1
|
Kary AD, Noelle H, Magin CM. Tissue-Informed Biomaterial Innovations Advance Pulmonary Regenerative Engineering. ACS Macro Lett 2025; 14:434-447. [PMID: 40102038 DOI: 10.1021/acsmacrolett.5c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Irreversible progressive pulmonary diseases drastically reduce the patient quality of life, while transplantation remains the only definitive cure. Research into lung regeneration pathways holds significant potential to expand and promote the discovery of new treatment options. Polymeric biomaterials designed to replicate key tissue characteristics (i.e., biochemical composition and mechanical cues) show promise for creating environments in which to study chronic lung diseases and initiate lung tissue regeneration. In this Viewpoint, we explore how naturally derived materials can be employed alone or combined with engineered polymer systems to create advanced tissue culture platforms. Pulmonary tissue models have historically leveraged natural materials, including basement membrane extracts and a decellularized extracellular matrix, as platforms for lung regeneration studies. Here, we provide an overview of the progression of pulmonary regenerative engineering, exploring how innovations in the growing field of tissue-informed biomaterials have the potential to advance lung regeneration research by bridging the gap between biological relevance and mechanical precision.
Collapse
Affiliation(s)
- Anton D Kary
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Haley Noelle
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Chelsea M Magin
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| |
Collapse
|
2
|
Matera MG, Calzetta L, Rinaldi B, de Novellis V, Page CP, Barnes PJ, Cazzola M. Animal models of chronic obstructive pulmonary disease and their role in drug discovery and development: a critical review. Expert Opin Drug Discov 2025:1-20. [PMID: 39939153 DOI: 10.1080/17460441.2025.2466704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/16/2025] [Accepted: 02/10/2025] [Indexed: 02/14/2025]
Abstract
INTRODUCTION The use of laboratory animals is essential to understand the mechanisms underlying COPD and to discover and evaluate new drugs. However, the complex changes associated with the disease in humans are difficult to fully replicate in animal models. AREAS COVERED This review examines the most recent literature on animal models of COPD and their implications for drug discovery and development. EXPERT OPINION Recent advances in animal models include the introduction of transgenic mice with an increased propensity to develop COPD-associated features, such as emphysema, and animals exposed to relevant environmental agents other than cigarette smoke, in particular biomass smoke and other air pollutants. Other animal species, including zebrafish, pigs, ferrets and non-human primates, are also increasingly being used to gain insights into human COPD. Furthermore, three-dimensional organoids and humanized mouse models are emerging as technologies for evaluating novel therapeutics in more human-like models. However, despite these advances, no model has yet fully captured the heterogeneity and progression of COPD as observed in humans. Therefore, further research is needed to develop improved models incorporating humanized elements in experimental animals, that may better predict therapeutic responses in clinic settings and accelerate the development of new treatments for this debilitating disease.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Luigino Calzetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| | - Barbara Rinaldi
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Vito de Novellis
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Clive P Page
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Peter J Barnes
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| |
Collapse
|
3
|
Hemel IMGM, Arts ICW, Moerel M, Gerards M. The Matrix of Mitochondrial Imaging: Exploring Spatial Dimensions. Biomolecules 2025; 15:229. [PMID: 40001532 PMCID: PMC11853629 DOI: 10.3390/biom15020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Mitochondria play a crucial role in human biology, affecting cellular processes at the smallest spatial scale as well as those involved in the functionality of the whole system. Imaging is the most important research tool for studying the fundamental role of mitochondria across these diverse spatial scales. A wide array of available imaging techniques have enabled us to visualize mitochondrial structure and behavior, as well as their effect on cells and tissues in a range from micrometers to centimeters. Each of the various imaging techniques that are available offers unique advantages tailored to specific research needs. Selecting an appropriate technique suitable for the scale and application of interest is therefore crucial, but can be challenging due to the large range of possibilities. The aim of this review is two-fold. First, we provide an overview of the available imaging techniques and discuss their strengths and limitations for applications across the sub-mitochondrial, cellular, tissue and organ levels for the imaging of mitochondria. Second, we identify opportunities for novel applications and advancement in the field. We emphasize the importance of integration across scales in mitochondrial imaging studies, particularly to bridge the gap between microscopic and non-invasive techniques. While integrating these diverse scales is challenging, primarily because such multi-scale approaches require expertise that spans different imaging modalities, we argue that integration has the potential to provide groundbreaking insights into mitochondrial biology. By providing a comprehensive overview of imaging techniques, this review paves the way for multi-scale imaging initiatives in mitochondrial research.
Collapse
|
4
|
Salana S, Verma V. Review of in vitro studies evaluating respiratory toxicity of aerosols: impact of cell types, chemical composition, and atmospheric processing. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1922-1954. [PMID: 39291816 DOI: 10.1039/d4em00475b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In recent decades, several cell-based and acellular methods have been developed to evaluate ambient particulate matter (PM) toxicity. Although cell-based methods provide a more comprehensive assessment of PM toxicity, their results are difficult to comprehend due to the diversity in cellular endpoints, cell types, and assays and the interference of PM chemical components with some of the assays' techniques. In this review, we attempt to clarify some of these issues. We first discuss the morphological and immunological differences among various macrophage and epithelial cells, belonging to the respiratory systems of human and murine species, used in the in vitro studies evaluating PM toxicity. Then, we review the current state of knowledge on the role of different PM chemical components and the relevance of atmospheric processing and aging of aerosols in the respiratory toxicity of PM. Our review demonstrates the need to adopt more physiologically relevant cellular models such as epithelial (or endothelial) cells instead of macrophages for oxidative stress measurement. We suggest limiting macrophages for investigating other cellular responses (e.g., phagocytosis, inflammation, and DNA damage). Unlike monocultures (of macrophages and epithelial cells), which are generally used to study the direct effects of PM on a given cell type, the use of co-culture systems should be encouraged to investigate a more comprehensive effect of PM in the presence of other cells. Our review has identified two major groups of toxic PM chemical species from the existing literature, i.e., metals (Fe, Cu, Mn, Cr, Ni, and Zn) and organic compounds (PAHs, ketones, aliphatic and chlorinated hydrocarbons, and quinones). However, the relative toxicities of these species are still a matter of debate. Finally, the results of the existing studies investigating the effect of aging on PM toxicity are ambiguous, with varying results due to different cell types, different aging conditions, and the presence/absence of specific oxidants. More systematic studies are necessary to understand the role of different SOA precursors, interactions between different PM components, and aging conditions in the overall toxicity of PM. We anticipate that our review will guide future investigations by helping researchers choose appropriate cell models, resulting in a more meaningful interpretation of cell-based assays and thus ultimately leading to a better understanding of the health effects of PM exposure.
Collapse
Affiliation(s)
- Sudheer Salana
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, 61801, USA.
| | - Vishal Verma
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, 61801, USA.
| |
Collapse
|
5
|
Taatjes DJ, Roth J. In focus in HCB. Histochem Cell Biol 2024; 162:349-350. [PMID: 39150498 DOI: 10.1007/s00418-024-02321-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| | - Jürgen Roth
- University of Zurich, CH-8091, Zurich, Switzerland
| |
Collapse
|
6
|
Qiu X, Zhong P, Yue L, Li C, Yun Z, Si G, Li M, Chen Z, Tan Y, Bao P. Spatial transcriptomic sequencing reveals immune microenvironment features of Mycobacterium tuberculosis granulomas in lung and omentum. Theranostics 2024; 14:6185-6201. [PMID: 39431015 PMCID: PMC11488093 DOI: 10.7150/thno.99038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/04/2024] [Indexed: 10/22/2024] Open
Abstract
Granulomas are a key pathological feature of tuberculosis (TB), characterized by cell heterogeneity, spatial composition, and cellular interactions, which play crucial roles in granuloma progression and host prognosis. This study aims to analyze the transcriptome profiles of cell populations based on their spatial location and to understand the core transcriptome characteristics of granuloma formation and development. Methods In this study, we collected four clinical biopsy samples including Mycobacterium tuberculosis (Mtb) infected lung (MTB-L) and omentum tissues (MTB-O), as well as two lung and omentum biopsies from non-TB patients. The tissues were analyzed by spatial transcriptomics to create a spatial atlas. Utilizing cell enrichment scores and intercellular communication analysis, we investigated the transcriptome signatures of cell populations in various spatial regions and identified genes that may play a decisive role in the formation of pulmonary and omental tuberculosis granulomas. To validate our major findings, an in vitro TB model based on organoid-macrophage co-culture was established. Results Spatial transcriptomics mapped the cell composition and spatial distribution characteristics of tuberculosis granulomas in lung and omental tissues infected with Mtb. The characteristics and evolutionary relationships of major cell populations in granulomas reveal a shift in the immune microenvironment: from a predominance of B cells and fibroblasts in pulmonary granulomas to a predominance of myeloid cells and fibroblasts in omental granulomas. Furthermore, our data identified key differentially expressed genes across cell clusters and regions, showing that upregulation of collagen genes is a common feature of granulomas. Using an organoid-macrophage co-culture model, we demonstrated the notable efficacy of Thrombospondin-1 (THBS1) in reducing protein expression levels related to extracellular matrix remodeling. Conclusion These results provide insights into the pathogenesis and development of tuberculosis, enhancing our understanding of the composition and interactions of tuberculosis granuloma cells from a spatial perspective, and pave the way for novel adjuvant treatments for tuberculosis.
Collapse
Affiliation(s)
- Xiaochen Qiu
- The Eighth Medical Center, Chinese PLA General Hospital, 100039, Beijing, China
- Senior Department of General Surgery, Chinese PLA General Hospital, Beijing, 100093, China
| | - Pengfei Zhong
- Graduate School, Hebei North University, 075000, Zhangjiakou, Hebei Province, China
| | - Liang Yue
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Chaofan Li
- Graduate School, Hebei North University, 075000, Zhangjiakou, Hebei Province, China
| | - Zhimin Yun
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Guangqian Si
- Graduate School, Hebei North University, 075000, Zhangjiakou, Hebei Province, China
| | - Mengfan Li
- Graduate School, Hebei North University, 075000, Zhangjiakou, Hebei Province, China
| | - Zhi Chen
- The Eighth Medical Center, Chinese PLA General Hospital, 100039, Beijing, China
- Senior Department of Tuberculosis, Chinese PLA General Hospital, Beijing, 100093, China
| | - Yingxia Tan
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Pengtao Bao
- The Eighth Medical Center, Chinese PLA General Hospital, 100039, Beijing, China
- Senior Department of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, 100093, China
| |
Collapse
|
7
|
Zhai Y, Yu T, Xin S, Ding Y, Cui Y, Nie H. Network pharmacology-based research into the mechanism of ferulic acid on acute lung injury through enhancing transepithelial sodium transport. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118230. [PMID: 38643862 DOI: 10.1016/j.jep.2024.118230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ferulic acid (FA) has shown potential therapeutic applications in treating lung diseases. However, the underlying mechanisms by which FA ameliorates acute lung injury (ALI) have not been distinctly elucidated. AIM OF THE STUDY The project aims to observe the therapeutic effects of FA on lipopolysaccharide-induced ALI and to elucidate its specific mechanisms in regulating epithelial sodium channel (ENaC), which majors in alveolar fluid clearance during ALI. MATERIALS AND METHODS In this study, the possible pathways of FA were determined through network pharmacology analyses. The mechanisms of FA in ALI were verified by in vivo mouse model and in vitro studies, including primary alveolar epithelial type 2 cells and three-dimensional alveolar organoid models. RESULTS FA ameliorated ALI by improving lung pathological changes, reducing pulmonary edema, and upregulating the α/γ-ENaC expression in C57BL/J male mice. Simultaneously, FA was observed to augment ENaC levels in both three-dimensional alveolar organoid and alveolar epithelial type 2 cells models. Network pharmacology techniques and experimental data from inhibition or knockdown of IkappaB kinase β (IKKβ) proved that FA reduced the phosphorylation of IKKβ/nuclear factor-kappaB (NF-κB) and eliminated the lipopolysaccharide-inhibited expression of ENaC, which could be regulated by nuclear protein NF-κB p65 directly. CONCLUSIONS FA could enhance the expression of ENaC at least in part by inhibiting the IKKβ/NF-κB signaling pathway, which may potentially pave the way for promising treatment of ALI.
Collapse
Affiliation(s)
- Yiman Zhai
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Tong Yu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Shuning Xin
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yong Cui
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China.
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China.
| |
Collapse
|
8
|
Geyer SH, Ceci Ginistrelli L, Ilmer T, Schwendt KM, Mendjan S, Weninger WJ. Three-dimensional structural and metric characterisation of cardioids. Front Cell Dev Biol 2024; 12:1426043. [PMID: 39119041 PMCID: PMC11306051 DOI: 10.3389/fcell.2024.1426043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Exact three-dimensional (3D) structural information of developing organoids is key for optimising organoid generation and for studying experimental outcomes in organoid models. We set up a 3D imaging technique and studied complexly arranged native and experimentally challenged cardioids of two stages of remodelling. The imaging technique we employed is S-HREM (Scanning High Resolution Episcopic Microscopy), a variant of HREM, which captures multiple images of subsequently exposed surfaces of resin blocks and automatically combines them to large sized digital volume data of voxels sizes below 1 μm3. We provide precise volumetric information of the examined specimens and their single components and comparisons between stages in terms of volume and micro- and macroanatomic structure. We describe the 3D arrangement and lining of different types of cavities and their changes between day 10 and day 14 and map the various cell types to their precise spatial and structural environment. Exemplarily, we conducted semiautomatic counts of nuclei. In cryo-injured cardioids, we examined the extension and composition of the injured areas. Our results demonstrate the high quality and the great potential of digital volume data produced with S-HREM. It also provides sound metric and structural information, which assists production of native and experimentally challenged left ventricle cardioids and interpretation of their structural remodelling.
Collapse
Affiliation(s)
- Stefan H. Geyer
- Division of Anatomy, Center for Anatomy and Cell Biology, MIC, Medical University of Vienna, Vienna, Austria
| | - Lavinia Ceci Ginistrelli
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter, Vienna, Austria
| | - Tobias Ilmer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter, Vienna, Austria
| | - Karoline M. Schwendt
- Division of Anatomy, Center for Anatomy and Cell Biology, MIC, Medical University of Vienna, Vienna, Austria
| | - Sasha Mendjan
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter, Vienna, Austria
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang J. Weninger
- Division of Anatomy, Center for Anatomy and Cell Biology, MIC, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Valenzuela AR, Turner M, Markarian N, Lachance-Brais C, Hanrahan J, Vali H, Vidal S, Mongeau L. Design, infectability, and transcriptomic analysis of transregionally differentiated and scalable lung organoids derived from adult bronchial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601655. [PMID: 39026877 PMCID: PMC11257428 DOI: 10.1101/2024.07.02.601655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The lung is a primary target for many lethal respiratory viruses, leading to significant global mortality. Current organoid models fail to completely mimic the cellular diversity and intricate tubular and branching structures of the human lung. Lung organoids derived from adult primary cells have so far only included cells from the input cell region, proximal or distal. Existing models are expensive. They often require cells from invasive deep lung tissue biopsies. The present study aimed to address these limitations. The lung organoids obtained using an original protocol exhibited transregional differentiation and were derived from relatively more accessible primary cells from the trachea/bronchi. Immortal bronchial cell lines were also used to simplify organoid fabrication and improve its scalability. The lung organoids are formed starting from bronchial cells with fibroblasts feeder cells in an alginate hydrogel coated with base membrane zone proteins. Characterizations were performed using bulk RNA sequencing and tandem mass tags. The resulting organoids express markers of different lung regions and mimic to some extent the tubular and branching morphology of the lung. The proteomic profile of organoid from primary cells and from cell lines was found to evolve towards that of mature lung tissue. Upregulated genes were mostly related to the respiratory system, tube development, and various aspects of respiratory viral infections. Infection with SARS-CoV-2 and influenza H1N1 was successful and did not require organoid disassembly. The organoids matured within 21 days and did not require complex or expensive culture methods. Transregionally differentiated lung organoid may find applications for the study of emerging or re-emerging viral infections and fostering the development of novel in-vitro therapeutic strategies.
Collapse
Affiliation(s)
- Alicia Reyes Valenzuela
- Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada. H3A 2B4
- Department of Mechanical engineering. McGill University. Montreal, Canada. H3A 0C3
| | - Mark Turner
- Pharmaceutical Drugs Directorate, Bureau of Gastroenterology, Infection and Viral Diseases, Health Canada, Ottawa, Ontario, Canada, K1A 0K9
| | - Nathan Markarian
- Department of Human Genetics, McGill University, Montreal, Canada, H3A 0C7
- Research Centre on Complex Traits, McGill University, Montreal, Canada, H3G 0B1
- Swine and Poultry Infectious Diseases Research Center and Research Group on Infectious Diseases in Production Animals, Faculty of Veterinary Medicine, University of Montreal. Montreal, Canada, J25 2MD
| | | | - John Hanrahan
- Department of Physiology, McGill University, Montreal, Canada. H3G 1Y6
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada. H3A 0C7
| | - Silvia Vidal
- Department of Human Genetics, McGill University, Montreal, Canada, H3A 0C7
- Research Centre on Complex Traits, McGill University, Montreal, Canada, H3G 0B1
| | - Luc Mongeau
- Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada. H3A 2B4
- Department of Mechanical engineering. McGill University. Montreal, Canada. H3A 0C3
| |
Collapse
|
10
|
Thangam T, Parthasarathy K, Supraja K, Haribalaji V, Sounderrajan V, Rao SS, Jayaraj S. Lung Organoids: Systematic Review of Recent Advancements and its Future Perspectives. Tissue Eng Regen Med 2024; 21:653-671. [PMID: 38466362 PMCID: PMC11187038 DOI: 10.1007/s13770-024-00628-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/06/2024] [Accepted: 01/23/2024] [Indexed: 03/13/2024] Open
Abstract
Organoids are essentially an in vitro (lab-grown) three-dimensional tissue culture system model that meticulously replicates the structure and physiology of human organs. A few of the present applications of organoids are in the basic biological research area, molecular medicine and pharmaceutical drug testing. Organoids are crucial in connecting the gap between animal models and human clinical trials during the drug discovery process, which significantly lowers the time duration and cost associated with each stage of testing. Likewise, they can be used to understand cell-to-cell interactions, a crucial aspect of tissue biology and regeneration, and to model disease pathogenesis at various stages of the disease. Lung organoids can be utilized to explore numerous pathophysiological activities of a lung since they share similarities with its function. Researchers have been trying to recreate the complex nature of the lung by developing various "Lung organoids" models.This article is a systematic review of various developments of lung organoids and their potential progenitors. It also covers the in-depth applications of lung organoids for the advancement of translational research. The review discusses the methodologies to establish different types of lung organoids for studying the regenerative capability of the respiratory system and comprehending various respiratory diseases.Respiratory diseases are among the most common worldwide, and the growing burden must be addressed instantaneously. Lung organoids along with diverse bio-engineering tools and technologies will serve as a novel model for studying the pathophysiology of various respiratory diseases and for drug screening purposes.
Collapse
Affiliation(s)
- T Thangam
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Krupakar Parthasarathy
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India.
| | - K Supraja
- Medway Hospitals, No 2/26, 1st Main Road, Kodambakkam, Chennai, Tamil Nadu, 600024, India
| | - V Haribalaji
- VivagenDx, No. 28, Venkateswara Nagar, 100 Feet Bypass Road, Velachery, Chennai, Tamil Nadu, 600042, India
| | - Vignesh Sounderrajan
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Sudhanarayani S Rao
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Sakthivel Jayaraj
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| |
Collapse
|
11
|
Fallert L, Urigoitia-Asua A, Cipitria A, Jimenez de Aberasturi D. Dynamic 3D in vitro lung models: applications of inorganic nanoparticles for model development and characterization. NANOSCALE 2024; 16:10880-10900. [PMID: 38787741 DOI: 10.1039/d3nr06672j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Being a vital organ exposed to the external environment, the lung is susceptible to a plethora of pathogens and pollutants. This is reflected in high incidences of chronic respiratory diseases, which remain a leading cause of mortality world-wide and pose a persistent global burden. It is thus of paramount importance to improve our understanding of these pathologies and provide better therapeutic options. This necessitates the development of representative and physiologically relevant in vitro models. Advances in bioengineering have enabled the development of sophisticated models that not only capture the three-dimensional architecture of the cellular environment but also incorporate the dynamics of local biophysical stimuli. However, such complex models also require novel approaches that provide reliable characterization. Within this review we explore how 3D bioprinting and nanoparticles can serve as multifaceted tools to develop such dynamic 4D printed in vitro lung models and facilitate their characterization in the context of pulmonary fibrosis and breast cancer lung metastasis.
Collapse
Affiliation(s)
- Laura Fallert
- Department of Hybrid Biofunctional Materials, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
- Group of Bioengineering in Regeneration and Cancer, Biogipuzkoa Health Research Institute, 20014 Donostia-San Sebastián, Spain
- Department of Applied Chemistry, University of the Basque Country, 20018 Donostia-San Sebastián, Spain
| | - Ane Urigoitia-Asua
- Department of Hybrid Biofunctional Materials, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
- Department of Applied Chemistry, University of the Basque Country, 20018 Donostia-San Sebastián, Spain
- POLYMAT, Basque Centre for Macromolecular Design and Engineering, 20018 Donostia-San Sebastián, Spain
| | - Amaia Cipitria
- Group of Bioengineering in Regeneration and Cancer, Biogipuzkoa Health Research Institute, 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Dorleta Jimenez de Aberasturi
- Department of Hybrid Biofunctional Materials, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), 20014 Donostia-San Sebastián, Spain
| |
Collapse
|
12
|
Shen Q, Zhou YH, Zhou YQ. A prospects tool in virus research: Analyzing the applications of organoids in virus studies. Acta Trop 2024; 254:107182. [PMID: 38479469 DOI: 10.1016/j.actatropica.2024.107182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/23/2024] [Accepted: 03/10/2024] [Indexed: 04/28/2024]
Abstract
Organoids have emerged as a powerful tool for understanding the biology of the respiratory, digestive, nervous as well as urinary system, investigating infections, and developing new therapies. This article reviews recent progress in the development of organoid and advancements in virus research. The potential applications of these models in studying virul infections, pathogenesis, and antiviral drug discovery are discussed.
Collapse
Affiliation(s)
- Qi Shen
- Institute of Microbiology Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 20036, China; Institute of Microbiology Laboratory, Shanghai Institute of Preventive Medicine, Shanghai 20036, China
| | - Yu-Han Zhou
- College of Public Health, Jilin University, Changchun 130021, China
| | - Yan-Qiu Zhou
- Institute of Microbiology Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 20036, China; Institute of Microbiology Laboratory, Shanghai Institute of Preventive Medicine, Shanghai 20036, China.
| |
Collapse
|
13
|
Chen Y, Li Z, Ji G, Wang S, Mo C, Ding B. Lung regeneration: diverse cell types and the therapeutic potential. MedComm (Beijing) 2024; 5:e494. [PMID: 38405059 PMCID: PMC10885188 DOI: 10.1002/mco2.494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Lung tissue has a certain regenerative ability and triggers repair procedures after injury. Under controllable conditions, lung tissue can restore normal structure and function. Disruptions in this process can lead to respiratory system failure and even death, causing substantial medical burden. The main types of respiratory diseases are chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and acute respiratory distress syndrome (ARDS). Multiple cells, such as lung epithelial cells, endothelial cells, fibroblasts, and immune cells, are involved in regulating the repair process after lung injury. Although the mechanism that regulates the process of lung repair has not been fully elucidated, clinical trials targeting different cells and signaling pathways have achieved some therapeutic effects in different respiratory diseases. In this review, we provide an overview of the cell type involved in the process of lung regeneration and repair, research models, and summarize molecular mechanisms involved in the regulation of lung regeneration and fibrosis. Moreover, we discuss the current clinical trials of stem cell therapy and pharmacological strategies for COPD, IPF, and ARDS treatment. This review provides a reference for further research on the molecular and cellular mechanisms of lung regeneration, drug development, and clinical trials.
Collapse
Affiliation(s)
- Yutian Chen
- The Department of Endovascular SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Zhen Li
- The Department of Endovascular SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Gaili Ji
- Department of GynecologyThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shaochi Wang
- Department of Translational MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Bi‐Sen Ding
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
14
|
Konstantinović J, Kany AM, Alhayek A, Abdelsamie AS, Sikandar A, Voos K, Yao Y, Andreas A, Shafiei R, Loretz B, Schönauer E, Bals R, Brandstetter H, Hartmann RW, Ducho C, Lehr CM, Beisswenger C, Müller R, Rox K, Haupenthal J, Hirsch AK. Inhibitors of the Elastase LasB for the Treatment of Pseudomonas aeruginosa Lung Infections. ACS CENTRAL SCIENCE 2023; 9:2205-2215. [PMID: 38161367 PMCID: PMC10755728 DOI: 10.1021/acscentsci.3c01102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Indexed: 01/03/2024]
Abstract
Infections caused by the Gram-negative pathogen Pseudomonas aeruginosa are emerging worldwide as a major threat to human health. Conventional antibiotic monotherapy suffers from rapid resistance development, underlining urgent need for novel treatment concepts. Here, we report on a nontraditional approach to combat P. aeruginosa-derived infections by targeting its main virulence factor, the elastase LasB. We discovered a new chemical class of phosphonates with an outstanding in vitro ADMET and PK profile, auspicious activity both in vitro and in vivo. We established the mode of action through a cocrystal structure of our lead compound with LasB and in several in vitro and ex vivo models. The proof of concept of a combination of our pathoblocker with levofloxacin in a murine neutropenic lung infection model and the reduction of LasB protein levels in blood as a proof of target engagement demonstrate the great potential for use as an adjunctive treatment of lung infections in humans.
Collapse
Affiliation(s)
- Jelena Konstantinović
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS)−Helmholtz
Centre for Infection Research (HZI), Saarbrücken 66123, Germany
| | - Andreas M. Kany
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS)−Helmholtz
Centre for Infection Research (HZI), Saarbrücken 66123, Germany
| | - Alaa Alhayek
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS)−Helmholtz
Centre for Infection Research (HZI), Saarbrücken 66123, Germany
| | - Ahmed S. Abdelsamie
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS)−Helmholtz
Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Department
of Chemistry of Natural and Microbial Products, Institute of Pharmaceutical and Drug Industries Research, National
Research Centre, El-Buhouth Street, Dokki, Cairo 12622, Egypt
| | - Asfandyar Sikandar
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS)−Helmholtz
Centre for Infection Research (HZI), Saarbrücken 66123, Germany
| | - Katrin Voos
- Department
of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken 66123, Germany
| | - Yiwen Yao
- Department
of Internal Medicine V − Pulmonology, Allergology and Critical
Care Medicine, Saarland University, Homburg 66421, Germany
| | - Anastasia Andreas
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS)−Helmholtz
Centre for Infection Research (HZI), Saarbrücken 66123, Germany
| | - Roya Shafiei
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS)−Helmholtz
Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Saarland
University, Department of Pharmacy, Saarbrücken 66123, Germany
| | - Brigitta Loretz
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS)−Helmholtz
Centre for Infection Research (HZI), Saarbrücken 66123, Germany
| | - Esther Schönauer
- Department
of Biosciences and Medical Biology, Division of Structural Biology, University of Salzburg, Salzburg 5020, Austria
| | - Robert Bals
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS)−Helmholtz
Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Department
of Internal Medicine V − Pulmonology, Allergology and Critical
Care Medicine, Saarland University, Homburg 66421, Germany
| | - Hans Brandstetter
- Department
of Biosciences and Medical Biology, Division of Structural Biology, University of Salzburg, Salzburg 5020, Austria
| | - Rolf W. Hartmann
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS)−Helmholtz
Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Saarland
University, Department of Pharmacy, Saarbrücken 66123, Germany
| | - Christian Ducho
- Department
of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken 66123, Germany
| | - Claus-Michael Lehr
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS)−Helmholtz
Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Saarland
University, Department of Pharmacy, Saarbrücken 66123, Germany
| | - Christoph Beisswenger
- Department
of Internal Medicine V − Pulmonology, Allergology and Critical
Care Medicine, Saarland University, Homburg 66421, Germany
| | - Rolf Müller
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS)−Helmholtz
Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Saarland
University, Department of Pharmacy, Saarbrücken 66123, Germany
- Helmholtz
International Lab for Anti-infectives, Saarbrücken 66123, Germany
| | - Katharina Rox
- Department
of Chemical Biology (CBIO), Helmholtz Centre
for Infection Research (HZI), Braunschweig 38124, Germany
- Deutsches
Zentrum für Infektionsforschung (DZIF) e.V., Braunschweig 38124, Germany
| | - Jörg Haupenthal
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS)−Helmholtz
Centre for Infection Research (HZI), Saarbrücken 66123, Germany
| | - Anna K.H. Hirsch
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS)−Helmholtz
Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Saarland
University, Department of Pharmacy, Saarbrücken 66123, Germany
- Helmholtz
International Lab for Anti-infectives, Saarbrücken 66123, Germany
- Deutsches
Zentrum für Infektionsforschung (DZIF) e.V., Braunschweig 38124, Germany
| |
Collapse
|
15
|
Park D, Lee D, Kim Y, Park Y, Lee YJ, Lee JE, Yeo MK, Kang MW, Chong Y, Han SJ, Choi J, Park JE, Koh Y, Lee J, Park Y, Kim R, Lee JS, Choi J, Lee SH, Ku B, Kang DH, Chung C. Cryobiopsy: A Breakthrough Strategy for Clinical Utilization of Lung Cancer Organoids. Cells 2023; 12:1854. [PMID: 37508518 PMCID: PMC10377875 DOI: 10.3390/cells12141854] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
One major challenge associated with lung cancer organoids (LCOs) is their predominant derivation from surgical specimens of patients with early-stage lung cancer. However, patients with advanced lung cancer, who are in need of chemotherapy, often cannot undergo surgery. Therefore, there is an urgent need to successfully generate LCOs from biopsy specimens. Conventional lung biopsy techniques, such as transthoracic needle biopsy and forceps biopsy, only yield small amounts of lung tissue, resulting in a low success rate for culturing LCOs from biopsy samples. Furthermore, potential complications, like bleeding and pneumothorax, make it difficult to obtain sufficient tissue. Another critical issue is the overgrowth of normal lung cells in later passages of LCO culture, and the optimal culture conditions for LCOs are yet to be determined. To address these limitations, we attempted to create LCOs from cryobiopsy specimens obtained from patients with lung cancer (n = 113). Overall, the initial success rate of establishing LCOs from cryobiopsy samples was 40.7% (n = 46). Transbronchial cryobiopsy enables the retrieval of significantly larger amounts of lung tissue than bronchoscopic forceps biopsy. Additionally, cryobiopsy can be employed for peripheral lesions, and it is aided via radial endobronchial ultrasonography. This study significantly improved the success rate of LCO culture and demonstrated that the LCOs retained characteristics that resembled the primary tumors. Single-cell RNA sequencing confirmed high cancer cell purity in early passages of LCOs derived from patients with advanced lung cancer. Furthermore, the three-dimensional structure and intracellular components of LCOs were characterized using three-dimensional holotomography. Finally, drug screening was performed using a specialized micropillar culture system with cryobiopsy-derived LCOs. LCOs derived from cryobiopsy specimens offer a promising solution to the critical limitations of conventional LCOs. Cryobiopsy can be applied to patients with lung cancer at all stages, including those with peripheral lesions, and can provide sufficient cells for LCO generation. Therefore, we anticipate that cryobiopsy will serve as a breakthrough strategy for the clinical application of LCOs in all stages of lung cancer.
Collapse
Affiliation(s)
- Dongil Park
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Dahye Lee
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yoonjoo Kim
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yeonhee Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 34943, Republic of Korea
| | - Yeon-Jae Lee
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jeong Eun Lee
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Min-Kyung Yeo
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Min-Woong Kang
- Thoracic and Cardiovascular Surgery, School of Medicine, Chungnam National University, Munhwa-ro 282, Jung-Gu, Daejeon 35015, Republic of Korea
| | - Yooyoung Chong
- Thoracic and Cardiovascular Surgery, School of Medicine, Chungnam National University, Munhwa-ro 282, Jung-Gu, Daejeon 35015, Republic of Korea
| | - Sung Joon Han
- Thoracic and Cardiovascular Surgery, School of Medicine, Chungnam National University, Munhwa-ro 282, Jung-Gu, Daejeon 35015, Republic of Korea
| | - Jinwook Choi
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jong-Eun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yongjun Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | | | - YongKeun Park
- Tomocube Inc., Daejeon 34141, Republic of Korea
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ryul Kim
- GENOME INSIGHT Inc., Daejeon 34051, Republic of Korea
| | - Jeong Seok Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- GENOME INSIGHT Inc., Daejeon 34051, Republic of Korea
| | - Jimin Choi
- Central R&D Center, Medical & Bio Decision Co., Ltd., Suwon 16229, Republic of Korea
| | - Sang-Hyun Lee
- Central R&D Center, Medical & Bio Decision Co., Ltd., Suwon 16229, Republic of Korea
| | - Bosung Ku
- Central R&D Center, Medical & Bio Decision Co., Ltd., Suwon 16229, Republic of Korea
| | - Da Hyun Kang
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Chaeuk Chung
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
16
|
Gandhi NN, Inzana TJ, Rajagopalan P. Bovine Airway Models: Approaches for Investigating Bovine Respiratory Disease. ACS Infect Dis 2023; 9:1168-1179. [PMID: 37257116 DOI: 10.1021/acsinfecdis.2c00618] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Bovine respiratory disease (BRD) is a multifactorial condition where different genera of bacteria, such as Mannheimia haemolytica, Histophilus somni, Pasteurella multocida, and Mycoplasma bovis, and viruses, like bovine respiratory syncytial virus, bovine viral diarrhea virus, and bovine herpes virus-1, infect the lower respiratory tract of cattle. These pathogens can co-infect cells in the respiratory system, thereby making specific treatment very difficult. Currently, the most common models for studying BRD include a submerged tissue culture (STC), where monolayers of epithelial cells are typically covered either in cellular or spent biofilm culture medium. Another model is an air-liquid interface (ALI), where epithelial cells are exposed on their apical side and allowed to differentiate. However, limited work has been reported on the study of three-dimensional (3D) bovine models that incorporate multiple cell types to represent the architecture of the respiratory tract. The roles of different defense mechanisms in an infected bovine respiratory system, such as mucin production, tight junction barriers, and the production of antimicrobial peptides in in vitro cultures require further investigation in order to provide a comprehensive understanding of the disease pathogenesis. In this report, we describe the different aspects of BRD, including the most implicated pathogens and the respiratory tract, which are important to incorporate in disease models assembled in vitro. Although current advancements of bovine respiratory cultures have led to knowledge of the disease, 3D multicellular organoids that better recapitulate the in vivo environment exhibit potential for future investigations.
Collapse
Affiliation(s)
- Neeti N Gandhi
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Thomas J Inzana
- College of Veterinary Medicine, Long Island University, Brookville, New York 11548, United States
| | - Padmavathy Rajagopalan
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
17
|
Bessa MJ, Sarmento B, Oliveira M, Rodrigues F. In vitro data for fire pollutants: contribution of studies using human cell models towards firefighters' occupational. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:238-255. [PMID: 36883725 DOI: 10.1080/10937404.2023.2187909] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Firefighters are the principal line of defense against fires, being at elevated risk of exposure to health-relevant pollutants released during fires and burning processes. Although many biomonitoring studies exist, only a limited number of human in vitro investigations in fire risk assessment are currently available. In vitro studies stand out as valuable tools to assess the toxicity mechanisms involved following exposure to fire pollutants at a cellular level. The aim of the present review was to contextualize existing in vitro studies using human cell models exposed to chemicals emitted from fire emissions and wood smoke and discuss the implications of the observed toxic outcomes on adverse health effects detected in firefighters. Most of the reported in vitro investigations focused on monocultures respiratory models and exposure to particulate matter (PM) extracts collected from fire effluents. Overall, (1) a decrease in cellular viability, (2) enhanced oxidative stress, (3) increased pro-inflammatory cytokines levels and (4) elevated cell death frequencies were noted. However, limited information remains regarding the toxicity mechanisms initiated by firefighting activities. Hence, more studies employing advanced in vitro models and exposure systems using human cell lines are urgently needed taking into consideration different routes of exposure and health-related pollutants released from fires. Data are needed to establish and define firefighters' occupational exposure limits and to propose mitigation strategies to promote beneficial human health.
Collapse
Affiliation(s)
- Maria João Bessa
- UNIPRO - Unidade de Investigação em Patologia e Reabilitação Oral, Instituto Universitário de Ciências da Saúde (IUCS), CESPU, Gandra, Portugal
| | - Bruno Sarmento
- UNIPRO - Unidade de Investigação em Patologia e Reabilitação Oral, Instituto Universitário de Ciências da Saúde (IUCS), CESPU, Gandra, Portugal
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- INEB - Institute of Biomedical Engineering, University of Porto, Porto, Portugal
| | - Marta Oliveira
- REQUIMTE/LAQV, ISEP, Polytechnique of Porto, Porto, Portugal
| | | |
Collapse
|
18
|
Adamič N, Vengust M. Regenerative medicine in lung diseases: A systematic review. Front Vet Sci 2023; 10:1115708. [PMID: 36733636 PMCID: PMC9887049 DOI: 10.3389/fvets.2023.1115708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
Regenerative medicine has opened the door to the exploration of new therapeutic methods for the treatment of various diseases, especially those associated with local or general disregulation of the immune system. In pulmonary diseases, new therapeutic strategies have emerged that are aimed at restoring functional lung tissue rather than alleviating symptoms. These strategies focus on tissue regeneration using stem cells and/or their derivatives or replacement of dysfunctional tissue using biomedical engineering. Animal health can directly benefit from regenerative therapy strategies and also serve as a translational experimental model for human disease. Several clinical trials have been conducted to evaluate the effects of cellular treatment on inflammatory lung disease in animals. Data reported to date show several beneficial effects in ex vivo and in vivo models; however, our understanding of the mechanisms that regenerative therapies exert on diseased tissues remains incomplete.
Collapse
|
19
|
Organoid Technologies for SARS-CoV-2 Research. CURRENT STEM CELL REPORTS 2022; 8:151-163. [PMID: 36313938 PMCID: PMC9589566 DOI: 10.1007/s40778-022-00220-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2022] [Indexed: 12/05/2022]
Abstract
Purpose of Review Organoids are an emerging technology utilizing three-dimensional (3D), multi-cellular in vitro models to represent the function and physiological responses of tissues and organs. By using physiologically relevant models, more accurate tissue responses to viral infection can be observed, and effective treatments and preventive strategies can be identified. Animals and two-dimensional (2D) cell culture models occasionally result in inaccurate disease modeling outcomes. Organoids have been developed to better represent human organ and tissue systems, and accurately model tissue function and disease responses. By using organoids to study SARS-Cov-2 infection, researchers have now evaluated the viral effects on different organs and evaluate efficacy of potential treatments. The purpose of this review is to highlight organoid technologies and their ability to model SARS-Cov-2 infection and tissue responses. Recent Findings Lung, cardiac, kidney, and small intestine organoids have been examined as potential models of SARS-CoV-2 infection. Lung organoid research has highlighted that SARS-CoV-2 shows preferential infection of club cells and have shown value for the rapid screening and evaluations of multiple anti-viral drugs. Kidney organoid research suggests human recombinant soluble ACE2 as a preventative measure during early-stage infection. Using small intestine organoids, fecal to oral transmission has been evaluated as a transmission route for the virus. Lastly in cardiac organoids drug evaluation studies have found that drugs such as bromodomain, external family inhibitors, BETi, and apabetalone may be effective treatments for SARs-CoV-2 cardiac injury. Summary Organoids are an effective tool to study the effects of viral infections and for drug screening and evaluation studies. By using organoids, more accurate disease modeling can be performed, and physiological effects of infection and treatment can be better understood.
Collapse
|
20
|
Bosáková V, De Zuani M, Sládková L, Garlíková Z, Jose SS, Zelante T, Hortová Kohoutková M, Frič J. Lung Organoids—The Ultimate Tool to Dissect Pulmonary Diseases? Front Cell Dev Biol 2022; 10:899368. [PMID: 35912110 PMCID: PMC9326165 DOI: 10.3389/fcell.2022.899368] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/24/2022] [Indexed: 11/15/2022] Open
Abstract
Organoids are complex multicellular three-dimensional (3D) in vitro models that are designed to allow accurate studies of the molecular processes and pathologies of human organs. Organoids can be derived from a variety of cell types, such as human primary progenitor cells, pluripotent stem cells, or tumor-derived cells and can be co-cultured with immune or microbial cells to further mimic the tissue niche. Here, we focus on the development of 3D lung organoids and their use as disease models and drug screening tools. We introduce the various experimental approaches used to model complex human diseases and analyze their advantages and disadvantages. We also discuss validation of the organoids and their physiological relevance to the study of lung diseases. Furthermore, we summarize the current use of lung organoids as models of host-pathogen interactions and human lung diseases such as cystic fibrosis, chronic obstructive pulmonary disease, or SARS-CoV-2 infection. Moreover, we discuss the use of lung organoids derived from tumor cells as lung cancer models and their application in personalized cancer medicine research. Finally, we outline the future of research in the field of human induced pluripotent stem cell-derived organoids.
Collapse
Affiliation(s)
- Veronika Bosáková
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czechia
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marco De Zuani
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czechia
| | - Lucie Sládková
- Institute of Hematology and Blood Transfusion, Prague, Czechia
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Zuzana Garlíková
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czechia
| | - Shyam Sushama Jose
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czechia
| | - Teresa Zelante
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Jan Frič
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czechia
- Institute of Hematology and Blood Transfusion, Prague, Czechia
- *Correspondence: Jan Frič,
| |
Collapse
|
21
|
Saygili E, Devamoglu U, Goker-Bagca B, Goksel O, Biray-Avci C, Goksel T, Yesil-Celiktas O. A drug-responsive multicellular human spheroid model to recapitulate drug-induced pulmonary fibrosis. Biomed Mater 2022; 17. [PMID: 35617946 DOI: 10.1088/1748-605x/ac73cd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/26/2022] [Indexed: 11/12/2022]
Abstract
Associated with a high mortality rate, pulmonary fibrosis (PF) is the end stage of several interstitial lung diseases. Although many factors are linked to PF progression, initiation of the fibrotic process remains to be studied. Current research focused on generating new strategies to gain a better understanding of the underlying disease mechanism as the animal models remain insufficient to reflect human physiology. Herein, to account complex cellular interactions within the fibrotic tissue, a multicellular spheroid (MCS) model where human bronchial epithelial cells incorporated with human lung fibroblasts was generated and treated with bleomycin (BLM) to emulate drug-induced PF. Recapitulating the epithelial-interstitial microenvironment, the findings successfully reflected the PF disease, where excessive alpha smooth muscle actin (α-SMA) and collagen type I secretion were noted along with the morphological changes in response to BLM. Moreover, increased levels of fibrotic linked COL13A1, MMP2, WNT3 and decreased expression level of CDH1 provide evidence for the model reliability on fibrosis modelling. Subsequent administration of the FDA approved nintedanib and pirfenidone anti-fibrotic drugs proved the drug-responsiveness of the model.
Collapse
Affiliation(s)
- Ecem Saygili
- Department of Bioengineering, Ege University, Department of Bioengineering, Bornova, Izmir, 35040, TURKEY
| | - Utku Devamoglu
- Department of Bioengineering, Ege University, Department of Bioengineering, Bornova, Izmir, 35040, TURKEY
| | - Bakiye Goker-Bagca
- Department of Medical Biology, Adnan Menderes University, Department of Medical Biology, Aydin, Aydin, 09010, TURKEY
| | - Ozlem Goksel
- Department of Pulmonary Medicine / EgeSAM-Ege University Translational Pulmonary Research Center, Ege University, Bornova, Izmir, 35040, TURKEY
| | - Cigir Biray-Avci
- Department of Medical Biology, Ege University, Bornova, Izmir, 35040, TURKEY
| | - Tuncay Goksel
- Department of Pulmonary Medicine / EgeSAM-Ege University Translational Pulmonary Research Center, Ege University, Bornova, Izmir, 35040, TURKEY
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering / EgeSAM-Ege University Translational Pulmonary Research Center, Ege University, Bornova, Izmir, 35040, TURKEY
| |
Collapse
|
22
|
Varghese B, Ling Z, Ren X. Reconstructing the pulmonary niche with stem cells: a lung story. Stem Cell Res Ther 2022; 13:161. [PMID: 35410254 PMCID: PMC8996210 DOI: 10.1186/s13287-022-02830-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/23/2022] [Indexed: 12/25/2022] Open
Abstract
The global burden of pulmonary disease highlights an overwhelming need in improving our understanding of lung development, disease, and treatment. It also calls for further advances in our ability to engineer the pulmonary system at cellular and tissue levels. The discovery of human pluripotent stem cells (hPSCs) offsets the relative inaccessibility of human lungs for studying developmental programs and disease mechanisms, all the while offering a potential source of cells and tissue for regenerative interventions. This review offers a perspective on where the lung stem cell field stands in terms of accomplishing these ambitious goals. We will trace the known stages and pathways involved in in vivo lung development and how they inspire the directed differentiation of stem and progenitor cells in vitro. We will also recap the efforts made to date to recapitulate the lung stem cell niche in vitro via engineered cell-cell and cell-extracellular matrix (ECM) interactions.
Collapse
Affiliation(s)
- Barbie Varghese
- Department of Biomedical Engineering, Carnegie Mellon University, Scott Hall 4N111, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Zihan Ling
- Department of Biomedical Engineering, Carnegie Mellon University, Scott Hall 4N111, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Scott Hall 4N111, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
23
|
Liberti DC, Morrisey EE. Organoid models: assessing lung cell fate decisions and disease responses. Trends Mol Med 2021; 27:1159-1174. [PMID: 34674972 DOI: 10.1016/j.molmed.2021.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022]
Abstract
Organoids can be derived from various cell types in the lung, and they provide a reproducible and tractable model for understanding the complex signals driving cell fate decisions in a regenerative context. In this review, we provide a retrospective account of organoid methodologies and outline new opportunities for optimizing these methods to further explore emerging concepts in lung biology. Moreover, we examine the benefits of integrating organoid assays with in vivo modeling to explore how the various niches and compartments in the respiratory system respond to both acute and chronic lung disease. The strategic implementation and improvement of organoid techniques will provide exciting new opportunities to understand and identify new therapeutic approaches to ameliorate lung disease states.
Collapse
Affiliation(s)
- Derek C Liberti
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E Morrisey
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
24
|
Xu X, Nie Y, Wang W, Ullah I, Tung WT, Ma N, Lendlein A. Generation of 2.5D lung bud organoids from human induced pluripotent stem cells. Clin Hemorheol Microcirc 2021; 79:217-230. [PMID: 34487028 DOI: 10.3233/ch-219111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) are a promising cell source to generate the patient-specific lung organoid given their superior differentiation potential. However, the current 3D cell culture approach is tedious and time-consuming with a low success rate and high batch-to-batch variability. Here, we explored the establishment of lung bud organoids by systematically adjusting the initial confluence levels and homogeneity of cell distribution. The efficiency of single cell seeding and clump seeding was compared. Instead of the traditional 3D culture, we established a 2.5D organoid culture to enable the direct monitoring of the internal structure via microscopy. It was found that the cell confluence and distribution prior to induction were two key parameters, which strongly affected hiPSC differentiation trajectories. Lung bud organoids with positive expression of NKX 2.1, in a single-cell seeding group with homogeneously distributed hiPSCs at 70% confluence (SC_70%_hom) or a clump seeding group with heterogeneously distributed cells at 90% confluence (CL_90%_het), can be observed as early as 9 days post induction. These results suggest that a successful lung bud organoid formation with single-cell seeding of hiPSCs requires a moderate confluence and homogeneous distribution of cells, while high confluence would be a prominent factor to promote the lung organoid formation when seeding hiPSCs as clumps. 2.5D organoids generated with defined culture conditions could become a simple, efficient, and valuable tool facilitating drug screening, disease modeling and personalized medicine.
Collapse
Affiliation(s)
- Xun Xu
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Yan Nie
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Weiwei Wang
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Imran Ullah
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Wing Tai Tung
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Nan Ma
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany.,Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Andreas Lendlein
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.,Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| |
Collapse
|
25
|
|
26
|
In focus in HCB. Histochem Cell Biol 2021; 155:525-528. [PMID: 33977373 DOI: 10.1007/s00418-021-01991-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
|