1
|
Babbage T, Sayegh ALC, Fan JL, Gant N, Paton JFR, Fisher JP. Influence of endurance versus resistance exercise training on central and peripheral chemoreflexes in young healthy individuals. J Physiol Sci 2025; 75:100027. [PMID: 40381469 DOI: 10.1016/j.jphyss.2025.100027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 05/10/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
Heightened central and peripheral chemoreflex sensitivity are associated with poor outcomes, but therapeutic approaches to target them are lacking. Endurance and resistance exercise training improve a multitude of physiological outcomes, but their effects on ventilatory chemoreflex sensitivity are unclear. Accordingly, the cardiorespiratory responses to steady-state isocapnic hypoxia (10 % O2, 5-minutes) and hyperoxic hypercapnic rebreathing (5 % CO2-95 % O2) were compared in endurance, resistance, and untrained groups. Central chemoreflex sensitivity was taken as the slope of the relationship between minute ventilation (V̇E) and end-tidal partial pressure of CO2. Peripheral chemoreflex sensitivity was determined from the absolute increase in V̇E from baseline to peak V̇E expressed relative to the fall in oxygen saturation. Neither central (P = 0.093) nor peripheral (P = 0.847) ventilatory chemoreflex sensitivities were different between groups. Future investigations should seek to understand whether exercise training modality influences central and peripheral chemoreflex sensitivity in older and clinical populations.
Collapse
Affiliation(s)
- Thalia Babbage
- Department of Physiology, Manaaki Manawa - The Centre for Heart Research, Faculty of Medical & Health Sciences, University of Auckland, New Zealand; Department of Anaesthesiology, Faculty of Medical & Health Sciences, University of Auckland, New Zealand
| | - Ana L C Sayegh
- Department of Physiology, Manaaki Manawa - The Centre for Heart Research, Faculty of Medical & Health Sciences, University of Auckland, New Zealand
| | - Jui-Lin Fan
- Department of Physiology, Manaaki Manawa - The Centre for Heart Research, Faculty of Medical & Health Sciences, University of Auckland, New Zealand
| | - Nicholas Gant
- Department of Exercise Sciences, Faculty of Science, University of Auckland, New Zealand
| | - Julian F R Paton
- Department of Physiology, Manaaki Manawa - The Centre for Heart Research, Faculty of Medical & Health Sciences, University of Auckland, New Zealand
| | - James P Fisher
- Department of Physiology, Manaaki Manawa - The Centre for Heart Research, Faculty of Medical & Health Sciences, University of Auckland, New Zealand.
| |
Collapse
|
2
|
Mascarenhas A, Braga A, Majernikova SM, Nizari S, Marletta D, Theparambil SM, Aziz Q, Marina N, Gourine AV. On the mechanisms of brain blood flow regulation during hypoxia. J Physiol 2025; 603:2263-2280. [PMID: 38843467 PMCID: PMC12013793 DOI: 10.1113/jp285060] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 05/20/2024] [Indexed: 04/23/2025] Open
Abstract
The brain requires an uninterrupted supply of oxygen and nutrients to support the high metabolic needs of billions of nerve cells processing information. In low oxygen conditions, increases in cerebral blood flow maintain brain oxygen delivery, but the cellular and molecular mechanisms responsible for dilation of cerebral blood vessels in response to hypoxia are not fully understood. This article presents a systematic review and analysis of data reported in studies of these mechanisms. Our primary outcome measure was the percent reduction of the cerebrovascular response to hypoxia in conditions of pharmacological or genetic blockade of specific signaling mechanisms studied in experimental animals or in humans. Selection criteria were met by 28 articles describing the results of animal studies and six articles describing the results of studies conducted in humans. Selected studies investigated the potential involvement of various neurotransmitters, neuromodulators, vasoactive molecules and ion channels. Of all the experimental conditions, blockade of adenosine-mediated signaling and inhibition of ATP-sensitive potassium (KATP) channels had the most significant effect in reducing the cerebrovascular response to hypoxia (by 49% and 37%, respectively). Various degree reductions of the hypoxic response were also reported in studies which investigated the roles of nitric oxide, arachidonic acid derivates, catecholamines and hydrogen sulphide, amongst others. However, definitive conclusions about the importance of these signaling pathways cannot be drawn from the results of this analysis. In conclusion, there is significant evidence that one of the key mechanisms of hypoxic cerebral vasodilation (accounting for ∼50% of the response) involves the actions of adenosine and modulation of vascular KATP channels. However, recruitment of other vasodilatory signaling mechanisms is required for the full expression of the cerebrovascular response to hypoxia.
Collapse
Affiliation(s)
- Alexander Mascarenhas
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonUnited Kingdom
| | - Alice Braga
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonUnited Kingdom
| | - Sara Maria Majernikova
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonUnited Kingdom
| | - Shereen Nizari
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonUnited Kingdom
| | | | - Shefeeq M. Theparambil
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonUnited Kingdom
| | - Qadeer Aziz
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonUnited Kingdom
- Translational Medicine and Therapeutics, William Harvey Research InstituteQueen Mary University of LondonLondonUnited Kingdom
| | - Nephtali Marina
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonUnited Kingdom
- Division of MedicineUniversity College LondonLondonUnited Kingdom
| | - Alexander V. Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
3
|
Carr JMJR, Hoiland RL, Fernandes IA, Schrage WG, Ainslie PN. Recent insights into mechanisms of hypoxia-induced vasodilatation in the human brain. J Physiol 2024; 602:5601-5618. [PMID: 37655827 DOI: 10.1113/jp284608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023] Open
Abstract
The cerebral vasculature manages oxygen delivery by adjusting arterial blood in-flow in the face of reductions in oxygen availability. Hypoxic cerebral vasodilatation, and the associated hypoxic cerebral blood flow reactivity, involve many vascular, erythrocytic and cerebral tissue mechanisms that mediate elevations in cerebral blood flow via micro- and macrovascular dilatation. This contemporary review focuses on in vivo human work - with reference to seminal preclinical work where necessary - on hypoxic cerebrovascular reactivity, particularly where recent advancements have been made. We provide updates with the following information: in humans, hypoxic cerebral vasodilatation is partially mediated via a - likely non-obligatory - combination of: (1) nitric oxide synthases, (2) deoxygenation-coupled S-nitrosothiols, (3) potassium channel-related vascular smooth muscle hyperpolarization, and (4) prostaglandin mechanisms with some contribution from an interrelationship with reactive oxygen species. And finally, we discuss the fact that, due to the engagement of deoxyhaemoglobin-related mechanisms, reductions in O2 content via haemoglobin per se seem to account for ∼50% of that seen with hypoxic cerebral vasodilatation during hypoxaemia. We further highlight the issue that methodological impediments challenge the complete elucidation of hypoxic cerebral reactivity mechanisms in vivo in healthy humans. Future research is needed to confirm recent advancements and to reconcile human and animal findings. Further investigations are also required to extend these findings to address questions of sex-, heredity-, age-, and disease-related differences. The final step is to then ultimately translate understanding of these mechanisms into actionable, targetable pathways for the prevention and treatment of cerebral vascular dysfunction and cerebral hypoxic brain injury.
Collapse
Affiliation(s)
- Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Ryan L Hoiland
- Department of Anesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Collaborative Entity for Researching Brain Ischemia (CEREBRI), University of British Columbia, Vancouver, British Columbia, Canada
| | - Igor A Fernandes
- Department of Health and Kinesiology, Purdue University, Indiana, USA
| | - William G Schrage
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
4
|
Sayegh ALC, Plunkett MJ, Babbage T, Dawes M, Paton JFR, Fisher JP. Peripheral chemoreflex restrains skeletal muscle blood flow during exercise in participants with treated hypertension. J Physiol 2024. [PMID: 39276118 DOI: 10.1113/jp286998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/01/2024] [Indexed: 09/16/2024] Open
Abstract
We tested the hypothesis that in human hypertension, an increased tonicity/sensitivity of the peripheral chemoreflex causes a sympathetically mediated restraint of nutritive blood flow to the exercising muscles. Fourteen patients with treated hypertension (age 69 ± 11 years, 136 ± 12/80 ± 11 mmHg; mean ± SD) were studied under conditions of intravenous 0.9% saline (control) and low-dose dopamine (2 µg kg-1 min-1) to inhibit the peripheral chemoreflex, at baseline, during isocapnic hypoxic rebreathing and during rhythmic handgrip exercise (3 min, 50% maximum voluntary contraction). At baseline, dopamine did not change mean blood pressure (95 ± 10 vs. 98 ± 10 mmHg, P = 0.155) but increased brachial artery blood flow (59 ± 20 vs. 48 ± 16 ml min-1, P = 0.030) and vascular conductance (0.565 ± 0.246 vs. 0.483 ± 0.160 ml min-1 mmHg-1; P = 0.039). Dopamine attenuated the increase in mean blood pressure (∆3 ± 4 vs. ∆8 ± 6 mmHg, P = 0.007) to isocapnic hypoxic rebreathing and reduced peripheral chemoreflex sensitivity by 28 ± 37% (P = 0.044). Rhythmic handgrip exercise induced increases in brachial artery blood flow and vascular conductance (both P < 0.05 vs. rest after 45 s) that were greater with dopamine than saline (e.g. Δ76 ± 54 vs. Δ60 ± 43 ml min-1 and Δ0.730 ± 0.440 vs. Δ0.570 ± 0.424 ml min-1 mmHg-1, respectively, at 60 s; main effect of condition both P < 0.0001). Our results indicate that the peripheral chemoreflex is tonically active at rest and restrains the blood flow and vascular conductance increases to exercise in treated human hypertension. KEY POINTS: It was hypothesised that in human hypertension, an increased tonicity/sensitivity of the peripheral chemoreflex causes a sympathetically mediated restraint of nutritive blood flow to the exercising muscles. Treated patients with hypertension (n = 14) were studied under conditions of intravenous 0.9% saline (control) and low-dose dopamine (2 µg kg-1 min-1) to inhibit the peripheral chemoreflex. Low-dose dopamine reduced resting ventilation and peripheral chemoreflex sensitivity, and while mean blood pressure was unchanged, brachial artery blood flow and vascular conductance were increased. Low-dose dopamine augmented the brachial artery blood flow and vascular conductance responses to rhythmic handgrip. These findings indicate that the peripheral chemoreflex is tonically active at rest and restrains the blood flow, and vascular conductance increases to exercise in treated human hypertension.
Collapse
Affiliation(s)
- Ana Luiza C Sayegh
- Department of Physiology, Manaaki Manawa - The Centre for Heart Research, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| | - Michael J Plunkett
- Department of Physiology, Manaaki Manawa - The Centre for Heart Research, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| | - Thalia Babbage
- Department of Physiology, Manaaki Manawa - The Centre for Heart Research, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| | - Mathew Dawes
- Department of Medicine, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| | - Julian F R Paton
- Department of Physiology, Manaaki Manawa - The Centre for Heart Research, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| | - James P Fisher
- Department of Physiology, Manaaki Manawa - The Centre for Heart Research, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Plunkett MJ, Sayegh ALC, McWilliams TJ, Sithamparanathan S, Paton JFR, Fisher JP. The effects of peripheral chemoreflex suppression on ventilatory efficiency and exercise duration in pulmonary arterial hypertension. Eur Respir J 2024; 64:2400307. [PMID: 38871376 DOI: 10.1183/13993003.00307-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/04/2024] [Indexed: 06/15/2024]
Affiliation(s)
- Michael J Plunkett
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Respiratory Medicine, Te Toka Tumai Auckland, Te Whatu Ora Health New Zealand, Auckland, New Zealand
| | - Ana Luiza C Sayegh
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Tanya J McWilliams
- Respiratory Medicine, Te Toka Tumai Auckland, Te Whatu Ora Health New Zealand, Auckland, New Zealand
| | | | - Julian F R Paton
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - James P Fisher
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Carter KJ, Ward AT, Kellawan JM, Harrell JW, Peltonen GL, Roberts GS, Al-Subu A, Hagen SA, Serlin RC, Eldridge MW, Wieben O, Schrage WG. Reduced basal macrovascular and microvascular cerebral blood flow in young adults with metabolic syndrome: potential mechanisms. J Appl Physiol (1985) 2023; 135:94-108. [PMID: 37199780 PMCID: PMC10292973 DOI: 10.1152/japplphysiol.00688.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/26/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023] Open
Abstract
Ninety-million Americans suffer metabolic syndrome (MetSyn), increasing the risk of diabetes and poor brain outcomes, including neuropathology linked to lower cerebral blood flow (CBF), predominantly in anterior regions. We tested the hypothesis that total and regional CBF is lower in MetSyn more so in the anterior brain and explored three potential mechanisms. Thirty-four controls (25 ± 5 yr) and 19 MetSyn (30 ± 9 yr), with no history of cardiovascular disease/medications, underwent four-dimensional flow magnetic resonance imaging (MRI) to quantify macrovascular CBF, whereas arterial spin labeling quantified brain perfusion in a subset (n = 38/53). Contributions of cyclooxygenase (COX; n = 14), nitric oxide synthase (NOS, n = 17), or endothelin receptor A signaling (n = 13) were tested with indomethacin, NG-monomethyl-L-arginine (L-NMMA), and Ambrisentan, respectively. Total CBF was 20 ± 16% lower in MetSyn (725 ± 116 vs. 582 ± 119 mL/min, P < 0.001). Anterior and posterior brain regions were 17 ± 18% and 30 ± 24% lower in MetSyn; reductions were not different between regions (P = 0.112). Global perfusion was 16 ± 14% lower in MetSyn (44 ± 7 vs. 36 ± 5 mL/100 g/min, P = 0.002) and regionally in frontal, occipital, parietal, and temporal lobes (range 15-22%). The decrease in CBF with L-NMMA (P = 0.004) was not different between groups (P = 0.244, n = 14, 3), and Ambrisentan had no effect on either group (P = 0.165, n = 9, 4). Interestingly, indomethacin reduced CBF more in Controls in the anterior brain (P = 0.041), but CBF decrease in posterior was not different between groups (P = 0.151, n = 8, 6). These data indicate that adults with MetSyn exhibit substantially reduced brain perfusion without regional differences. Moreover, this reduction is not due to loss of NOS or gain of ET-1 signaling but rather a loss of COX vasodilation.NEW & NOTEWORTHY We tested the impact of insulin resistance (IR) on resting cerebral blood flow (CBF) in adults with metabolic syndrome (MetSyn). Using MRI and research pharmaceuticals to study the role of NOS, ET-1, or COX signaling, we found that adults with MetSyn exhibit substantially lower CBF that is not explained by changes in NOS or ET-1 signaling. Interestingly, adults with MetSyn show a loss of COX-mediated vasodilation in the anterior but not posterior circulation.
Collapse
Affiliation(s)
- Katrina J Carter
- Department of Kinesiology, University of Wisconsin, Madison, Wisconsin, United States
| | - Aaron T Ward
- Department of Kinesiology, University of Wisconsin, Madison, Wisconsin, United States
| | - J Mikhail Kellawan
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, United States
| | - John W Harrell
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, United States
| | - Garrett L Peltonen
- School of Nursing and Kinesiology, Western New Mexico University, Silver City, New Mexico, United States
| | - Grant S Roberts
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, United States
| | - Awni Al-Subu
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, United States
| | - Scott A Hagen
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, United States
| | - Ronald C Serlin
- Department of Educational Psychology, University of Wisconsin, Madison, Wisconsin, United States
| | - Marlowe W Eldridge
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, United States
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, United States
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, United States
| | - William G Schrage
- Department of Kinesiology, University of Wisconsin, Madison, Wisconsin, United States
| |
Collapse
|
7
|
Horiuchi M, Rossetti GM, Oliver SJ. Dietary nitrate supplementation effect on dynamic cerebral autoregulation in normoxia and acute hypoxia. J Cereb Blood Flow Metab 2022; 42:486-494. [PMID: 32151227 PMCID: PMC8985441 DOI: 10.1177/0271678x20910053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We tested the hypothesis that increasing the nitric oxide (NO) bioavailability by dietary nitrate would recover the hypoxia-induced reduction in dynamic cerebral autoregulation (CA). Twelve healthy males (age 21 ± 2 years) completed four days of dietary supplementation with a placebo or inorganic nitrate drink (140-ml beetroot juice per day) followed by 60-min of normoxia or hypoxia (fraction of inspired oxygen [FiO2] = 13%). Duplex ultrasonography was used to perform volumetric change-based assessment of dynamic CA in the internal carotid artery (ICA). Dynamic CA was assessed by rate of regulation (RoR) of vascular conductance using the thigh-cuff method. Four days of beetroot supplementation increased circulating nitrate by 208 [171,245] μM (mean difference [95% confidence interval]) compared with placebo. Dynamic CA was lower in hypoxia than normoxia (RoR Δ-0.085 [-0.116, -0.054]). Compared with placebo, nitrate did not alter dynamic CA in normoxia (RoR Δ-0.022 [-0.060, 0.016]) or hypoxia (RoR Δ0.017 [-0.019, 0.053]). Further, nitrate did not affect ICA vessel diameter, blood velocity or flow in either normoxia or hypoxia. Increased bioavailability of NO through dietary nitrate supplementation did not recover the hypoxia-induced reduction in dynamic CA. This suggests the mechanism of hypoxia-induced reduction in dynamic CA does not relate to the availability of NO.
Collapse
Affiliation(s)
- Masahiro Horiuchi
- Division of Human Environmental Science, Mt. Fuji Research Institute, Fujiyoshida, Japan
| | - Gabriella Mk Rossetti
- Extremes Research Group, College of Human Sciences, Bangor University, Bangor, Wales
| | - Samuel J Oliver
- Extremes Research Group, College of Human Sciences, Bangor University, Bangor, Wales
| |
Collapse
|
8
|
Carter KJ, Ward AT, Kellawan JM, Eldridge MW, Al-Subu A, Walker BJ, Lee JW, Wieben O, Schrage WG. Nitric oxide synthase inhibition in healthy adults reduces regional and total cerebral macrovascular blood flow and microvascular perfusion. J Physiol 2021; 599:4973-4989. [PMID: 34587648 PMCID: PMC9009720 DOI: 10.1113/jp281975] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/28/2021] [Indexed: 11/08/2022] Open
Abstract
The importance of nitric oxide (NO) in regulating cerebral blood flow (CBF) remains unresolved, due in part to methodological approaches, which lack a comprehensive assessment of both global and regional effects. Importantly, NO synthase (NOS) expression and activity appear greater in some anterior brain regions, suggesting region-specific NOS influence on CBF. We hypothesized that NO contributes to basal CBF in healthy adults, in a regionally distinct pattern that predominates in the anterior circulation. Fourteen healthy adults (7 females; 24 ± 5 years) underwent two magnetic resonance imaging (MRI) study visits with saline (placebo) or the NOS inhibitor, L-NMMA, administered in a randomized, single-blind approach. 4D flow MRI quantified total and regional macrovascular CBF, whereas arterial spin labelling (ASL) MRI quantified total and regional microvascular perfusion. L-NMMA (or volume-matched saline) was infused intravenously for 5 min prior to imaging. L-NMMA reduced CBF (L-NMMA: 722 ± 100 vs. placebo: 771 ± 121 ml/min, P = 0.01) with similar relative reductions (5-7%) in anterior and posterior cerebral circulations, due in part to the reduced cross-sectional area of 9 of 11 large cerebral arteries. Global microvascular perfusion (ASL) was reduced by L-NMMA (L-NMMA: 42 ± 7 vs. placebo: 47 ± 8 ml/100g/min, P = 0.02), with 7-11% reductions in both hemispheres of the frontal, parietal and temporal lobes, and in the left occipital lobe. We conclude that NO contributes to macrovascular and microvascular regulation including larger artery resting diameter. Contrary to our hypothesis, the influence of NO on cerebral perfusion appears regionally uniform in healthy young adults. KEY POINTS: Cerebral blood flow (CBF) is vital for brain health, but the signals that are key to regulating CBF remain unclear. Nitric oxide (NO) is produced in the brain, but its importance in regulating CBF remains controversial since prior studies have not studied all regions of the brain simultaneously. Using modern MRI approaches, a drug that inhibits the enzymes that make NO (L-NMMA) reduced CBF by up to 11% in different brain regions. NO helps maintain proper CBF in healthy adults. These data will help us understand whether the reductions in CBF that occur during ageing or cardiovascular disease are related to shifts in NO signalling.
Collapse
Affiliation(s)
- Katrina J Carter
- Department of Kinesiology, University of Wisconsin, Madison, WI, USA
| | - Aaron T Ward
- Department of Kinesiology, University of Wisconsin, Madison, WI, USA
| | - J Mikhail Kellawan
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA
| | | | - Awni Al-Subu
- Department of Pediatrics, University of Wisconsin, Madison, WI, USA
| | - Benjamin J Walker
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - Jeffrey W Lee
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
- Department of Radiology, University of Wisconsin, Madison, WI, USA
| | - William G Schrage
- Department of Kinesiology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
9
|
Ogoh S, Washio T, Stacey BS, Tsukamoto H, Iannetelli A, Owens TS, Calverley TA, Fall L, Marley CJ, Saito S, Watanabe H, Hashimoto T, Ando S, Miyamoto T, Bailey DM. Integrated respiratory chemoreflex-mediated regulation of cerebral blood flow in hypoxia: Implications for oxygen delivery and acute mountain sickness. Exp Physiol 2021; 106:1922-1938. [PMID: 34318560 DOI: 10.1113/ep089660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/20/2021] [Indexed: 12/30/2022]
Abstract
NEW FINDINGS What is the central question of this study? To what extent do hypoxia-induced changes in the peripheral and central respiratory chemoreflex modulate anterior and posterior cerebral oxygen delivery, with corresponding implications for susceptibility to acute mountain sickness? What is the main finding and its importance? We provide evidence for site-specific regulation of cerebral blood flow in hypoxia that preserves oxygen delivery in the posterior but not the anterior cerebral circulation, with minimal contribution from the central respiratory chemoreflex. External carotid artery vasodilatation might prove to be an alternative haemodynamic risk factor that predisposes to acute mountain sickness. ABSTRACT The aim of the present study was to determine the extent to which hypoxia-induced changes in the peripheral and central respiratory chemoreflex modulate anterior and posterior cerebral blood flow (CBF) and oxygen delivery (CDO2 ), with corresponding implications for the pathophysiology of the neurological syndrome, acute mountain sickness (AMS). Eight healthy men were randomly assigned single blind to 7 h of passive exposure to both normoxia (21% O2 ) and hypoxia (12% O2 ). The peripheral and central respiratory chemoreflex, internal carotid artery, external carotid artery (ECA) and vertebral artery blood flow (duplex ultrasound) and AMS scores (questionnaires) were measured throughout. A reduction in internal carotid artery CDO2 was observed during hypoxia despite a compensatory elevation in perfusion. In contrast, vertebral artery and ECA CDO2 were preserved, and the former was attributable to a more marked increase in perfusion. Hypoxia was associated with progressive activation of the peripheral respiratory chemoreflex (P < 0.001), whereas the central respiratory chemoreflex remained unchanged (P > 0.05). Symptom severity in participants who developed clinical AMS was positively related to ECA blood flow (Lake Louise score, r = 0.546-0.709, P = 0.004-0.043; Environmental Symptoms Questionnaires-Cerebral symptoms score, r = 0.587-0.771, P = 0.001-0.027, n = 4). Collectively, these findings highlight the site-specific regulation of CBF in hypoxia that maintains CDO2 selectively in the posterior but not the anterior cerebral circulation, with minimal contribution from the central respiratory chemoreflex. Furthermore, ECA vasodilatation might represent a hitherto unexplored haemodynamic risk factor implicated in the pathophysiology of AMS.
Collapse
Affiliation(s)
- Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Kawagoe, Saitama, Japan.,Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Takuro Washio
- Department of Biomedical Engineering, Toyo University, Kawagoe, Saitama, Japan
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Hayato Tsukamoto
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK.,Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Angelo Iannetelli
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Thomas S Owens
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Thomas A Calverley
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Lewis Fall
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Christopher J Marley
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Shotaro Saito
- Department of Biomedical Engineering, Toyo University, Kawagoe, Saitama, Japan
| | - Hironori Watanabe
- Department of Biomedical Engineering, Toyo University, Kawagoe, Saitama, Japan
| | - Takeshi Hashimoto
- Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Soichi Ando
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | | | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| |
Collapse
|
10
|
Carr JMJR, Caldwell HG, Ainslie PN. Cerebral blood flow, cerebrovascular reactivity and their influence on ventilatory sensitivity. Exp Physiol 2021; 106:1425-1448. [PMID: 33932955 DOI: 10.1113/ep089446] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 04/26/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the topic of this review? Cerebrovascular reactivity to CO2 , which is a principal factor in determining ventilatory responses to CO2 through the role reactivity plays in determining cerebral extra- and intracellular pH. What advances does it highlight? Recent animal evidence suggests central chemoreceptor vasculature may demonstrate regionally heterogeneous cerebrovascular reactivity to CO2 , potentially as a protective mechanism against excessive CO2 washout from the central chemoreceptors, thereby allowing ventilation to reflect the systemic acid-base balance needs (respiratory changes in P aC O 2 ) rather than solely the cerebral needs. Ventilation per se does not influence cerebrovascular reactivity independent of changes in P aC O 2 . ABSTRACT Alveolar ventilation and cerebral blood flow are both predominantly regulated by arterial blood gases, especially arterial P C O 2 , and so are intricately entwined. In this review, the fundamental mechanisms underlying cerebrovascular reactivity and central chemoreceptor control of breathing are covered. We discuss the interaction of cerebral blood flow and its reactivity with the control of ventilation and ventilatory responsiveness to changes in P C O 2 , as well as the lack of influence of ventilation itself on cerebrovascular reactivity. We briefly summarize the effects of arterial hypoxaemia on the relationship between ventilatory and cerebrovascular response to both P C O 2 and P O 2 . We then highlight key methodological considerations regarding the interaction of reactivity and ventilatory sensitivity, including the following: regional heterogeneity of cerebrovascular reactivity; a pharmacological approach for the reduction of cerebral blood flow; reactivity assessment techniques; the influence of mean arterial blood pressure; and sex-related differences. Finally, we discuss ventilatory and cerebrovascular control in the context of high altitude and congestive heart failure. Future research directions and pertinent questions of interest are highlighted throughout.
Collapse
Affiliation(s)
- Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, British Columbia, Canada
| | - Hannah G Caldwell
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, British Columbia, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, British Columbia, Canada
| |
Collapse
|
11
|
Rocha MP, Campos MO, Mattos JD, Mansur DE, Rocha HNM, Secher NH, Nóbrega ACL, Fernandes IA. K ATP channels modulate cerebral blood flow and oxygen delivery during isocapnic hypoxia in humans. J Physiol 2020; 598:3343-3356. [PMID: 32463117 DOI: 10.1113/jp279751] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS ATP-sensitive K+ (KATP ) channels mediate hypoxia-induced cerebral vasodilatation and hyperperfusion in animals. We tested whether KATP channels blockade affects the increase in human cerebral blood flow (CBF) and the maintenance of oxygen delivery (CDO2 ) during hypoxia. Hypoxia-induced increases in the anterior circulation and total cerebral perfusion were attenuated under KATP channels blockade affecting the relative changes of brain oxygen delivery. Therefore, in humans, KATP channels activation modulates the vascular tone in the anterior circulation of the brain, contributing to CBF and CDO2 responses to hypoxia. ABSTRACT ATP-sensitive K+ (KATP ) channels mediate hypoxia-induced cerebral vasodilatation and hyperperfusion in animals. We tested whether KATP channels blockade affects the increase in cerebral blood flow (CBF) and the maintenance of oxygen delivery (CDO2 ) during hypoxia in humans. Nine healthy men were exposed to 5-min trials of normoxia and isocapnic hypoxia (IHX, 10% O2 ) before (BGB) and 3 h after glibenclamide ingestion (AGB). Mean arterial pressure (MAP), arterial saturation ( S a O 2 ), partial pressure of oxygen ( P a O 2 ) and carbon dioxide ( P aC O 2 ), internal carotid artery blood flow (ICABF), vertebral artery blood flow (VABF), total (t)CBF (Doppler ultrasound) and CDO2 were quantified during the trials. IHX provoked similar reductions in S a O 2 and P a O 2 , while MAP was not affected by oxygen desaturation or KATP blockade. A smaller increase in ICABF (ΔBGB: 36 ± 23 vs. ΔAGB 11 ± 18%, p = 0.019) but not in VABF (∆BGB 26 ± 21 vs. ∆AGB 27 ± 27%, p = 0.893) was observed during the hypoxic trial under KATP channels blockade. Thus, IHX-induced increases in tCBF (∆BGB 32 ± 19 vs. ∆AGB 14 ± 13%, p = 0.012) and CDO2 relative changes (∆BGB 7 ± 13 vs. ∆AGB -6 ± 14%, p = 0.048) were attenuated during the AGB hypoxic trial. In a separate protocol, 6 healthy men (5 from protocol 1) underwent a 5-min exposure to normoxia and IHX before and 3 h after placebo (5 mg of cornstarch) ingestion. IHX reduced S a O 2 and P a O 2 , but placebo did not affect the ICABF, VABF, tCBF, or CDO2 responses. Therefore, in humans, KATP channels activation modulates vascular tone in the anterior rather than the posterior circulation of the brain, contributing to tCBF and CDO2 responses to hypoxia.
Collapse
Affiliation(s)
- Marcos P Rocha
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, RJ, Brazil
| | - Monique O Campos
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, RJ, Brazil
| | - João D Mattos
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, RJ, Brazil
| | - Daniel E Mansur
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, RJ, Brazil
| | - Helena N M Rocha
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, RJ, Brazil
| | - Niels H Secher
- Department of Anaesthesia, The Copenhagen Muscle Research Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Antonio C L Nóbrega
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, RJ, Brazil
| | - Igor A Fernandes
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brazil
| |
Collapse
|
12
|
Kellawan JM, Peltonen GL, Harrell JW, Roldan-Alzate A, Wieben O, Schrage WG. Differential contribution of cyclooxygenase to basal cerebral blood flow and hypoxic cerebral vasodilation. Am J Physiol Regul Integr Comp Physiol 2019; 318:R468-R479. [PMID: 31868517 DOI: 10.1152/ajpregu.00132.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclooxygenase (COX) is proposed to regulate cerebral blood flow (CBF); however, accurate regional contributions of COX are relatively unknown at baseline and particularly during hypoxia. We hypothesized that COX contributes to both basal and hypoxic cerebral vasodilation, but COX-mediated vasodilation is greater in the posterior versus anterior cerebral circulation. CBF was measured in 9 healthy adults (28 ± 4 yr) during normoxia and isocapnic hypoxia (fraction of inspired oxygen = 0.11), with COX inhibition (oral indomethacin, 100mg) or placebo. Four-dimensional flow magnetic resonance imaging measured cross-sectional area (CSA) and blood velocity to quantify CBF in 11 cerebral arteries. Cerebrovascular conductance (CVC) was calculated (CVC = CBF × 100/mean arterial blood pressure) and hypoxic reactivity was expressed as absolute and relative change in CVC [ΔCVC/Δ pulse oximetry oxygen saturation (SpO2)]. At normoxic baseline, indomethacin reduced CVC by 44 ± 5% (P < 0.001) and artery CSA (P < 0.001), which was similar across arteries. Hypoxia (SpO2 80%-83%) increased CVC (P < 0.01), reflected as a similar relative increase in reactivity (% ΔCVC/-ΔSpO2) across arteries (P < 0.05), in part because of increases in CSA (P < 0.05). Indomethacin did not alter ΔCVC or ΔCVC/ΔSpO2 to hypoxia. These findings indicate that 1) COX contributes, in a largely uniform fashion, to cerebrovascular tone during normoxia and 2) COX is not obligatory for hypoxic vasodilation in any regions supplied by large extracranial or intracranial arteries.
Collapse
Affiliation(s)
- J Mikhail Kellawan
- Department of Kinesiology, University of Wisconsin, Madison, Wisconsin.,Department of Health and Exercise Science, University of Oklahoma, Norman, OK
| | - Garrett L Peltonen
- Department of Kinesiology, University of Wisconsin, Madison, Wisconsin.,Department of Kinesiology, Western New Mexico University, Silver City, New Mexico
| | - John W Harrell
- Department of Kinesiology, University of Wisconsin, Madison, Wisconsin
| | - Alejandro Roldan-Alzate
- Department of Radiology, University of Wisconsin, Madison, Wisconsin.,Department of Mechanical Engineering, University of Wisconsin, Madison, Wisconsin
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin
| | - William G Schrage
- Department of Kinesiology, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
13
|
Martín‐Saborido C, López‐Alcalde J, Ciapponi A, Sánchez Martín CE, Garcia Garcia E, Escobar Aguilar G, Palermo MC, Baccaro FG, Cochrane Injuries Group. Indomethacin for intracranial hypertension secondary to severe traumatic brain injury in adults. Cochrane Database Syst Rev 2019; 2019:CD011725. [PMID: 31752052 PMCID: PMC6872435 DOI: 10.1002/14651858.cd011725.pub2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Among people who have suffered a traumatic brain injury, increased intracranial pressure continues to be a major cause of early death; it is estimated that about 11 people per 100 with traumatic brain injury die. Indomethacin (also known as indometacin) is a powerful cerebral vasoconstrictor that can reduce intracranial pressure and, ultimately, restore cerebral perfusion and oxygenation. Thus, indomethacin may improve the recovery of a person with traumatic brain injury. OBJECTIVES To assess the effects of indomethacin for adults with severe traumatic brain injury. SEARCH METHODS We ran the searches from inception to 23 August 2019. We searched the Cochrane Central Register of Controlled Trials (CENTRAL; 2019, Issue 8) in the Cochrane Library, Ovid MEDLINE, Ovid Embase, CINAHL Plus (EBSCO), four other databases, and clinical trials registries. We also screened reference lists and conference abstracts, and contacted experts in the field. SELECTION CRITERIA Our search criteria included randomised controlled trials (RCTs) that compared indomethacin with any control in adults presenting with severe traumatic brain injury associated with elevated intracranial pressure, with no previous decompressive surgery. DATA COLLECTION AND ANALYSIS Two review authors independently decided on the selection of the studies. We followed standard Cochrane methods. MAIN RESULTS We identified no eligible studies for this review, either completed or ongoing. AUTHORS' CONCLUSIONS We found no studies, either completed or ongoing, that assessed the effects of indomethacin in controlling intracranial hypertension secondary to severe traumatic brain injury. Thus, we cannot draw any conclusions about the effects of indomethacin on intracranial pressure, mortality rates, quality of life, disability or adverse effects. This absence of evidence should not be interpreted as evidence of no effect for indomethacin in controlling intracranial hypertension secondary to severe traumatic brain injury. It means that we have not identified eligible research for this review.
Collapse
Affiliation(s)
- Carlos Martín‐Saborido
- San Juan De Dios Foundation, Health Sciences University Centre, Antonio de Nebrija UniversityResearch on Evidence and Decision Making GroupPaseo de la Habana 70 bisMadridComunidad de MadridSpain28036
| | - Jesús López‐Alcalde
- Cochrane Associate Centre of MadridCtra. Colmenar Km. 9,100MadridMadridSpain28034
- Universidad Francisco de VitoriaFaculty of MedicineCtra. M‐515 Pozuelo‐MajadahondaPozuelo de AlarcónMadridSpain28223
- Instituto Ramón y Cajal de Investigación SanitariaClinical Biostatistics UnitCtra. Colmenar, km. 9.100MadridSpain28034
| | - Agustín Ciapponi
- Institute for Clinical Effectiveness and Health Policy (IECS‐CONICET)Argentine Cochrane CentreDr. Emilio Ravignani 2024Buenos AiresCapital FederalArgentinaC1414CPV
| | | | - Elena Garcia Garcia
- San Juan De Dios FoundationHealth Services Research DepartmentC/Herreros de TejadaMadridSpain3‐28016
| | - Gema Escobar Aguilar
- San Juan de Dios Foundation/San Rafael‐Nebrija Health Sciences Center, Nebrija UniversityHealth Services Research UnitHerreros de Tejada, 5MadridSpain28036
| | - Maria Carolina Palermo
- University of Buenos AiresInstitute for Clinical Effectiveness and Health Policy (IECS‐CONICET)Buenos AiresArgentina
| | - Fernando G Baccaro
- Juan A Fernández HospitalIntensive Care UnitCerviño 3356Buenos AiresArgentina1425
| | | |
Collapse
|
14
|
Harrell JW, Peltonen GL, Schrage WG. Reactive oxygen species and cyclooxygenase products explain the majority of hypoxic cerebral vasodilation in healthy humans. Acta Physiol (Oxf) 2019; 226:e13288. [PMID: 31033206 DOI: 10.1111/apha.13288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/14/2019] [Accepted: 04/23/2019] [Indexed: 12/13/2022]
Abstract
AIM The role of reactive oxygen species (ROS) in human cerebral blood flow (CBF) during hypoxia is largely unknown. Additionally, it is unknown whether ROS interact with cyclooxygenase-derived signals during hypoxia to increase CBF. We hypothesized ROS inhibition would reduce hypoxic CBF, and combined inhibition of cyclooxygenase (COX) and ROS would decrease hypoxic CBF more than ROS suppression alone. METHODS We measured middle cerebral artery velocity with transcranial Doppler ultrasound in 12 healthy adults during normoxia and 2 isocapnic hypoxia trials. Intravenous ascorbic acid infusion during the first hypoxia trial suppressed ROS. Oral indomethacin inhibited COX between hypoxia trials. The second bout of hypoxia tested the combined effects of ROS and COX inhibition. Middle cerebral artery velocity was normalized for blood pressure as cerebrovascular conductance index. RESULTS Hypoxia increased cerebrovascular conductance index in both trials (P < 0.05). Ascorbic acid infusion did not alter cerebrovascular conductance index during hypoxia. Combined ascorbic acid and indomethacin significantly reduced hypoxia-mediated increases in cerebrovascular conductance index from 17 ± 2 to 4 ± 1 cm s-1 100 mm Hg-1 (P < 0.05). CONCLUSION ROS are not obligatory for hypoxic cerebral vasodilation. Current data indicate ROS and COX together may account for the majority of the increase in CBF through the middle cerebral artery during hypoxia. These data are the first to demonstrate compensatory hypoxic vasodilatory signalling in human cerebral circulation.
Collapse
Affiliation(s)
- John W. Harrell
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology University of Wisconsin‐Madison Madison Wisconsin
| | - Garrett L. Peltonen
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology University of Wisconsin‐Madison Madison Wisconsin
- Department of Kinesiology Western New Mexico University Silver City New Mexico
| | - William G. Schrage
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology University of Wisconsin‐Madison Madison Wisconsin
| |
Collapse
|
15
|
Ventilatory and cerebrovascular regulation and integration at high-altitude. Clin Auton Res 2018; 28:423-435. [PMID: 29574504 DOI: 10.1007/s10286-018-0522-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/09/2018] [Indexed: 01/17/2023]
Abstract
Ascent to high-altitude elicits compensatory physiological adaptations in order to improve oxygenation throughout the body. The brain is particularly vulnerable to the hypoxemia of terrestrial altitude exposure. Herein we review the ventilatory and cerebrovascular changes at altitude and how they are both implicated in the maintenance of oxygen delivery to the brain. Further, the interdependence of ventilation and cerebral blood flow at altitude is discussed. Following the acute hypoxic ventilatory response, acclimatization leads to progressive increases in ventilation, and a partial mitigation of hypoxemia. Simultaneously, cerebral blood flow increases during initial exposure to altitude when hypoxemia is the greatest. Following ventilatory acclimatization to altitude, and an increase in hemoglobin concentration-which both underscore improvements in arterial oxygen content over time at altitude-cerebral blood flow progressively decreases back to sea-level values. The complimentary nature of these responses (ventilatory, hematological and cerebral) lead to a tightly maintained cerebral oxygen delivery while at altitude. Despite this general maintenance of global cerebral oxygen delivery, the manner in which this occurs reflects integration of these physiological responses. Indeed, ventilation directly influences cerebral blood flow by determining the prevailing blood gas and acid/base stimuli at altitude, but cerebral blood flow may also influence ventilation by altering central chemoreceptor stimulation via central CO2 washout. The causes and consequences of the integration of ventilatory and cerebral blood flow regulation at high altitude are outlined.
Collapse
|
16
|
Hoiland RL, Bain AR, Tymko MM, Rieger MG, Howe CA, Willie CK, Hansen AB, Flück D, Wildfong KW, Stembridge M, Subedi P, Anholm J, Ainslie PN. Adenosine receptor-dependent signaling is not obligatory for normobaric and hypobaric hypoxia-induced cerebral vasodilation in humans. J Appl Physiol (1985) 2017; 122:795-808. [PMID: 28082335 DOI: 10.1152/japplphysiol.00840.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 01/11/2023] Open
Abstract
Hypoxia increases cerebral blood flow (CBF) with the underlying signaling processes potentially including adenosine. A randomized, double-blinded, and placebo-controlled design, was implemented to determine if adenosine receptor antagonism (theophylline, 3.75 mg/Kg) would reduce the CBF response to normobaric and hypobaric hypoxia. In 12 participants the partial pressures of end-tidal oxygen ([Formula: see text]) and carbon dioxide ([Formula: see text]), ventilation (pneumotachography), blood pressure (finger photoplethysmography), heart rate (electrocardiogram), CBF (duplex ultrasound), and intracranial blood velocities (transcranial Doppler ultrasound) were measured during 5-min stages of isocapnic hypoxia at sea level (98, 90, 80, and 70% [Formula: see text]). Ventilation, [Formula: see text] and [Formula: see text], blood pressure, heart rate, and CBF were also measured upon exposure (128 ± 31 min following arrival) to high altitude (3,800 m) and 6 h following theophylline administration. At sea level, although the CBF response to hypoxia was unaltered pre- and postplacebo, it was reduced following theophylline (P < 0.01), a finding explained by a lower [Formula: see text] (P < 0.01). Upon mathematical correction for [Formula: see text], the CBF response to hypoxia was unaltered following theophylline. Cerebrovascular reactivity to hypoxia (i.e., response slope) was not different between trials, irrespective of [Formula: see text] At high altitude, theophylline (n = 6) had no effect on CBF compared with placebo (n = 6) when end-tidal gases were comparable (P > 0.05). We conclude that adenosine receptor-dependent signaling is not obligatory for cerebral hypoxic vasodilation in humans.NEW & NOTEWORTHY The signaling pathways that regulate human cerebral blood flow in hypoxia remain poorly understood. Using a randomized, double-blinded, and placebo-controlled study design, we determined that adenosine receptor-dependent signaling is not obligatory for the regulation of human cerebral blood flow at sea level; these findings also extend to high altitude.
Collapse
Affiliation(s)
- Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, University of British Columbia, Okanagan Campus, School of Health and Exercise Sciences, Kelowna, British Columbia, Canada;
| | - Anthony R Bain
- Centre for Heart, Lung and Vascular Health, University of British Columbia, Okanagan Campus, School of Health and Exercise Sciences, Kelowna, British Columbia, Canada
| | - Michael M Tymko
- Centre for Heart, Lung and Vascular Health, University of British Columbia, Okanagan Campus, School of Health and Exercise Sciences, Kelowna, British Columbia, Canada
| | - Mathew G Rieger
- Centre for Heart, Lung and Vascular Health, University of British Columbia, Okanagan Campus, School of Health and Exercise Sciences, Kelowna, British Columbia, Canada
| | - Connor A Howe
- Centre for Heart, Lung and Vascular Health, University of British Columbia, Okanagan Campus, School of Health and Exercise Sciences, Kelowna, British Columbia, Canada
| | - Christopher K Willie
- Centre for Heart, Lung and Vascular Health, University of British Columbia, Okanagan Campus, School of Health and Exercise Sciences, Kelowna, British Columbia, Canada
| | - Alex B Hansen
- Centre for Heart, Lung and Vascular Health, University of British Columbia, Okanagan Campus, School of Health and Exercise Sciences, Kelowna, British Columbia, Canada
| | - Daniela Flück
- Centre for Heart, Lung and Vascular Health, University of British Columbia, Okanagan Campus, School of Health and Exercise Sciences, Kelowna, British Columbia, Canada
| | - Kevin W Wildfong
- Centre for Heart, Lung and Vascular Health, University of British Columbia, Okanagan Campus, School of Health and Exercise Sciences, Kelowna, British Columbia, Canada
| | - Mike Stembridge
- Cardiff Centre for Exercise and Health, Cardiff Metropolitan University, Cardiff, United Kingdom; and
| | - Prajan Subedi
- VA Loma Linda Healthcare System and Loma Linda University School of Medicine, Loma Linda, California
| | - James Anholm
- VA Loma Linda Healthcare System and Loma Linda University School of Medicine, Loma Linda, California
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia, Okanagan Campus, School of Health and Exercise Sciences, Kelowna, British Columbia, Canada
| |
Collapse
|
17
|
Peltonen GL, Harrell JW, Aleckson BP, LaPlante KM, Crain MK, Schrage WG. Cerebral blood flow regulation in women across menstrual phase: differential contribution of cyclooxygenase to basal, hypoxic, and hypercapnic vascular tone. Am J Physiol Regul Integr Comp Physiol 2016; 311:R222-31. [PMID: 27225949 DOI: 10.1152/ajpregu.00106.2016] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/24/2016] [Indexed: 11/22/2022]
Abstract
In healthy young women, basal cerebral blood flow (CBF) and cerebrovascular reactivity may change across the menstrual cycle, but mechanisms remain untested. When compared with the early follicular phase of the menstrual cycle, we hypothesized women in late follicular phase would exhibit: 1) greater basal CBF, 2) greater hypercapnic increases in CBF, 3) greater hypoxic increases in CBF, and 4) increased cyclooxygenase (COX) signaling. We measured middle cerebral artery velocity (MCAv, transcranial Doppler ultrasound) in 11 healthy women (23 ± 1 yr) during rest, hypoxia, and hypercapnia. Subjects completed four visits: two during the early follicular (∼day 3) and two during the late follicular (∼day 14) phases of the menstrual cycle, with and without COX inhibition (oral indomethacin). Isocapnic hypoxia elicited an SPO2 = 90% and SPO2 = 80% for 5 min each. Separately, hypercapnia increased end-tidal CO2 10 mmHg above baseline. Cerebral vascular conductance index (CVCi = MCAv/MABP·100, where MABP is mean arterial blood pressure) was calculated and a positive change reflected vasodilation (ΔCVCi). Basal CVCi was greater in the late follicular phase (P < 0.001). Indomethacin decreased basal CVCi (∼37%) and abolished the phase difference (P < 0.001). Hypoxic ΔCVCi was similar between phases and unaffected by indomethacin. Hypercapnic ΔCVCi was similar between phases, and indomethacin decreased hypercapnic ΔCVCi (∼68%; P < 0.001) similarly between phases. In summary, while neither hypercapnic nor hypoxic vasodilation is altered by menstrual phase, increased basal CBF in the late follicular phase is fully explained by a greater contribution of COX. These data provide new mechanistic insight into anterior CBF regulation across menstrual phases and contribute to our understanding of CBF regulation in women.
Collapse
Affiliation(s)
- Garrett L Peltonen
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - John W Harrell
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Benjamin P Aleckson
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kaylie M LaPlante
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Meghan K Crain
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - William G Schrage
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
18
|
Hartley GL, Watson CL, Ainslie PN, Tokuno CD, Greenway MJ, Gabriel DA, O'Leary DD, Cheung SS. Corticospinal excitability is associated with hypocapnia but not changes in cerebral blood flow. J Physiol 2016; 594:3423-37. [PMID: 26836470 DOI: 10.1113/jp271914] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/22/2016] [Indexed: 01/30/2023] Open
Abstract
KEY POINTS Reductions in cerebral blood flow (CBF) may be implicated in the development of neuromuscular fatigue; however, the contribution from hypocapnic-induced reductions (i.e. P ETC O2) in CBF versus reductions in CBF per se has yet to be isolated. We assessed neuromuscular function while using indomethacin to selectively reduce CBF without changes in P ETC O2 and controlled hyperventilation-induced hypocapnia to reduce both CBF and P ETC O2. Increased corticospinal excitability appears to be exclusive to reductions in P ETC O2 but not reductions in CBF, whereas sub-optimal voluntary output from the motor cortex is moderately associated with decreased CBF independent of changes in P ETC O2. These findings suggest that changes in CBF and P ETC O2 have distinct roles in modulating neuromuscular function. ABSTRACT Although reductions in cerebral blood flow (CBF) may be involved in central fatigue, the contribution from hypocapnia-induced reductions in CBF versus reductions in CBF per se has not been isolated. This study examined whether reduced arterial PCO2 (P aC O2), independent of concomitant reductions in CBF, impairs neuromuscular function. Neuromuscular function, as indicated by motor-evoked potentials (MEPs), maximal M-wave (Mmax ) and cortical voluntary activation (cVA) of the flexor carpi radialis muscle during isometric wrist flexion, was assessed in ten males (29 ± 10 years) during three separate conditions: (1) cyclooxygenase inhibition using indomethacin (Indomethacin, 1.2 mg kg(-1) ) to selectively reduce CBF by 28.8 ± 10.3% (estimated using transcranial Doppler ultrasound) without changes in end-tidal PCO2 (P ETC O2); (2) controlled iso-oxic hyperventilation-induced reductions in P aC O2 (Hypocapnia), P ETC O2 = 30.1 ± 4.5 mmHg with related reductions in CBF (21.7 ± 6.3%); and (3) isocapnic hyperventilation (Isocapnia) to examine the potential direct influence of hyperventilation-mediated activation of respiratory control centres on CBF and changes in neuromuscular function. Change in MEP amplitude (%Mmax ) from baseline was greater in Hypocapnia tha in Isocapnia (11.7 ± 9.8%, 95% confidence interval (CI) [2.6, 20.7], P = 0.01) and Indomethacin (13.3 ± 11.3%, 95% CI [2.8, 23.7], P = 0.01) with a large Cohen's effect size (d ≥ 1.17). Although not statistically significant, cVA was reduced with a moderate effect size in Indomethacin (d = 0.7) and Hypocapnia (d = 0.9) compared to Isocapnia. In summary, increased corticospinal excitability - as reflected by larger MEP amplitude - appears to be exclusive to reduced P aC O2, but not reductions in CBF per se. Sub-optimal voluntary output from the motor cortex is moderately associated with decreased CBF, independent of reduced P aC O2.
Collapse
Affiliation(s)
- Geoffrey L Hartley
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada.,Centre for Physical and Health Education, Schulich School of Education, Nipissing University, North Bay, Ontario, Canada
| | - Cody L Watson
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Craig D Tokuno
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Matthew J Greenway
- Michael G. DeGroote School of Medicine, Niagara Regional Campus, McMaster University, Hamilton, Ontario, Canada
| | - David A Gabriel
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Deborah D O'Leary
- Department of Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Stephen S Cheung
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
19
|
Bain AR, Ainslie PN, Hoiland RL, Willie CK, MacLeod DB, Madden D, Maslov PZ, Drviš I, Dujić Ž. Role of cerebral blood flow in extreme breath holding. Transl Neurosci 2016; 7:12-16. [PMID: 28123816 PMCID: PMC5017590 DOI: 10.1515/tnsci-2016-0003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/02/2015] [Indexed: 11/15/2022] Open
Abstract
The role of cerebral blood flow (CBF) on a maximal breath-hold (BH) in ultra-elite divers was examined. Divers (n = 7) performed one control BH, and one BH following oral administration of the non-selective cyclooxygenase inhibitor indomethacin (1.2 mg/kg). Arterial blood gases and CBF were measured prior to (baseline), and at BH termination. Compared to control, indomethacin reduced baseline CBF and cerebral delivery of oxygen (CDO2) by about 26% (p < 0.01). Indomethacin reduced maximal BH time from 339 ± 51 to 319 ± 57 seconds (p = 0.04). In both conditions, the CDO2 remained unchanged from baseline to the termination of apnea. At BH termination, arterial oxygen tension was higher following oral administration of indomethacin compared to control (4.05 ± 0.45 vs. 3.44 ± 0.32 kPa). The absolute increase in CBF from baseline to the termination of apnea was lower with indomethacin (p = 0.01). These findings indicate that the impact of CBF on maximal BH time is likely attributable to its influence on cerebral H+ washout, and therefore central chemoreceptive drive to breathe, rather than to CDO2.
Collapse
Affiliation(s)
- Anthony R Bain
- Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - Philip N Ainslie
- Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - Ryan L Hoiland
- Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - Chris K Willie
- Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - David B MacLeod
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States of America
| | - Dennis Madden
- Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Petra Zubin Maslov
- Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Ivan Drviš
- School of Kinesiology, University of Zagreb, Zagreb, Croatia
| | - Željko Dujić
- Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| |
Collapse
|
20
|
Hoiland RL, Bain AR, Rieger MG, Bailey DM, Ainslie PN. Hypoxemia, oxygen content, and the regulation of cerebral blood flow. Am J Physiol Regul Integr Comp Physiol 2015; 310:R398-413. [PMID: 26676248 DOI: 10.1152/ajpregu.00270.2015] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/30/2015] [Indexed: 01/13/2023]
Abstract
This review highlights the influence of oxygen (O2) availability on cerebral blood flow (CBF). Evidence for reductions in O2 content (CaO2 ) rather than arterial O2 tension (PaO2 ) as the chief regulator of cerebral vasodilation, with deoxyhemoglobin as the primary O2 sensor and upstream response effector, is discussed. We review in vitro and in vivo data to summarize the molecular mechanisms underpinning CBF responses during changes in CaO2 . We surmise that 1) during hypoxemic hypoxia in healthy humans (e.g., conditions of acute and chronic exposure to normobaric and hypobaric hypoxia), elevations in CBF compensate for reductions in CaO2 and thus maintain cerebral O2 delivery; 2) evidence from studies implementing iso- and hypervolumic hemodilution, anemia, and polycythemia indicate that CaO2 has an independent influence on CBF; however, the increase in CBF does not fully compensate for the lower CaO2 during hemodilution, and delivery is reduced; and 3) the mechanisms underpinning CBF regulation during changes in O2 content are multifactorial, involving deoxyhemoglobin-mediated release of nitric oxide metabolites and ATP, deoxyhemoglobin nitrite reductase activity, and the downstream interplay of several vasoactive factors including adenosine and epoxyeicosatrienoic acids. The emerging picture supports the role of deoxyhemoglobin (associated with changes in CaO2 ) as the primary biological regulator of CBF. The mechanisms for vasodilation therefore appear more robust during hypoxemic hypoxia than during changes in CaO2 via hemodilution. Clinical implications (e.g., disorders associated with anemia and polycythemia) and future study directions are considered.
Collapse
Affiliation(s)
- Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan Campus, Kelowna, British Columbia, Canada; and
| | - Anthony R Bain
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan Campus, Kelowna, British Columbia, Canada; and
| | - Mathew G Rieger
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan Campus, Kelowna, British Columbia, Canada; and
| | - Damian M Bailey
- Neurovascular Research Laboratory, Research Institute of Science and Health, University of South Wales, Glamorgan, United Kingdom
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan Campus, Kelowna, British Columbia, Canada; and Neurovascular Research Laboratory, Research Institute of Science and Health, University of South Wales, Glamorgan, United Kingdom
| |
Collapse
|
21
|
Stadheim HK, Nossum EM, Olsen R, Spencer M, Jensen J. Caffeine improves performance in double poling during acute exposure to 2,000-m altitude. J Appl Physiol (1985) 2015; 119:1501-9. [DOI: 10.1152/japplphysiol.00509.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/06/2015] [Indexed: 11/22/2022] Open
Abstract
There is limited research on the physiological effects of caffeine (CAF) ingestion on exercise performance during acute hypoxia. The aim of the present study was therefore to test the effect of placebo (PLA) and CAF (4.5 mg/kg) on double poling (DP) performance during acute hypoxia. Thirteen male subelite cross-country skiers (V̇o2max 72.6 ± 5.68 ml·kg−1·min−1) were included. Performance was assessed as 1) an 8-km cross-country DP time-trial (C-PT), and 2) time until task failure at a set workload equal to ∼90% of DP V̇o2max. Testing was carried out in a hypobaric chamber, at 800 mbar (Pio2: ∼125 mmHg) corresponding to ∼2,000 m above sea level in a randomized double-blinded, placebo-controlled, cross-over design. CAF improved time to task failure from 6.10 ± 1.40 to 7.22 ± 1.30 min ( P < 0.05) and velocity the first 4 km ( P < 0.05) but not overall time usage for the 8-km C-PT. During submaximal exercise subjects reported lower pain in arms and rate of perceived exertion (RPE) following CAF ingestion. Throughout C-PTs similar RPE and pain was shown between treatments. However, higher heart rate was observed during the CAF 8 km (187 ± 7 vs. 185 ± 7; P < 0.05) and 90% C-PT (185 ± 7 vs. 181 ± 9) associated with increased ventilation, blood lactate, glucose, adrenaline, decreased pH, and bicarbonate. The present study demonstrates for the first time that CAF ingestion improves DP time to task failure although not consistently time trial performance during acute exposure to altitude. Mechanisms underpinning improvements seem related to reduced pain RPE and increased heart rate during CAF C-PTs.
Collapse
Affiliation(s)
- H. K. Stadheim
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway; and
| | - E. M Nossum
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway; and
| | - R. Olsen
- Department of Chemical and Biological Working Environment, National Institute of Occupational Health, Oslo, Norway
| | - M. Spencer
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway; and
| | - J. Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway; and
| |
Collapse
|
22
|
Peltonen GL, Harrell JW, Rousseau CL, Ernst BS, Marino ML, Crain MK, Schrage WG. Cerebrovascular regulation in men and women: stimulus-specific role of cyclooxygenase. Physiol Rep 2015; 3:3/7/e12451. [PMID: 26149282 PMCID: PMC4552531 DOI: 10.14814/phy2.12451] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Greater cerebral artery vasodilation mediated by cyclooxygenase (COX) in female animals is unexplored in humans. We hypothesized that young, healthy women would exhibit greater basal cerebral blood flow (CBF) and greater vasodilation during hypoxia or hypercapnia compared to men, mediated by a larger contribution of COX. We measured middle cerebral artery velocity (MCAv, transcranial Doppler ultrasound) in 42 adults (24 women, 18 men; 24 ± 1 years) during two visits, in a double-blind, placebo-controlled design (COX inhibition, 100 mg oral indomethacin, Indo). Women were studied early in the follicular phase of the menstrual cycle (days 1–5). Two levels of isocapnic hypoxia (SPO2 = 90% and 80%) were induced for 5-min each. Separately, hypercapnia was induced by increasing end-tidal carbon dioxide (PETCO2) 10 mmHg above baseline. A positive change in MCAv (ΔMCAv) reflected vasodilation. Basal MCAv was greater in women compared to men (P < 0.01) across all conditions. Indo decreased baseline MCAv (P < 0.01) similarly between sexes. Hypoxia increased MCAv (P < 0.01), but ΔMCAv was not different between sexes. Indo did not alter hypoxic vasodilation in either sex. Hypercapnia increased MCAv (P < 0.01), but ΔMCAv was not different between sexes. Indo elicited a large decrease in hypercapnic vasodilation (P < 0.01) that was similar between sexes. During the early follicular phase, women exhibit greater basal CBF than men, but similar vasodilatory responses to hypoxia and hypercapnia. Moreover, COX is not obligatory for hypoxic vasodilation, but plays a vital and similar role in the regulation of basal CBF (∼30%) and hypercapnic response (∼55%) between sexes.
Collapse
Affiliation(s)
- Garrett L Peltonen
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - John W Harrell
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Cameron L Rousseau
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Brady S Ernst
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Mariah L Marino
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Meghan K Crain
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - William G Schrage
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
23
|
Hoiland RL, Ainslie PN, Wildfong KW, Smith KJ, Bain AR, Willie CK, Foster G, Monteleone B, Day TA. Indomethacin-induced impairment of regional cerebrovascular reactivity: implications for respiratory control. J Physiol 2015; 593:1291-306. [PMID: 25641262 PMCID: PMC4358685 DOI: 10.1113/jphysiol.2014.284521] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/03/2014] [Indexed: 01/20/2023] Open
Abstract
Cerebrovascular reactivity impacts CO₂-[H(+)] washout at the central chemoreceptors and hence has marked influence on the control of ventilation. To date, the integration of cerebral blood flow (CBF) and ventilation has been investigated exclusively with measures of anterior CBF, which has a differential reactivity from the vertebrobasilar system and perfuses the brainstem. We hypothesized that: (1) posterior versus anterior CBF would have a stronger relationship to central chemoreflex magnitude during hypercapnia, and (2) that higher posterior reactivity would lead to a greater hypoxic ventilatory decline (HVD). End-tidal forcing was used to induce steady-state hyperoxic (300 mmHg P ET ,O₂) hypercapnia (+3, +6 and +9 mmHg P ET ,CO₂) and isocapnic hypoxia (45 mmHg P ET ,O₂) before and following pharmacological blunting (indomethacin; INDO; 1.45 ± 0.17 mg kg(-1)) of resting CBF and reactivity. In 22 young healthy volunteers, ventilation, intra-cranial arterial blood velocities and extra-cranial blood flows were measured during these challenges. INDO-induced blunting of cerebrovascular flow responsiveness (CVR) to CO₂ was unrelated to variability in ventilatory sensitivity during hyperoxic hypercapnia. Further results in a sub-group of volunteers (n = 9) revealed that elevations of P ET,CO₂ via end-tidal forcing reduce arterial-jugular venous gradients, attenuating the effect of CBF on chemoreflex responses. During isocapnic hypoxia, vertebral artery CVR was related to the magnitude of HVD (R(2) = 0.27; P < 0.04; n = 16), suggesting that CO₂-[H(+)] washout from central chemoreceptors modulates hypoxic ventilatory dynamics. No relationships were apparent with anterior CVR. As higher posterior, but not anterior, CVR was linked to HVD, our study highlights the importance of measuring flow in posterior vessels to investigate CBF and ventilatory integration.
Collapse
Affiliation(s)
- Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British ColumbiaKelowna, British Columbia, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British ColumbiaKelowna, British Columbia, Canada
| | - Kevin W Wildfong
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British ColumbiaKelowna, British Columbia, Canada
| | - Kurt J Smith
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British ColumbiaKelowna, British Columbia, Canada
| | - Anthony R Bain
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British ColumbiaKelowna, British Columbia, Canada
| | - Chris K Willie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British ColumbiaKelowna, British Columbia, Canada
| | - Glen Foster
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British ColumbiaKelowna, British Columbia, Canada
| | - Brad Monteleone
- Faculty of Medicine, University of British Columbia OkanaganKelowna, British Columbia, Canada
| | - Trevor A Day
- Department of Biology, Faculty of Science and Technology, Mount Royal UniversityCalgary, Alberta, Canada
| |
Collapse
|
24
|
Lewis NCS, Bain AR, MacLeod DB, Wildfong KW, Smith KJ, Willie CK, Sanders ML, Numan T, Morrison SA, Foster GE, Stewart JM, Ainslie PN. Impact of hypocapnia and cerebral perfusion on orthostatic tolerance. J Physiol 2014; 592:5203-19. [PMID: 25217373 PMCID: PMC4262334 DOI: 10.1113/jphysiol.2014.280586] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/01/2014] [Indexed: 12/25/2022] Open
Abstract
We examined two novel hypotheses: (1) that orthostatic tolerance (OT) would be prolonged when hyperventilatory-induced hypocapnia (and hence cerebral hypoperfusion) was prevented; and (2) that pharmacological reductions in cerebral blood flow (CBF) at baseline would lower the 'CBF reserve', and ultimately reduce OT. In study 1 (n = 24; aged 25 ± 4 years) participants underwent progressive lower-body negative pressure (LBNP) until pre-syncope; end-tidal carbon dioxide (P ET , CO 2) was clamped at baseline levels (isocapnic trial) or uncontrolled. In study 2 (n = 10; aged 25 ± 4 years), CBF was pharmacologically reduced by administration of indomethacin (INDO; 1.2 mg kg(-1)) or unaltered (placebo) followed by LBNP to pre-syncope. Beat-by-beat measurements of middle cerebral artery blood flow velocity (MCAv; transcranial Doppler), heart rate (ECG), blood pressure (BP; Finometer) and end-tidal gases were obtained continuously. In a subset of subjects' arterial-to-jugular venous differences were obtained to examine the independent impact of hypocapnia or cerebral hypoperfusion (following INDO) on cerebral oxygen delivery and extraction. In study 1, during the isocapnic trial, P ET , CO 2 was successfully clamped at baseline levels at pre-syncope (38.3 ± 2.7 vs. 38.5 ± 2.5 mmHg respectively; P = 0.50). In the uncontrolled trial, P ET , CO 2 at pre-syncope was reduced by 10.9 ± 3.9 mmHg (P ≤ 0.001). Compared to the isocapnic trial, the decline in mean MCAv was 15 ± 4 cm s(-1) (35%; P ≤ 0.001) greater in the uncontrolled trial, yet the time to pre-syncope was comparable between trials (544 ± 130 vs. 572 ± 180 s; P = 0.30). In study 2, compared to placebo, INDO reduced resting MCAv by 19 ± 4 cm s(-1) (31%; P ≤ 0.001), but time to pre-syncope remained similar between trials (placebo: 1123 ± 138 s vs. INDO: 1175 ± 212 s; P = 0.53). The brain extracted more oxygen in face of hypocapnia (34% to 53%) or cerebral hypoperfusion (34% to 57%) to compensate for reductions in delivery. In summary, cerebral hypoperfusion either at rest or induced by hypocapnia at pre-syncope does not impact OT, probably due to a compensatory increase in oxygen extraction.
Collapse
Affiliation(s)
- Nia C S Lewis
- Centre for Heart, Lung and Vascular Health, University of British Columbia, Okanagan, Canada
| | - Anthony R Bain
- Centre for Heart, Lung and Vascular Health, University of British Columbia, Okanagan, Canada
| | - David B MacLeod
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Kevin W Wildfong
- Centre for Heart, Lung and Vascular Health, University of British Columbia, Okanagan, Canada
| | - Kurt J Smith
- Centre for Heart, Lung and Vascular Health, University of British Columbia, Okanagan, Canada
| | - Christopher K Willie
- Centre for Heart, Lung and Vascular Health, University of British Columbia, Okanagan, Canada
| | | | - Tianne Numan
- MIRA, University of Twente, Enschede, The Netherlands
| | - Shawnda A Morrison
- Centre for Heart, Lung and Vascular Health, University of British Columbia, Okanagan, Canada Jozef Stefan Institute, Ljubljana, Slovenia
| | - Glen E Foster
- Centre for Heart, Lung and Vascular Health, University of British Columbia, Okanagan, Canada
| | | | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia, Okanagan, Canada
| |
Collapse
|
25
|
Smirl JD, Tzeng YC, Monteleone BJ, Ainslie PN. Influence of cerebrovascular resistance on the dynamic relationship between blood pressure and cerebral blood flow in humans. J Appl Physiol (1985) 2014; 116:1614-22. [PMID: 24744385 DOI: 10.1152/japplphysiol.01266.2013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the hypothesis that changes in the cerebrovascular resistance index (CVRi), independent of blood pressure (BP), will influence the dynamic relationship between BP and cerebral blood flow in humans. We altered CVRi with (via controlled hyperventilation) and without [via indomethacin (INDO, 1.2 mg/kg)] changes in PaCO2. Sixteen subjects (12 men, 27 ± 7 yr) were tested on two occasions (INDO and hypocapnia) separated by >48 h. Each test incorporated seated rest (5 min), followed by squat-stand maneuvers to increase BP variability and improve assessment of the pressure-flow dynamics using linear transfer function analysis (TFA). Beat-to-beat BP, middle cerebral artery velocity (MCAv), posterior cerebral artery velocity (PCAv), and end-tidal Pco2 were monitored. Dynamic pressure-flow relations were quantified using TFA between BP and MCAv/PCAv in the very low and low frequencies through the driven squat-stand maneuvers at 0.05 and 0.10 Hz. MCAv and PCAv reductions by INDO and hypocapnia were well matched, and CVRi was comparably elevated (P < 0.001). During the squat-stand maneuvers (0.05 and 0.10 Hz), the point estimates of absolute gain were universally reduced, and phase was increased under both conditions. In addition to an absence of regional differences, our findings indicate that alterations in CVRi independent of PaCO2 can alter cerebral pressure-flow dynamics. These findings are consistent with the concept of CVRi being a key factor that should be considered in the correct interpretation of cerebral pressure-flow dynamics as indexed using TFA metrics.
Collapse
Affiliation(s)
- J D Smirl
- Centre for Heart Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia Okanagan, Kelowna, British Columbia, Canada;
| | - Y C Tzeng
- Cardiovascular Systems Laboratory, Centre for Translational Physiology, University of Otago, Wellington, New Zealand; and
| | - B J Monteleone
- Faculty of Medicine, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - P N Ainslie
- Centre for Heart Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
26
|
Lewis NCS, Messinger L, Monteleone B, Ainslie PN. Effect of acute hypoxia on regional cerebral blood flow: effect of sympathetic nerve activity. J Appl Physiol (1985) 2014; 116:1189-96. [PMID: 24610534 DOI: 10.1152/japplphysiol.00114.2014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We examined 1) whether global cerebral blood flow (CBF) would increase across a 6-h bout of normobaric poikilocapnic hypoxia and be mediated by a larger increase in blood flow in the vertebral artery (VA) than in the internal carotid artery (ICA); and 2) whether additional increases in global CBF would be evident following an α1-adrenergic blockade via further dilation of the ICA and VA. In 11 young normotensive individuals, ultrasound measures of ICA and VA flow were obtained in normoxia (baseline) and following 60, 210, and 330 min of hypoxia (FiO2 = 0.11). Ninety minutes prior to final assessment, participants received an α1-adrenoreceptor blocker (prazosin, 1 mg/20 kg body mass) or placebo. Compared with baseline, following 60, 220, and 330 min of hypoxia, global CBF [(ICAFlow + VAFlow) ∗ 2] increased by 160 ± 52 ml/min (+28%; P = 0.05), 134 ± 23 ml/min (+23%; P = 0.02), and 113 ± 51 (+19%; P = 0.27), respectively. Compared with baseline, ICAFlow increased by 23% following 60 min of hypoxia (P = 0.06), after which it progressively declined. The percentage increase in VA flow was consistently larger than ICA flow during hypoxia by ∼20% (P = 0.002). Compared with baseline, ICA and VA diameters increased during hypoxia by ∼9% and ∼12%, respectively (P ≤ 0.05), and were correlated with reductions in SaO2. Flow and diameters were unaltered following α1 blockade (P ≥ 0.10). In conclusion, elevations in global CBF during acute hypoxia are partly mediated via greater increases in VA flow compared with ICA flow; this regional difference was unaltered following α1 blockade, indicating that a heightened sympathetic nerve activity with hypoxia does not constrain further dilation of larger extracranial blood vessels.
Collapse
Affiliation(s)
- Nia C S Lewis
- Centre for Heart, Lung and Vascular Health, University of British Columbia, Kelowna, British Columbia, Canada
| | | | | | | |
Collapse
|
27
|
Harrell JW, Schrage WG. Cyclooxygenase-derived vasoconstriction restrains hypoxia-mediated cerebral vasodilation in young adults with metabolic syndrome. Am J Physiol Heart Circ Physiol 2013; 306:H261-9. [PMID: 24213610 DOI: 10.1152/ajpheart.00709.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Poor cerebrovascular function in metabolic syndrome (MetSyn) likely contributes to elevated risk of cerebrovascular disease in this growing clinical population. Younger MetSyn adults without clinical evidence of cerebrovascular disease exhibit preserved hypercapnic vasodilation yet markedly impaired hypoxic vasodilation, but the mechanisms behind reduced hypoxic vasodilation are unknown. Based on data from rats, we tested the hypothesis that younger adults with MetSyn exhibit reduced cerebral hypoxic vasodilation due to loss of vasodilating prostaglandins. Middle cerebral artery velocity (MCAv) was measured with transcranial Doppler ultrasound in adults with MetSyn (n = 13, 33 ± 3 yr) and healthy controls (n = 15, 31 ± 2 yr). Isocapnic hypoxia was induced by titrating inspired oxygen to lower arterial saturation to 90% and 80% for 5 min each. Separately, hypercapnia was induced by increasing end-tidal CO2 10 mmHg above baseline levels. Cyclooxygenase inhibition (100 mg indomethacin) was conducted in a randomized double-blind, placebo controlled design. MCAv was normalized for group differences in blood pressure (healthy: 89 ± 2 mmHg vs. MetSyn: 102 ± 2 mmHg) as cerebrovascular conductance index (CVCi), and used to assess cerebral vasodilation. Hypoxia increased CVCi in both groups; however, vasodilation was ∼55% lower in MetSyn at SpO2 = 80% (P < 0.05). Indomethacin tended to decrease hypoxic vasodilation in healthy controls, and unexpectedly increased dilation in MetSyn (P < 0.05). In contrast to hypoxia, hypercapnia-mediated vasodilation was similar between groups, as was the decrease in vasodilation with indomethacin. These data indicate increased production of vasoconstrictor prostaglandins restrains hypoxic cerebral vasodilation in MetSyn, preventing them from responding appropriately to this important physiological stressor.
Collapse
Affiliation(s)
- John W Harrell
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | | |
Collapse
|
28
|
Harrell JW, Morgan BJ, Schrage WG. Impaired hypoxic cerebral vasodilation in younger adults with metabolic syndrome. Diab Vasc Dis Res 2013; 10:135-42. [PMID: 22752659 PMCID: PMC3899935 DOI: 10.1177/1479164112448875] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Metabolic syndrome (MetSyn) increases the risk of cerebrovascular disease and stroke; however, its impact on human cerebral circulation remains unclear. Reduced cerebral dilation is also associated with an increased risk of stroke and may occur in MetSyn adults. We hypothesised that MetSyn adults would exhibit reduced cerebral vasodilation to hypoxia and hypercapnia. Middle cerebral artery velocity (MCAv) was insonated with Doppler ultrasound in younger (approximately 35 years) MetSyn and healthy adults. We measured mean arterial blood pressure (MABP), arterial oxygen saturation (S(p)O(2)) and end tidal carbon dioxide (Pet (CO2)). Cerebrovascular conductance index (CVCi) was calculated as MCAv*100/MABP. Cerebral vasodilation (ΔCVCi) to hypoxia (S(p)O(2) = 90% and 80%) and hypercapnia (+10 mm Hg Pet (CO2)) was assessed. Baseline MCAv was similar, while adults with MetSyn had lower baseline CVCi. MetSyn adults demonstrated markedly reduced ΔCVCi compared to healthy adults in response to hypoxia (90% S(p)O(2): 1±2 vs 6±2; 80% S(p)O(2): 5±2 vs 15±3 cm/s/mmHg, p<0.05). Both groups demonstrated similar ΔCVCi to hypercapnia (18±2 vs 20±2 cm/s/mmHg). These data are the first to demonstrate that younger MetSyn adults have impaired hypoxia-mediated cerebral vasodilation prior to clinically overt cerebrovascular disease. These findings provide novel insight into cerebrovascular disease onset in MetSyn adults.
Collapse
Affiliation(s)
| | - Barbara J Morgan
- Department of Orthopedics and Rehabilitation, University of Wisconsin, USA
| | | |
Collapse
|
29
|
Ainslie PN, Lucas SJE, Fan JL, Thomas KN, Cotter JD, Tzeng YC, Burgess KR. Influence of sympathoexcitation at high altitude on cerebrovascular function and ventilatory control in humans. J Appl Physiol (1985) 2012; 113:1058-67. [PMID: 22837165 DOI: 10.1152/japplphysiol.00463.2012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We sought to determine the influence of sympathoexcitation on dynamic cerebral autoregulation (CA), cerebrovascular reactivity, and ventilatory control in humans at high altitude (HA). At sea level (SL) and following 3-10 days at HA (5,050 m), we measured arterial blood gases, ventilation, arterial pressure, and middle cerebral blood velocity (MCAv) before and after combined α- and β-adrenergic blockade. Dynamic CA was quantified using transfer function analysis. Cerebrovascular reactivity was assessed using hypocapnia and hyperoxic hypercapnia. Ventilatory control was assessed from the hypercapnia and during isocapnic hypoxia. Arterial Pco(2) and ventilation and its control were unaltered following blockade at both SL and HA. At HA, mean arterial pressure (MAP) was elevated (P < 0.01 vs. SL), but MCAv remained unchanged. Blockade reduced MAP more at HA than at SL (26 vs. 15%, P = 0.048). At HA, gain and coherence in the very-low-frequency (VLF) range (0.02-0.07 Hz) increased, and phase lead was reduced (all P < 0.05 vs. SL). Following blockade at SL, coherence was unchanged, whereas VLF phase lead was reduced (-40 ± 23%; P < 0.01). In contrast, blockade at HA reduced low-frequency coherence (-26 ± 20%; P = 0.01 vs. baseline) and elevated VLF phase lead (by 177 ± 238%; P < 0.01 vs. baseline), fully restoring these parameters back to SL values. Irrespective of this elevation in VLF gain at HA (P < 0.01), blockade increased it comparably at SL and HA (∼43-68%; P < 0.01). Despite elevations in MCAv reactivity to hypercapnia at HA, blockade reduced (P < 0.05) it comparably at SL and HA, effects we attributed to the hypotension and/or abolition of the hypercapnic-induced increase in MAP. With the exception of dynamic CA, we provide evidence of a redundant role of sympathetic nerve activity as a direct mechanism underlying changes in cerebrovascular reactivity and ventilatory control following partial acclimatization to HA. These findings have implications for our understanding of CBF function in the context of pathologies associated with sympathoexcitation and hypoxemia.
Collapse
Affiliation(s)
- P N Ainslie
- Dept. of Human Kinetics, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada.
| | | | | | | | | | | | | |
Collapse
|