1
|
Mitchell B, Atterton C, Whitehead D, Thor S, Piper M. A refined Golgi-Cox method for the staining of embryonic neurons in the mouse brain. J Neurosci Methods 2025; 418:110432. [PMID: 40118123 DOI: 10.1016/j.jneumeth.2025.110432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/12/2025] [Accepted: 03/15/2025] [Indexed: 03/23/2025]
Abstract
The Golgi-Cox stain remains a valuable technique used to investigate the morphology of individual neurons. Despite this, Golgi-Cox staining protocols are predominantly designed to impregnate adult neurons. Protocols optimised for the staining of immature embryonic mouse neurons have been previously developed but have limitations, including being time-consuming and being reliant on the use of expensive commercial kits. Here, we present a simple and inexpensive method for Golgi-Cox staining of embryonic neurons in the mouse brain. We identified that a 60 minute, 4 % paraformaldehyde (PFA) brain fixation step, followed by a wash with distilled water prior to immersion in Golgi-Cox solution was critical to the success of the stain. By altering the duration of the wash step, the visualisation of different populations across the neuraxis of neurons could be emphasised. Shorter washes enabled cortical neurons to be readily distinguished, whereas extending the wash steps was needed to enable subcortical neurons to be delineated.
Collapse
Affiliation(s)
- Benjamin Mitchell
- The School of Biomedical Sciences and University of Queensland, Brisbane, Queensland 4072, Australia
| | - Cooper Atterton
- The School of Biomedical Sciences and University of Queensland, Brisbane, Queensland 4072, Australia
| | - Darryl Whitehead
- The School of Biomedical Sciences and University of Queensland, Brisbane, Queensland 4072, Australia
| | - Stefan Thor
- The School of Biomedical Sciences and University of Queensland, Brisbane, Queensland 4072, Australia
| | - Michael Piper
- The School of Biomedical Sciences and University of Queensland, Brisbane, Queensland 4072, Australia; Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
2
|
Zhao Y, Zhao W, Chai X, Sun P, Huang J, Guo X, Zhang L, Ren D, Yi C, Zhu X, Zhao S. Reshaping the gut microbiota: A novel oppinion of Eucommiae cortex polysaccharide alleviate learning and memory impairments in Alzheimer's disease. J Adv Res 2025:S2090-1232(25)00269-3. [PMID: 40252828 DOI: 10.1016/j.jare.2025.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/11/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD), which is a chronic neurodegenerative disorder, is marked by the progressive deteriorations in learning and memory capabilities. The microbiota-gut-brain axis has come to be regarded as a crucial element in relation to the pathogenesis as well as the treatment of AD. Eucommiae cortex polysaccharides (EPs), being among the most plentiful substances present in the Eucommiae cortex, show the potential to exert immunomodulatory and neuroprotective function. However, whether EPs are protective against AD and their mechanism of action remain to be investigated OBJECTIVES: We hypothesize that EPs can regulate brain glutamine metabolism through gut microbiota and the butyric acid metabolized by them, improve oxidative stress and autophagy in the brain, and thus alleviate AD. METHODS In the present study, we used EPs (0.25 % w/w in food) and fecal microbiota transplantation, as well as butyrate supplementation (0.1 M in water), to intervene in AD mice. Multi-omics were used to determine the mechanism by which EPs improve AD-related learning and memory impairments. RESULTS Our results suggest that EPs, functioning as a prebiotic, alleviated learning and memory impairments in AD mice. Mechanistically, EPs are able to reshape the gut microbiota, promote the growth of gut microbiota involved in short-chain fatty acid metabolism, particularly butyrate-producing microbes. The butyrate produced by these microbes improves the brain microenvironment by modulating oxidative stress and autophagy mediated by brain glutamate metabolism, improving learning and memory impairments in AD mice, and inhibiting the formation and deposition of beta-amyloid proteins. Fecal microbiota transplantation (FMT) and butyrate supplementation further confirm this conclusion. CONCLUSIONS Our results highlighted that EPs can alleviate learning and memory impairments in AD with a gut microbiota-dependent manner and that butyric acid metabolized by butyric acid-metabolizing bacteria in the gut plays a central role in regulating brain glutamine metabolism to improve brain microenvironmental homeostasis. Meanwhile, the present study provides new insights into the treatment of AD with natural products.
Collapse
Affiliation(s)
- Yongkang Zhao
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, China
| | - Wenxing Zhao
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, China
| | - Xuejun Chai
- College of Basic Medicine, Xi'an Medical University, 710000 Xi'an, China.
| | - Penghao Sun
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, China
| | - Junlang Huang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, China
| | - Xinrui Guo
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, China
| | - Lulu Zhang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, China
| | - Duoduo Ren
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, China
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, 528000 Shenzhen, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, China.
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, China.
| |
Collapse
|
3
|
Wei S, Jiang J, Wang D, Chang J, Tian L, Yang X, Ma XR, Zhao JW, Li Y, Chang S, Chi X, Li H, Li N. GPR158 in pyramidal neurons mediates social novelty behavior via modulating synaptic transmission in male mice. Cell Rep 2024; 43:114796. [PMID: 39383040 DOI: 10.1016/j.celrep.2024.114796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 04/16/2024] [Accepted: 09/09/2024] [Indexed: 10/11/2024] Open
Abstract
Impairment in social communication skills is a hallmark feature of autism spectrum disorder (ASD). The role of G-protein-coupled receptor 158 (GPR158) in ASD remains largely unexplored. In this study, we observed that both constitutive and cell-/tissue-specific knockouts of Gpr158 in pyramidal neurons or the medial prefrontal cortex (mPFC) result in impaired novelty preference, while sociability remains unaffected in male mice. Notably, the loss of GPR158 leads to a significant decline in excitatory synaptic transmission, characterized by a reduction in glutamate vesicles, as well as the expression and phosphorylation of GluN2B in the mPFC. We successfully rescue the phenotype of social novelty deficits either by reintroducing GPR158 in the mPFC of Gpr158 deficient mice or by chemogenetic activation of pyramidal neurons where Gpr158 is specifically ablated. Our findings indicate that GPR158 in pyramidal neurons plays a specific role in modulating social novelty and may represent a potential target for treating social disorders.
Collapse
Affiliation(s)
- Shoupeng Wei
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jian Jiang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Dilong Wang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jinlong Chang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Liusuyan Tian
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Xiuyan Yang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Xiao-Ru Ma
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jing-Wei Zhao
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yiming Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuwen Chang
- Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Xinjin Chi
- Department of Anesthesiology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China.
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, Division of Medicine, Faculty of Medical Sciences, University College London, London WC1E 6BT, UK.
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China; China-UK Institute for Frontier Science, Shenzhen 518107, China.
| |
Collapse
|
4
|
Wang J, Gong R, Heidari S, Rogers M, Tani T, Abe H, Ichinohe N, Woodward A, Delmas PJ. A Deep Learning-based Pipeline for Segmenting the Cerebral Cortex Laminar Structure in Histology Images. Neuroinformatics 2024; 22:745-761. [PMID: 39417954 PMCID: PMC11579130 DOI: 10.1007/s12021-024-09688-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/19/2024]
Abstract
Characterizing the anatomical structure and connectivity between cortical regions is a critical step towards understanding the information processing properties of the brain and will help provide insight into the nature of neurological disorders. A key feature of the mammalian cerebral cortex is its laminar structure. Identifying these layers in neuroimaging data is important for understanding their global structure and to help understand the connectivity patterns of neurons in the brain. We studied Nissl-stained and myelin-stained slice images of the brain of the common marmoset (Callithrix jacchus), which is a new world monkey that is becoming increasingly popular in the neuroscience community as an object of study. We present a novel computational framework that first acquired the cortical labels using AI-based tools followed by a trained deep learning model to segment cerebral cortical layers. We obtained a Euclidean distance of 1274.750 ± 156.400 μ m for the cortical labels acquisition, which was in the acceptable range by computing the half Euclidean distance of the average cortex thickness ( 1800.630 μ m ). We compared our cortical layer segmentation pipeline with the pipeline proposed by Wagstyl et al. (PLoS biology, 18(4), e3000678 2020) adapted to 2D data. We obtained a better mean95 th percentile Hausdorff distance (95HD) of 92.150 μ m . Whereas a mean 95HD of 94.170 μ m was obtained from Wagstyl et al. We also compared our pipeline's performance against theirs using their dataset (the BigBrain dataset). The results also showed better segmentation quality, 85.318 % Jaccard Index acquired from our pipeline, while 83.000 % was stated in their paper.
Collapse
Affiliation(s)
- Jiaxuan Wang
- Intelligent Vision Systems Lab, The University of Auckland, Auckland, New Zealand
| | - Rui Gong
- Theoretical Biology Group, Department of Creative Research, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Shahrokh Heidari
- Intelligent Vision Systems Lab, The University of Auckland, Auckland, New Zealand
| | - Mitchell Rogers
- Intelligent Vision Systems Lab, The University of Auckland, Auckland, New Zealand
| | - Toshiki Tani
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Wako, Japan
| | - Hiroshi Abe
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Wako, Japan
| | - Noritaka Ichinohe
- Department of Ultrastructural Research, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Alexander Woodward
- Intelligent Vision Systems Lab, The University of Auckland, Auckland, New Zealand
| | - Patrice J Delmas
- Intelligent Vision Systems Lab, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
5
|
In focus in HCB. Histochem Cell Biol 2021; 155:435-438. [PMID: 33846859 DOI: 10.1007/s00418-021-01986-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
|
6
|
Jiang L, Cao Y, Yin X, Ni S, Li M, Li C, Luo Z, Lu H, Hu J. A combinatorial method to visualize the neuronal network in the mouse spinal cord: combination of a modified Golgi-Cox method and synchrotron radiation micro-computed tomography. Histochem Cell Biol 2021; 155:477-489. [PMID: 33398435 PMCID: PMC8062354 DOI: 10.1007/s00418-020-01949-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2020] [Indexed: 12/23/2022]
Abstract
Exploring the three-dimensional (3D) morphology of neurons is essential to understanding spinal cord function and associated diseases comprehensively. However, 3D imaging of the neuronal network in the broad region of the spinal cord at cellular resolution remains a challenge in the field of neuroscience. In this study, to obtain high-resolution 3D imaging of a detailed neuronal network in the mass of the spinal cord, the combination of synchrotron radiation micro-computed tomography (SRμCT) and the Golgi-cox staining were used. We optimized the Golgi-Cox method (GCM) and developed a modified GCM (M-GCM), which improved background staining, reduced the number of artefacts, and diminished the impact of incomplete vasculature compared to the current GCM. Moreover, we achieved high-resolution 3D imaging of the detailed neuronal network in the spinal cord through the combination of SRμCT and M-GCM. Our results showed that the M-GCM increased the contrast between the neuronal structure and its surrounding extracellular matrix. Compared to the GCM, the M-GCM also diminished the impact of the artefacts and incomplete vasculature on the 3D image. Additionally, the 3D neuronal architecture was successfully quantified using a combination of SRμCT and M-GCM. The SRμCT was shown to be a valuable non-destructive tool for 3D visualization of the neuronal network in the broad 3D region of the spinal cord. Such a combinatorial method will, therefore, transform the presentation of Golgi staining from 2 to 3D, providing significant improvements in the 3D rendering of the neuronal network.
Collapse
Affiliation(s)
- Liyuan Jiang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Xiangya Road No. 87, Changsha, 410008, Hunan, People's Republic of China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China.,Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, People's Republic of China.,Hunan Engineering Research Center of Sport and Health, Changsha, People's Republic of China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Xiangya Road No. 87, Changsha, 410008, Hunan, People's Republic of China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China.,Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, People's Republic of China.,Hunan Engineering Research Center of Sport and Health, Changsha, People's Republic of China
| | - Xianzhen Yin
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| | - Shuangfei Ni
- Department of Spine Surgery, Xiangya Hospital, Central South University, Xiangya Road No. 87, Changsha, 410008, Hunan, People's Republic of China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China.,Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, People's Republic of China.,Hunan Engineering Research Center of Sport and Health, Changsha, People's Republic of China
| | - Miao Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, Xiangya Road No. 87, Changsha, 410008, Hunan, People's Republic of China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China.,Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, People's Republic of China.,Hunan Engineering Research Center of Sport and Health, Changsha, People's Republic of China
| | - Chengjun Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, Xiangya Road No. 87, Changsha, 410008, Hunan, People's Republic of China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China.,Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, People's Republic of China.,Hunan Engineering Research Center of Sport and Health, Changsha, People's Republic of China
| | - Zixiang Luo
- Department of Spine Surgery, Xiangya Hospital, Central South University, Xiangya Road No. 87, Changsha, 410008, Hunan, People's Republic of China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China.,Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, People's Republic of China.,Hunan Engineering Research Center of Sport and Health, Changsha, People's Republic of China
| | - Hongbin Lu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China. .,Department of Sports Medicine, Xiangya Hospital, Central South University, Xiangya Road No. 87, Changsha, 410008, Hunan, People's Republic of China. .,Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, People's Republic of China. .,Hunan Engineering Research Center of Sport and Health, Changsha, People's Republic of China.
| | - Jianzhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Xiangya Road No. 87, Changsha, 410008, Hunan, People's Republic of China. .,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China. .,Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, People's Republic of China. .,Hunan Engineering Research Center of Sport and Health, Changsha, People's Republic of China.
| |
Collapse
|
7
|
Zhang JW, Tabassum S, Jiang JX, Long C. Optimized Golgi-Cox Staining Validated in the Hippocampus of Spared Nerve Injury Mouse Model. Front Neuroanat 2020; 14:585513. [PMID: 33240049 PMCID: PMC7680754 DOI: 10.3389/fnana.2020.585513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/12/2020] [Indexed: 11/29/2022] Open
Abstract
Golgi-Cox staining has been used extensively in neuroscience. Despite its unique ability to identify neuronal interconnections and neural processes, its lack of consistency and time-consuming nature reduces its appeal to researchers. Here, using a spared nerve injury (SNI) mouse model and control mice, we present a modified Golgi-Cox staining protocol that can stain mouse hippocampal neurons within 8 days. In this improved procedure, the mouse brain was fixed with 4% paraformaldehyde and then stored in a modified Golgi-Cox solution at 37 ± 2°C. The impregnation period was reduced from 5–14 days to 36–48 h. Brain slices prepared in this way could be preserved long-term at –80°C for up to 8 weeks. In addition to minimizing frequently encountered problems and reducing the time required to conduct the method, our modified protocol maintained, and even improved, the quality of traditional Golgi-Cox staining as applied to hippocampal neuronal morphology in SNI mice.
Collapse
Affiliation(s)
- Jia-Wei Zhang
- Panyu Central Hospital, South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Guangzhou, China
| | - Sidra Tabassum
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jin-Xiang Jiang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Cheng Long
- Panyu Central Hospital, South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Guangzhou, China.,School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|