, Faculty of Medicine, Porto University, 4200-319 Porto, Portugal
- Department of Obstetrics and Gynecology, Hospital-CUF Porto, 4100-180 Porto, Portugal
| | - Marisol Soria-Aznar
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - Marcos C Reyes-Gonzales
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | | | - Antonio Muñoz-Hoyos
- Department of Pediatrics, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Joaquín J García
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
7
|
Freyberg Z, Gittes GK. Roles of Pancreatic Islet Catecholamine Neurotransmitters in Glycemic Control and in Antipsychotic Drug-Induced Dysglycemia. Diabetes 2023; 72:3-15. [PMID: 36538602 PMCID: PMC9797319 DOI: 10.2337/db22-0522] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/24/2022] [Indexed: 12/24/2022]
Abstract
Catecholamine neurotransmitters dopamine (DA) and norepinephrine (NE) are essential for a myriad of functions throughout the central nervous system, including metabolic regulation. These molecules are also present in the pancreas, and their study may shed light on the effects of peripheral neurotransmission on glycemic control. Though sympathetic innervation to islets provides NE that signals at local α-cell and β-cell adrenergic receptors to modify hormone secretion, α-cells and β-cells also synthesize catecholamines locally. We propose a model where α-cells and β-cells take up catecholamine precursors in response to postprandial availability, preferentially synthesizing DA. The newly synthesized DA signals in an autocrine/paracrine manner to regulate insulin and glucagon secretion and maintain glycemic control. This enables islets to couple local catecholamine signaling to changes in nutritional state. We also contend that the DA receptors expressed by α-cells and β-cells are targeted by antipsychotic drugs (APDs)-some of the most widely prescribed medications today. Blockade of local DA signaling contributes significantly to APD-induced dysglycemia, a major contributor to treatment discontinuation and development of diabetes. Thus, elucidating the peripheral actions of catecholamines will provide new insights into the regulation of metabolic pathways and may lead to novel, more effective strategies to tune metabolism and treat diabetes.
Collapse
Affiliation(s)
- Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA
| | - George K. Gittes
- Division of Pediatric Surgery, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
8
|
Jadhav VV, Han J, Fasina Y, Harrison SH. Connecting gut microbiomes and short chain fatty acids with the serotonergic system and behavior in Gallus gallus and other avian species. Front Physiol 2022; 13:1035538. [PMID: 36406988 PMCID: PMC9667555 DOI: 10.3389/fphys.2022.1035538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/03/2022] [Indexed: 12/05/2022] Open
Abstract
The chicken gastrointestinal tract has a diverse microbial community. There is increasing evidence for how this gut microbiome affects specific molecular pathways and the overall physiology, nervous system and behavior of the chicken host organism due to a growing number of studies investigating conditions such as host diet, antibiotics, probiotics, and germ-free and germ-reduced models. Systems-level investigations have revealed a network of microbiome-related interactions between the gut and state of health and behavior in chickens and other animals. While some microbial symbionts are crucial for maintaining stability and normal host physiology, there can also be dysbiosis, disruptions to nutrient flow, and other outcomes of dysregulation and disease. Likewise, alteration of the gut microbiome is found for chickens exhibiting differences in feather pecking (FP) behavior and this alteration is suspected to be responsible for behavioral change. In chickens and other organisms, serotonin is a chief neuromodulator that links gut microbes to the host brain as microbes modulate the serotonin secreted by the host's own intestinal enterochromaffin cells which can stimulate the central nervous system via the vagus nerve. A substantial part of the serotonergic network is conserved across birds and mammals. Broader investigations of multiple species and subsequent cross-comparisons may help to explore general functionality of this ancient system and its increasingly apparent central role in the gut-brain axis of vertebrates. Dysfunctional behavioral phenotypes from the serotonergic system moreover occur in both birds and mammals with, for example, FP in chickens and depression in humans. Recent studies of the intestine as a major site of serotonin synthesis have been identifying routes by which gut microbial metabolites regulate the chicken serotonergic system. This review in particular highlights the influence of gut microbial metabolite short chain fatty acids (SCFAs) on the serotonergic system. The role of SCFAs in physiological and brain disorders may be considerable because of their ability to cross intestinal as well as the blood-brain barriers, leading to influences on the serotonergic system via binding to receptors and epigenetic modulations. Examinations of these mechanisms may translate into a more general understanding of serotonergic system development within chickens and other avians.
Collapse
Affiliation(s)
- Vidya V. Jadhav
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Jian Han
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Yewande Fasina
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC, United States,*Correspondence: Yewande Fasina, ; Scott H. Harrison,
| | - Scott H. Harrison
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, United States,*Correspondence: Yewande Fasina, ; Scott H. Harrison,
| |
Collapse
|
9
|
Hamnett R, Dershowitz LB, Sampathkumar V, Wang Z, Gomez-Frittelli J, De Andrade V, Kasthuri N, Druckmann S, Kaltschmidt JA. Regional cytoarchitecture of the adult and developing mouse enteric nervous system. Curr Biol 2022; 32:4483-4492.e5. [PMID: 36070775 PMCID: PMC9613618 DOI: 10.1016/j.cub.2022.08.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 07/19/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022]
Abstract
The organization and cellular composition of tissues are key determinants of their biological function. In the mammalian gastrointestinal (GI) tract, the enteric nervous system (ENS) intercalates between muscular and epithelial layers of the gut wall and can control GI function independent of central nervous system (CNS) input.1 As in the CNS, distinct regions of the GI tract are highly specialized and support diverse functions, yet the regional and spatial organization of the ENS remains poorly characterized.2 Cellular arrangements,3,4 circuit connectivity patterns,5,6 and diverse cell types7-9 are known to underpin ENS functional complexity and GI function, but enteric neurons are most typically described only as a uniform meshwork of interconnected ganglia. Here, we present a bird's eye view of the mouse ENS, describing its previously underappreciated cytoarchitecture and regional variation. We visually and computationally demonstrate that enteric neurons are organized in circumferential neuronal stripes. This organization emerges gradually during the perinatal period, with neuronal stripe formation in the small intestine (SI) preceding that in the colon. The width of neuronal stripes varies throughout the length of the GI tract, and distinct neuronal subtypes differentially populate specific regions of the GI tract, with stark contrasts between SI and colon as well as within subregions of each. This characterization provides a blueprint for future understanding of region-specific GI function and identifying ENS structural correlates of diverse GI disorders.
Collapse
Affiliation(s)
- Ryan Hamnett
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Lori B Dershowitz
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Vandana Sampathkumar
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA; Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Ziyue Wang
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Julieta Gomez-Frittelli
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Vincent De Andrade
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Narayanan Kasthuri
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA; Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Shaul Druckmann
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Julia A Kaltschmidt
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Gao S, Yang F. Behavioral changes and neurochemical responses in Chinese rare minnow exposed to four psychoactive substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152100. [PMID: 34863758 DOI: 10.1016/j.scitotenv.2021.152100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
With the increase use of psychoactive pharmaceuticals, these substances and their metabolites are frequently detected in aquatic environment. However, there is still a knowledge gap in the neurotoxicity of these pollutants on aquatic organisms as well as related behavioral effects. In this study, the effects of four psychoactive substances alprazolam (ALPZ), lorazepam (LORZ), codeine (COD) and morphine (MOR) were investigated on 23 neurochemicals and 5 behaviors in Chinese rare minnow (Gobiocypris rarus). The comprehensive neurotoxicity was then evaluated at three levels of neurochemical, neurotransmitter system and comprehensive index. The results indicated that ALPZ and LORZ not only increased serotonin and dopamine along with the decrease of glutamic acid, but also depressed the locomotory activity of Chinese rare minnow although without significance. Exposure to COD and MOR increased acetylcholine, dopamine and adrenaline, and significantly increased anxiety-related behaviors of Chinese rare minnow. Comprehensive evaluation showed that COD has the lowest neurotoxic effect on Chinese rare minnow. LORZ shows a stronger neurotoxicity at low concentration of exposure than the other three substances. MOR has the highest neurotoxic effect at high concentration of exposure among the four drugs. The findings revealed the comprehensive neurotoxicity of these psychoactive substances in fish and suggested ecological risks of these pollutants in aquatic environment.
Collapse
Affiliation(s)
- Siyue Gao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, 310058 Hangzhou, China
| | - Fangxing Yang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, 310058 Hangzhou, China.
| |
Collapse
|
11
|
The Baseline Structure of the Enteric Nervous System and Its Role in Parkinson's Disease. Life (Basel) 2021; 11:life11080732. [PMID: 34440476 PMCID: PMC8400095 DOI: 10.3390/life11080732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022] Open
Abstract
The gastrointestinal (GI) tract is provided with a peculiar nervous network, known as the enteric nervous system (ENS), which is dedicated to the fine control of digestive functions. This forms a complex network, which includes several types of neurons, as well as glial cells. Despite extensive studies, a comprehensive classification of these neurons is still lacking. The complexity of ENS is magnified by a multiple control of the central nervous system, and bidirectional communication between various central nervous areas and the gut occurs. This lends substance to the complexity of the microbiota–gut–brain axis, which represents the network governing homeostasis through nervous, endocrine, immune, and metabolic pathways. The present manuscript is dedicated to identifying various neuronal cytotypes belonging to ENS in baseline conditions. The second part of the study provides evidence on how these very same neurons are altered during Parkinson’s disease. In fact, although being defined as a movement disorder, Parkinson’s disease features a number of degenerative alterations, which often anticipate motor symptoms. Among these, the GI tract is often involved, and for this reason, it is important to assess its normal and pathological structure. A deeper knowledge of the ENS is expected to improve the understanding of diagnosis and treatment of Parkinson’s disease.
Collapse
|
12
|
Interactions between the microbiota and enteric nervous system during gut-brain disorders. Neuropharmacology 2021; 197:108721. [PMID: 34274348 DOI: 10.1016/j.neuropharm.2021.108721] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 02/08/2023]
Abstract
For the last 20 years, researchers have focused their intention on the impact of gut microbiota in healthy and pathological conditions. This year (2021), more than 25,000 articles can be retrieved from PubMed with the keywords "gut microbiota and physiology", showing the constant progress and impact of gut microbes in scientific life. As a result, numerous therapeutic perspectives have been proposed to modulate the gut microbiota composition and/or bioactive factors released from microbes to restore our body functions. Currently, the gut is considered a primary site for the development of pathologies that modify brain functions such as neurodegenerative (Parkinson's, Alzheimer's, etc.) and metabolic (type 2 diabetes, obesity, etc.) disorders. Deciphering the mode of interaction between microbiota and the brain is a real original option to prevent (and maybe treat in the future) the establishment of gut-brain pathologies. The objective of this review is to describe recent scientific elements that explore the communication between gut microbiota and the brain by focusing our interest on the enteric nervous system (ENS) as an intermediate partner. The ENS, which is known as the "second brain", could be under the direct or indirect influence of the gut microbiota and its released factors (short-chain fatty acids, neurotransmitters, gaseous factors, etc.). Thus, in addition to their actions on tissue (adipose tissue, liver, brain, etc.), microbes can have an impact on local ENS activity. This potential modification of ENS function has global repercussions in the whole body via the gut-brain axis and represents a new therapeutic strategy.
Collapse
|
13
|
Differential Modulation of the Central and Peripheral Monoaminergic Neurochemicals by Deprenyl in Zebrafish Larvae. TOXICS 2021; 9:toxics9060116. [PMID: 34071101 PMCID: PMC8224676 DOI: 10.3390/toxics9060116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 01/27/2023]
Abstract
Zebrafish embryos and larvae are vertebrate models increasingly used in translational neuroscience research. Behavioral impairment induced by the exposure to neuroactive or neurotoxic compounds is commonly linked to changes in modulatory neurotransmitters in the brain. Although different analytical methods for determining monoaminergic neurochemicals in zebrafish larvae have been developed, these methods have been used only on whole larvae, as the dissection of the brain of hundreds of larvae is not feasible. This raises a key question: Are the changes in the monoaminergic profile of the whole larvae predictive of the changes in the brain? In this study, the levels of ten monoaminergic neurotransmitters were determined in the head, trunk, and the whole body of zebrafish larvae in a control group and in those treated for 24 h with 5 M deprenyl, a prototypic monoamine-oxidase B inhibitor, eight days post-fertilization. In control larvae, most of the monoaminergic neurochemicals were found at higher levels in the head than in the trunk. Significant changes were found in the distribution of some neurochemicals after deprenyl-treatment, with serotonin and norepinephrine increasing in both the head and the trunk, whereas dopamine, L-DOPA, and homovanillic acid levels were only modulated in the head. In fact, the highly significant increase in dopamine levels observed in the head after deprenyl-treatment was not detected in the whole-body analysis. These results indicate that the analysis of neurotransmitters in the zebrafish larvae whole-body should not be used as a general surrogate of the brain.
Collapse
|
14
|
Taatjes DJ, Roth J. In focus in HCB. Histochem Cell Biol 2020; 154:597-607. [PMID: 33277679 DOI: 10.1007/s00418-020-01944-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| | - Jürgen Roth
- University of Zurich, CH-8091, Zurich, Switzerland
| |
Collapse
|
15
|
Sarkar S, Homma T, Onouchi S, Shimizu Y, Shiina T, Nabeka H, Matsuda S, Saito S. Expression of the G protein-coupled receptor (GPR) 37 and GPR37L1 in the mouse digestive system. J Vet Med Sci 2020; 83:1-8. [PMID: 33208571 PMCID: PMC7870391 DOI: 10.1292/jvms.20-0603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
G protein-coupled receptor (GPR) 37 and GPR37L1 are known to modulate the dopaminergic neuron activity, and recently, they are identified as candidate prosaposin receptors. Intercellular prosaposin is proteolytically processed into four saposins, each of which acts as a sphingolipid hydrolase activator in the lysosome. In contrast, extracellular prosaposin exerts a trophic effect on neurons via GPR37 and GPR37L1. In this study, the expression patterns of GPR37 and GPR37L1 in the mouse digestive system were examined immunohistochemically. The islets of Langerhans of the pancreas showed intense immunoreactivity for GPR37 and GPR37L1. Weak immunoreactivity for GPR37 and GPR37L1 was found in the nerve plexuses of the esophagus and small and large intestines. Colocalization of GPR37 and tyrosine hydroxylase immunoreactivity was observed in the neuron of the nerve plexus of the large intestine. This study suggests the possibility that prosaposin affects the function of islet-secreting cells. Also, the expression of GPR37 and GPR37L1 in the nerve plexus suggests that prosaposin exerts a trophic effect not only in the central nervous system, but also in the enteric nervous system.
Collapse
Affiliation(s)
- Sonjoy Sarkar
- Laboratory of Veterinary Anatomy, The United Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Takeshi Homma
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Sawa Onouchi
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Yasutake Shimizu
- Laboratory of Veterinary Physiology, The Joint Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
| | - Takahiko Shiina
- Laboratory of Veterinary Physiology, The Joint Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
| | - Hiroaki Nabeka
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Seiji Matsuda
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Shouichiro Saito
- Laboratory of Veterinary Anatomy, The United Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan.,Laboratory of Veterinary Anatomy, The Joint Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
16
|
Uyttebroek L, Pype C, Hubens G, Timmermans JP, Van Nassauw L. Effect of TNBS-induced colitis on enteric neuronal subpopulations in adult zebrafish. Eur J Histochem 2020; 64. [PMID: 32875777 PMCID: PMC7459238 DOI: 10.4081/ejh.2020.3161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/24/2020] [Indexed: 02/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) includes inflammation of the gastrointestinal (GI) tract and is characterized by periods of acute inflammation and remission. Therapeutic management of IBD is still problematic, because of incomplete understanding its pathogenesis. This study focuses on the effect of 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced colitis on changes in enteric neuronal subpopulations in adult zebrafish. These changes are suggested to be related to the altered neuro-immune interactions and GI motility, and in IBD pathogenesis. New insights into neuroplasticity will be instrumental in finding appropriate therapeutic treatments. TNBS was intraluminally administered in the distal intestine (DI) of anesthetized adult zebrafish. A histological time course of the intestinal inflammatory response was created to establish optimal TNBS concentration and acute inflammation phase. Using double immunolabelling on whole mounts, the effect of inflammation on neuronal populations was analyzed. Based on intestinal wall thickening, epithelial fold disruption, reduced goblet cell number, and eosinophil infiltration, our analysis indicated that the optimal TNBS concentration (320 mM in 25% ethanol) inducing non-lethal inflammation reached a peak at 6 h post-induction. The inflammatory response returned to baseline values at 3 days post-induction. At the acute inflammation phase, no influence on the distribution or proportion of nitrergic neurons was observed, while only the proportion of cholinergic neurons was significantly reduced in the DI. The proportion of serotonergic neurons was significantly increased in the entire intestine during inflammation. This study describes a method of TNBS-induced colitis in the adult zebrafish. Given that the acute inflammation phase is accompanied by neuroplasticity comparable to changes observed in IBD patients, and the unique and versatile characteristics of the zebrafish, allows this model to be used alongside IBD animal models to unravel IBD pathology and to test new IBD therapies.
Collapse
Affiliation(s)
- Leen Uyttebroek
- Laboratory of Human Anatomy, Faculty of Medicine and Health Sciences, University of Antwerp.
| | - Casper Pype
- Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, University of Antwerp.
| | - Guy Hubens
- Laboratory of Human Anatomy, Faculty of Medicine and Health Sciences, University of Antwerp.
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp.
| | - Luc Van Nassauw
- Laboratory of Human Anatomy, Faculty of Medicine and Health Sciences, University of Antwerp.
| |
Collapse
|
17
|
Louza GSG, Carmo LLGD, Conceição IM. Effect of Tityus serrulatus scorpion venom on isolated jejunum: A very useful tool to study the interaction between neurons in the enteric nervous system. Auton Neurosci 2020; 227:102676. [PMID: 32464449 DOI: 10.1016/j.autneu.2020.102676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/06/2020] [Accepted: 05/08/2020] [Indexed: 12/24/2022]
Abstract
Scorpion envenomation is a public health problem in tropical and subtropical areas. In Brazil, Tityus serrulatus is the biggest cause of accidents with venomous animals. Tityus serrulatus venom causes symptoms related to a great activation of the autonomic system attributed to a massive release of sympathetic and parasympathetic mediators. This effect is attributed to the presence of toxins acting in Na+ and K+ ion channels, leading to an increase in cell excitability. Although gastrointestinal symptoms, like diarrhoea and sialorrhea, is observed in moderate to severe cases, little attention is given in clinical reports. Gastrointestinal motility is controlled by the enteric nervous system which is composed of a wide variety of interconnected neurons that are influenced by the sympathetic and parasympathetic nervous systems. Thus, this work aimed to characterize the effects of Tityus serrulatus venom on sympathetic and parasympathetic neurotransmission of rat jejunum, as well as to investigate possibles effects on other neurons of the enteric nervous system. To this, we verify the effects of Tityus serrulatus venom on the contractility of isolated rat jejunum through organ-bath experiments. We observed that venom can induce both contraction and relaxation. The contraction was partially inhibited by atropine (1 μM) and by suramin (0.1 mM) through tetrodotoxin-resistant and sensitive mechanisms. The relaxation was completely inhibited by 3 μM propranolol and partially inhibited by 1 μM phentolamine. Suramin induced a slowing of relaxation curve. Tetrodotoxin completely inhibits the relaxation induced by Tityus serrulatus venom, but the contraction curves were only partially reduced in their initial portion. The final part of the curve was largely enhanced by Tetrodotoxin. Atropine blocks almost completely the contraction curve in the presence of Tetrodotoxin. These results indicate that Tityus serrulatus venom induces the release of both excitatory (predominantly acetylcholine) and inhibitory (mainly noradrenaline) neurotransmitters. The effects of Tityus serrulatus venom on organ contractility was quite complex and seem to derive from a diffuse and nonspecific release of mediators from autonomic and enteric nervous systems. Further investigation of venom action and its isolated toxins can reveal important aspects to deepen our knowledge about the enteric nervous system transmission and the interaction between excitatory and inhibitory mediators as well as the physiological role of Na+ and K+ ion channels in gut motility.
Collapse
Affiliation(s)
- Gisele S G Louza
- Unit of Mode of Toxin Action (MATx), Laboratory of Pharmacology, Butantan Institute, São Paulo, Brazil; Department of Pharmacology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | | |
Collapse
|
18
|
Nolden A, Joseph PV, Kober KM, Cooper BA, Paul SM, Hammer MJ, Dunn LB, Conley YP, Levine JD, Miaskowski C. Co-occurring Gastrointestinal Symptoms Are Associated With Taste Changes in Oncology Patients Receiving Chemotherapy. J Pain Symptom Manage 2019; 58:756-765. [PMID: 31349034 PMCID: PMC6823134 DOI: 10.1016/j.jpainsymman.2019.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 12/24/2022]
Abstract
CONTEXT Over 80% of patients with cancer report taste changes. Despite the high prevalence of this symptom and its negative effects on health, few studies have assessed its association with other gastrointestinal (GI) symptoms. OBJECTIVES Determine the occurrence, frequency, severity, and distress of patient-reported "change in the way food tastes" (CFT) and identify phenotypic and GI symptoms characteristics associated with its occurrence. METHODS Patients receiving chemotherapy for breast, GI, gynecological, or lung cancer completed demographic and symptom questionnaires prior to their second or third cycle of chemotherapy. CFT was assessed using the Memorial Symptom Assessment Scale. Differences in demographic, clinical, and GI symptom characteristics were evaluated using parametric and nonparametric tests. RESULTS Of the 1329 patients, 49.4% reported experiencing CFT in the week prior to their second or third cycle of chemotherapy. In the univariate analysis, patients who reported CFT had fewer years of education; were more likely to be black or Hispanic, mixed race, or other; and had a lower annual household income. A higher percentage of patients with CFT reported the occurrence of 13 GI symptoms (e.g., constipation, diarrhea, abdominal cramps, feeling bloated). In a multivariable logistic regression analysis, compared with patients with breast cancer, patients with lung cancer (odds ratio = 0.55; P = 0.004) had a decrease in the odds of being in the CFT group. Patients who received a neurokinin-1 receptor antagonist and two other antiemetics were at an increased odds of being in the CFT group (odds ratio = 2.51; P = 0.001). Eight of the 13 GI symptoms evaluated were associated with an increased odds of being in the CFT group. CONCLUSIONS This study provides new evidence on the frequency, severity, and distress of CFT in oncology patients undergoing chemotherapy. These findings suggest that CFT is an important problem that warrants ongoing assessments and nutritional interventions.
Collapse
Affiliation(s)
- Alissa Nolden
- Food Science Department, College of Natural Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Paule V Joseph
- Sensory Science & Metabolism Unit, Biobehavioral Branch, Division of Intramural Research, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Kord M Kober
- Department of Physiological Nursing, School of Nursing, University of California San Francisco, San Francisco, California, USA
| | - Bruce A Cooper
- Department of Physiological Nursing, School of Nursing, University of California San Francisco, San Francisco, California, USA
| | - Steven M Paul
- Department of Physiological Nursing, School of Nursing, University of California San Francisco, San Francisco, California, USA
| | - Marilyn J Hammer
- Department of Nursing, Mount Sinai Medical Center, New York, New York, USA
| | - Laura B Dunn
- School of Medicine, Stanford University, Stanford, California, USA
| | - Yvette P Conley
- School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jon D Levine
- School of Medicine, University of California, San Francisco, California, USA
| | - Christine Miaskowski
- Department of Physiological Nursing, School of Nursing, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
19
|
Rastelli M, Cani PD, Knauf C. The Gut Microbiome Influences Host Endocrine Functions. Endocr Rev 2019; 40:1271-1284. [PMID: 31081896 DOI: 10.1210/er.2018-00280] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/15/2019] [Indexed: 12/12/2022]
Abstract
The gut microbiome is considered an organ contributing to the regulation of host metabolism. Since the relationship between the gut microbiome and specific diseases was elucidated, numerous studies have deciphered molecular mechanisms explaining how gut bacteria interact with host cells and eventually shape metabolism. Both metagenomic and metabolomic analyses have contributed to the discovery of bacterial-derived metabolites acting on host cells. In this review, we examine the molecular mechanisms by which bacterial metabolites act as paracrine or endocrine factors, thereby regulating host metabolism. We highlight the impact of specific short-chain fatty acids on the secretion of gut peptides (i.e., glucagon-like peptide-1, peptide YY) and other metabolites produced from different amino acids and regulating inflammation, glucose metabolism, or energy homeostasis. We also discuss the role of gut microbes on the regulation of bioactive lipids that belong to the endocannabinoid system and specific neurotransmitters (e.g., γ-aminobutyric acid, serotonin, nitric oxide). Finally, we review the role of specific bacterial components (i.e., ClpB, Amuc_1100) also acting as endocrine factors and eventually controlling host metabolism. In conclusion, this review summarizes the recent state of the art, aiming at providing evidence that the gut microbiome influences host endocrine functions via several bacteria-derived metabolites.
Collapse
Affiliation(s)
- Marialetizia Rastelli
- Université Catholique de Louvain, UCLouvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Brussels, Belgium.,NeuroMicrobiota, European Associated Laboratory (INSERM/UCLouvain), Brussels, Belgium
| | - Patrice D Cani
- Université Catholique de Louvain, UCLouvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Brussels, Belgium.,NeuroMicrobiota, European Associated Laboratory (INSERM/UCLouvain), Brussels, Belgium
| | - Claude Knauf
- NeuroMicrobiota, European Associated Laboratory (INSERM/UCLouvain), Brussels, Belgium.,Institut de Recherche en Santé Digestive et Nutrition (IRSD), Institut National de la Santé et de la Recherche Médicale (INSERM), U1220, Université Paul Sabatier (UPS), Toulouse Cedex 3, France
| |
Collapse
|
20
|
Banday AA, Diaz AD, Lokhandwala M. Kidney dopamine D 1-like receptors and angiotensin 1-7 interaction inhibits renal Na + transporters. Am J Physiol Renal Physiol 2019; 317:F949-F956. [PMID: 31411069 DOI: 10.1152/ajprenal.00135.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of dopamine D1-like receptors (DR) in the regulation of renal Na+ transporters, natriuresis, and blood pressure is well established. However, the involvement of the angiotensin 1-7 (ANG 1-7)-Mas receptor in the regulation of Na+ balance and blood pressure is not clear. The present study aimed to investigate the hypothesis that ANG 1-7 can regulate Na+ homeostasis by modulating the renal dopamine system. Sprague-Dawley rats were infused with saline alone (vehicle) or saline with ANG 1-7, ANG 1-7 antagonist A-779, DR agonist SKF38393, and antagonist SCH23390. Infusion of ANG 1-7 caused significant natriuresis and diuresis compared with saline alone. Both natriuresis and diuresis were blocked by A-779 and SCH23390. SKF38393 caused a significant, SCH23390-sensitive natriuresis and diuresis, and A-779 had no effect on the SKF38393 response. Concomitant infusion of ANG 1-7 and SKF38393 did not show a cumulative effect compared with either agonist alone. Treatment of renal proximal tubules with ANG 1-7 or SKF38393 caused a significant decrease in Na+-K+-ATPase and Na+/H+ exchanger isoform 3 activity. While SCH23390 blocked both ANG 1-7- and SKF38393-induced inhibition, the DR response was not sensitive to A-779. Additionally, ANG 1-7 activated PKG, enhanced tyrosine hydroxylase activity via Ser40 phosphorylation, and increased renal dopamine production. These data suggest that ANG 1-7, via PKG, enhances tyrosine hydroxylase activity, which increases renal dopamine production and activation of DR and subsequent natriuresis. This study provides evidence for a unidirectional functional interaction between two G protein-coupled receptors to regulate renal Na+ transporters and induce natriuresis.
Collapse
Affiliation(s)
- Anees A Banday
- University of Houston, College of Pharmacy, Heart and Kidney Institute, Houston, Texas
| | - Andrea Diaz Diaz
- University of Houston, College of Pharmacy, Heart and Kidney Institute, Houston, Texas.,School of Pharmacy, University College Cork, Cork, Ireland
| | - Mustafa Lokhandwala
- University of Houston, College of Pharmacy, Heart and Kidney Institute, Houston, Texas
| |
Collapse
|
21
|
|