1
|
Hudson ASR, Lisboa AMT, Andrade PVR, Bruzzi RS, Martins YAT, Soares DD, Martins FS, Wanner SP. Saccharomyces boulardii supplementation does not affect anaerobic power gain induced by short-term sprint interval training in physically active individuals. Braz J Med Biol Res 2025; 58:e14196. [PMID: 40136227 DOI: 10.1590/1414-431x2025e14196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/05/2025] [Indexed: 03/27/2025] Open
Abstract
Sprint interval training (SIT), which consists of vigorous-intensity exercise interspersed with periods of rest or low-intensity exercise, can improve human anaerobic performance. Probiotic strains, including yeasts (e.g. Saccharomyces boulardii; Sb), have beneficial effects on human health; however, evidence regarding the effects of probiotics on anaerobic performance is unavailable. The current study investigated whether Sb supplementation influences the SIT-induced changes to the following performance variables: peak (PPO) and mean (MPO) power output. Fifteen healthy individuals (twelve men and three women) were randomly divided into two groups: placebo (PLA; n=8) and Sb (n=7). The individuals performed six SIT sessions on a cycle ergometer (four to seven 30-s all-out sprints thrice weekly). During the training period, participants ingested a capsule containing PLA or at least 1×109 Sb cells daily for 14 days. Performance-related variables were compared between the first and last training sessions. Sb supplementation did not influence the changes in PPO and MPO across the two weeks of training (P>0.05); therefore, the data from both groups were analyzed collectively to assess performance changes induced by SIT. Training increased PPO, an index of anaerobic power, in the sixth session compared to the first session (by 8±11% in the first sprint; +1.0±1.2 W/kg; P=0.008) but did not change MPO. In conclusion, short-term SIT improved the participants' anaerobic performance (power), as evidenced by increased PPO. Sb supplementation did not affect the improved anaerobic power caused by SIT.
Collapse
Affiliation(s)
- A S R Hudson
- Laboratório de Fisiologia do Exercício, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
- Departamento de Ciências e Linguagens, Instituto Federal de Minas Gerais, Campus Bambuí, Bambuí, MG, Brasil
| | - A M T Lisboa
- Laboratório de Fisiologia do Exercício, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - P V R Andrade
- Laboratório de Fisiologia do Exercício, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - R S Bruzzi
- Laboratório de Fisiologia do Exercício, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Y A T Martins
- Laboratório de Fisiologia do Exercício, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - D D Soares
- Laboratório de Fisiologia do Exercício, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - F S Martins
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - S P Wanner
- Laboratório de Fisiologia do Exercício, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
- Departamento de Ciências e Linguagens, Instituto Federal de Minas Gerais, Campus Bambuí, Bambuí, MG, Brasil
| |
Collapse
|
2
|
Gehlert S, Khurshudyan A, Weber S, Widdershoven J, Van Schuylenbergh R. Reliability of a non-invasive method to calculate buffer capacity after exhaustive cycling exercise of 20 s to 12 min: a pilot study. Front Sports Act Living 2025; 7:1546117. [PMID: 40144204 PMCID: PMC11936892 DOI: 10.3389/fspor.2025.1546117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
Traditionally, buffer capacity (β) is measured on muscle biopsies by measuring changes in muscle pH in relation to exposure of standardized quantities of hydrochloric acid. This is an invasive approach requiring specific equipment and trained personnel which limits its usability in a normal training context. Assessing β using capillary blood lactate concentration (BLC) and pH values has been proposed as a more practical and cost-effective approach. The reliability of the input BLC and pH data on the calculations of β after maximal sprint and endurance exercise has not yet been investigated and was major aim of our study. Eleven subjects performed six maximal performance tests ranging from 20 s to 12 min duration over a 2-week period. All subjects were familiarized with the test conditions. For each performance test, pre and posttest BLC and pH was measured and used to calculate β using the Henderson-Hasselbach equation. As BLCpre and pHpre values showed poor reliability, β calculations were repeated using constants for BLCpre (1.23 mmol·L-1) and pHpre (7.426) chosen from the average values in the experimental data. Test-retest reliability for BLCpre (ICC: 0.12, 95% CI -0.49-0.65, n.s.) and pHpre (ICC: 0.40, 95% CI -0.22-0.79, n.s.) was poor, whereas BLCpost (ICC: 0.95, 95% CI 0.82-0.99, p < 0.05) and pHpost (ICC: 0.89, 95% CI 0.65-0.97, p < 0.05) displayed good to excellent reliability. Good reliability was observed for β calculated from the Henderson-Hasselbalch equation utilizing BLCpost and pHpost only (ICC: 0.86, 95% CI 0.55-0.96, p < 0.05). The validity of this method in comparison with gold-standard methods needs further scientific investigation.
Collapse
Affiliation(s)
- Sebastian Gehlert
- Institut für Sportwissenschaft, University of Hildesheim, Hildesheim, Lower Saxony, Germany
| | | | | | | | - Reinout Van Schuylenbergh
- INSCYD GmbH, Salenstein, Switzerland
- Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Poon ETC, Li HY, Little JP, Wong SHS, Ho RST. Efficacy of Interval Training in Improving Body Composition and Adiposity in Apparently Healthy Adults: An Umbrella Review with Meta-Analysis. Sports Med 2024; 54:2817-2840. [PMID: 39003682 PMCID: PMC11560999 DOI: 10.1007/s40279-024-02070-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Although the efficacy of interval training for improving body composition has been summarized in an increasing number of systematic reviews in recent years, discrepancies in review findings and conclusions have been observed. OBJECTIVE This study aims to synthesize the available evidence on the efficacy of interval training compared with moderate-intensity continuous training (MICT) and nonexercise control (CON) in reducing body adiposity in apparently healthy adults. METHODS An umbrella review with meta-analysis was performed. A systematic search was conducted in seven databases (MEDLINE, EMBASE, Cochrane Database, CINAHL, Scopus, SPORTDiscus, and Web of Science) up to October 2023. Systematic reviews with meta-analyses of randomized controlled trials (RCTs) comparing interval training and MICT/CON were included. Literature selection, data extraction, and methodological quality assessment (AMSTAR-2) were conducted independently by two reviewers. Meta-analyses were performed using a random-effects model. Subgroup analyses were conducted based on the type of interval training [high-intensity interval training (HIIT) and sprint interval training (SIT)], intervention duration, body mass index, exercise modality, and volume of HIIT protocols. RESULTS Sixteen systematic reviews, including 79 RCTs and 2474 unique participants, met the inclusion criteria. Most systematic reviews had a critically low (n = 6) or low (n = 6) AMSTAR-2 score. Interval training demonstrated significantly greater reductions in total body fat percent (BF%) compared with MICT [weighted mean difference (WMD) of - 0.77%; 95% confidence interval (CI) - 1.12 to - 0.32%] and CON (WMD of - 1.50%; 95% CI - 2.40 to - 0.58%). Significant reductions in fat mass, visceral adipose tissue, subcutaneous abdominal fat, and android abdominal fat were also observed following interval training compared to CON. Subgroup analyses indicated that both HIIT and SIT resulted in superior BF% loss than MICT. These benefits appeared to be more prominent in individuals with overweight/obesity and longer duration interventions (≥ 12 weeks), as well as in protocols using cycling as a modality and low-volume HIIT (i.e., < 15 min of high-intensity exercise per session). CONCLUSIONS This novel umbrella review with large-scale meta-analysis provides an updated synthesis of evidence with implications for physical activity guideline recommendations. The findings support interval training as a viable exercise strategy for reducing adiposity in the general population.
Collapse
Affiliation(s)
- Eric Tsz-Chun Poon
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hong-Yat Li
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jonathan Peter Little
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Stephen Heung-Sang Wong
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Robin Sze-Tak Ho
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Shatin, Hong Kong.
- Physical Education Unit, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
4
|
Silva Oliveira P, Boppre G, Fonseca H. Comparison of Polarized Versus Other Types of Endurance Training Intensity Distribution on Athletes' Endurance Performance: A Systematic Review with Meta-analysis. Sports Med 2024; 54:2071-2095. [PMID: 38717713 PMCID: PMC11329428 DOI: 10.1007/s40279-024-02034-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Polarized training intensity distribution (POL) was recently suggested to be superior to other training intensity distribution (TID) regimens for endurance performance improvement. OBJECTIVE We aimed to systematically review and meta-analyze evidence comparing POL to other TIDs on endurance performance. METHODS PRISMA guidelines were followed. The protocol was registered at PROSPERO (CRD42022365117). PubMed, Scopus, and Web of Science were searched up to 20 October 2022 for studies in adults and young adults for ≥ 4 weeks comparing POL with other TID interventions regarding VO2peak, time-trial (TT), time to exhaustion (TTE) or speed or power at the second ventilatory or lactate threshold (V/P at VT2/LT2). Risk of bias was assessed with RoB-2 and ROBINS-I. Certainty of evidence was assessed with GRADE. Results were analyzed by random effects meta-analysis using standardized mean differences. RESULTS Seventeen studies met the inclusion criteria (n = 437 subjects). Pooled effect estimates suggest POL superiority for improving VO2peak (SMD = 0.24 [95% CI 0.01, 0.48]; z = 2.02 (p = 0.040); 11 studies, n = 284; I2 = 0%; high certainty of evidence). Superiority, however, only occurred in shorter interventions (< 12 weeks) (SMD = 0.40 [95% CI 0.08, 0.71; z = 2.49 (p = 0.01); n = 163; I2 = 0%) and for highly trained athletes (SMD = 0.46 [95% CI 0.10, 0.82]; z = 2.51 (p = 0.01); n = 125; I2 = 0%). The remaining endurance performance surrogates were similarly affected by POL and other TIDs: TT (SMD = - 0.01 [95% CI -0.28, 0.25]; z = - 0.10 (p = 0.92); n = 221; I2 = 0%), TTE (SMD = 0.30 [95% CI - 0.20, 0.79]; z = 1.18 (p = 0.24); n = 66; I2 = 0%) and V/P VT2/LT2 (SMD = 0.04 [95% CI -0.21, 0.29]; z = 0.32 (p = 0.75); n = 253; I2 = 0%). Risk of bias for randomized controlled trials was rated as of some concern and for non-randomized controlled trials as low risk of bias (two studies) and some concerns (one study). CONCLUSIONS POL is superior to other TIDs for improving VO2peak, particularly in shorter duration interventions and highly trained athletes. However, the effect of POL was similar to that of other TIDs on the remaining surrogates of endurance performance. The results suggest that POL more effectively improves aerobic power but is similar to other TIDs for improving aerobic capacity.
Collapse
Affiliation(s)
- Pedro Silva Oliveira
- Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Rua Dr. Plácido Costa, 91, 4200-450, Porto, Portugal.
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal.
| | - Giorjines Boppre
- Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Rua Dr. Plácido Costa, 91, 4200-450, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- Nucleus of Research in Human Movement Science, University Adventista, 3780000, Chillan, Chile
| | - Hélder Fonseca
- Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Rua Dr. Plácido Costa, 91, 4200-450, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| |
Collapse
|
5
|
Ando R, Kojima C, Okamoto S, Kasai N, Sumi D, Takao K, Goto K, Suzuki Y. Effect of 6-Week Sprint Training on Long-Distance Running Performance in Highly Trained Runners. Int J Sports Physiol Perform 2024; 19:645-650. [PMID: 38754856 DOI: 10.1123/ijspp.2023-0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/19/2023] [Accepted: 03/14/2024] [Indexed: 05/18/2024]
Abstract
PURPOSE Long-distance running performance has been reported to be associated with sprint performance in highly trained distance runners. Therefore, we hypothesized that sprint training could enhance distance running and sprint performance in long-distance runners. This study examined the effect of 6-week sprint training on long-distance running and sprint performance in highly trained distance runners. METHODS Nineteen college runners were divided into control (n = 8) and training (n = 11) groups. Participants in the training group performed 12 sprint training sessions in 6 weeks, while those in the control group performed 12 distance training sessions. Before and after the interventions, maximal oxygen uptake (V˙O2max), O2 cost during submaximal running (290 m·min-1 and 310 m·min-1 of running velocity), and time to exhaustion (starting at 290 m·min-1 and increased 10 m·min-1 every minute) were assessed on a treadmill. Additionally, the 100-m and 400-m sprinting times and 3000-m running time were determined on an all-weather track. RESULTS In the control group, no measurements significantly changed after the intervention. In the training group, the time to exhaustion, 100-m and 400-m sprinting times, and 3000-m running time improved significantly, while V˙O2max and O2 cost did not change. CONCLUSIONS These results showed that 6-week sprint training improved both sprint and long-distance running performance in highly trained distance runners without a change in aerobic capacity. Improvement in the time to exhaustion without a change in V˙O2max suggests that the enhancement of long-distance running performance could be attributable to improved anaerobic capacity.
Collapse
Affiliation(s)
- Ryosuke Ando
- Department of Sport Science and Research, Japan Institute of Sports Sciences, Tokyo, Japan
- Center for General Education, Tokyo Keizai University, Tokyo, Japan
| | - Chihiro Kojima
- Department of Sport Science and Research, Japan Institute of Sports Sciences, Tokyo, Japan
- Research Organization of Science and Technology, Ritsumeikan University, Shiga, Japan
| | - Saya Okamoto
- Graduate School of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Nobukazu Kasai
- Department of Sport Science and Research, Japan Institute of Sports Sciences, Tokyo, Japan
- Faculty of Health and Medical Sciences, Aichi Shukutoku University, Aichi, Japan
| | - Daichi Sumi
- Research Center for Urban Health and Sports, Osaka Metropolitan University, Osaka, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
- Institute of Sport Science, ASICS Corporation, Hyogo, Japan
| | - Kenji Takao
- Research Organization of Science and Technology, Ritsumeikan University, Shiga, Japan
| | - Kazushige Goto
- Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Yasuhiro Suzuki
- Center for General Education, Tokyo Keizai University, Tokyo, Japan
| |
Collapse
|
6
|
Chiron F, Thomas C, Bardin J, Mullie F, Bennett S, Chéradame J, Caliz L, Hanon C, Tiollier E. Influence of Ingestion of Bicarbonate-Rich Water Combined with an Alkalizing or Acidizing Diet on Acid-Base Balance and Anaerobic Performance. J Hum Kinet 2024; 93:105-117. [PMID: 39132426 PMCID: PMC11307191 DOI: 10.5114/jhk/182986] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/23/2024] [Indexed: 08/13/2024] Open
Abstract
During high-intensity (HI) exercise, metabolic acidosis significantly impairs exercise performance. Increasing the body's buffering capacity through training and exogenous intake of alkalizing supplements may improve high-intensity performance. Manipulating water and diet intake may influence the acid-base balance. The aim of this study was to determine the effects of mineral water rich in bicarbonate ions (STY) or placebo water (PLA) on circulating biomarkers and anaerobic performance and to verify whether alkalizing (ALK) or acidizing (ACI) diet would modulate these effects. Twenty-four athletes, assigned either to ALK (n = 12) or ACI (n = 12) diet for four weeks, completed a 1-min rowing Wingate Test in a double-blind and randomized trial after one week of daily hydration (1.5 to 2L/d) with either STY or PLA. Blood samples were taken before and after each test, and urine samples were collected each week. Chronic consumption of bicarbonate-rich water significantly impacted resting urinary pH irrespective of alkalizing or acidizing dietary intake. STY induced a significant increase in blood pH, lactate, and HCO3 - ion concentration post-exercise compared to PLA. Similar changes were observed when STY was associated with the ALK diet. In contrast, STY combined with the ACI diet only significantly affected urine pH and peak blood lactate compared to PLA (p < 0.05). No effect of bicarbonate-rich water was reported on anaerobic performance (p > 0.05). Our results suggest that consumption of bicarbonate-rich water alters acid-base balance during a warm-up and after HI exercise, could potentiate beneficial effects of an alkalizing diet on the acid-base balance after HI exercise, and reduces the acid load induced by an acidifying diet.
Collapse
Affiliation(s)
- François Chiron
- LBEPS, Univ Evry, IRBA, Université de Paris-Saclay, Evry, France
- French Federation of Athletics (FFA), Paris, France
| | - Claire Thomas
- LBEPS, Univ Evry, IRBA, Université de Paris-Saclay, Evry, France
- Laboratory of Sport, Expertise and Performance (SEP), French National Institute of Sport (INSEP), Paris, France
| | - Joffrey Bardin
- Laboratory of Sport, Expertise and Performance (SEP), French National Institute of Sport (INSEP), Paris, France
| | | | - Samuel Bennett
- Research Institute for Sport and Exercise Science (RISES), Liverpool John Moores University, Liverpool, United Kingdom
| | | | - Laurine Caliz
- Laboratory of Sport, Expertise and Performance (SEP), French National Institute of Sport (INSEP), Paris, France
| | - Christine Hanon
- French Federation of Athletics (FFA), Paris, France
- Laboratory of Sport, Expertise and Performance (SEP), French National Institute of Sport (INSEP), Paris, France
| | - Eve Tiollier
- Laboratory of Sport, Expertise and Performance (SEP), French National Institute of Sport (INSEP), Paris, France
| |
Collapse
|
7
|
Clemente FM, Moran J, Ramirez-Campillo R, Beato M, Afonso J. Endurance Performance Adaptations between SSG and HIIT in Soccer Players: A Meta-analysis. Int J Sports Med 2024; 45:183-210. [PMID: 37678559 DOI: 10.1055/a-2171-3255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The objective of this systematic review with meta-analysis was to compare the endurance performance chronic adaptations induced by running-based high-intensity interval training (HIIT), small-sided games (SSGs), and combined HIIT+SSGs in male and female youth and adult soccer players. The studies included in this review followed the PICOS criteria: (i) healthy soccer players; (ii) interventions based on SSGs; (iii) comparators exposed to only HIIT or combined SSGs+HIIT; (iv) endurance performance variables. Studies were searched for in the following databases: (i) PubMed; (ii) Scopus; (iii) SPORTDiscus; (iv) Web of Science. After conducting an initial database search that retrieved a total of 5,389 records, a thorough screening process resulted in the inclusion of 20 articles that met the eligibility criteria. Sixteen studies reported outcomes related to endurance performance measured through field-based tests, while five studies provided results from direct measurements of maximal oxygen uptake (VO2max). Results showed a non-significant small-magnitude favoring effect for the HIIT groups compared to the SSG groups (ES=0.37, p=0.074) for endurance, while a non-significant small-magnitude favoring SSGs was observed (ES=-0.20, p=0.303) for VO2max. Despite the very low certainty of evidence, the findings suggest similar effects induced by both SSG and HIIT on improving endurance performance and VO2max.
Collapse
Affiliation(s)
- Filipe Manuel Clemente
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal
- Research Center in Sports Performance, Recreation, Innovation and Technology (SPRINT), Melgaço, Portugal
| | - Jason Moran
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, Essex, United Kingdom of Great Britain and Northern Ireland
| | - Rodrigo Ramirez-Campillo
- Exercise and Rehabilitation Sciences Institute, Exercise and Rehabilitation Sciences Institute. School of Physical Therapy. Faculty of Rehabilitation Sciences. Universidad Andres Bello. Santiago, Chile, Santiago, Chile
| | - Marco Beato
- School of Health and Sports Science, University of Suffolk, Ipswich, United Kingdom of Great Britain and Northern Ireland
| | - José Afonso
- Centre of Research, Education, Innovation, and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, University of Porto, Porto, Portugal
| |
Collapse
|
8
|
Liu Y, Zhou A, Li F, Yue T, Xia Y, Yao Y, Zhou X, Zhang Y, Wang Y. Aerobic capacity and
V
˙
O
2
kinetics adaptive responses to short-term high-intensity interval training and detraining in untrained females. Eur J Appl Physiol 2023; 123:1685-1699. [PMID: 36995431 DOI: 10.1007/s00421-023-05182-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023]
Abstract
PURPOSE This study investigated the physical fitness and oxygen uptake kinetics (τV ˙ O 2 p ) along with the O2 delivery and utilization (heart rate kinetics, τHR; deoxyhemoglobin/V ˙ O 2 ratio, ∆[HHb]/V ˙ O 2 ) adaptations of untrained female participants responding to 4 weeks of high-intensity interval training (HIIT) and 2 weeks of detraining. METHODS Participants were randomly assigned to HIIT (n = 11, 4 × 4 protocol) or nonexercising control (n = 9) groups. Exercising group engaged 4 weeks of treadmill HIIT followed by 2 weeks of detraining while maintaining daily activity level. Ramp-incremental (RI) tests and step-transitions to moderate-intensity exercise were performed. Aerobic capacity and performance (maximal oxygen uptake,V ˙ O 2 max ; gas-exchange threshold, GET; power output, PO), body composition (skeletal muscle mass, SMM; body fat percentage, BF%), muscle oxygenation status (∆[HHb]),V ˙ O 2 , and HR kinetics were assessed. RESULTS HIIT elicited improvements in aerobic capacity (V ˙ O 2 max , + 0.17 ± 0.04 L/min; GET, + 0.18 ± 0.05 L/min, P < 0.01; PO-V ˙ O 2 max , ± 23.36 ± 8.37 W; PO-GET, + 17.18 ± 3.07 W, P < 0.05), body composition (SMM, + 0.92 ± 0.17 kg; BF%, - 3.08% ± 0.58%, P < 0.001), and speed up the τV ˙ O 2 p (- 8.04 ± 1.57 s, P < 0.001) significantly, extending to better ∆[HHb]/V ˙ O 2 ratio (1.18 ± 0.08 to 1.05 ± 0.14). After a period of detraining, the adaptation in body composition and aerobic capacity, as well as the accelerated τV ˙ O 2 p were maintained in the HIIT group, but the PO-V ˙ O 2 max and PO-GET declined below the post-training level (P < 0.05), whereas no changes were reported in controls (P > 0.05). Four weeks of HIIT induced widespread physiological adaptations in females, and the majority of improvements were preserved after 2 weeks of detraining except for power output corresponding toV ˙ O 2 max and GET.
Collapse
Affiliation(s)
- Yujie Liu
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Aiyi Zhou
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Fengya Li
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Tian Yue
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Yuncan Xia
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Yibing Yao
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Xiaoxiao Zhou
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Yihong Zhang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Yan Wang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China.
| |
Collapse
|
9
|
Smith NDW, Scott BR, Girard O, Peiffer JJ. Aerobic Training With Blood Flow Restriction for Endurance Athletes: Potential Benefits and Considerations of Implementation. J Strength Cond Res 2022; 36:3541-3550. [PMID: 34175880 DOI: 10.1519/jsc.0000000000004079] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT Smith, NDW, Scott, BR, Girard, O, and Peiffer, JJ. Aerobic training with blood flow restriction for endurance athletes: potential benefits and considerations of implementation. J Strength Cond Res 36(12): 3541-3550, 2022-Low-intensity aerobic training with blood flow restriction (BFR) can improve maximal oxygen uptake, delay the onset of blood lactate accumulation, and may provide marginal benefits to economy of motion in untrained individuals. Such a training modality could also improve these physiological attributes in well-trained athletes. Indeed, aerobic BFR training could be beneficial for those recovering from injury, those who have limited time for training a specific physiological capacity, or as an adjunct training stimulus to provide variation in a program. However, similarly to endurance training without BFR, using aerobic BFR training to elicit physiological adaptations in endurance athletes will require additional considerations compared with nonendurance athletes. The objective of this narrative review is to discuss the acute and chronic aspects of aerobic BFR exercise for well-trained endurance athletes and highlight considerations for its effective implementation. This review first highlights key physiological capacities of endurance performance. The acute and chronic responses to aerobic BFR exercise and their impact on performance are then discussed. Finally, considerations for prescribing and monitoring aerobic BFR exercise in trained endurance populations are addressed to challenge current views on how BFR exercise is implemented.
Collapse
Affiliation(s)
- Nathan D W Smith
- Exercise Science, Murdoch University, Perth, Western Australia.,Murdoch Applied Sports Science Laboratory, Murdoch University, Perth, Western Australia
| | - Brendan R Scott
- Murdoch Applied Sports Science Laboratory, Murdoch University, Perth, Western Australia.,Center for Healthy Ageing, Murdoch University, Perth, Western Australia ; and
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia
| | - Jeremiah J Peiffer
- Murdoch Applied Sports Science Laboratory, Murdoch University, Perth, Western Australia.,Center for Healthy Ageing, Murdoch University, Perth, Western Australia ; and
| |
Collapse
|
10
|
Ienaga K, Yamaguchi K, Ota N, Goto K. Augmented muscle deoxygenation during repeated sprint exercise with post-exercise blood flow restriction. Physiol Rep 2022; 10:e15294. [PMID: 35586958 PMCID: PMC9117971 DOI: 10.14814/phy2.15294] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 06/15/2023] Open
Abstract
Blood flow restriction (BFR) during low-intensity exercise has been known to be a potent procedure to alter metabolic and oxygen environments in working muscles. Moreover, the use of BFR during inter-set rest periods of repeated sprint exercise has been recently suggested to be a potent procedure for improving training adaptations. The present study was designed to determine the effect of repeated sprint exercise with post-exercise BFR (BFR during rest periods between sprints) on muscle oxygenation in working muscles. Eleven healthy males performed two different conditions on different days: either repeated sprint exercise with BFR during rest periods between sets (BFR condition) or without BFR (CON condition). A repeated sprint exercise consisted of three sets of 3 × 6-s maximal sprints (pedaling) with 24s rest periods between sprints and 5 min rest periods between sets. In BFR condition, two min of BFR (100-120 mmHg) for both legs was conducted between sets. During the exercise, power output and arterial oxygen saturation (SpO2 ) were evaluated. Muscle oxygenation for the vastus lateralis muscle, exercise-induced changes in muscle blood flow, and muscle oxygen consumption were measured. During BFR between sets, BFR condition presented significantly higher deoxygenated hemoglobin + myoglobin (p < 0.01) and lower tissue saturation index (p < 0.01) than those in CON condition. However, exercise-induced blood lactate elevation and reduction of blood pH did not differ significantly between the conditions. Furthermore, power output throughout nine sprints did not differ significantly between the two conditions. In conclusion, repeated sprint exercise with post-exercise BFR augmented muscle deoxygenation and local hypoxia, without interfering power output.
Collapse
Affiliation(s)
- Koki Ienaga
- Graduate School of Sport and Health ScienceRitsumeikan UniversityKusatsuShigaJapan
| | - Keiichi Yamaguchi
- Graduate School of Sport and Health ScienceRitsumeikan UniversityKusatsuShigaJapan
| | - Naoki Ota
- Graduate School of Sport and Health ScienceRitsumeikan UniversityKusatsuShigaJapan
| | - Kazushige Goto
- Graduate School of Sport and Health ScienceRitsumeikan UniversityKusatsuShigaJapan
| |
Collapse
|
11
|
de Oliveira LF, Dolan E, Swinton PA, Durkalec-Michalski K, Artioli GG, McNaughton LR, Saunders B. Extracellular Buffering Supplements to Improve Exercise Capacity and Performance: A Comprehensive Systematic Review and Meta-analysis. Sports Med 2022; 52:505-526. [PMID: 34687438 DOI: 10.1007/s40279-021-01575-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Extracellular buffering supplements [sodium bicarbonate (SB), sodium citrate (SC), sodium/calcium lactate (SL/CL)] are ergogenic supplements, although questions remain about factors which may modify their effect. OBJECTIVE To quantify the main effect of extracellular buffering agents on exercise outcomes, and to investigate the influence of potential moderators on this effect using a systematic review and meta-analytic approach. METHODS This study was designed in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Three databases were searched for articles that were screened according to inclusion/exclusion criteria. Bayesian hierarchical meta-analysis and meta-regression models were used to investigate pooled effects of supplementation and moderating effects of a range of factors on exercise and biomarker responses. RESULTS 189 articles with 2019 participants were included, 158 involving SB supplementation, 30 with SC, and seven with CL/SL; four studies provided a combination of buffering supplements together. Supplementation led to a mean estimated increase in blood bicarbonate of + 5.2 mmol L-1 (95% credible interval (CrI) 4.7-5.7). The meta-analysis models identified a positive overall effect of supplementation on exercise capacity and performance compared to placebo [ES0.5 = 0.17 (95% CrI 0.12-0.21)] with potential moderating effects of exercise type and duration, training status and when the exercise test was performed following prior exercise. The greatest ergogenic effects were shown for exercise durations of 0.5-10 min [ES0.5 = 0.18 (0.13-0.24)] and > 10 min [ES0.5 = 0.22 (0.10-0.33)]. Evidence of greater effects on exercise were obtained when blood bicarbonate increases were medium (4-6 mmol L-1) and large (> 6 mmol L-1) compared with small (≤ 4 mmol L-1) [βSmall:Medium = 0.16 (95% CrI 0.02-0.32), βSmall:Large = 0.13 (95% CrI - 0.03 to 0.29)]. SB (192 outcomes) was more effective for performance compared to SC (39 outcomes) [βSC:SB = 0.10 (95% CrI - 0.02 to 0.22)]. CONCLUSIONS Extracellular buffering supplements generate large increases in blood bicarbonate concentration leading to positive overall effects on exercise, with sodium bicarbonate being most effective. Evidence for several group-level moderating factors were identified. These data can guide an athlete's decision as to whether supplementation with buffering agents might be beneficial for their specific aims.
Collapse
Affiliation(s)
- Luana Farias de Oliveira
- Applied Physiology & Nutrition Research Group, Rheumatology Division, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, Brazil
| | - Eimear Dolan
- Applied Physiology & Nutrition Research Group, Rheumatology Division, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, Brazil
| | - Paul A Swinton
- School of Health Sciences, Robert Gordon University, Aberdeen, UK
| | - Krzysztof Durkalec-Michalski
- Department of Sports Dietetics, Poznań University of Physical Education, Poznań, Poland
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland
| | - Guilherme G Artioli
- Department of Life Sciences, Manchester Metropolitan University, John Dalton Building, Manchester, M1 5GD, UK
| | - Lars R McNaughton
- Sports Nutrition and Performance Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, UK
| | - Bryan Saunders
- Applied Physiology & Nutrition Research Group, Rheumatology Division, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, Brazil.
- Department of Sports Dietetics, Poznań University of Physical Education, Poznań, Poland.
- Institute of Orthopaedics and Traumatology, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
12
|
Physiological profile comparison between high intensity functional training, endurance and power athletes. Eur J Appl Physiol 2021; 122:531-539. [PMID: 34853894 DOI: 10.1007/s00421-021-04858-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/18/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION High intensity functional trainings (HIFT), a recent development of high intensity trainings, includes in the same training session components of endurance exercises, elements of Olympic weightlifting and powerlifting, gymnastics, plyometrics and calisthenics exercises. Therefore, subjects practicing this type of activity are supposed to show physiological features that represent a combination of both endurance and power athletes. The aim of this study was to compare the physiological profile of three groups of age-matched endurance, HIFT and power athletes. METHODS A total of 30 participants, 18 to 38-year-old men were enrolled in the study. Participants were divided in three groups: HIFT (n = 10), endurance (END, n = 10), and power (POW, weightlifters, n = 10) athletes. All were evaluated for anthropometric characteristics, VO2peak, handgrip, lower limb maximal isometric and isokinetic strength, countermovement vertical jump and anaerobic power through a shuttle run test on the field. RESULTS VO2peak/kg was higher in END and HIFT than POW athletes (p = 0.001 and p = 0.007, respectively), but there were no significant differences between the first two. POW and HIFT athletes showed significant greater strength at the handgrip, countermovement jump and leg extension/flexion tests than END athletes. HIFT athletes showed highest results at the dynamic isokinetic test, while there were no significant differences at the shuttle run test among groups. CONCLUSIONS As HIFT reach aerobic levels similar to END athletes and power and strength output similar to POW athletes, it appears that HIFT programs are effective to improve both endurance-related and power-related physical fitness components.
Collapse
|
13
|
High-Intensity Conditioning for Combat Athletes: Practical Recommendations. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112210658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Combat sports have been practiced for millennia and today are predominant sports at the Olympic games, with international organizations that host world, continental and national championships at amateur standard. There are also an increasing number of professional combat sports with global audiences. The growing popularity of professional combat sports and their importance at the Olympic games have led to an increase in scientific studies that characterize the physical, physiological, nutritional, biomechanical and training strategies of combat sports athletes. These studies characterize combat sports as high-intensity sports which require training strategies to develop the high-intensity capabilities of athletes. Therefore, the aim of this article is to (i) summarize the physiological demands of combat sports; (ii) present the primary considerations required to program high-intensity conditioning for athletes; (iii) define and present key high-intensity conditioning methods; and (iv) provide guidance for scientists and coaches to help prepare athletes under common but differing circumstances.
Collapse
|
14
|
Training-intensity Distribution on Middle- and Long-distance Runners: A Systematic Review. Int J Sports Med 2021; 43:305-316. [PMID: 34749417 DOI: 10.1055/a-1559-3623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Training-intensity distribution (TID) is considered the key factor to optimize performance in endurance sports. This systematic review aimed to: I) characterize the TID typically used by middle-and long-distance runners; II) compare the effect of different types of TID on endurance performance and its physiological determinants; III) determine the extent to which different TID quantification methods can calculate same TID outcomes from a given training program. The keywords and search strategy identified 20 articles in the research databases. These articles demonstrated differences in the quantification of the different training-intensity zones among quantification methods (i. e. session-rating of perceived exertion, heart rate, blood lactate, race pace, and running speed). The studies that used greater volumes of low-intensity training such as those characterized by pyramidal and polarized TID approaches, reported greater improvements in endurance performance than those which used a threshold TID. Thus, it seems that the combination of high-volume at low-intensity (≥ 70% of overall training volume) and low-volume at threshold and high-intensity interval training (≤ 30%) is necessary to optimize endurance training adaptations in middle-and long-distance runners. Moreover, monitoring training via multiple mechanisms that systematically encompasses objective and subjective TID quantification methods can help coaches/researches to make better decisions.
Collapse
|
15
|
Branquinho L, Ferraz R, Marques MC. 5-a-Side Game as a Tool for the Coach in Soccer Training. Strength Cond J 2021. [DOI: 10.1519/ssc.0000000000000629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Øvretveit K, Laginestra FG. Mechanisms and Trainability of Peripheral Fatigue in Grappling. Strength Cond J 2021. [DOI: 10.1519/ssc.0000000000000594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Hostrup M, Cairns SP, Bangsbo J. Muscle Ionic Shifts During Exercise: Implications for Fatigue and Exercise Performance. Compr Physiol 2021; 11:1895-1959. [PMID: 34190344 DOI: 10.1002/cphy.c190024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exercise causes major shifts in multiple ions (e.g., K+ , Na+ , H+ , lactate- , Ca2+ , and Cl- ) during muscle activity that contributes to development of muscle fatigue. Sarcolemmal processes can be impaired by the trans-sarcolemmal rundown of ion gradients for K+ , Na+ , and Ca2+ during fatiguing exercise, while changes in gradients for Cl- and Cl- conductance may exert either protective or detrimental effects on fatigue. Myocellular H+ accumulation may also contribute to fatigue development by lowering glycolytic rate and has been shown to act synergistically with inorganic phosphate (Pi) to compromise cross-bridge function. In addition, sarcoplasmic reticulum Ca2+ release function is severely affected by fatiguing exercise. Skeletal muscle has a multitude of ion transport systems that counter exercise-related ionic shifts of which the Na+ /K+ -ATPase is of major importance. Metabolic perturbations occurring during exercise can exacerbate trans-sarcolemmal ionic shifts, in particular for K+ and Cl- , respectively via metabolic regulation of the ATP-sensitive K+ channel (KATP ) and the chloride channel isoform 1 (ClC-1). Ion transport systems are highly adaptable to exercise training resulting in an enhanced ability to counter ionic disturbances to delay fatigue and improve exercise performance. In this article, we discuss (i) the ionic shifts occurring during exercise, (ii) the role of ion transport systems in skeletal muscle for ionic regulation, (iii) how ionic disturbances affect sarcolemmal processes and muscle fatigue, (iv) how metabolic perturbations exacerbate ionic shifts during exercise, and (v) how pharmacological manipulation and exercise training regulate ion transport systems to influence exercise performance in humans. © 2021 American Physiological Society. Compr Physiol 11:1895-1959, 2021.
Collapse
Affiliation(s)
- Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Simeon Peter Cairns
- SPRINZ, School of Sport and Recreation, Auckland University of Technology, Auckland, New Zealand.,Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Jens Bangsbo
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Meyler S, Bottoms L, Muniz-Pumares D. Biological and methodological factors affecting V ̇ O 2 max response variability to endurance training and the influence of exercise intensity prescription. Exp Physiol 2021; 106:1410-1424. [PMID: 34036650 DOI: 10.1113/ep089565] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/07/2021] [Indexed: 12/21/2022]
Abstract
NEW FINDINGS What is the topic of this review? Biological and methodological factors associated with the variable changes in cardiorespiratory fitness in response to endurance training. What advances does it highlight? Several biological and methodological factors exist that each contribute, to a given extent, to response variability. Notably, prescribing exercise intensity relative to physiological thresholds reportedly increases cardiorespiratory fitness response rates compared to when prescribed relative to maximum physiological values. As threshold-based approaches elicit more homogeneous acute physiological responses among individuals, when repeated over time, these uniform responses may manifest as more homogeneous chronic adaptations thereby reducing response variability. ABSTRACT Changes in cardiorespiratory fitness (CRF) in response to endurance training (ET) exhibit large variations, possibly due to a multitude of biological and methodological factors. It is acknowledged that ∼20% of individuals may not achieve meaningful increases in CRF in response to ET. Genetics, the most potent biological contributor, has been shown to explain ∼50% of response variability, whilst age, sex and baseline CRF appear to explain a smaller proportion. Methodological factors represent the characteristics of the ET itself, including the type, volume and intensity of exercise, as well as the method used to prescribe and control exercise intensity. Notably, methodological factors are modifiable and, upon manipulation, alter response rates to ET, eliciting increases in CRF regardless of an individual's biological predisposition. Particularly, prescribing exercise intensity relative to a physiological threshold (e.g., ventilatory threshold) is shown to increase CRF response rates compared to when intensity is anchored relative to a maximum physiological value (e.g., maximum heart rate). It is, however, uncertain whether the increased response rates are primarily attributable to reduced response variability, greater mean changes in CRF or both. Future research is warranted to elucidate whether more homogeneous chronic adaptations manifest over time among individuals, as a result of exposure to more homogeneous exercise stimuli elicited by threshold-based practices.
Collapse
Affiliation(s)
- Samuel Meyler
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Lindsay Bottoms
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | | |
Collapse
|
19
|
Myllyaho MM, Ihalainen JK, Hackney AC, Valtonen M, Nummela A, Vaara E, Häkkinen K, Kyröläinen H, Taipale RS. Hormonal Contraceptive Use Does Not Affect Strength, Endurance, or Body Composition Adaptations to Combined Strength and Endurance Training in Women. J Strength Cond Res 2021; 35:449-457. [PMID: 29927884 DOI: 10.1519/jsc.0000000000002713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Myllyaho, MM, Ihalainen, JK, Hackney, AC, Valtonen, M, Nummela, A, Vaara, E, Häkkinen, K, Kyröläinen, H, and Taipale, RS. Hormonal contraceptive use does not affect strength, endurance, or body composition adaptations to combined strength and endurance training in women. J Strength Cond Res 35(2): 449-457, 2021-This study examined the effects of a 10-week period of high-intensity combined strength and endurance training on strength, endurance, body composition, and serum hormone concentrations in physically active women using hormonal contraceptives (HCs, n = 9) compared with those who had never used hormonal contraceptives (NHCs, n = 9). Training consisted of 2 strength training sessions and 2 high-intensity running interval sessions per week. Maximal bilateral isometric leg press (Isom), maximal bilateral dynamic leg press (one repetition maximum [1RM]), countermovement jump (CMJ), a 3,000-m running test (3,000 m), body composition, and serum hormone levels were measured before and after training between days 1-5 of each subject's menstrual cycle. Both groups increased 1RM and CMJ: HC = 13.2% (p < 0.001) and 9.6% (p < 0.05), and NHC = 8.3% (p < 0.01) and 8.5% (p < 0.001). Hormonal contraceptive improved 3,000 m by 3.5% (p < 0.05) and NHC by 1% (n.s.). Never used hormonal contraceptive increased lean mass by 2.1% (p < 0.001), whereas body fat percentage decreased from 23.9 ± 6.7 to 22.4 ± 6.0 (-6.0%, p < 0.05). No significant changes were observed in body composition in HC. No significant between-group differences were observed in any of the performance variables. Luteinizing hormone concentrations decreased significantly (p < 0.05) over 10 weeks in NHC, whereas other hormone levels remained statistically unaltered in both groups. It seems that the present training is equally appropriate for improving strength, endurance, and body composition in women using HC as those not using HC without disrupting hypothalamic-pituitary-gonadal axis function.
Collapse
Affiliation(s)
- Moona M Myllyaho
- Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Johanna K Ihalainen
- Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Anthony C Hackney
- Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, North Carolina
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| | | | - Ari Nummela
- Research Institute for Olympic Sport, Jyväskylä, Finland
| | - Elina Vaara
- JAMK University of Applied Sciences, Jyväskylä, Finland ; and
| | - Keijo Häkkinen
- Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Heikki Kyröläinen
- Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | | |
Collapse
|
20
|
Whitaker AA, Alwatban M, Freemyer A, Perales-Puchalt J, Billinger SA. Effects of high intensity interval exercise on cerebrovascular function: A systematic review. PLoS One 2020; 15:e0241248. [PMID: 33119691 PMCID: PMC7595421 DOI: 10.1371/journal.pone.0241248] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/11/2020] [Indexed: 12/23/2022] Open
Abstract
High intensity interval exercise (HIIE) improves aerobic fitness with decreased exercise time compared to moderate continuous exercise. A gap in knowledge exists regarding the effects of HIIE on cerebrovascular function such as cerebral blood velocity and autoregulation. The objective of this systematic review was to ascertain the effect of HIIE on cerebrovascular function in healthy individuals. We searched PubMed and the Cumulative Index to Nursing and Allied Health Literature databases with apriori key words. We followed the Preferred Reporting Items for Systematic Reviews. Twenty articles were screened and thirteen articles were excluded due to not meeting the apriori inclusion criteria. Seven articles were reviewed via the modified Sackett’s quality evaluation. Outcomes included middle cerebral artery blood velocity (MCAv) (n = 4), dynamic cerebral autoregulation (dCA) (n = 2), cerebral de/oxygenated hemoglobin (n = 2), cerebrovascular reactivity to carbon dioxide (CO2) (n = 2) and cerebrovascular conductance/resistance index (n = 1). Quality review was moderate with 3/7 to 5/7 quality criteria met. HIIE acutely lowered exercise MCAv compared to moderate intensity. HIIE decreased dCA phase following acute and chronic exercise compared to rest. HIIE acutely increased de/oxygenated hemoglobin compared to rest. HIIE acutely decreased cerebrovascular reactivity to higher CO2 compared to rest and moderate intensity. The acute and chronic effects of HIIE on cerebrovascular function vary depending on the outcomes measured. Therefore, future research is needed to confirm the effects of HIIE on cerebrovascular function in healthy individuals and better understand the effects in individuals with chronic conditions. In order to conduct rigorous systematic reviews in the future, we recommend assessing MCAv, dCA and CO2 reactivity during and post HIIE.
Collapse
Affiliation(s)
- Alicen A. Whitaker
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Mohammed Alwatban
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Andrea Freemyer
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Jaime Perales-Puchalt
- University of Kansas Alzheimer’s Disease Center, Fairway, KS, United States of America
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Sandra A. Billinger
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS, United States of America
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States of America
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS, United States of America
- * E-mail:
| |
Collapse
|
21
|
Hogan C, Binnie MJ, Doyle M, Lester L, Peeling P. Heart rate and stroke rate misrepresent supramaximal sprint kayak training as quantified by power. Eur J Sport Sci 2020; 21:656-665. [PMID: 32538301 DOI: 10.1080/17461391.2020.1771430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This study examined the utility of novel measures of power output (PO) compared to traditional measures of heart rate (HR) and stroke rate (SR) for quantifying high-intensity sprint kayak training. Twelve well-trained, male and female sprint kayakers (21.3 ± 6.8 y) completed an on-water graded exercise test (GXT) and a 200-, 500- and 1000-m time-trial for the delineation of individualised training zones (T) for HR (5-zone model, T1-T5), SR and PO (8-zone model, T1-T8). Subsequently, athletes completed two repeat trials of a high-intensity interval (HIIT) and a sprint interval (SIT) training session, where intensity was prescribed using individualised PO-zones. Time-in-zone (minutes) using PO, SR and HR was then compared for both HIIT and SIT. Compared to PO, time-in-zone using HR was higher for T1 in HIIT and SIT (P < 0.001, d ≥ 0.90) and lower for T5 in HIIT (P < 0.001, d = 1.76). Average and peak HR were not different between HIIT (160 ± 9 and 173 ± 11 bpm, respectively) and SIT (157 ± 13 and 174 ± 10 bpm, respectively) (P ≥ 0.274). In HIIT, time-in-zone using SR was higher for T4 (P < 0.001, d = 0.85) and was lower for T5 (P = 0.005, d = 0.43) and T6 (P < 0.001, d = 0.94) compared to PO. In SIT, time-in-zone using SR was lower for T7 (P = 0.001, d = 0.66) and was higher for T8 (P = 0.004, d = 0.70), compared to PO. Heart rate measures were unable to differentiate training demands across different high-intensity sessions, and could therefore misrepresent the training load in such instances. Furthermore, SR may not provide a sensitive measure for detecting changes in intensity due to fatigue, whereas PO may be more suitable.
Collapse
Affiliation(s)
- Cruz Hogan
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, Australia.,Western Australian Institute of Sport, Mt Claremont, Australia
| | - Martyn J Binnie
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, Australia.,Western Australian Institute of Sport, Mt Claremont, Australia
| | - Matthew Doyle
- Western Australian Institute of Sport, Mt Claremont, Australia
| | - Leanne Lester
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, Australia
| | - Peter Peeling
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, Australia.,Western Australian Institute of Sport, Mt Claremont, Australia
| |
Collapse
|
22
|
Øvretveit K. High-Intensity, Non-Sport-Specific Strength and Conditioning for Brazilian Jiu-Jitsu Athletes: Theoretical and Practical Considerations. Strength Cond J 2020. [DOI: 10.1519/ssc.0000000000000542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
23
|
The Effect of Low-Volume High-Intensity Interval Training on Body Composition and Cardiorespiratory Fitness: A Systematic Review and Meta-Analysis. Sports Med 2020; 49:1687-1721. [PMID: 31401727 DOI: 10.1007/s40279-019-01167-w] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Evidence for the efficacy of low-volume high-intensity interval training (HIIT) for the modulation of body composition is unclear. OBJECTIVES We examined the effect of low-volume HIIT versus a non-exercising control and moderate-intensity continuous training (MICT) on body composition and cardiorespiratory fitness in normal weight, overweight and obese adults. We evaluated the impact of low-volume HIIT (HIIT interventions where the total amount of exercise performed during training was ≤ 500 metabolic equivalent minutes per week [MET-min/week]) compared to a non-exercising control and MICT. METHODS A database search was conducted in PubMed (MEDLINE), EMBASE, CINAHL, Web of Science, SPORTDiscus and Scopus from the earliest record to June 2019 for studies (randomised controlled trials and non-randomised controlled trials) with exercise training interventions with a minimum 4-week duration. Meta-analyses were conducted for between-group (low-volume HIIT vs. non-exercising control and low-volume HIIT vs. MICT) comparisons for change in total body fat mass (kg), body fat percentage (%), lean body mass (kg) and cardiorespiratory fitness. RESULTS From 11,485 relevant records, 47 studies were included. No difference was found between low-volume HIIT and a non-exercising control on total body fat mass (kg) (effect size [ES]: - 0.129, 95% confidence interval [CI] - 0.468 to 0.210; p = 0.455), body fat (%) (ES: - 0.063, 95% CI - 0.383 to 0.257; p = 0.700) and lean body mass (kg) (ES: 0.050, 95% CI - 0.250 to 0.351; p = 0.744), or between low-volume HIIT and MICT on total body fat mass (kg) (ES: - 0.021, 95% CI - 0.272 to 0.231; p = 0.872), body fat (%) (ES: 0.005, 95% CI - 0.294 to 0.304; p = 0.974) and lean body mass (kg) (ES: 0.030, 95% CI - 0.167 to 0.266; p = 0.768). However, low-volume HIIT significantly improved cardiorespiratory fitness compared with a non-exercising control (p < 0.001) and MICT (p = 0.017). CONCLUSION These data suggest that low-volume HIIT is inefficient for the modulation of total body fat mass or total body fat percentage in comparison with a non-exercise control and MICT. A novel finding of our meta-analysis was that there appears to be no significant effect of low-volume HIIT on lean body mass when compared with a non-exercising control, and while most studies tended to favour improvement in lean body mass with low-volume HIIT versus MICT, this was not significant. However, despite its lower training volume, low-volume HIIT induces greater improvements in cardiorespiratory fitness than a non-exercising control and MICT in normal weight, overweight and obese adults. Low-volume HIIT, therefore, appears to be a time-efficient treatment for increasing fitness, but not for the improvement of body composition.
Collapse
|
24
|
Torma F, Gombos Z, Jokai M, Takeda M, Mimura T, Radak Z. High intensity interval training and molecular adaptive response of skeletal muscle. SPORTS MEDICINE AND HEALTH SCIENCE 2019; 1:24-32. [PMID: 35782463 PMCID: PMC9219277 DOI: 10.1016/j.smhs.2019.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Increased cardiovascular fitness, V˙O2max, is associated with enhanced endurance capacity and a decreased rate of mortality. High intensity interval training (HIIT) is one of the best methods to increase V˙O2max and endurance capacity for top athletes and for the general public as well. Because of the high intensity of this type of training, the adaptive response is not restricted to Type I fibers, as found for moderate intensity exercise of long duration. Even with a short exercise duration, HIIT can induce activation of AMPK, PGC-1α, SIRT1 and ROS pathway as well as by the modulation of Ca2+ homeostasis, leading to enhanced mitochondrial biogenesis, and angiogenesis. The present review summarizes the current knowledge of the adaptive response of HIIT.
Collapse
Affiliation(s)
- Ferenc Torma
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest, Hungary
| | - Zoltan Gombos
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest, Hungary
| | - Matyas Jokai
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest, Hungary
| | - Masaki Takeda
- Faculty of Health and Sports Science, Doshisha University, Kyotanabe, Japan
| | - Tatsuya Mimura
- Faculty of Sport and Health Sciences, Osaka Sangyo University, Osaka, Japan
| | - Zsolt Radak
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest, Hungary
- Corresponding author. Alkotas u. 44, Budapest, H-1123, Hungary.
| |
Collapse
|
25
|
Milioni F, de Poli RAB, Saunders B, Gualano B, da Rocha AL, Sanchez Ramos da Silva A, Muller PDTG, Zagatto AM. Effect of β-alanine supplementation during high-intensity interval training on repeated sprint ability performance and neuromuscular fatigue. J Appl Physiol (1985) 2019; 127:1599-1610. [DOI: 10.1152/japplphysiol.00321.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The study investigated the influence of β-alanine supplementation during a high-intensity interval training (HIIT) program on repeated sprint ability (RSA) performance. This study was randomized, double-blinded, and placebo controlled. Eighteen men performed an incremental running test until exhaustion (TINC) at baseline and followed by 4-wk HIIT (10 × 1-min runs 90% maximal TINCvelocity [1-min recovery]). Then, participants were randomized into two groups and performed a 6-wk HIIT associated with supplementation of 6.4 g/day of β-alanine (Gβ) or dextrose (placebo group; GP). Pre- and post-6-wk HIIT + supplementation, participants performed the following tests: 1) TINC; 2) supramaximal running test; and 3) 2 × 6 × 35-m sprints (RSA). Before and immediately after RSA, neuromuscular function was assessed by vertical jumps, maximal isometric voluntary contractions of knee extension, and neuromuscular electrical stimulations. Muscle biopsies were performed to determine muscle carnosine content, muscle buffering capacity in vitro (βmin vitro), and content of phosphofructokinase (PFK), monocarboxylate transporter 4 (MCT4), and hypoxia-inducible factor-1α (HIF-1α). Both groups showed a significant time effect for maximal oxygen uptake (Gβ: 6.2 ± 3.6% and GP: 6.5 ± 4.2%; P > 0.01); only Gβ showed a time effect for total (−3.0 ± 2.0%; P = 0.001) and best (−3.3 ± 3.0%; P = 0.03) RSA times. A group-by-time interaction was shown after HIIT + Supplementation for muscle carnosine (Gβ: 34.4 ± 2.3 mmol·kg−1·dm−1and GP: 20.7 ± 3.0 mmol·kg−1·dm−1; P = 0.003) and neuromuscular voluntary activation after RSA (Gβ: 87.2 ± 3.3% and GP: 78.9 ± 12.4%; P = 0.02). No time effect or group-by-time interaction was shown for supramaximal running test performance, βm, and content of PFK, MCT4, and HIF-1α. In summary, β-alanine supplementation during HIIT increased muscle carnosine and attenuated neuromuscular fatigue, which may contribute to an enhancement of RSA performance.NEW & NOTEWORTHY β-Alanine supplementation during a high-intensity interval training program increased repeated sprint performance. The improvement of muscle carnosine content induced by β-alanine supplementation may have contributed to an attenuation of central fatigue during repeated sprint. Overall, β-alanine supplementation may be a useful dietary intervention to prevent fatigue.
Collapse
Affiliation(s)
- Fabio Milioni
- Post Graduate Program in Human Movement Sciences, Laboratory of Physiology and Human Performance, São Paulo State University, Bauru, São Paulo, Brazil
| | - Rodrigo Araújo Bonetti de Poli
- Post Graduate Program in Human Movement Sciences, Laboratory of Physiology and Human Performance, São Paulo State University, Bauru, São Paulo, Brazil
| | - Bryan Saunders
- Applied Physiology and Nutrition Research Group, Faculdade de Medicina da Universidade de São Paul, Rheumatology Division, School of Physical Education and Sport, University of São Paulo, São Paulo, São Paulo, Brazil
- Faculdade de Medicina da Universidade de São Paulo, Institute of Orthopaedics and Traumatology, University of São Paulo, Brazil
| | - Bruno Gualano
- Applied Physiology and Nutrition Research Group, Faculdade de Medicina da Universidade de São Paul, Rheumatology Division, School of Physical Education and Sport, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Alisson L. da Rocha
- School of Physical Education and Sports of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Paulo de Tarso Guerrero Muller
- Laboratory of Respiratory Pathophysiology, Mato Grosso do Sul Federal University, Campo Grande, Mato Grosso do Sul, São Paulo, Brazil
| | - Alessandro Moura Zagatto
- Post Graduate Program in Human Movement Sciences, Laboratory of Physiology and Human Performance, São Paulo State University, Bauru, São Paulo, Brazil
- Faculty of Sciences, Department of Physical Education, São Paulo State University, Bauru, São Paulo, Brazil
| |
Collapse
|
26
|
Quinn K, Newans T, Buxton S, Thomson T, Tyler R, Minahan C. Movement patterns of players in the Australian Women's Rugby League team during international competition. J Sci Med Sport 2019; 23:315-319. [PMID: 31706824 DOI: 10.1016/j.jsams.2019.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/19/2019] [Accepted: 10/15/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To describe the movement patterns of the Australian Women's Rugby League team during international competition. DESIGN Retrospective observational study. METHODS Global Positioning Systems technology recorded the movements of players from the Australian Women's Rugby League team (n=31) during seven international rugby league matches. A subgroup of players (n=18) that played at least 80min in a match were categorized into three positional groups: forwards (n=7), backs (n=7) and halves (n=4), and analysed for external outputs that were classified into multiple speed zones. Mean speed (mmin-1) and mean speed when travelling >12kmh-1 (MS12; mmin-1) were calculated for each 10% interval of playing time of both groups to assess changes in match intensity. RESULTS Total distance travelled was greater in the first half (3332.9m compared to 3249.0m), along with distances travelled at speeds >15kmh-1 (p<0.05), whereas players travelled further at speeds <6kmh-1 in the second half (p=0.005). Backs travelled further at speeds <6kmh-1 (p=0.002) and >15kmh-1 (p=0.007) compared to forwards. Mean speed significantly reduced across the first and second halves (p<0.05), while MS12 reduced by ∼40% in the first half of the match (i.e. first ∼5min compared to the last ∼5min). CONCLUSION These results provide coaches with sport-specific activity profiles of female rugby league players that can be used to individualise training prescription. Given that match-intensity deteriorated across the first and second halves, programs may be targeted at improving endurance and supramaximal exercise tolerance in order for female players to withstand high match-demands of international competition.
Collapse
Affiliation(s)
- K Quinn
- Griffith Sports Physiology and Performance, Griffith University Gold Coast, Australia; Queensland Academy of Sport, Australia.
| | - T Newans
- Griffith Sports Physiology and Performance, Griffith University Gold Coast, Australia
| | - S Buxton
- National Rugby League, Rugby League Central, Australia
| | - T Thomson
- National Rugby League, Rugby League Central, Australia
| | - R Tyler
- National Rugby League, Rugby League Central, Australia
| | - C Minahan
- Griffith Sports Physiology and Performance, Griffith University Gold Coast, Australia
| |
Collapse
|
27
|
Gough LA, Rimmer S, Sparks SA, McNaughton LR, Higgins MF. Post-exercise Supplementation of Sodium Bicarbonate Improves Acid Base Balance Recovery and Subsequent High-Intensity Boxing Specific Performance. Front Nutr 2019; 6:155. [PMID: 31632978 PMCID: PMC6779834 DOI: 10.3389/fnut.2019.00155] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to assess the effects of post-exercise sodium bicarbonate (NaHCO3) ingestion (0.3 g.kg−1 body mass) on the recovery of acid-base balance (pH, HCO3-, and the SID) and subsequent exercise performance in elite boxers. Seven elite male professional boxers performed an initial bout of exhaustive exercise comprising of a boxing specific high-intensity interval running (HIIR) protocol, followed by a high-intensity run to volitional exhaustion (TLIM1). A 75 min passive recovery then ensued, whereby after 10 min recovery, participants ingested either 0.3 g.kg−1 body mass NaHCO3, or 0.1 g.kg−1 body mass sodium chloride (PLA). Solutions were taste matched and administered double-blind. Participants then completed a boxing specific punch combination protocol, followed by a second high-intensity run to volitional exhaustion (TLIM2). Both initial bouts of TLIM1 were well matched between PLA and NaHCO3 (ICC; r = 0.94, p = 0.002). The change in performance from TLIM1 to TLIM2 was greater following NaHCO3 compared to PLA (+164 ± 90 vs. +73 ± 78 sec; p = 0.02, CI = 45.1, 428.8, g = 1.0). Following ingestion of NaHCO3, pH was greater prior to TLIM2 by 0.11 ± 0.02 units (1.4%) (p < 0.001, CI = 0.09, 0.13, g = 3.4), whilst HCO3- was greater by 8.8 ± 1.5 mmol.l−1 (26.3%) compared to PLA (p < 0.001, CI = 7.3, 10.2, g = 5.1). The current study suggests that these significant increases in acid base balance during post-exercise recovery facilitated the improvement in the subsequent bout of exercise. Future research should continue to explore the role of NaHCO3 supplementation as a recovery aid in boxing and other combat sports.
Collapse
Affiliation(s)
- Lewis A Gough
- Department of Sport and Exercise, Research Centre for Life and Sport Sciences (CLaSS), School of Health Sciences, Birmingham City University, Birmingham, United Kingdom.,Sports Nutrition and Performance Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, United Kingdom
| | - Steven Rimmer
- Human Sciences Research Centre, University of Derby, Derby, United Kingdom
| | - S Andy Sparks
- Sports Nutrition and Performance Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, United Kingdom
| | - Lars R McNaughton
- Sports Nutrition and Performance Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, United Kingdom.,Department of Sport and Movement Studies, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa
| | - Matthew F Higgins
- Human Sciences Research Centre, University of Derby, Derby, United Kingdom
| |
Collapse
|
28
|
Garcia-Retortillo S, Gacto M, O'Leary TJ, Noon M, Hristovski R, Balagué N, Morris MG. Cardiorespiratory coordination reveals training-specific physiological adaptations. Eur J Appl Physiol 2019; 119:1701-1709. [PMID: 31187282 DOI: 10.1007/s00421-019-04160-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/07/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE To compare the effects of high-intensity interval training (HIIT) and moderate-intensity training (CONT), matched for total work, on cardiorespiratory coordination and aerobic fitness. METHODS This is a two-arm parallel group single-blind randomised study. Twenty adults were assigned to 6 weeks of HIIT or volume-matched CONT. Participants completed a progressive maximal cycling test before and after the training period. Principal component (PC) analysis was performed on the series of cardiorespiratory variables to evaluate dimensionality of cardiorespiratory coordination, before and after lactate turnpoint. PC1 eigenvalues were compared. RESULTS Both HIIT and CONT improved aerobic fitness (main effects of time, p < 0.001, [Formula: see text] ≥ 0.580), with no differences between groups. CONT decreased the number of PCs from two to one at intensities both below and above the lactate turnpoint; PC1 eigenvalues increased after CONT both below (Z = 2.08; p = 0.04; d = 0.94) and above the lactate turnpoint (Z = 2.10; p = 0.04; d = 1.37). HIIT decreased the number of PCs from two to one after the lactate turnpoint only; PC1 eigenvalues increased after HIIT above the lactate turnpoint (Z = 2.31; p = 0.02; d = 0.42). CONCLUSIONS Although CONT and HIIT improved aerobic fitness to a similar extent, there were different patterns of change for cardiorespiratory coordination. These changes appear training-intensity specific and could be sensitive to investigate the individual response to endurance training.
Collapse
Affiliation(s)
- S Garcia-Retortillo
- University School of Health and Sport (EUSES), University of Girona, C. Francesc Macià 65, 17190, Girona, Spain.,Complex Systems in Sport, Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona, Avda. de l'Estadi 12-22, 08038, Barcelona, Spain
| | - M Gacto
- University School of Health and Sport (EUSES), University of Girona, C. Francesc Macià 65, 17190, Girona, Spain
| | - T J O'Leary
- Army Personnel Research Capability, HQ Army, Andover, UK
| | - M Noon
- School of Life Sciences, Coventry University, Whitefriars Street, Coventry, UK
| | - R Hristovski
- Faculty of Physical Education, Sport and Health, Ss Cyril and Methodius University of Skopje, Zeleznicka BB, 1000, Skopje, Republic of Macedonia
| | - N Balagué
- Complex Systems in Sport, Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona, Avda. de l'Estadi 12-22, 08038, Barcelona, Spain
| | - M G Morris
- School of Life Sciences, Coventry University, Whitefriars Street, Coventry, UK. .,Oxford Brookes University, Gipsy Lane, Oxford, UK.
| |
Collapse
|
29
|
DE Salles Painelli V, Nemezio KM, Pinto AJ, Franchi M, Andrade I, Riani LA, Saunders B, Sale C, Harris RC, Gualano B, Artioli GG. High-Intensity Interval Training Augments Muscle Carnosine in the Absence of Dietary Beta-alanine Intake. Med Sci Sports Exerc 2019; 50:2242-2252. [PMID: 30334920 DOI: 10.1249/mss.0000000000001697] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Cross-sectional studies suggest that training can increase muscle carnosine (MCarn), although longitudinal studies have failed to confirm this. A lack of control for dietary β-alanine intake or muscle fiber type shifting may have hampered their conclusions. The purpose of the present study was to investigate the effects of high-intensity interval training (HIIT) on MCarn. METHODS Twenty vegetarian men were randomly assigned to a control (CON) (n = 10) or HIIT (n = 10) group. High-intensity interval training was performed on a cycle ergometer for 12 wk, with progressive volume (6-12 series) and intensity (140%-170% lactate threshold [LT]). Muscle carnosine was quantified in whole-muscle and individual fibers; expression of selected genes (CARNS, CNDP2, ABAT, TauT, and PAT1) and muscle buffering capacity in vitro (βmin vitro) were also determined. Exercise tests were performed to evaluate total work done, V˙O2max, ventilatory thresholds (VT) and LT. RESULTS Total work done, VT, LT, V˙O2max, and βmin vitro were improved in the HIIT group (all P < 0.05), but not in CON (P > 0.05). MCarn (in mmol·kg dry muscle) increased in the HIIT (15.8 ± 5.7 to 20.6 ± 5.3; P = 0.012) but not the CON group (14.3 ± 5.3 to 15.0 ± 4.9; P = 0.99). In type I fibers, MCarn increased in the HIIT (from 14.4 ± 5.9 to 16.8 ± 7.6; P = 0.047) but not the CON group (from 14.0 ± 5.5 to 14.9 ± 5.4; P = 0.99). In type IIa fibers, MCarn increased in the HIIT group (from 18.8 ± 6.1 to 20.5 ± 6.4; P = 0.067) but not the CON group (from 19.7 ± 4.5 to 18.8 ± 4.4; P = 0.37). No changes in gene expression were shown. CONCLUSIONS In the absence of any dietary intake of β-alanine, HIIT increased MCarn content. The contribution of increased MCarn to the total increase in βmin vitro appears to be small.
Collapse
Affiliation(s)
- Vitor DE Salles Painelli
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BRAZIL
| | - Kleiner Márcio Nemezio
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BRAZIL
| | - Ana Jéssica Pinto
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BRAZIL
| | - Mariana Franchi
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BRAZIL
| | - Isabel Andrade
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BRAZIL
| | - Luiz Augusto Riani
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BRAZIL
| | - Bryan Saunders
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BRAZIL
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, Nottingham Trent University, UNITED KINGDOM
| | | | - Bruno Gualano
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BRAZIL
| | - Guilherme Giannini Artioli
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BRAZIL
| |
Collapse
|
30
|
Chycki J, Kurylas A, Maszczyk A, Golas A, Zajac A. Alkaline water improves exercise-induced metabolic acidosis and enhances anaerobic exercise performance in combat sport athletes. PLoS One 2018; 13:e0205708. [PMID: 30452459 PMCID: PMC6242303 DOI: 10.1371/journal.pone.0205708] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/28/2018] [Indexed: 11/19/2022] Open
Abstract
Hydration is one of the most significant issues for combat sports as athletes often use water restriction for quick weight loss before competition. It appears that alkaline water can be an effective alternative to sodium bicarbonate in preventing the effects of exercise-induced metabolic acidosis. Therefore, the main aim of the present study was to investigate, in a double blind, placebo controlled randomized study, the impact of mineral-based highly alkaline water on acid-base balance, hydration status, and anaerobic capacity. Sixteen well trained combat sport athletes (n = 16), were randomly divided into two groups; the experimental group (EG; n = 8), which ingested highly alkaline water for three weeks, and the control group (CG; n = 8), which received regular table water. Anaerobic performance was evaluated by two double 30 s Wingate tests for lower and upper limbs, respectively, with a passive rest interval of 3 minutes between the bouts of exercise. Fingertip capillary blood samples for the assessment of lactate concentration were drawn at rest and during the 3rd min of recovery. In addition, acid-base equilibrium and electrolyte status were evaluated. Urine samples were evaluated for specific gravity and pH. The results indicate that drinking alkalized water enhances hydration, improves acid-base balance and anaerobic exercise performance.
Collapse
Affiliation(s)
- Jakub Chycki
- Department of Sports Training, the Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
- * E-mail:
| | - Anna Kurylas
- Department of Sports Training, the Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Adam Maszczyk
- Department of Methodology and Statistics, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Artur Golas
- Department of Sports Training, the Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Adam Zajac
- Department of Sports Training, the Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| |
Collapse
|
31
|
Farrell JW, Lantis DJ, Ade CJ, Cantrell GS, Larson RD. Aerobic Exercise Supplemented With Muscular Endurance Training Improves Onset of Blood Lactate Accumulation. J Strength Cond Res 2018; 32:1376-1382. [PMID: 28486334 DOI: 10.1519/jsc.0000000000001981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Farrell III, JW, Lantis, DJ, Ade, CJ, Cantrell, GS, and Larson, RD. Aerobic exercise supplemented with muscular endurance training improves onset of blood lactate accumulation. J Strength Cond Res 32(5): 1376-1382, 2018-Studies have shown that when aerobic exercise is supplemented with muscular endurance training metabolic adaptions occur that result in the delay of the onset of blood lactate accumulation (OBLA). However, previous studies have not explored any submaximal cardiorespiratory adaptations that may result from this training protocol. The aim of the current investigation was to evaluate the effect of supplementing an aerobic exercise training program with a muscular endurance training program on various cardiorespiratory and metabolic measurements. Fourteen aerobically active men performed an incremental exercise test to determine the OBLA, gas exchange threshold (GET), and maximal oxygen uptake (V[Combining Dot Above]O2max). Maximal strength was measured using 1 repetition maximum (1RM) for leg press (LP), leg curl (LC), and leg extension (LE). Eight subjects supplemented their aerobic activity (experimental [EX] group) with 8 weeks of muscular endurance training, while 6 continued their regular aerobic activity (control [CON] group). No significant group differences were observed for all pretraining variables. After 8 weeks of training, no significant differences in body mass, GET, and V[Combining Dot Above]O2max were observed for either group. However, the EX group showed a significant improvement for both absolute and relative V[Combining Dot Above]O2 at OBLA compared with the CON group. Leg curl and LE 1RM assessments for the EX group showed a significant improvement compared with CON group. Muscular endurance training did not improve GET and V[Combining Dot Above]O2max, but significantly increased V[Combining Dot Above]O2 at OBLA, LP, and LC. These findings suggest that this training protocol maybe useful in the development of submaximal aerobic performance and leg strength for endurance athletes.
Collapse
Affiliation(s)
- John W Farrell
- Department of Health and Exercise Science, The University of Oklahoma, Norman, Oklahoma
| | - David J Lantis
- Department of Health and Exercise Science, The University of Oklahoma, Norman, Oklahoma
| | - Carl J Ade
- Department of Health and Exercise Science, The University of Oklahoma, Norman, Oklahoma.,Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Greg S Cantrell
- Department of Health and Exercise Science, The University of Oklahoma, Norman, Oklahoma
| | - Rebecca D Larson
- Department of Health and Exercise Science, The University of Oklahoma, Norman, Oklahoma
| |
Collapse
|
32
|
Aboodarda SJ, Mira J, Floreani M, Jaswal R, Moon SJ, Amery K, Rupp T, Millet GY. Effects of endurance cycling training on neuromuscular fatigue in healthy active men. Part II: Corticospinal excitability and voluntary activation. Eur J Appl Physiol 2018; 118:2295-2305. [DOI: 10.1007/s00421-018-3951-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
|
33
|
Erylmaz SK, Kaynak K, Polat M, Aydoğan S. EFFECTS OF REPEATED SPRINT TRAINING ON ISOCAPNIC BUFFERING PHASE IN VOLLEYBALL PLAYERS. REV BRAS MED ESPORTE 2018. [DOI: 10.1590/1517-869220182404185842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Introduction: The region between the ventilatory threshold (VT) and respiratory compensation point (RCP) is defined as the isocapnic buffering (ICB) phase and represents a phase of compensation for exercise-induced metabolic acidosis. There is sparse literature examining the effects of physical training on ICB phase in athletes. Objectives: The purpose of this study was to examine the effects of a repeated sprint training program on the ICB phase of college volleyball players. Methods: Eighteen male volleyball players were randomly assigned to either an experimental group (n=9) or a control group (n=9) and followed a traditional volleyball training program three times per week for six weeks. The experimental group additionally performed a repeated sprint training protocol immediately before each volleyball training session. Before and after the 6-week training period, all participants performed an incremental treadmill test to determine VT, RCP, and maximal oxygen uptake (VO2max). The ICB phases were calculated as VO2 (ml/kg/min) and sprint speed (km/h). Results: The experimental group showed significant improvements in ICB phase, RCP, VO2max and maximal sprint speed after training (p<0.01). There were no significant changes in VT after training in the experimental group (p>0.05). None of these variables changed significantly in the control group (p>0.05). Conclusions: These findings indicate that repeated sprint training can enhance the ICB phase of volleyball players, which may be attributable to an improvement in buffering capacity leading to a shift in RCP towards higher intensities without any change in VT. The increase in the ICB phase may an important factor in terms of improvement in the high-intensity exercise tolerance of athletes. Level of Evidence II; Therapeutic studies - Investigating the results of treatment.
Collapse
|
34
|
Carr AJ, Sharma AP, Ross ML, Welvaert M, Slater GJ, Burke LM. Chronic Ketogenic Low Carbohydrate High Fat Diet Has Minimal Effects on Acid-Base Status in Elite Athletes. Nutrients 2018; 10:E236. [PMID: 29463034 PMCID: PMC5852812 DOI: 10.3390/nu10020236] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 02/07/2023] Open
Abstract
Although short (up to 3 days) exposure to major shifts in macronutrient intake appears to alter acid-base status, the effects of sustained (>1 week) interventions in elite athletes has not been determined. Using a non-randomized, parallel design, we examined the effect of adaptations to 21 days of a ketogenic low carbohydrate high fat (LCHF) or periodized carbohydrate (PCHO) diet on pre- and post-exercise blood pH, and concentrations of bicarbonate (HCO₃-) and lactate (La-) in comparison to a high carbohydrate (HCHO) control. Twenty-four (17 male and 7 female) elite-level race walkers completed 21 days of either LCHF (n = 9), PCHO (n = 7), or HCHO (n = 8) under controlled diet and training conditions. At baseline and post-intervention, blood pH, blood [HCO₃-], and blood [La-] were measured before and after a graded exercise test. Net endogenous acid production (NEAP) over the previous 48-72 h was also calculated from monitored dietary intake. LCHF was not associated with significant differences in blood pH, [HCO₃-], or [La-], compared with the HCHO diet pre- or post-exercise, despite a significantly higher NEAP (mEq·day-1) (95% CI = [10.44; 36.04]). Our results indicate that chronic dietary interventions are unlikely to influence acid-base status in elite athletes, which may be due to pre-existing training adaptations, such as an enhanced buffering capacity, or the actions of respiratory and renal pathways, which have a greater influence on regulation of acid-base status than nutritional intake.
Collapse
Affiliation(s)
- Amelia J Carr
- Centre for Sport Research, Deakin University, Burwood VIC 3125, Australia.
| | - Avish P Sharma
- Physiology, Australian Institute of Sport, Bruce ACT 2617, Australia.
- Research Institute for Sport and Exercise, University of Canberra, Belconnen ACT 2616, Australia.
| | - Megan L Ross
- Sports Nutrition, Australian Institute of Sport, Bruce ACT 2617, Australia.
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne VIC 3000, Australia.
| | - Marijke Welvaert
- Research Institute for Sport and Exercise, University of Canberra, Belconnen ACT 2616, Australia.
- Innovation, Research and Development, Australian Institute of Sport, Bruce ACT 2617, Australia.
| | - Gary J Slater
- School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore QLD 4558, Australia.
| | - Louise M Burke
- Sports Nutrition, Australian Institute of Sport, Bruce ACT 2617, Australia.
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne VIC 3000, Australia.
| |
Collapse
|
35
|
Schaumberg MA, Jenkins DG, Janse DE Jonge XAK, Emmerton LM, Skinner TL. Oral Contraceptive Use Dampens Physiological Adaptations to Sprint Interval Training. Med Sci Sports Exerc 2017; 49:717-727. [PMID: 27898641 DOI: 10.1249/mss.0000000000001171] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE Oral contraceptive (OC) use reduces peak aerobic capacity (V˙O2peak); however, whether it also influences adaptations to training has yet to be determined. This study aimed to examine the influence of OC use on peak performance (peak power output [PPO]) and physiological adaptations (V˙O2peak and peak cardiac output [Q˙peak]) after sprint interval training (SIT) in recreationally active women. METHODS Women taking an OC (n = 25) or experiencing natural regular menstrual cycles (MC; n = 16) completed an incremental exercise test to assess V˙O2peak, PPO, and Q˙peak before, immediately after, and 4 wk after 12 sessions of SIT. The SIT consisted ten 1-min efforts at 100% to 120% PPO in a 1:2 work-rest ratio. RESULTS Though V˙O2peak increased in both groups after SIT (both P < 0.001), the MC group showed greater improvement (OC, +8.5%; MC, +13.0%; P = 0.010). Similarly, Q˙peak increased in both groups, with greater improvement in the MC group (OC, +4.0%; MC, +16.1%; P = 0.013). PPO increased in both groups (OC, +13.1%; MC, +13.8%; NS). All parameters decreased 4 wk after SIT cessation, but remained elevated from pretraining levels; the OC group showed more sustained training effects in V˙O2peak (OC, -4.0%; MC, -7.7%; P = 0.010). CONCLUSION SIT improved peak exercise responses in recreationally active women. However, OC use dampened V˙O2peak and Q˙peak adaptation. A follow-up period indicated that OC users had spared V˙O2peak adaptations, suggesting that OC use may influence the time course of physiological training adaptations. Therefore, OC use should be verified, controlled for, and considered when interpreting physiological adaptations to exercise training in women.
Collapse
Affiliation(s)
- Mia A Schaumberg
- 1School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Queensland, AUSTRALIA; 2Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, AUSTRALIA; 3School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, New South Wales, AUSTRALIA; and 4School of Pharmacy, Curtin University, Perth, Western Australia, AUSTRALIA
| | | | | | | | | |
Collapse
|
36
|
Ikutomo A, Kasai N, Goto K. Impact of inserted long rest periods during repeated sprint exercise on performance adaptation. Eur J Sport Sci 2017; 18:47-53. [DOI: 10.1080/17461391.2017.1383515] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Akiho Ikutomo
- Graduate School of Sports and Health Science, Ritsumeikan University, Kusatsushi, Japan
| | - Nobukazu Kasai
- Graduate School of Sports and Health Science, Ritsumeikan University, Kusatsushi, Japan
| | - Kazushige Goto
- Graduate School of Sports and Health Science, Ritsumeikan University, Kusatsushi, Japan
- Faculty of Sports and Health Science, Ritsumeikan University, Kusatsushi, Japan
| |
Collapse
|
37
|
O'Leary TJ, Collett J, Howells K, Morris MG. High but not moderate-intensity endurance training increases pain tolerance: a randomised trial. Eur J Appl Physiol 2017; 117:2201-2210. [PMID: 28879617 DOI: 10.1007/s00421-017-3708-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/21/2017] [Indexed: 11/26/2022]
Abstract
PURPOSE To examine the effect of high-intensity interval training (HIIT) compared to volume-matched moderate-intensity continuous training (CONT) on muscle pain tolerance and high-intensity exercise tolerance. METHODS Twenty healthy adults were randomly assigned (1:1) to either 6 weeks of HIIT [6-8 × 5 min at halfway between lactate threshold and maximal oxygen uptake (50%Δ)] or volume-matched CONT (~60-80 min at 90% lactate threshold) on a cycle ergometer. A tourniquet test to examine muscle pain tolerance and two time to exhaustion (TTE) trials at 50%Δ to examine exercise tolerance were completed pre- and post-training; the post-training TTE trials were completed at the pre-training 50%Δ (same absolute-intensity) and the post-training 50%Δ (same relative-intensity). RESULTS HIIT and CONT resulted in similar improvements in markers of aerobic fitness (all P ≥ 0.081). HIIT increased TTE at the same absolute- and relative-intensity as pre-training (148 and 43%, respectively) to a greater extent than CONT (38 and -4%, respectively) (both P ≤ 0.019). HIIT increased pain tolerance (41%, P < 0.001), whereas CONT had no effect (-3%, P = 0.720). Changes in pain tolerance demonstrated positive relationships with changes in TTE at the same absolute- (r = 0.44, P = 0.027) and relative-intensity (r = 0.51, P = 0.011) as pre-training. CONCLUSION The repeated exposure to a high-intensity training stimulus increases muscle pain tolerance, which is independent of the improvements in aerobic fitness induced by endurance training, and may contribute to the increase in high-intensity exercise tolerance following HIIT.
Collapse
Affiliation(s)
- Thomas J O'Leary
- Department of Sport and Health Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| | - Johnny Collett
- Department of Sport and Health Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Ken Howells
- Department of Sport and Health Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Martyn G Morris
- Department of Sport and Health Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
- School of Life Sciences, Coventry University, Coventry, UK
| |
Collapse
|
38
|
De Smet S, van Herpt P, D'Hulst G, Van Thienen R, Van Leemputte M, Hespel P. Physiological Adaptations to Hypoxic vs. Normoxic Training during Intermittent Living High. Front Physiol 2017; 8:347. [PMID: 28620311 PMCID: PMC5449743 DOI: 10.3389/fphys.2017.00347] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/11/2017] [Indexed: 12/16/2022] Open
Abstract
In the setting of “living high,” it is unclear whether high-intensity interval training (HIIT) should be performed “low” or “high” to stimulate muscular and performance adaptations. Therefore, 10 physically active males participated in a 5-week “live high-train low or high” program (TR), whilst eight subjects were not engaged in any altitude or training intervention (CON). Five days per week (~15.5 h per day), TR was exposed to normobaric hypoxia simulating progressively increasing altitude of ~2,000–3,250 m. Three times per week, TR performed HIIT, administered as unilateral knee-extension training, with one leg in normobaric hypoxia (~4,300 m; TRHYP) and with the other leg in normoxia (TRNOR). “Living high” elicited a consistent elevation in serum erythropoietin concentrations which adequately predicted the increase in hemoglobin mass (r = 0.78, P < 0.05; TR: +2.6%, P < 0.05; CON: −0.7%, P > 0.05). Muscle oxygenation during training was lower in TRHYP vs. TRNOR (P < 0.05). Muscle homogenate buffering capacity and pH-regulating protein abundance were similar between pretest and posttest. Oscillations in muscle blood volume during repeated sprints, as estimated by oscillations in NIRS-derived tHb, increased from pretest to posttest in TRHYP (~80%, P < 0.01) but not in TRNOR (~50%, P = 0.08). Muscle capillarity (~15%) as well as repeated-sprint ability (~8%) and 3-min maximal performance (~10–15%) increased similarly in both legs (P < 0.05). Maximal isometric strength increased in TRHYP (~8%, P < 0.05) but not in TRNOR (~4%, P > 0.05). In conclusion, muscular and performance adaptations were largely similar following normoxic vs. hypoxic HIIT. However, hypoxic HIIT stimulated adaptations in isometric strength and muscle perfusion during intermittent sprinting.
Collapse
Affiliation(s)
- Stefan De Smet
- Department of Kinesiology, Exercise Physiology Research Group, KU LeuvenLeuven, Belgium
| | - Paul van Herpt
- Department of Kinesiology, Exercise Physiology Research Group, KU LeuvenLeuven, Belgium
| | - Gommaar D'Hulst
- Department of Kinesiology, Exercise Physiology Research Group, KU LeuvenLeuven, Belgium
| | - Ruud Van Thienen
- Department of Kinesiology, Exercise Physiology Research Group, KU LeuvenLeuven, Belgium
| | - Marc Van Leemputte
- Department of Kinesiology, Exercise Physiology Research Group, KU LeuvenLeuven, Belgium
| | - Peter Hespel
- Department of Kinesiology, Exercise Physiology Research Group, KU LeuvenLeuven, Belgium.,Athletic Performance Center, Bakala Academy, KU LeuvenLeuven, Belgium
| |
Collapse
|
39
|
McGinley C, Bishop DJ. Rest interval duration does not influence adaptations in acid/base transport proteins following 10 wk of sprint-interval training in active women. Am J Physiol Regul Integr Comp Physiol 2017; 312:R702-R717. [DOI: 10.1152/ajpregu.00459.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/17/2017] [Accepted: 01/30/2017] [Indexed: 12/21/2022]
Abstract
The removal of protons (H+) produced during intense exercise is important for skeletal muscle function, yet it remains unclear how best to structure exercise training to improve muscle pH regulation. We investigated whether 4 wk of work-matched sprint-interval trining (SIT), performed 3 days/wk, with either 1 ( Rest-1; n = 7) or 5 ( Rest-5; n = 7) min of rest between sprints, influenced adaptations in acid/base transport protein content, nonbicarbonate muscle buffer capacity (βmin vitro), and exercise capacity in active women. Following 1 wk of posttesting, comprising a biopsy, a repeated-sprint ability (RSA) test, and a graded-exercise test, maintenance of adaptations was then studied by reducing SIT volume to 1 day/wk for a further 5 wk. After 4 wk of SIT, there was increased protein abundance of monocarboxylate transporter (MCT)-1, sodium/hydrogen exchanger (NHE)-1, and carbonic anhydrase (CA) XIV for both groups, but rest interval duration did not influence the adaptive response. In contrast, greater improvements in total work performed during the RSA test after 4 wk of SIT were evident for Rest-5 compared with Rest-1 (effect size: 0.51; 90% confidence limits ±0.37), whereas both groups had similarly modest improvements in V̇o2peak. When training volume was reduced to 1 day/wk, enhanced acid/base transport protein abundance was maintained, although NHE1 content increased further for Rest-5 only. Finally, our data support intracellular lactate as a signaling molecule for inducing MCT1 expression, but neither lactate nor H+ accumulation appears to be important signaling factors in MCT4 regulation.
Collapse
Affiliation(s)
- Cian McGinley
- College of Sport and Exercise Science, Victoria University, Melbourne, Victoria, Australia
- Sportscotland Institute of Sport, Stirling, Scotland
| | - David J. Bishop
- College of Sport and Exercise Science, Victoria University, Melbourne, Victoria, Australia
- Institute of Sport, Exercise, and Active Living, Victoria University, Melbourne, Victoria, Australia; and
| |
Collapse
|
40
|
Yang MT, Lee MM, Hsu SC, Chan KH. Effects of high-intensity interval training on canoeing performance. Eur J Sport Sci 2017; 17:814-820. [PMID: 28445078 DOI: 10.1080/17461391.2017.1314553] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The purpose of this study was to compare the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) utilizing a canoeing ergometer on endurance determinants, as well as aerobic and anaerobic performances among flat-water canoeists. Fourteen well-trained male flat-water canoeists were divided into an HIIT group or an MICT group. All subjects performed a continuous graded exercise test (GXT) and three fixed-distance (200, 500, and 1000 m) performance tests on a canoeing ergometer to determine canoeing economy, peak oxygen uptake (VO2peak), and power at VO2peak, and to calculate the critical velocity (CV) and anaerobic work capacity before and after the training programmes. The training programme involved training on a canoeing ergometer three times per week for four weeks. HIIT consisted of seven 2 min canoeing bouts at an intensity of 90% VO2peak separated by 1 min of rest. The MICT group was trained at an intensity of 65% VO2peak continuously for 20 min. After four weeks of training, performance in the 200-m distance test and the power at VO2peak significantly improved in the HIIT group; performance in the 500 m and 1000 m distances and CV significantly improved in the MICT group. However, all variables were not significantly different between groups. It is concluded that HIIT for four weeks is an effective training strategy for improvement of short-distance canoeing performance. In contrast, MICT improves middle-distance canoeing performances and aerobic capacity.
Collapse
Affiliation(s)
- Ming-Ta Yang
- a Center for General Education, Taipei Medical University , Taipei City , Taiwan
| | - Mien-Mien Lee
- b Graduate Institute of Athletic and Coaching Science, National Taiwan Sport University , Taoyuan City , Taiwan
| | - Shu-Ching Hsu
- b Graduate Institute of Athletic and Coaching Science, National Taiwan Sport University , Taoyuan City , Taiwan
| | - Kuei-Hui Chan
- b Graduate Institute of Athletic and Coaching Science, National Taiwan Sport University , Taoyuan City , Taiwan
| |
Collapse
|
41
|
O'Leary TJ, Collett J, Howells K, Morris MG. Endurance capacity and neuromuscular fatigue following high- vs moderate-intensity endurance training: A randomized trial. Scand J Med Sci Sports 2017; 27:1648-1661. [DOI: 10.1111/sms.12854] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2017] [Indexed: 12/16/2022]
Affiliation(s)
- T. J. O'Leary
- Department of Sport and Health Sciences; Oxford Brookes University; Oxford UK
| | - J. Collett
- Department of Sport and Health Sciences; Oxford Brookes University; Oxford UK
| | - K. Howells
- Department of Sport and Health Sciences; Oxford Brookes University; Oxford UK
| | - M. G. Morris
- Department of Sport and Health Sciences; Oxford Brookes University; Oxford UK
- School of Life Sciences; Coventry University; Coventry UK
| |
Collapse
|
42
|
McGinley C, Bishop DJ. Influence of training intensity on adaptations in acid/base transport proteins, muscle buffer capacity, and repeated-sprint ability in active men. J Appl Physiol (1985) 2016; 121:1290-1305. [DOI: 10.1152/japplphysiol.00630.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 11/22/2022] Open
Abstract
McGinley C, Bishop DJ. Influence of training intensity on adaptations in acid/base transport proteins, muscle buffer capacity, and repeated-sprint ability in active men. J Appl Physiol 121: 1290–1305, 2016. First published October 14, 2016; doi: 10.1152/japplphysiol.00630.2016 .—This study measured the adaptive response to exercise training for each of the acid-base transport protein families, including providing isoform-specific evidence for the monocarboxylate transporter (MCT)1/4 chaperone protein basigin and for the electrogenic sodium-bicarbonate cotransporter (NBCe)1. We investigated whether 4 wk of work-matched, high-intensity interval training (HIIT), performed either just above the lactate threshold (HIITΔ20; n = 8), or close to peak aerobic power (HIITΔ90; n = 8), influenced adaptations in acid-base transport protein abundance, nonbicarbonate muscle buffer capacity (βmin vitro), and exercise capacity in active men. Training intensity did not discriminate between adaptations for most proteins measured, with abundance of MCT1, sodium/hydrogen exchanger (NHE) 1, NBCe1, carbonic anhydrase (CA) II, and CAXIV increasing after 4 wk, whereas there was little change in CAIII and CAIV abundance. βmin vitro also did not change. However, MCT4 protein content only increased for HIITΔ20 [effect size (ES): 1.06, 90% confidence limits × / ÷ 0.77], whereas basigin protein content only increased for HIITΔ90 (ES: 1.49, × / ÷ 1.42). Repeated-sprint ability (5 × 6-s sprints; 24 s passive rest) improved similarly for both groups. Power at the lactate threshold only improved for HIITΔ20 (ES: 0.49; 90% confidence limits ± 0.38), whereas peak O2 uptake did not change for either group. Detraining was characterized by the loss of adaptations for all of the proteins measured and for repeated-sprint ability 6 wk after removing the stimulus of HIIT. In conclusion, 4 wk of HIIT induced improvements in each of the acid-base transport protein families, but, remarkably, a 40% difference in training intensity did not discriminate between most adaptations.
Collapse
Affiliation(s)
- Cian McGinley
- College of Sport and Exercise Science, Victoria University, Melbourne, Victoria, Australia; and
| | - David J. Bishop
- College of Sport and Exercise Science, Victoria University, Melbourne, Victoria, Australia; and
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
43
|
McGinley C, Bishop DJ. Distinct protein and mRNA kinetics of skeletal muscle proton transporters following exercise can influence interpretation of adaptations to training. Exp Physiol 2016; 101:1565-1580. [DOI: 10.1113/ep085921] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/27/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Cian McGinley
- College of Sport and Exercise Science; Victoria University; Melbourne Victoria Australia
| | - David J. Bishop
- College of Sport and Exercise Science; Victoria University; Melbourne Victoria Australia
- Institute of Sport; Exercise and Active Living (ISEAL); Victoria University; Melbourne Victoria Australia
| |
Collapse
|
44
|
Fyfe JJ, Bartlett JD, Hanson ED, Stepto NK, Bishop DJ. Endurance Training Intensity Does Not Mediate Interference to Maximal Lower-Body Strength Gain during Short-Term Concurrent Training. Front Physiol 2016; 7:487. [PMID: 27857692 PMCID: PMC5093324 DOI: 10.3389/fphys.2016.00487] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/10/2016] [Indexed: 12/21/2022] Open
Abstract
We determined the effect of concurrent training incorporating either high-intensity interval training (HIT) or moderate-intensity continuous training (MICT) on maximal strength, counter-movement jump (CMJ) performance, and body composition adaptations, compared with single-mode resistance training (RT). Twenty-three recreationally-active males (mean ± SD: age, 29.6 ± 5.5 y; V˙O2peak, 44 ± 11 mL kg−1·min−1) underwent 8 weeks (3 sessions·wk−1) of either: (1) HIT combined with RT (HIT+RT group, n = 8), (2) work-matched MICT combined with RT (MICT+RT group, n = 7), or (3) RT performed alone (RT group, n = 8). Measures of aerobic capacity, maximal (1-RM) strength, CMJ performance and body composition (DXA) were obtained before (PRE), mid-way (MID), and after (POST) training. Maximal (one-repetition maximum [1-RM]) leg press strength was improved from PRE to POST for RT (mean change ± 90% confidence interval; 38.5 ± 8.5%; effect size [ES] ± 90% confidence interval; 1.26 ± 0.24; P < 0.001), HIT+RT (28.7 ± 5.3%; ES, 1.17 ± 0.19; P < 0.001), and MICT+RT (27.5 ± 4.6%, ES, 0.81 ± 0.12; P < 0.001); however, the magnitude of this change was greater for RT vs. both HIT+RT (7.4 ± 8.7%; ES, 0.40 ± 0.40) and MICT+RT (8.2 ± 9.9%; ES, 0.60 ± 0.45). There were no substantial between-group differences in 1-RM bench press strength gain. RT induced greater changes in peak CMJ force vs. HIT+RT (6.8 ± 4.5%; ES, 0.41 ± 0.28) and MICT+RT (9.9 ± 11.2%; ES, 0.54 ± 0.65), and greater improvements in maximal CMJ rate of force development (RFD) vs. HIT+RT (24.1 ± 26.1%; ES, 0.72 ± 0.88). Lower-body lean mass was similarly increased for RT (4.1 ± 2.0%; ES; 0.33 ± 0.16; P = 0.023) and MICT+RT (3.6 ± 2.4%; ES; 0.45 ± 0.30; P = 0.052); however, this change was attenuated for HIT+RT (1.8 ± 1.6%; ES; 0.13 ± 0.12; P = 0.069). We conclude that concurrent training incorporating either HIT or work-matched MICT similarly attenuates improvements in maximal lower-body strength and indices of CMJ performance compared with RT performed alone. This suggests endurance training intensity is not a critical mediator of interference to maximal strength gain during short-term concurrent training.
Collapse
Affiliation(s)
- Jackson J Fyfe
- Institute of Sport, Exercise and Active Living, College of Sport and Exercise Science, Victoria UniversityMelbourne, VIC, Australia; College of Sport and Exercise Science, Victoria UniversityMelbourne, VIC, Australia
| | - Jonathan D Bartlett
- Institute of Sport, Exercise and Active Living, College of Sport and Exercise Science, Victoria UniversityMelbourne, VIC, Australia; Western Bulldogs Football ClubMelbourne, VIC, Australia
| | - Erik D Hanson
- Institute of Sport, Exercise and Active Living, College of Sport and Exercise Science, Victoria UniversityMelbourne, VIC, Australia; Department of Exercise and Sport Science, University of North Carolina at Chapel HillChapel Hill, NC, USA
| | - Nigel K Stepto
- Institute of Sport, Exercise and Active Living, College of Sport and Exercise Science, Victoria UniversityMelbourne, VIC, Australia; College of Sport and Exercise Science, Victoria UniversityMelbourne, VIC, Australia
| | - David J Bishop
- Institute of Sport, Exercise and Active Living, College of Sport and Exercise Science, Victoria UniversityMelbourne, VIC, Australia; College of Sport and Exercise Science, Victoria UniversityMelbourne, VIC, Australia
| |
Collapse
|
45
|
Batacan RB, Duncan MJ, Dalbo VJ, Tucker PS, Fenning AS. Effects of high-intensity interval training on cardiometabolic health: a systematic review and meta-analysis of intervention studies. Br J Sports Med 2016; 51:494-503. [PMID: 27797726 DOI: 10.1136/bjsports-2015-095841] [Citation(s) in RCA: 445] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2016] [Indexed: 01/19/2023]
Abstract
The current review clarifies the cardiometabolic health effects of high-intensity interval training (HIIT) in adults. A systematic search (PubMed) examining HIIT and cardiometabolic health markers was completed on 15 October 2015. Sixty-five intervention studies were included for review and the methodological quality of included studies was assessed using the Downs and Black score. Studies were classified by intervention duration and body mass index classification. Outcomes with at least 5 effect sizes were synthesised using a random-effects meta-analysis of the standardised mean difference (SMD) in cardiometabolic health markers (baseline to postintervention) using Review Manager 5.3. Short-term (ST) HIIT (<12 weeks) significantly improved maximal oxygen uptake (VO2 max; SMD 0.74, 95% CI 0.36 to 1.12; p<0.001), diastolic blood pressure (DBP; SMD -0.52, 95% CI -0.89 to -0.16; p<0.01) and fasting glucose (SMD -0.35, 95% CI -0.62 to -0.09; p<0.01) in overweight/obese populations. Long-term (LT) HIIT (≥12 weeks) significantly improved waist circumference (SMD -0.20, 95% CI -0.38 to -0.01; p<0.05), % body fat (SMD -0.40, 95% CI -0.74 to -0.06; p<0.05), VO2 max (SMD 1.20, 95% CI 0.57 to 1.83; p<0.001), resting heart rate (SMD -0.33, 95% CI -0.56 to -0.09; p<0.01), systolic blood pressure (SMD -0.35, 95% CI -0.60 to -0.09; p<0.01) and DBP (SMD -0.38, 95% CI -0.65 to -0.10; p<0.01) in overweight/obese populations. HIIT demonstrated no effect on insulin, lipid profile, C reactive protein or interleukin 6 in overweight/obese populations. In normal weight populations, ST-HIIT and LT-HIIT significantly improved VO2 max, but no other significant effects were observed. Current evidence suggests that ST-HIIT and LT-HIIT can increase VO2 max and improve some cardiometabolic risk factors in overweight/obese populations.
Collapse
Affiliation(s)
- Romeo B Batacan
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia.,Centre for Physical Activity Studies, Central Queensland University, Rockhampton, Queensland, Australia
| | - Mitch J Duncan
- Faculty of Health and Medicine, School of Medicine & Public Health, Priority Research Centre for Physical Activity and Nutrition, The University of Newcastle, University Drive, Callaghan, Queensland, Australia
| | - Vincent J Dalbo
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia.,Clinical Biochemistry Laboratory, Central Queensland University, Rockhampton, Queensland, Australia
| | - Patrick S Tucker
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia.,Clinical Biochemistry Laboratory, Central Queensland University, Rockhampton, Queensland, Australia
| | - Andrew S Fenning
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia.,Centre for Physical Activity Studies, Central Queensland University, Rockhampton, Queensland, Australia
| |
Collapse
|
46
|
Miramonti AA, Stout JR, Fukuda DH, Robinson EH, Wang R, La Monica MB, Hoffman JR. Effects of 4 Weeks of High-Intensity Interval Training and β-Hydroxy-β-Methylbutyric Free Acid Supplementation on the Onset of Neuromuscular Fatigue. J Strength Cond Res 2016; 30:626-34. [PMID: 26418369 DOI: 10.1519/jsc.0000000000001140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study investigated the effects of high-intensity interval training (HIIT) and β-hydroxy-β-methylbutyric free acid (HMB) supplementation on physical working capacity at the onset of neuromuscular fatigue threshold (PWC(FT)). Thirty-seven participants (22 men, 15 women; 22.8 ± 3.4 years) completed an incremental cycle ergometer test (graded exercise test [GXT]); electromyographic amplitude from the right vastus lateralis was recorded. Assessments occurred preceding (PRE) and after 4 weeks of supplementation (POST). Participants were randomly assigned to control (C, n = 9), placebo (P, n = 14), or supplementation (S, n = 14) groups. Both P and S completed 12 HIIT sessions, whereas C maintained normal diet and activity patterns. The PWC(FT) (W) was determined using the maximal perpendicular distance (D(MAX)) method. Electromyographic amplitude (μVrms) over time was used to generate a cubic regression. Onset of fatigue (TF) was the x-value of the point on the regression that was at D(MAX) from a line between the first and last data points. The PWC(FT) was estimated using TF and GXT power-output increments. The 2-way analysis of variance (ANOVA) (group × time) resulted in a significant interaction for PWC(FT) (F = 6.69, p = 0.004). Post hoc analysis with 1-way ANOVA resulted in no difference in PWC(FT) among groups at PRE (F = 0.87, p = 0.43); however, a difference in PWC(FT) was shown for POST (F = 5.46, p = 0.009). Post hoc analysis among POST values revealed significant differences between S and both P (p = 0.034) and C (p = 0.003). No differences (p = 0.226) were noted between P and C. Paired samples t-tests detected significant changes after HIIT for S (p < 0.001) and P (p = 0.016), but no change in C (p = 0.473). High-intensity interval training increased PWC(FT), but HMB with HIIT was more effective than HIIT alone. Furthermore, it seems that adding HMB supplementation with HIIT in untrained men and women may further improve endurance performance measures.
Collapse
Affiliation(s)
- Amelia A Miramonti
- Institute of Exercise Physiology and Wellness, Educational and Human Sciences, University of Central Florida, Orlando, Florida
| | | | | | | | | | | | | |
Collapse
|
47
|
Zinner C, Morales-Alamo D, Ørtenblad N, Larsen FJ, Schiffer TA, Willis SJ, Gelabert-Rebato M, Perez-Valera M, Boushel R, Calbet JAL, Holmberg HC. The Physiological Mechanisms of Performance Enhancement with Sprint Interval Training Differ between the Upper and Lower Extremities in Humans. Front Physiol 2016; 7:426. [PMID: 27746738 PMCID: PMC5043010 DOI: 10.3389/fphys.2016.00426] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/08/2016] [Indexed: 01/15/2023] Open
Abstract
To elucidate the mechanisms underlying the differences in adaptation of arm and leg muscles to sprint training, over a period of 11 days 16 untrained men performed six sessions of 4–6 × 30-s all-out sprints (SIT) with the legs and arms, separately, with a 1-h interval of recovery. Limb-specific VO2peak, sprint performance (two 30-s Wingate tests with 4-min recovery), muscle efficiency and time-trial performance (TT, 5-min all-out) were assessed and biopsies from the m. vastus lateralis and m. triceps brachii taken before and after training. VO2peak and Wmax increased 3–11% after training, with a more pronounced change in the arms (P < 0.05). Gross efficiency improved for the arms (+8.8%, P < 0.05), but not the legs (−0.6%). Wingate peak and mean power outputs improved similarly for the arms and legs, as did TT performance. After training, VO2 during the two Wingate tests was increased by 52 and 6% for the arms and legs, respectively (P < 0.001). In the case of the arms, VO2 was higher during the first than second Wingate test (64 vs. 44%, P < 0.05). During the TT, relative exercise intensity, HR, VO2, VCO2, VE, and Vt were all lower during arm-cranking than leg-pedaling, and oxidation of fat was minimal, remaining so after training. Despite the higher relative intensity, fat oxidation was 70% greater during leg-pedaling (P = 0.017). The aerobic energy contribution in the legs was larger than for the arms during the Wingate tests, although VO2 for the arms was enhanced more by training, reducing the O2 deficit after SIT. The levels of muscle glycogen, as well as the myosin heavy chain composition were unchanged in both cases, while the activities of 3-hydroxyacyl-CoA-dehydrogenase and citrate synthase were elevated only in the legs and capillarization enhanced in both limbs. Multiple regression analysis demonstrated that the variables that predict TT performance differ for the arms and legs. The primary mechanism of adaptation to SIT by both the arms and legs is enhancement of aerobic energy production. However, with their higher proportion of fast muscle fibers, the arms exhibit greater plasticity.
Collapse
Affiliation(s)
- Christoph Zinner
- Department of Sport Science, Julius Maximilians University WürzburgWürzburg, Germany; Swedish Winter Sports Research Centre, Mid Sweden UniversityÖstersund, Sweden
| | - David Morales-Alamo
- Research Institute of Biomedical and Health Sciences (IUIBS) and Department of Physical Education, University of Las Palmas de Gran Canaria Las Palmas, Spain
| | - Niels Ørtenblad
- Swedish Winter Sports Research Centre, Mid Sweden UniversityÖstersund, Sweden; Institute of Sports Science and Clinical Biomechanics, University of Southern DenmarkOdense, Denmark
| | - Filip J Larsen
- Swedish School of Sport and Health Sciences Stockholm, Sweden
| | - Tomas A Schiffer
- Department of Medical and Health Sciences, Linköping University Linköping, Sweden
| | - Sarah J Willis
- Swedish Winter Sports Research Centre, Mid Sweden University Östersund, Sweden
| | - Miriam Gelabert-Rebato
- Research Institute of Biomedical and Health Sciences (IUIBS) and Department of Physical Education, University of Las Palmas de Gran Canaria Las Palmas, Spain
| | - Mario Perez-Valera
- Research Institute of Biomedical and Health Sciences (IUIBS) and Department of Physical Education, University of Las Palmas de Gran Canaria Las Palmas, Spain
| | - Robert Boushel
- School of Kinesiology, University of British Columbia Vancouver, BC, Canada
| | - Jose A L Calbet
- Research Institute of Biomedical and Health Sciences (IUIBS) and Department of Physical Education, University of Las Palmas de Gran CanariaLas Palmas, Spain; School of Kinesiology, University of British ColumbiaVancouver, BC, Canada
| | - Hans-Christer Holmberg
- Swedish Winter Sports Research Centre, Mid Sweden UniversityÖstersund, Sweden; School of Kinesiology, University of British ColumbiaVancouver, BC, Canada; School of Sport Sciences, UiT Arctic University of NorwayTromsø, Norway
| |
Collapse
|
48
|
Bangsbo J. Performance in sports--With specific emphasis on the effect of intensified training. Scand J Med Sci Sports 2016; 25 Suppl 4:88-99. [PMID: 26589122 DOI: 10.1111/sms.12605] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2015] [Indexed: 12/29/2022]
Abstract
Performance in most sports is determined by the athlete's technical, tactical, physiological and psychological/social characteristics. In the present article, the physical aspect will be evaluated with a focus on what limits performance, and how training can be conducted to improve performance. Specifically how intensified training, i.e., increasing the amount of aerobic high-intensity and speed endurance training, affects physiological adaptations and performance of trained subjects. Periods of speed endurance training do improve performance in events lasting 30 s-4 min, and when combined with aerobic high-intensity sessions, also performance during longer events. Athletes in team sports involving intense exercise actions and endurance aspects, such as soccer and basketball, can also benefit from intensified training. Speed endurance training does reduce energy expenditure and increase expression of muscle Na(+), K(+) pump α subunits, which may preserve muscle cell excitability and delay fatigue development during intense exercise. When various types of training are conducted in the same period (concurrent training), as done in a number of sports, one type of training may blunt the effect of other types of training. It is not, however, clear how various training modalities are affecting each other, and this issue should be addressed in future studies.
Collapse
Affiliation(s)
- J Bangsbo
- Department of Nutrition, Exercise and Sports, Section of Human Physiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
49
|
Outlaw JJ, Smith-Ryan AE, Buckley AL, Urbina SL, Hayward S, Wingfield HL, Campbell B, Foster C, Taylor LW, Wilborn CD. Effects of β-Alanine on Body Composition and Performance Measures in Collegiate Women. J Strength Cond Res 2016; 30:2627-37. [DOI: 10.1519/jsc.0000000000000665] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Lancha Junior AH, Painelli VDS, Saunders B, Artioli GG. Nutritional Strategies to Modulate Intracellular and Extracellular Buffering Capacity During High-Intensity Exercise. Sports Med 2016; 45 Suppl 1:S71-81. [PMID: 26553493 PMCID: PMC4672007 DOI: 10.1007/s40279-015-0397-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Intramuscular acidosis is a contributing factor to fatigue during high-intensity exercise. Many nutritional strategies aiming to increase intra- and extracellular buffering capacity have been investigated. Among these, supplementation of beta-alanine (~3–6.4 g/day for 4 weeks or longer), the rate-limiting factor to the intramuscular synthesis of carnosine (i.e. an intracellular buffer), has been shown to result in positive effects on exercise performance in which acidosis is a contributing factor to fatigue. Furthermore, sodium bicarbonate, sodium citrate and sodium/calcium lactate supplementation have been employed in an attempt to increase the extracellular buffering capacity. Although all attempts have increased blood bicarbonate concentrations, evidence indicates that sodium bicarbonate (0.3 g/kg body mass) is the most effective in improving high-intensity exercise performance. The evidence supporting the ergogenic effects of sodium citrate and lactate remain weak. These nutritional strategies are not without side effects, as gastrointestinal distress is often associated with the effective doses of sodium bicarbonate, sodium citrate and calcium lactate. Similarly, paresthesia (i.e. tingling sensation of the skin) is currently the only known side effect associated with beta-alanine supplementation, and it is caused by the acute elevation in plasma beta-alanine concentration after a single dose of beta-alanine. Finally, the co-supplementation of beta-alanine and sodium bicarbonate may result in additive ergogenic gains during high-intensity exercise, although studies are required to investigate this combination in a wide range of sports.
Collapse
Affiliation(s)
- Antonio Herbert Lancha Junior
- Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sport, University of São Paulo, Av. Mello de Moraes, 65 Butanta, São Paulo, SP, 05508-030, Brazil.
| | - Vitor de Salles Painelli
- Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sport, University of São Paulo, Av. Mello de Moraes, 65 Butanta, São Paulo, SP, 05508-030, Brazil
| | - Bryan Saunders
- Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sport, University of São Paulo, Av. Mello de Moraes, 65 Butanta, São Paulo, SP, 05508-030, Brazil
| | - Guilherme Giannini Artioli
- Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sport, University of São Paulo, Av. Mello de Moraes, 65 Butanta, São Paulo, SP, 05508-030, Brazil
| |
Collapse
|