1
|
Frazão M, Martins FDL, Cipriano G. Recumbent FES-Cycling Exercise Improves Muscle Performance and Ambulation Capacity in Hospitalized Patients: A Randomized Controlled Trial. Artif Organs 2025. [PMID: 40448413 DOI: 10.1111/aor.15029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 05/04/2025] [Accepted: 05/21/2025] [Indexed: 06/02/2025]
Abstract
BACKGROUND Acquired muscle weakness is a prevalent complication during hospitalization. Supportive technologies, such as functional electrical stimulation cycling (FES-cycling), are increasingly recognized as a tool with the potential to improve physical exercise in patients constrained to bed rest. METHODS In this randomized clinical trial, patients admitted to a high-complexity ward exhibiting clinical signs of muscle weakness (e.g., report of loss of strength, gait, or balance deficit due to weakness or restriction to bed) were enrolled. Participants were randomly allocated to a recumbent high-intensity, low-volume FES-cycling exercise or a control group. The primary outcomes measured were torque, power output, stimulation cost (neuromuscular efficiency), and ambulation capacity. RESULTS The analysis included 16 patients (eight in each group). Postintervention, the FES-cycling group presented a greater increase in both absolute (4.25 ± 3.15 vs. 0.04 ± 3.49 Nm, p = 0.02) and percentage torque (117 ± 88 vs. 8% ± 53%, p < 0.01) compared to the control. Similarly, the FES-cycling group presented higher absolute (3.91 ± 2.25 vs. 0.57 ± 1.82 watts, p < 0.01) and percentage power (61 ± 36 vs. 10% ± 23%, p < 0.01), along with a higher absolute (-2903 ± 2598 vs. -523 ± 1319 μC/watt, p = 0.03) and percentage stimulation cost (-33 ± 18 vs. -6% ± 1 8%, p = 0.01). Additionally, enhanced ambulation capacity was observed in the FES-cycling group, with 6 patients showing improvement versus 2 in the control group (p = 0.03). CONCLUSIONS Recumbent high-intensity, low-volume FES-cycling exercise increased muscle strength, power, and neuromuscular efficiency in hospitalized patients with muscle weakness. Improvements in ambulation capacity were also noted, supporting the intervention potential.
Collapse
Affiliation(s)
- Murillo Frazão
- Lauro Wanderley University Hospital - UFPB/EBSERH, João Pessoa, PB, Brazil
- Postgraduate Program in Health Sciences and Technologies, University of Brasília - UnB, Brasília, Brazil
| | | | - Gerson Cipriano
- Postgraduate Program in Health Sciences and Technologies, University of Brasília - UnB, Brasília, Brazil
| |
Collapse
|
2
|
Ritzmann R, Centner C, Hughes L, Waldvogel J, Marusic U. Neuromotor changes in postural control following bed rest. J Physiol 2025. [PMID: 40237347 DOI: 10.1113/jp285668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 03/05/2025] [Indexed: 04/18/2025] Open
Abstract
Chronic bed rest (BR) serves as a model for studying the effects of prolonged immobility on physiological and neuromotor functions, particularly postural control. Prolonged BR leads to significant deconditioning of postural balance control, characterized by increased sway path lengths, sway velocity and fall risk, independent of muscle strength. These changes are linked to neural adaptations at spinal and supraspinal levels, including structural and functional brain changes, such as alterations in grey and white matter, increased cerebellar activation, reduced spinal excitability and increased latencies within reflex circuitries. Additionally, BR disrupts sensory integration from proprioceptive, visual and vestibular systems, impairing postural stability. Visual reliance remains stable during BR, though decreased visual acuity and contrast sensitivity are noted. Moreover, BR-induced shifts in cerebrospinal fluid contribute to altered brain activity, impacting sensorimotor function. Vestibular system adaptations, including changes in vestibulospinal reflexes, further exacerbate balance impairments. Understanding these mechanisms is crucial for developing interventions to mitigate the adverse effects of BR on postural control and prevent prolonged recovery times or increased risk of injury. This review highlights the need for further research into the neural underpinnings of BR-induced postural instability, with a focus on sensory integration and neuroplasticity.
Collapse
Affiliation(s)
- Ramona Ritzmann
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
- Innovation Translation Center, AO Foundation, Davos, Switzerland
| | - Christoph Centner
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Luke Hughes
- Faculty of Health & Life Sciences, Northumbria University, Newcastle, UK
| | - Janice Waldvogel
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Uros Marusic
- Institute for Kinesiology Research, Science and Research Centre Koper, Koper, Slovenia
- Department of Health Sciences, Alma Mater Europaea University, Maribor, Slovenia
| |
Collapse
|
3
|
Hansen SK, Hansen P, Berry TW, Grønbæk HD, Olsen CM, Merhi Y, Agarwala S, Aagaard P, Hvid LG, Agergaard J, Dela F, Suetta C. Effects of neuromuscular electrical stimulation on voluntary muscle activation and peripheral muscle contractility following short-term bed rest. Exp Physiol 2025. [PMID: 40163643 DOI: 10.1113/ep092194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 03/05/2025] [Indexed: 04/02/2025]
Abstract
Disuse induces a disproportionate loss of muscle force compared with muscle mass, with unclear effects on voluntary muscle activation (VA) and peripheral contractility. Furthermore, the effect of neuromuscular electrical stimulation (NMES) as a disuse countermeasure remains uncertain. We investigated the effects of NMES during bed rest on neuromechanical function to improve our understanding of the mechanisms underlying disuse-induced reductions in muscular force. Young (n = 16, 25 years old) and old (n = 16, 71 years old) adults underwent 5 days of bed rest. One leg received NMES (3 × 30 min/day), while the other served as the control (CON). Maximal isometric knee-extensor strength (MVIC), VA and peripheral muscle contractility were assessed before and after bed rest using the interpolated twitch technique, along with biomarkers of neuromuscular junction instability (C-terminal agrin fragment (CAF)) and muscle damage (creatine kinase (CK)). MVIC decreased in both age groups, regardless of NMES (young: CON, -21.7 Nm and NMES, -23.8 Nm; old: CON, -18.5 Nm and NMES, -16.4 Nm). VA was preserved with NMES, while decreasing in CON legs (young, -8.1%; old, -5.6%) following bed rest. Peripheral contractility (resting doublet twitch force) was reduced in CON and NMES legs in both age groups (young: CON, -4.0 Nm and NMES, -11.5 Nm; old: CON, -5.9 Nm and NMES, -10.8 Nm), with a greater decrease in NMES legs. CAF remained unchanged, whereas CK levels increased in young participants, albeit remaining within the normal range. In conclusion, a decline in neuromechanical function was observed after 5 days of bed rest in young and old adults. Although NMES appeared to preserve VA, peripheral muscle contractility was altered, resulting in reduced MVIC.
Collapse
Affiliation(s)
- Sofie K Hansen
- Geriatric Research Unit, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- CopenAge, Copenhagen Center for Clinical Age Research, University of Copenhagen, Copenhagen, Denmark
| | - Pernille Hansen
- Geriatric Research Unit, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- CopenAge, Copenhagen Center for Clinical Age Research, University of Copenhagen, Copenhagen, Denmark
| | - Tania W Berry
- Geriatric Research Unit, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Hans D Grønbæk
- Geriatric Research Unit, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Camilla M Olsen
- Geriatric Research Unit, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Youssif Merhi
- Deptarment of Electrical and Computer Engineering, Aarhus University, Aarhus, Denmark
| | - Shweta Agarwala
- Deptarment of Electrical and Computer Engineering, Aarhus University, Aarhus, Denmark
| | - Per Aagaard
- Department of Sport and Clinical Biomechanics, Muscle Physiology and Biomechanics Research Unit, University of Southern Denmark, Odense, Denmark
| | - Lars G Hvid
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
- The Danish MS Hospitals, Ry and Haslev, Copenhagen, Denmark
| | - Jakob Agergaard
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Dela
- Xlab, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Physiology and Biochemistry, Riga Stradins University, Riga, Latvia
| | - Charlotte Suetta
- Geriatric Research Unit, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- CopenAge, Copenhagen Center for Clinical Age Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Horeau M, Delalande M, Ropert M, Leroyer P, Martin B, Orfila L, Loréal O, Derbré F. Sex similarities and divergences in systemic and muscle iron metabolism adaptations to extreme physical inactivity in rats. J Cachexia Sarcopenia Muscle 2024; 15:1989-1998. [PMID: 39049183 PMCID: PMC11446688 DOI: 10.1002/jcsm.13547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/15/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Previous data in humans suggest that extreme physical inactivity (EPI) affects iron metabolism differently between sexes. Our objective was to deepen the underlying mechanisms by studying rats of both sexes exposed to hindlimb unloading (HU), the reference experimental model mimicking EPI. METHODS Eight-week-old male and female Wistar rats were assigned to control (CTL) or hindlimb unloading (HU) conditions (n = 12/group). After 7 days of HU, serum, liver, spleen, and soleus muscle were removed. Iron parameters were measured in serum samples, and ICP-MS was used to quantify iron in tissues. Iron metabolism genes and proteins were analysed by RT-qPCR and Western blot. RESULTS Compared with control males, control females exhibited higher iron concentrations in serum (+43.3%, p < 0.001), liver (LIC; +198%, P < 0.001), spleen (SIC; +76.1%, P < 0.001), and transferrin saturation (TS) in serum (+53.3%, P < 0.001), contrasting with previous observations in humans. HU rat males, but not females, exhibited an increase of LIC (+54% P < 0.001) and SIC (+30.1%, P = 0.023), along with a rise of H-ferritin protein levels (+60.9% and +134%, respectively, in liver and spleen; P < 0.05) and a decrease of TFRC protein levels (-36%; -50%, respectively, P < 0.05). HU males also exhibited an increase of splenic HO-1 and NRF2 mRNA levels, (p < 0.001), as well as HU females (P < 0.001). Concomitantly to muscle atrophy observed in HU animals, the iron concentration increased in soleus in females (+26.7, P = 0.004) while only a trend is observed in males (+17.5%, P = 0.088). In addition, the H-ferritin and myoglobin protein levels in soleus were increased in males (+748%, P < 0.001, +22%, P = 0.011, respectively) and in females (+369%, P < 0.001, +21.9%, P = 0.007, respectively), whereas TFRC and ferroportin (FPN) protein levels were reduced in males (-68.9%, P < 0.001, -76.8%, P < 0.001, respectively) and females (-75.9%, P < 0.001, -62.9%, P < 0.001, respectively). Interestingly, in both sexes, heme exporter FLVCR1 mRNA increased in soleus, while protein levels decreased (-39.9% for males P = 0.010 and -49.1% for females P < 0.001). CONCLUSIONS Taken together, these data support that, in rats (1) extreme physical inactivity differently impacts the distribution of iron in both sexes, (2) splenic erythrophagocytosis could play a role in this iron misdistribution. The higher iron concentrations in atrophied soleus from both sexes are associated with a decoupling between the increase in iron storage proteins (i.e., ferritin and myoglobin) and the decrease in levels of iron export proteins (i.e., FPN and FLVCR1), thus supporting an iron sequestration in skeletal muscle under extreme physical inactivity.
Collapse
Affiliation(s)
- Mathieu Horeau
- Laboratory “Movement Sport and Health Sciences” EA7470University of Rennes/ENSRennesFrance
- INSERM, University of Rennes, INRAE, UMR 1317Nutrition Metabolisms and Cancer (NuMeCan) InstituteRennesFrance
| | - Melissa Delalande
- Laboratory “Movement Sport and Health Sciences” EA7470University of Rennes/ENSRennesFrance
| | - Martine Ropert
- INSERM, University of Rennes, INRAE, UMR 1317Nutrition Metabolisms and Cancer (NuMeCan) InstituteRennesFrance
- Elemental Analysis and Metabolism of Metals (AEM2) PlatformUniv Rennes CHU PontchaillouRennesFrance
| | - Patricia Leroyer
- INSERM, University of Rennes, INRAE, UMR 1317Nutrition Metabolisms and Cancer (NuMeCan) InstituteRennesFrance
| | - Brice Martin
- Laboratory “Movement Sport and Health Sciences” EA7470University of Rennes/ENSRennesFrance
| | - Luz Orfila
- Laboratory “Movement Sport and Health Sciences” EA7470University of Rennes/ENSRennesFrance
| | - Olivier Loréal
- INSERM, University of Rennes, INRAE, UMR 1317Nutrition Metabolisms and Cancer (NuMeCan) InstituteRennesFrance
- Elemental Analysis and Metabolism of Metals (AEM2) PlatformUniv Rennes CHU PontchaillouRennesFrance
| | - Frédéric Derbré
- Laboratory “Movement Sport and Health Sciences” EA7470University of Rennes/ENSRennesFrance
| |
Collapse
|
5
|
Hansen SK, Hansen P, Nygaard H, Grønbæk HD, Berry TW, Olsen CM, Aagaard P, Hvid LG, Agergaard J, Dela F, Suetta C. Five days of bed rest in young and old adults: Retainment of skeletal muscle mass with neuromuscular electrical stimulation. Physiol Rep 2024; 12:e16166. [PMID: 39155274 PMCID: PMC11330699 DOI: 10.14814/phy2.16166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
The consequences of short-term disuse are well known, but effective countermeasures remain elusive. This study investigated the effects of neuromuscular electrical stimulation (NMES) during 5 days of bed rest on retaining lower limb muscle mass and muscle function in healthy young and old participants. One leg received NMES of the quadriceps muscle (3 × 30min/day) (NMES), and the other served as a control (CON). Isometric quadriceps strength (MVC), rate of force development (RFD), lower limb lean mass, and muscle thickness were assessed pre-and post-intervention. Muscle thickness remained unaltered with NMES in young and increased in old following bed rest, while it decreased in CON legs. In old participants, mid-thigh lean mass (MTLM) was preserved with NMES while decreased in CON legs. In the young, only a tendency to change with bed rest was detected for MTLM. MVC and early-phase RFD decreased in young and old, irrespective of NMES. In contrast, late-phase RFD was retained in young participants with NMES, while it decreased in young CON legs, and in the old, irrespective of NMES. NMES during short-term bed rest preserved muscle thickness but not maximal muscle strength. While young and old adults demonstrated similar adaptive responses in preventing the loss of skeletal muscle thickness, RFD was retained in the young only.
Collapse
Affiliation(s)
- Sofie K. Hansen
- Geriatric Research UnitCopenhagen University Hospital ‐ Bispebjerg and FrederiksbergCopenhagenDenmark
- CopenAge, Copenhagen Center for Clinical age ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Pernille Hansen
- Geriatric Research UnitCopenhagen University Hospital ‐ Bispebjerg and FrederiksbergCopenhagenDenmark
- CopenAge, Copenhagen Center for Clinical age ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Hanne Nygaard
- Geriatric Research UnitCopenhagen University Hospital ‐ Bispebjerg and FrederiksbergCopenhagenDenmark
- CopenAge, Copenhagen Center for Clinical age ResearchUniversity of CopenhagenCopenhagenDenmark
- Department of Emergency MedicineCopenhagen University Hospital ‐ Bispebjerg and FrederiksbergCopenhagenDenmark
| | - Hans D. Grønbæk
- Geriatric Research UnitCopenhagen University Hospital ‐ Bispebjerg and FrederiksbergCopenhagenDenmark
| | - Tania W. Berry
- Geriatric Research UnitCopenhagen University Hospital ‐ Bispebjerg and FrederiksbergCopenhagenDenmark
| | - Camilla M. Olsen
- Geriatric Research UnitCopenhagen University Hospital ‐ Bispebjerg and FrederiksbergCopenhagenDenmark
| | - Per Aagaard
- Department of Sport and Clinical BiomechanicsUniversity of Southern DenmarkOdenseDenmark
| | - Lars G. Hvid
- Exercise Biology, Department of Public HealthAarhus UniversityAarhusDenmark
- The Danish MS Hospitals, Ry and HaslevHaslevDenmark
| | - Jakob Agergaard
- Department of Orthopedic Surgery, Institute of Sports Medicine CopenhagenCopenhagen University Hospital—Bispebjerg and FrederiksbergCopenhagenDenmark
- Department of Clinical Medicine, Center for Healthy AgingUniversity of CopenhagenCopenhagenDenmark
| | - Flemming Dela
- CopenAge, Copenhagen Center for Clinical age ResearchUniversity of CopenhagenCopenhagenDenmark
- Xlab, Department of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Physiology and BiochemistryRiga Stradins UniversityRigaLatvia
| | - Charlotte Suetta
- Geriatric Research UnitCopenhagen University Hospital ‐ Bispebjerg and FrederiksbergCopenhagenDenmark
- CopenAge, Copenhagen Center for Clinical age ResearchUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
6
|
Horeau M, Navasiolava N, Van Ombergen A, Custaud MA, Robin A, Ropert M, Antunes I, Bareille MP, Billette De Villemeur R, Gauquelin-Koch G, Derbré F, Loréal O. Dry immersion rapidly disturbs iron metabolism in men and women: results from the VIVALDI studies. NPJ Microgravity 2024; 10:68. [PMID: 38879550 PMCID: PMC11180090 DOI: 10.1038/s41526-024-00399-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/25/2024] [Indexed: 06/19/2024] Open
Abstract
Iron is essential for cell respiration, muscle metabolism, and oxygen transport. Recent research has shown that simulated microgravity rapidly affects iron metabolism in men. However, its impact on women remains unclear. This study aims to compare iron metabolism alterations in both sexes exposed to 5 days of dry immersion. Our findings demonstrate that women, similarly to men, experience increased systemic iron availability and elevated serum hepcidin levels, indicative of iron misdistribution after short-term exposure to simulated microgravity.
Collapse
Affiliation(s)
- Mathieu Horeau
- INSERM, University of Rennes, INRAE, UMR 1241, AEM2 Platform, Nutrition Metabolisms and Cancer (NuMeCan) institute, Rennes, France
- Laboratory "Movement Sport and Health Sciences" EA7470, University of Rennes/ENS Rennes, Rennes, France
| | - Nastassia Navasiolava
- Univ Angers, CRC, CHU Angers, Inserm, CNRS, MITOVASC, Equipe CARME, SFR ICAT, Angers, France
| | | | - Marc-Antoine Custaud
- Univ Angers, CRC, CHU Angers, Inserm, CNRS, MITOVASC, Equipe CARME, SFR ICAT, Angers, France
| | - Adrien Robin
- Univ Angers, CRC, CHU Angers, Inserm, CNRS, MITOVASC, Equipe CARME, SFR ICAT, Angers, France
- Department of Aerospace Engineering, Texas A&M University, College Station, TX, USA
| | - Martine Ropert
- INSERM, University of Rennes, INRAE, UMR 1241, AEM2 Platform, Nutrition Metabolisms and Cancer (NuMeCan) institute, Rennes, France
| | - Inês Antunes
- Telespazio Belgium S.R.L. for the European Space Agency, Noordwijk, The Netherlands
| | | | | | | | - Frédéric Derbré
- Laboratory "Movement Sport and Health Sciences" EA7470, University of Rennes/ENS Rennes, Rennes, France.
| | - Olivier Loréal
- INSERM, University of Rennes, INRAE, UMR 1241, AEM2 Platform, Nutrition Metabolisms and Cancer (NuMeCan) institute, Rennes, France.
| |
Collapse
|
7
|
Dirks ML, Jameson TSO, Andrews RC, Dunlop MV, Abdelrahman DR, Murton AJ, Wall BT, Stephens FB. The impact of forearm immobilization and acipimox administration on muscle amino acid metabolism and insulin sensitivity in healthy, young volunteers. Am J Physiol Endocrinol Metab 2024; 326:E277-E289. [PMID: 38231001 PMCID: PMC11193527 DOI: 10.1152/ajpendo.00345.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/13/2023] [Accepted: 12/27/2023] [Indexed: 01/18/2024]
Abstract
Although the mechanisms underpinning short-term muscle disuse atrophy and associated insulin resistance remain to be elucidated, perturbed lipid metabolism might be involved. Our aim was to determine the impact of acipimox administration [i.e., pharmacologically lowering circulating nonesterified fatty acid (NEFA) availability] on muscle amino acid metabolism and insulin sensitivity during short-term disuse. Eighteen healthy individuals (age: 22 ± 1 years; body mass index: 24.0 ± 0.6 kg·m-2) underwent 2 days forearm immobilization with placebo (PLA; n = 9) or acipimox (ACI; 250 mg Olbetam; n = 9) ingestion four times daily. Before and after immobilization, whole body glucose disposal rate (GDR), forearm glucose uptake (FGU; i.e., muscle insulin sensitivity), and amino acid kinetics were measured under fasting and hyperinsulinemic-hyperaminoacidemic-euglycemic clamp conditions using forearm balance and l-[ring-2H5]-phenylalanine infusions. Immobilization did not affect GDR but decreased insulin-stimulated FGU in both groups, more so in ACI (from 53 ± 8 to 12 ± 5 µmol·min-1) than PLA (from 52 ± 8 to 38 ± 13 µmol·min-1; P < 0.05). In ACI only, and in contrast to our hypothesis, fasting arterialized NEFA concentrations were elevated to 1.3 ± 0.1 mmol·L-1 postimmobilization (P < 0.05), and fasting forearm NEFA balance increased approximately fourfold (P = 0.10). Forearm phenylalanine net balance decreased following immobilization (P < 0.10), driven by an increased rate of appearance [from 32 ± 5 (fasting) and 21 ± 4 (clamp) preimmobilization to 53 ± 8 and 31 ± 4 postimmobilization; P < 0.05] while the rate of disappearance was unaffected by disuse or acipimox. Disuse-induced insulin resistance is accompanied by early signs of negative net muscle amino acid balance, which is driven by accelerated muscle amino acid efflux. Acutely elevated NEFA availability worsened muscle insulin resistance without affecting amino acid kinetics, suggesting increased muscle NEFA uptake may contribute to inactivity-induced insulin resistance but does not cause anabolic resistance.NEW & NOTEWORTHY We demonstrate that 2 days of forearm cast immobilization in healthy young volunteers leads to the rapid development of insulin resistance, which is accompanied by accelerated muscle amino acid efflux in the absence of impaired muscle amino acid uptake. Acutely elevated fasting nonesterified fatty acid (NEFA) availability as a result of acipimox supplementation worsened muscle insulin resistance without affecting amino acid kinetics, suggesting increased muscle NEFA uptake may contribute to inactivity-induced insulin resistance but does not cause anabolic resistance.
Collapse
Affiliation(s)
- Marlou L Dirks
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, United Kingdom
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Tom S O Jameson
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, United Kingdom
| | - Rob C Andrews
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom
- National Institute for Health and Care Research Exeter Biomedical Research Centre, Exeter, United Kingdom
| | - Mandy V Dunlop
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, United Kingdom
| | - Doaa R Abdelrahman
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, Texas, United States
| | - Andrew J Murton
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, Texas, United States
| | - Benjamin T Wall
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, United Kingdom
| | - Francis B Stephens
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, United Kingdom
| |
Collapse
|
8
|
Sayed RKA, Hibbert JE, Jorgenson KW, Hornberger TA. The Structural Adaptations That Mediate Disuse-Induced Atrophy of Skeletal Muscle. Cells 2023; 12:2811. [PMID: 38132132 PMCID: PMC10741885 DOI: 10.3390/cells12242811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
The maintenance of skeletal muscle mass plays a fundamental role in health and issues associated with quality of life. Mechanical signals are one of the most potent regulators of muscle mass, with a decrease in mechanical loading leading to a decrease in muscle mass. This concept has been supported by a plethora of human- and animal-based studies over the past 100 years and has resulted in the commonly used term of 'disuse atrophy'. These same studies have also provided a great deal of insight into the structural adaptations that mediate disuse-induced atrophy. For instance, disuse results in radial atrophy of fascicles, and this is driven, at least in part, by radial atrophy of the muscle fibers. However, the ultrastructural adaptations that mediate these changes remain far from defined. Indeed, even the most basic questions, such as whether the radial atrophy of muscle fibers is driven by the radial atrophy of myofibrils and/or myofibril hypoplasia, have yet to be answered. In this review, we thoroughly summarize what is known about the macroscopic, microscopic, and ultrastructural adaptations that mediated disuse-induced atrophy and highlight some of the major gaps in knowledge that need to be filled.
Collapse
Affiliation(s)
- Ramy K. A. Sayed
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Jamie E. Hibbert
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - Kent W. Jorgenson
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - Troy A. Hornberger
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
| |
Collapse
|
9
|
Dirks ML, Jameson TS, Andrews RC, Dunlop MV, Abdelrahman DR, Murton AJ, Wall BT, Stephens FB. The impact of short-term forearm immobilization and acipimox administration on muscle amino acid metabolism and insulin sensitivity in healthy, young volunteers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561668. [PMID: 37873346 PMCID: PMC10592751 DOI: 10.1101/2023.10.10.561668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The mechanisms underpinning short-term muscle disuse atrophy remain to be elucidated, but perturbations in lipid metabolism may be involved. Specifically, positive muscle non-esterified fatty acid (NEFA) balance has been implicated in the development of disuse-induced insulin and anabolic resistance. Our aim was to determine the impact of acipimox administration (i.e. pharmacologically lowering circulating NEFA availability) on muscle amino acid metabolism and insulin sensitivity during short-term disuse. Eighteen healthy individuals (age 22±1 years, BMI 24.0±0.6 kg·m-2) underwent 2 days of forearm cast immobilization with placebo (PLA; n=9, 5M/4F) or acipimox (ACI; 250 mg Olbetam; n=9, 4M/5F) ingestion four times daily. Before and after immobilization, whole-body glucose disposal rate (GDR), forearm glucose uptake (FGU, i.e. muscle insulin sensitivity), and amino acid kinetics were measured under fasting and hyperinsulinaemic-hyperaminoacidaemic-euglycaemic clamp conditions using arteriovenous forearm balance and intravenous L-[ring-2H5]phenylalanine infusions. Immobilization did not affect GDR but decreased insulin-stimulated FGU in both groups, but to a greater degree in ACI (from 53±8 to 12±5 μmol·min-1) than in PLA (from 52±8 to 38±13 μmol·min-1; P<0.05). In ACI only, fasting arterialised NEFA concentrations were elevated to 1.3±0.1 mmol·L-1 post-immobilization (P<0.05), and fasting forearm NEFA balance increased ~4-fold (P=0.10). Forearm phenylalanine net balance tended to decrease following immobilization (P<0.10), driven by increases in phenylalanine rates of appearance (from 32±5 (fasting) and 21±4 (clamp) pre-immobilization to 53±8 and 31±4 post-immobilization; P<0.05) while rates of disappearance were unaffected and no effects of acipimox observed. Altogether, we show disuse-induced insulin resistance is accompanied by early signs of negative net muscle amino acid balance, which is driven by accelerated muscle amino acid efflux. Acutely elevated NEFA availability worsened muscle insulin resistance without affecting muscle amino acid kinetics, suggesting that disuse-associated increased muscle NEFA uptake may contribute to inactivity-induced insulin resistance but does not represent an early mechanism causing anabolic resistance.
Collapse
Affiliation(s)
- Marlou L. Dirks
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, UK
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Tom S.O. Jameson
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, UK
| | - Rob C. Andrews
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
- National Institute for Health and Care Research (NIHR) Exeter Biomedical Research Centre (BRC), Exeter, UK
| | - Mandy V. Dunlop
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, UK
| | - Doaa R. Abdelrahman
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX, USA
| | - Andrew J. Murton
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX, USA
| | - Benjamin T. Wall
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, UK
| | - Francis B. Stephens
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, UK
| |
Collapse
|
10
|
Hajj-Boutros G, Sonjak V, Faust A, Hedge E, Mastrandrea C, Lagacé JC, St-Martin P, Naz Divsalar D, Sadeghian F, Chevalier S, Liu-Ambrose T, Blaber AP, Dionne IJ, Duchesne S, Hughson R, Kontulainen S, Theou O, Morais JA. Impact of 14 Days of Bed Rest in Older Adults and an Exercise Countermeasure on Body Composition, Muscle Strength, and Cardiovascular Function: Canadian Space Agency Standard Measures. Gerontology 2023; 69:1284-1294. [PMID: 37717560 PMCID: PMC10634275 DOI: 10.1159/000534063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/01/2023] [Indexed: 09/19/2023] Open
Abstract
INTRODUCTION Head-down bed rest (HDBR) has long been used as an analog to microgravity, and it also enables studying the changes occurring with aging. Exercise is the most effective countermeasure for the deleterious effects of inactivity. The aim of this study was to investigate the efficacy of an exercise countermeasure in healthy older participants on attenuating musculoskeletal deconditioning, cardiovascular fitness level, and muscle strength during 14 days of HDBR as part of the standard measures of the Canadian Space Agency. METHODS Twenty-three participants (12 males and 11 females), aged 55-65 years, were admitted for a 26-day inpatient stay at the McGill University Health Centre. After 5 days of baseline assessment tests, they underwent 14 days of continuous HDBR followed by 7 days of recovery with repeated tests. Participants were randomized to passive physiotherapy or an exercise countermeasure during the HDBR period consisting of 3 sessions per day of either high-intensity interval training (HIIT) or low-intensity cycling or strength exercises for the lower and upper body. Peak aerobic power (V̇O2peak) was determined using indirect calorimetry. Body composition was assessed by dual-energy X-ray absorptiometry, and several muscle group strengths were evaluated using an adjustable chair dynamometer. A vertical jump was used to assess whole-body power output, and a tilt test was used to measure cardiovascular and orthostatic challenges. Additionally, changes in various blood parameters were measured as well as the effects of exercise countermeasure on these measurements. RESULTS There were no differences at baseline in main characteristics between the control and exercise groups. The exercise group maintained V̇O2peak levels similar to baseline, whereas it decreased in the control group following 14 days of HDBR. Body weight significantly decreased in both groups. Total and leg lean masses decreased in both groups. However, total body fat mass decreased only in the exercise group. Isometric and isokinetic knee extension muscle strength were significantly reduced in both groups. Peak velocity, flight height, and flight time were significantly reduced in both groups with HDBR. CONCLUSION In this first Canadian HDBR study in older adults, an exercise countermeasure helped maintain aerobic fitness and lean body mass without affecting the reduction of knee extension strength. However, it was ineffective in protecting against orthostatic intolerance. These results support HIIT as a promising approach to preserve astronaut health and functioning during space missions, and to prevent deconditioning as a result of hospitalization in older adults.
Collapse
Affiliation(s)
- Guy Hajj-Boutros
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada,
| | - Vita Sonjak
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Andréa Faust
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Eric Hedge
- Department of Kinesiology, Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Ontario, Canada
| | - Carmelo Mastrandrea
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Jean-Christophe Lagacé
- Faculté des Sciences de l'activité Physique, Centre de Recherche sur le Vieillissement, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Philippe St-Martin
- Faculté des Sciences de l'activité Physique, Centre de Recherche sur le Vieillissement, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Donya Naz Divsalar
- Department of Biomedical Physiology and Kinesiology, Aerospace Physiology Laboratory, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Farshid Sadeghian
- Department of Biomedical Physiology and Kinesiology, Aerospace Physiology Laboratory, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Stéphanie Chevalier
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- School of Human Nutrition, McGill University, Montreal, Québec, Canada
| | - Teresa Liu-Ambrose
- Aging, Mobility and Cognitive Neuroscience Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew P Blaber
- Department of Biomedical Physiology and Kinesiology, Aerospace Physiology Laboratory, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Isabelle J Dionne
- Faculté des Sciences de l'activité Physique, Centre de Recherche sur le Vieillissement, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Simon Duchesne
- Department of Radiology and Nuclear Medicine, Université Laval, Quebec City, Québec, Canada
- CERVO Brain Research Center, Quebec City, Québec, Canada
| | - Richard Hughson
- Department of Kinesiology, Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Ontario, Canada
| | - Saija Kontulainen
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Olga Theou
- Division of Geriatric Medicine, Queen Elizabeth II Health Sciences Centre, Nova Scotia Health, Halifax, Nova Scotia, Canada
| | - José A Morais
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Division of Geriatric Medicine, Faculty of Medicine, McGill University, Montreal, Québec, Canada
| |
Collapse
|
11
|
Palacio M, Mottola MF. Activity Restriction and Hospitalization in Pregnancy: Can Bed-Rest Exercise Prevent Deconditioning? A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1454. [PMID: 36674214 PMCID: PMC9859130 DOI: 10.3390/ijerph20021454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/16/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Evidence suggests that exercise during pregnancy is beneficial to both parent and fetus. However, there are high-risk pregnancy conditions that may warrant hospitalization. In our narrative review, we first describe the clinical implications for activity restriction in pregnancy, the effects of hospitalization, and the impact of bed rest on non-pregnant individuals. We provide examples of a 30 min bed-rest exercise program for hospitalized pregnant patients using the principal of suggested frequency, intensity, time (duration) of activity, and type of activity (FITT) using a resistance tool while in bed. If the individual is able to ambulate, we recommend short walks around the ward. Every minute counts and activity should be incorporated into a program at least 3 times per week, or every day if possible. As in all exercise programs, motivation and accountability are essential. Flexibility in timing of the exercise intervention is important due to the scheduling of medical assessments that may occur throughout the day for these hospitalized patients. Evidence suggests that by improving physical and emotional health through a bed-rest exercise program during a hospitalized pregnancy may help the individual resume demanding daily activity in the postpartum period and improve quality of life once birth has occurred. More research is necessary to improve the health of those individuals who are hospitalized during pregnancy, with follow up and support into the postpartum period.
Collapse
Affiliation(s)
- Montse Palacio
- Senior Consultant, Maternal-Fetal Medicine, Hospital Clínic Barcelona (BCNatal Fetal Medicine Research Center), Universitat de Barcelona, 08028 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi I Sunyer, 08036 Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBERER), 08001 Barcelona, Spain
| | - Michelle F. Mottola
- R. Samuel McLaughlin Foundation-Exercise and Pregnancy Laboratory, School of Kinesiology, Faculty of Health Sciences, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Children’s Health Research Institute, The University of Western Ontario, London, ON N6A 3K7, Canada
| |
Collapse
|
12
|
Elsalam S, Morsy W, Youseif M, Mohammed F. Effect of implementing mobility protocol on selected outcomes among critically ill elderly patients. EGYPTIAN NURSING JOURNAL 2023; 20:104. [DOI: 10.4103/enj.enj_24_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
13
|
Hendrickse PW, Wüst RCI, Ganse B, Giakoumaki I, Rittweger J, Bosutti A, Degens H. Capillary rarefaction during bed rest is proportionally less than fibre atrophy and loss of oxidative capacity. J Cachexia Sarcopenia Muscle 2022; 13:2712-2723. [PMID: 36102002 PMCID: PMC9745458 DOI: 10.1002/jcsm.13072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Muscle disuse from bed rest or spaceflight results in losses in muscle mass, strength and oxidative capacity. Capillary rarefaction may contribute to muscle atrophy and the reduction in oxidative capacity during bed rest. Artificial gravity may attenuate the negative effects of long-term space missions or bed rest. The aim of the present study was to assess (1) the effects of bed rest on muscle fibre size, fibre type composition, capillarization and oxidative capacity in the vastus lateralis and soleus muscles after 6 and 55 days of bed rest and (2) the effectiveness of artificial gravity in mitigating bed-rest-induced detriments to these parameters. METHODS Nineteen participants were assigned to a control group (control, n = 6) or an intervention group undergoing 30 min of centrifugation (n = 13). All underwent 55 days of head-down tilt bed rest. Vastus lateralis and soleus biopsies were taken at baseline and after 6 and 55 days of bed rest. Fibre type composition, fibre cross-sectional area, capillarization indices and oxidative capacity were determined. RESULTS After just 6 days of bed rest, fibre atrophy (-23.2 ± 12.4%, P < 0.001) and reductions in capillary-to-fibre ratio (C:F; 1.97 ± 0.57 vs. 1.56 ± 0.41, P < 0.001) were proportional in both muscles as reflected by a maintained capillary density. Fibre atrophy proceeded at a much slower rate between 6 and 55 days of bed rest (-11.6 ± 12.1% of 6 days, P = 0.032) and was accompanied by a 19.1% reduction in succinate dehydrogenase stain optical density (P < 0.001), without any further significant decrements in C:F (1.56 ± 0.41 vs. 1.49 ± 0.37, P = 0.459). Consequently, after 55 days of bed rest, the capillary supply-oxidative capacity ratio of a fibre had increased by 41.9% (P < 0.001), indicating a capillarization in relative excess of oxidative capacity. Even though the heterogeneity of capillary spacing (LogR SD) was increased after 55 days by 12.7% (P = 0.004), tissue oxygenation at maximal oxygen consumption of the fibres was improved after 55 days bed rest. Daily centrifugation failed to blunt the bed-rest-induced reductions in fibre size and oxidative capacity and capillary rarefaction. CONCLUSIONS The relationship between fibre size and oxidative capacity with the capillary supply of a fibre is uncoupled during prolonged bed rest as reflected by a rapid loss of muscle mass and capillaries, followed at later stages by a more than proportional loss of mitochondria without further capillary loss. The resulting excessive capillary supply of the muscle after prolonged bed rest is advantageous for the delivery of substrates needed for subsequent muscle recovery.
Collapse
Affiliation(s)
- Paul William Hendrickse
- Research Centre for Musculoskeletal Science & Sports Medicine, Department of Life Sciences, Manchester Metropolitan University, Manchester, UK.,School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Rob C I Wüst
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bergita Ganse
- Werner Siemens Foundation Endowed Chair for Innovative Implant Development (Fracture Healing), Saarland University, Saarbrücken, Germany
| | - Ifigeneia Giakoumaki
- Research Centre for Musculoskeletal Science & Sports Medicine, Department of Life Sciences, Manchester Metropolitan University, Manchester, UK.,Apis Assay Technologies Ltd., Manchester, UK
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| | | | - Hans Degens
- Research Centre for Musculoskeletal Science & Sports Medicine, Department of Life Sciences, Manchester Metropolitan University, Manchester, UK.,Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|
14
|
Clark D, Dingle M, Saxena S, Dworak T, Nappo K, Balazs GC, Nanos G, Tintle S. Prospective Evaluation of Push-up Performance and Patient-Reported Outcomes Following Open Dorsal Wrist Ganglion Excision in the Active-Duty Military Population. J Wrist Surg 2022; 11:493-500. [PMID: 36504534 PMCID: PMC9731736 DOI: 10.1055/s-0042-1743118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022]
Abstract
Background Dorsal wrist ganglia (DWG) are a common wrist pathology that affects the military population. This study prospectively evaluates push-up performance, functional measures, and patient-reported outcomes 6 months after open DWG excision in active-duty patients. Methods Twenty-seven active-duty patients were enrolled and 18 had complete follow-up. Included patients had DWG diagnosis, unilateral involvement, and no previous surgery. The number of push-ups performed within 2 minutes was measured preoperatively and at 6 months. Range of motion (ROM), grip strength, Pain Catastrophization Scale (PCS), Disabilities of the Arm, Shoulder, and Hand (DASH) score, Mayo Wrist Score, and visual analog scale (VAS) pain score were measured preoperatively and at 2 weeks, 6 weeks, 3 months, and 6 months. Results Push-up performance did not significantly change overall. Wrist flexion, extension, and radial deviation returned to preoperative ranges. Wrist ulnar deviation significantly increased from preoperative range. Grip strength deficit between operative and unaffected extremities significantly improved to 0.7 kg at 6 months from preoperative deficit of 2.7 kg. Mean scores significantly improved for the validated outcome measures-PCS from 6.3 to 0.67, VAS pain scores from 1.37 to 0.18, DASH scores from 12.8 to 4.3, and Mayo Wrist Scores from 80.3 to 89.4. No surgical complications or recurrences were reported. Conclusions Findings suggest that almost half of active patients may improve push-up performance after DWG excision at 6 months. Significant improvements were seen in wrist pain, ROM, grip strength, and all patient-reported outcomes, which is useful when counseling patients undergoing excision.
Collapse
Affiliation(s)
- DesRaj Clark
- Department of Orthopedic Surgery, Walter Reed National Military Medical Center, Maryland
| | - Marvin Dingle
- Department of Orthopedic Surgery, Walter Reed National Military Medical Center, Maryland
| | - Sameer Saxena
- Department of Orthopedic Surgery, Walter Reed National Military Medical Center, Maryland
| | - Theodora Dworak
- Department of Orthopedic Surgery, Walter Reed National Military Medical Center, Maryland
| | - Kyle Nappo
- Department of Orthopedic Surgery, Walter Reed National Military Medical Center, Maryland
| | | | - George Nanos
- Department of Orthopedic Surgery, Walter Reed National Military Medical Center, Maryland
| | - Scott Tintle
- Department of Orthopedic Surgery, Walter Reed National Military Medical Center, Maryland
| |
Collapse
|
15
|
Horeau M, Ropert M, Mulder E, Tank J, Frings-Meuthen P, Armbrecht G, Loréal O, Derbré F. Iron Metabolism Regulation in Females and Males Exposed to Simulated Microgravity: results from the Randomized Trial AGBRESA. Am J Clin Nutr 2022; 116:1430-1440. [PMID: 36026525 DOI: 10.1093/ajcn/nqac205] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/23/2022] [Accepted: 08/14/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Iron metabolism imbalance could contribute to physical deconditioning experienced by astronauts due to its essential role in energy metabolism, cellular respiration, and oxygen transport. OBJECTIVES In this clinical exploratory study, we wanted to determine whether artificial gravity (AG) training modulated iron metabolism, red blood cell indices, and body lean mass in male and female healthy participants exposed to head-down tilt (HDT) bed rest, the reference ground-based model of microgravity. METHODS We recruited 8 female and 16 male healthy participants who were all exposed to HDT bed rest for 60 days. In addition, they were assigned to three experimental groups (n = 8/each): controls, continuous AG training in a short-arm centrifuge (1×30 min/day), and intermittent AG training (6 × 5 min/day). RESULTS The iron metabolism responses to simulated microgravity of AG training groups do not significantly differ from the responses of controls. Independently from AG, we found that both serum iron (+31.3%, P = 0.027) and transferrin saturation levels (+28.4%, P = 0.009) increased in males after 6 days of HDT bed rest, as well as serum hepcidin levels (+36.9% P = 0.005). The increase of transferrin saturation levels persisted after 57 days of HDT bed rest (+13.5%, P = 0.026), suggesting that long-term exposure to microgravity sustainably increases serum iron availability in males, and consequently the risk of iron excess or misdistribution. In females, 6 and 57 days of HDT bed rest did not significantly change serum iron, transferrin saturation, and hepcidin levels. CONCLUSIONS The data from this exploratory study suggest that 1) AG training does not influence the iron metabolism responses to microgravity; 2) iron metabolism parameters, especially iron availability for cells, are significantly increased in males, but not in females, exposed to long-term simulated microgravity. Due to the small sample size of females, we nevertheless must be cautious before concluding that iron metabolism could differently respond to microgravity in females. Clinical trial registry number: DRKS00015677.
Collapse
Affiliation(s)
- Mathieu Horeau
- Laboratory "Movement Sport and Health Sciences" EA7470, University of Rennes/ENS Rennes, France.,INSERM, University of Rennes, INRAE, UMR 1241, AEM2 platform, Nutrition Metabolisms and Cancer (NuMeCan) institute, Rennes, France
| | - Martine Ropert
- INSERM, University of Rennes, INRAE, UMR 1241, AEM2 platform, Nutrition Metabolisms and Cancer (NuMeCan) institute, Rennes, France.,Department of Biochemistry, CHU Rennes, France
| | - Edwin Mulder
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jens Tank
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Petra Frings-Meuthen
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Gabriele Armbrecht
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Radiology, Berlin, Germany
| | - Olivier Loréal
- INSERM, University of Rennes, INRAE, UMR 1241, AEM2 platform, Nutrition Metabolisms and Cancer (NuMeCan) institute, Rennes, France
| | - Frédéric Derbré
- Laboratory "Movement Sport and Health Sciences" EA7470, University of Rennes/ENS Rennes, France
| |
Collapse
|
16
|
Ma T, Zhang Q, Zhou T, Zhang Y, He Y, Li S, Liu Q. Effects of robotic-assisted gait training on motor function and walking ability in children with thoracolumbar incomplete spinal cord injury. NeuroRehabilitation 2022; 51:499-508. [DOI: 10.3233/nre-220124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Spinal cord injury (SCI) results in neurological dysfunction of the spinal cord below the injury. OBJECTIVE: To explore the immediate and long-term effects of robotic-assisted gait training (RAGT) on the recovery of motor function and walking ability in children with thoracolumbar incomplete SCI. METHODS: Twenty-one children with thoracolumbar incomplete SCI were randomly divided into the experimental (n = 11) and control groups (n = 10). The control group received 60 min of conventional physical therapy, and the experimental group received 30 min of RAGT based on 30 minutes of conventional physical therapy. Changes in walking speed and distance, physiological cost index (PCI), lower extremity motor score (LEMS), SCI walking index and centre-of-pressure (COP) envelope area score were observed in both groups of children before and after eight weeks of training. The primary outcome measures were the 10-metre walk test (10MWT) and six-minute walk distance (6MWD) at preferred and maximal speeds. In addition, several other measures were assessed, such as postural control and balance, lower limb strength and energy expenditure. RESULTS: Compared with control group, the self-selected walk speed (SWS), maximum walking speed (MWS), 6MWD, PCI, LEMS, COP, and Walking Index for Spinal Cord injury II (WISCI II) of experimental group were improved after treatment. The 6MWD, PCI, COP, and WISCI II after eight weeks of treatment were improved in experimental group. All indicators were not identical at three different time points when compared between two groups. Pairwise comparisons in experimental group suggested that the SWS, MWS, 6MWD, PCI, LEMS, COP, and WISCI II after treatment were higher than those before treatment. The 6MWD, LEMS, COP, and WISCI II after treatment were higher than at the one-month follow-up appointment. The SWS, PCI, LEMS, COP, and WISCI II at the eight-week follow-up appointment were improved. CONCLUSION: Robotic-assisted gait training may significantly improve the immediate motor function and walking ability of children with thoracolumbar incomplete SCI.
Collapse
Affiliation(s)
- Tingting Ma
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Capital Medical University School of Rehabilitation Medicine, Beijing, China
| | - Qi Zhang
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Capital Medical University School of Rehabilitation Medicine, Beijing, China
| | - Tiantian Zhou
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Capital Medical University School of Rehabilitation Medicine, Beijing, China
| | - Yanqing Zhang
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Capital Medical University School of Rehabilitation Medicine, Beijing, China
| | - Yan He
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Capital Medical University School of Rehabilitation Medicine, Beijing, China
| | - Sijia Li
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Capital Medical University School of Rehabilitation Medicine, Beijing, China
| | - Qianjin Liu
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Capital Medical University School of Rehabilitation Medicine, Beijing, China
| |
Collapse
|
17
|
Trinity JD, Drummond MJ, Fermoyle CC, McKenzie AI, Supiano MA, Richardson RS. Cardiovasomobility: an integrative understanding of how disuse impacts cardiovascular and skeletal muscle health. J Appl Physiol (1985) 2022; 132:835-861. [PMID: 35112929 PMCID: PMC8934676 DOI: 10.1152/japplphysiol.00607.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cardiovasomobility is a novel concept that encompasses the integration of cardiovascular and skeletal muscle function in health and disease with critical modification by physical activity, or lack thereof. Compelling evidence indicates that physical activity improves health while a sedentary, or inactive, lifestyle accelerates cardiovascular and skeletal muscle dysfunction and hastens disease progression. Identifying causative factors for vascular and skeletal muscle dysfunction, especially in humans, has proven difficult due to the limitations associated with cross-sectional investigations. Therefore, experimental models of physical inactivity and disuse, which mimic hospitalization, injury, and illness, provide important insight into the mechanisms and consequences of vascular and skeletal muscle dysfunction. This review provides an overview of the experimental models of disuse and inactivity and focuses on the integrated responses of the vasculature and skeletal muscle in response to disuse/inactivity. The time course and magnitude of dysfunction evoked by various models of disuse/inactivity are discussed in detail, and evidence in support of the critical roles of mitochondrial function and oxidative stress are presented. Lastly, strategies aimed at preserving vascular and skeletal muscle dysfunction during disuse/inactivity are reviewed. Within the context of cardiovasomobility, experimental manipulation of physical activity provides valuable insight into the mechanisms responsible for vascular and skeletal muscle dysfunction that limit mobility, degrade quality of life, and hasten the onset of disease.
Collapse
Affiliation(s)
- Joel D Trinity
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Micah J Drummond
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah.,Department of Physical Therapy, University of Utah, Salt Lake City, Utah
| | - Caitlin C Fermoyle
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Alec I McKenzie
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Mark A Supiano
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
18
|
Yin L, Li N, Jia W, Wang N, Liang M, Yang X, Du G. Skeletal muscle atrophy: From mechanisms to treatments. Pharmacol Res 2021; 172:105807. [PMID: 34389456 DOI: 10.1016/j.phrs.2021.105807] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 02/07/2023]
Abstract
Skeletal muscle is a crucial tissue for movement, gestural assistance, metabolic homeostasis, and thermogenesis. It makes up approximately 40% of the total body weight and 50% of total protein. However, several pathological abnormalities (e.g., chronic diseases, cancer, long-term infection, aging) can induce an imbalance in skeletal muscle protein synthesis and degradation, which triggers muscle wasting and even leads to atrophy. Skeletal muscle atrophy is characterized by weakening, shrinking, and decreasing muscle mass and fiber cross-sectional area at the histological level. It manifests as a reduction in force production, easy fatigue and decreased exercise capability, along with a lower quality of life. Mechanistically, there are several pathophysiological processes involved in skeletal muscle atrophy, including oxidative stress and inflammation, which then activate signal transduction, such as the ubiquitin proteasome system, autophagy lysosome system, and mTOR. Considering the great economic and social burden that muscle atrophy can inflict, effective prevention and treatment strategies are essential but still limited. Exercise is widely acknowledged as the most effective therapy for skeletal muscle atrophy; unfortunately, it is not applicable for all patients. Several active substances for skeletal muscle atrophy have been discovered and evaluated in clinical trials, however, they have not been marketed to date. Knowledge is being gained on the underlying mechanisms, highlighting more promising treatment strategies in the future. In this paper, the mechanisms and treatment strategies for skeletal muscle atrophy are briefly reviewed.
Collapse
Affiliation(s)
- Lin Yin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Na Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Weihua Jia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Nuoqi Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Meidai Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Xiuying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China.
| | - Guanhua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China.
| |
Collapse
|
19
|
Marusic U, Narici M, Simunic B, Pisot R, Ritzmann R. Nonuniform loss of muscle strength and atrophy during bed rest: a systematic review. J Appl Physiol (1985) 2021; 131:194-206. [PMID: 33703945 DOI: 10.1152/japplphysiol.00363.2020] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Muscle atrophy and decline in muscle strength appear very rapidly with prolonged disuse or mechanical unloading after acute hospitalization or experimental bed rest. The current study analyzed data from short-, medium-, and long-term bed rest (5-120 days) in a pooled sample of 318 healthy adults and modeled the mathematical relationship between muscle strength decline and atrophy. The results show a logarithmic disuse-induced loss of strength and muscle atrophy of the weight-bearing knee extensor muscles. The greatest rate of muscle strength decline and atrophy occurred in the earliest stages of bed rest, plateauing later, and likely contributed to the rapid neuromuscular loss of function in the early period. In addition, during the first 2 wk of bed rest, muscle strength decline is much faster than muscle atrophy: on day 5, the ratio of muscle atrophy to strength decline as a function of bed rest duration is 4.2, falls to 2.4 on day 14, and stabilizes to a value of 1.9 after ∼35 days of bed rest. Positive regression revealed that ∼79% of the muscle strength loss may be explained by muscle atrophy, while the remaining is most likely due to alterations in single fiber mechanical properties, excitation-contraction coupling, fiber architecture, tendon stiffness, muscle denervation, neuromuscular junction damage, and supraspinal changes. Future studies should focus on neural factors as well as muscular factors independent of atrophy (single fiber excitability and mechanical properties, architectural factors) and on the role of extracellular matrix changes. Bed rest results in nonuniform loss of isometric muscle strength and atrophy over time, where the magnitude of change was greater for muscle strength than for atrophy. Future research should focus on the loss of muscle function and the underlying mechanisms, which will aid in the development of countermeasures to mitigate or prevent the decline in neuromuscular efficiency.NEW & NOTEWORTHY Our study contributes to the characterization of muscle loss and weakness processes reflected by a logarithmic decline in muscle strength induced by chronic bed rest. Acute short-term hospitalization (≤5 days) associated with periods of disuse/immobilization/prolonged time in the supine position in the hospital bed is sufficient to significantly decrease muscle mass and size and induce functional changes related to weakness in maximal muscle strength. By bringing together integrated evaluation of muscle structure and function, this work identifies that 79% of the loss in muscle strength can be explained by muscle atrophy, leaving 21% of the functional loss unexplained. The outcomes of this study should be considered in the development of daily countermeasures for preserving neuromuscular integrity as well as preconditioning interventions to be implemented before clinical bed rest or chronic gravitational unloading (e.g., spaceflights).
Collapse
Affiliation(s)
- Uros Marusic
- Institute for Kinesiology Research, Science and Research Centre Koper, Koper, Slovenia.,Department of Health Sciences, Alma Mater Europaea-European Center of Maribor, Maribor, Slovenia
| | - Marco Narici
- Institute for Kinesiology Research, Science and Research Centre Koper, Koper, Slovenia.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Bostjan Simunic
- Institute for Kinesiology Research, Science and Research Centre Koper, Koper, Slovenia
| | - Rado Pisot
- Institute for Kinesiology Research, Science and Research Centre Koper, Koper, Slovenia
| | | |
Collapse
|
20
|
Crameri GAG, Bielecki M, Züst R, Buehrer TW, Stanga Z, Deuel JW. Reduced maximal aerobic capacity after COVID-19 in young adult recruits, Switzerland, May 2020. ACTA ACUST UNITED AC 2020; 25. [PMID: 32914744 PMCID: PMC7502899 DOI: 10.2807/1560-7917.es.2020.25.36.2001542] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In March 2020, we observed an outbreak of COVID-19 among a relatively homogenous group of 199 young (median age 21 years; 87% men) Swiss recruits. By comparing physical endurance before and in median 45 days after the outbreak, we found a significant decrease in predicted maximal aerobic capacity in COVID-19 convalescent but not in asymptomatically infected and SARS-CoV-2 naive recruits. This finding might be indicative of lung injury after apparently mild COVID-19 in young adults.
Collapse
Affiliation(s)
| | - Michel Bielecki
- University of Zurich, Institute for Epidemiology, Biostatistics and Prevention Institute, Travel Clinic, Zürich, Switzerland.,Swiss Armed Forces, Medical Services, Ittigen, Switzerland
| | - Roland Züst
- Federal Office for Civil Protection FOCP, Spiez Laboratory, Spiez, Switzerland
| | | | - Zeno Stanga
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland.,Swiss Armed Forces, Medical Services, Ittigen, Switzerland
| | - Jeremy Werner Deuel
- University of Cambridge, Department of Haematology and Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom.,Swiss Armed Forces, Medical Services, Ittigen, Switzerland
| |
Collapse
|
21
|
Narici M, Vito GD, Franchi M, Paoli A, Moro T, Marcolin G, Grassi B, Baldassarre G, Zuccarelli L, Biolo G, di Girolamo FG, Fiotti N, Dela F, Greenhaff P, Maganaris C. Impact of sedentarism due to the COVID-19 home confinement on neuromuscular, cardiovascular and metabolic health: Physiological and pathophysiological implications and recommendations for physical and nutritional countermeasures. Eur J Sport Sci 2020; 21:614-635. [PMID: 32394816 DOI: 10.1080/17461391.2020.1761076] [Citation(s) in RCA: 236] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The COVID-19 pandemic is an unprecedented health crisis as entire populations have been asked to self-isolate and live in home-confinement for several weeks to months, which in itself represents a physiological challenge with significant health risks. This paper describes the impact of sedentarism on the human body at the level of the muscular, cardiovascular, metabolic, endocrine and nervous systems and is based on evidence from several models of inactivity, including bed rest, unilateral limb suspension, and step-reduction. Data form these studies show that muscle wasting occurs rapidly, being detectable within two days of inactivity. This loss of muscle mass is associated with fibre denervation, neuromuscular junction damage and upregulation of protein breakdown, but is mostly explained by the suppression of muscle protein synthesis. Inactivity also affects glucose homeostasis as just few days of step reduction or bed rest, reduce insulin sensitivity, principally in muscle. Additionally, aerobic capacity is impaired at all levels of the O2 cascade, from the cardiovascular system, including peripheral circulation, to skeletal muscle oxidative function. Positive energy balance during physical inactivity is associated with fat deposition, associated with systemic inflammation and activation of antioxidant defences, exacerbating muscle loss. Importantly, these deleterious effects of inactivity can be diminished by routine exercise practice, but the exercise dose-response relationship is currently unknown. Nevertheless, low to medium-intensity high volume resistive exercise, easily implementable in home-settings, will have positive effects, particularly if combined with a 15-25% reduction in daily energy intake. This combined regimen seems ideal for preserving neuromuscular, metabolic and cardiovascular health.
Collapse
Affiliation(s)
- Marco Narici
- Department of Biomedical Sciences, CIR-MYO Myology Center, Neuromuscular Physiology Laboratory, University of Padova, Padua, Italy
| | - Giuseppe De Vito
- Department of Biomedical Sciences, CIR-MYO Myology Center, Neuromuscular Physiology Laboratory, University of Padova, Padua, Italy
| | - Martino Franchi
- Department of Biomedical Sciences, Neuromuscular Physiology Laboratory, University of Padova, Padua, Italy
| | - Antonio Paoli
- Department of Biomedical Sciences, Nutrition and Exercise Physiology Laboratory, University of Padova, Padua, Italy
| | - Tatiana Moro
- Department of Biomedical Sciences, Nutrition and Exercise Physiology Laboratory, University of Padova, Padua, Italy
| | - Giuseppe Marcolin
- Department of Biomedical Sciences, Nutrition and Exercise Physiology Laboratory, University of Padova, Padua, Italy
| | - Bruno Grassi
- Department of Medicine, University of Udine, Udine, Italy
| | | | | | - Gianni Biolo
- Department of Internal Medicine, University of Trieste, Ospedale di Cattinara, Trieste, Italy
| | | | - Nicola Fiotti
- Department of Internal Medicine, University of Trieste, Ospedale di Cattinara, Trieste, Italy
| | - Flemming Dela
- Xlab, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Geriatrics, Bispebjerg-Frederiksberg University Hospital, Copenhagen, Denmark
| | - Paul Greenhaff
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Centre for Sport, Exercise and Osteoarthritis Research Versus Arthritis, National Institute for Health Research Nottingham Biomedical Research Centre, School of Life Sciences, The Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | | |
Collapse
|
22
|
Arfat Y, Rani A, Jingping W, Hocart CH. Calcium homeostasis during hibernation and in mechanical environments disrupting calcium homeostasis. J Comp Physiol B 2020; 190:1-16. [DOI: 10.1007/s00360-019-01255-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/21/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022]
|
23
|
McDonnell AC, Eiken O, Frings-Meuthen P, Rittweger J, Mekjavic IB. The LunHab project: Muscle and bone alterations in male participants following a 10 day lunar habitat simulation. Exp Physiol 2019; 104:1250-1261. [PMID: 31273869 DOI: 10.1113/ep087482] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/07/2019] [Indexed: 12/24/2022]
Abstract
NEW FINDINGS What is the central question of this study? It is well established that muscle and bone atrophy in conditions of inactivity or unloading, but there is little information regarding the effect of a hypoxic environment on the time course of these deconditioning physiological systems. What is the main finding and its importance? The main finding is that a horizontal 10 day bed rest in normoxia results in typical muscle atrophy, which is not aggravated by hypoxia. Changes in bone mineral content or in metabolism were not detected after either normoxic or hypoxic bed rest. ABSTRACT Musculoskeletal atrophy constitutes a typical adaptation to inactivity and unloading of weightbearing bones. The reduced-gravity environment in future Moon and Mars habitats is likely to be hypobaric hypoxic, and there is an urgent need to understand the effect of hypoxia on the process of inactivity-induced musculoskeletal atrophy. This was the principal aim of the present study. Eleven males participated in three 10 day interventions: (i) hypoxic ambulatory confinement; (ii) hypoxic bed rest; and (iii) normoxic bed rest. Before and after the interventions, the muscle strength (isometric maximal voluntary contraction), mass (lean mass, by dual-energy X-ray absorptiometry), cross-sectional area and total bone mineral content (determined with peripheral quantitative computed tomography) of the participants were measured. Blood and urine samples were collected before and on the 1st, 4th and 10th day of the intervention and analysed for biomarkers of bone resorption and formation. There was a significant reduction in thigh and lower leg muscle mass and volume after both normoxic and hypoxic bed rests. Muscle strength loss was proportionately greater than the loss in muscle mass for both thigh and lower leg. There was no indication of bone loss. Furthermore, the biomarkers of resorption and formation were not affected by any of the interventions. There was no significant effect of hypoxia on the musculoskeletal variables. Short-term normoxic (10 day) bed rest resulted in muscular deconditioning, but not in the loss of bone mineral content or changes in bone metabolism. Hypoxia did not modify these results.
Collapse
Affiliation(s)
- Adam C McDonnell
- Department of Automation, Biocybernetics and Robotics, Institute Jozef Stefan, Ljubljana, Slovenia
| | - Ola Eiken
- Department of Environmental Physiology, School of Technology and Health, Royal Institute of Technology, Solna, Sweden
| | - Petra Frings-Meuthen
- Institute for Aerospace Medicine, German Aerospace Centre (DLR), Cologne, Germany
| | - Joern Rittweger
- Institute for Aerospace Medicine, German Aerospace Centre (DLR), Cologne, Germany.,Department of Paediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| | - Igor B Mekjavic
- Department of Automation, Biocybernetics and Robotics, Institute Jozef Stefan, Ljubljana, Slovenia.,Department of Biomedical Sciences and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
24
|
Abstract
STUDY DESIGN Prospective case series. OBJECTIVE Determine the extent of paraspinal muscle cross-sectional area (CSA) and attenuation change after long-duration spaceflight and recovery on Earth. Determine association between in-flight exercise and muscle atrophy. SUMMARY OF BACKGROUND DATA Long-duration spaceflight leads to marked muscle atrophy. However, another negative consequence of disuse is intramuscular fatty infiltration. Notably, few studies have investigated the effects of spaceflight on intramuscular fatty infiltration, or how muscle atrophy is associated with in-flight exercise. METHODS We analyzed computed tomography scans of the lumbar spine (L1/L2) from 17 long-duration astronauts and cosmonauts to determine paraspinal muscle CSA and attenuation. Computed tomography scans were collected preflight, postflight, 1-year postflight, and, in a subset, 2 to 4 years postflight. We measured CSA (mm) and attenuation (Hounsfield Units) of the erector spinae (ES), multifidus (MF), psoas (PS), and quadratus lumborum (QL) muscles. We used paired t tests to compare muscle morphology at each postflight time point to preflight values and Pearson correlation coefficients to determine the association between muscle changes and in-flight exercise. RESULTS ES, MF, and QL CSA and attenuation were significantly decreased postflight compared with preflight (-4.6% to -8.4% and -5.9% to -8.8%, respectively, p < 0.05 for all). CSA of these muscles equaled or exceeded preflight values upon Earth recovery, however QL and PS attenuation remained below preflight values at 2 to 4 years postflight. More resistance exercise was associated with less decline in ES and MF CSA, but greater decline in PS CSA. Increased cycle ergometer exercise was associated with less decline of QL CSA. There were no associations between in-flight exercise and muscle attenuation. CONCLUSION Both CSA and attenuation of paraspinal muscles decline after long-duration spaceflight, but while CSA returns to preflight values within 1 year of recovery, PS and QL muscle attenuation remain reduced even 2 to 4 years postflight. Spaceflight-induced changes in paraspinal muscle morphology may contribute to back pain commonly reported in astronauts. LEVEL OF EVIDENCE 4.
Collapse
|
25
|
Khalil R. Ubiquitin-Proteasome Pathway and Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:235-248. [DOI: 10.1007/978-981-13-1435-3_10] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Canu MH, Fourneau J, Coq JO, Dannhoffer L, Cieniewski-Bernard C, Stevens L, Bastide B, Dupont E. Interplay between hypoactivity, muscle properties and motor command: How to escape the vicious deconditioning circle? Ann Phys Rehabil Med 2018; 62:122-127. [PMID: 30394346 DOI: 10.1016/j.rehab.2018.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 09/24/2018] [Accepted: 09/30/2018] [Indexed: 10/28/2022]
Abstract
Activity-dependent processes addressing the central nervous system (CNS) and musculoskeletal structures are critical for maintaining motor performance. Chronic reduction in activity, whether due to a sedentary lifestyle or extended bed rest, results in impaired performance in motor tasks and thus decreased quality of life. In the first part of this paper, we give a narrative review of the effects of hypoactivity on the neuromuscular system and behavioral outcomes. Motor impairments arise from a combination of factors including altered muscle properties, impaired afferent input, and plastic changes in neural structure and function throughout the nervous system. There is a reciprocal interplay between the CNS and muscle properties, and these sensorimotor loops are essential for controlling posture and movement. As a result, patients under hypoactivity experience a self-perpetuating cycle, in with sedentarity leading to decreased motor activity and thus a progressive worsening of a situation, and finally deconditioning. Various rehabilitation strategies have been studied to slow down or reverse muscle alteration and altered motor performance. In the second part of the paper, we review representative protocols directed toward the muscle, the sensory input and/or the cerebral cortex. Improving an understanding of the loss of motor function under conditions of disuse (such as extended bed rest) as well as identifying means to slow this decline may lead to therapeutic strategies to preserve quality of life for a range of individuals. The most efficient strategies seem multifactorial, using a combination of approaches targeting different levels of the neuromuscular system.
Collapse
Affiliation(s)
- Marie-Hélène Canu
- EA 7369 "activité physique, muscle et santé", unité de recherche pluridisciplinaire sport santé société (URePSSS), université de Lille, 59000 Lille, France.
| | - Julie Fourneau
- EA 7369 "activité physique, muscle et santé", unité de recherche pluridisciplinaire sport santé société (URePSSS), université de Lille, 59000 Lille, France
| | - Jacques-Olivier Coq
- UMR 7289, CNRS, institut de neurosciences de la Timone, Aix-Marseille université, 13385 Marseille, France
| | - Luc Dannhoffer
- EA 7369 "activité physique, muscle et santé", unité de recherche pluridisciplinaire sport santé société (URePSSS), université de Lille, 59000 Lille, France
| | - Caroline Cieniewski-Bernard
- EA 7369 "activité physique, muscle et santé", unité de recherche pluridisciplinaire sport santé société (URePSSS), université de Lille, 59000 Lille, France
| | - Laurence Stevens
- EA 7369 "activité physique, muscle et santé", unité de recherche pluridisciplinaire sport santé société (URePSSS), université de Lille, 59000 Lille, France
| | - Bruno Bastide
- EA 7369 "activité physique, muscle et santé", unité de recherche pluridisciplinaire sport santé société (URePSSS), université de Lille, 59000 Lille, France
| | - Erwan Dupont
- EA 7369 "activité physique, muscle et santé", unité de recherche pluridisciplinaire sport santé société (URePSSS), université de Lille, 59000 Lille, France
| |
Collapse
|
27
|
Khalil RM, Abdo WS, Saad A, Khedr EG. Muscle proteolytic system modulation through the effect of taurine on mice bearing muscular atrophy. Mol Cell Biochem 2017; 444:161-168. [DOI: 10.1007/s11010-017-3240-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/24/2017] [Indexed: 10/18/2022]
|
28
|
Goswami N, Blaber AP, Hinghofer-Szalkay H, Montani JP. Orthostatic Intolerance in Older Persons: Etiology and Countermeasures. Front Physiol 2017; 8:803. [PMID: 29163185 PMCID: PMC5677785 DOI: 10.3389/fphys.2017.00803] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/29/2017] [Indexed: 12/16/2022] Open
Abstract
Orthostatic challenge produced by upright posture may lead to syncope if the cardiovascular system is unable to maintain adequate brain perfusion. This review outlines orthostatic intolerance related to the aging process, long-term bedrest confinement, drugs, and disease. Aging-associated illness or injury due to falls often leads to hospitalization. Older patients spend up to 83% of hospital admission lying in bed and thus the consequences of bedrest confinement such as physiological deconditioning, functional decline, and orthostatic intolerance represent a central challenge in the care of the vulnerable older population. This review examines current scientific knowledge regarding orthostatic intolerance and how it comes about and provides a framework for understanding of (patho-) physiological concepts of cardiovascular (in-) stability in ambulatory and bedrest confined senior citizens as well as in individuals with disease conditions [e.g., orthostatic intolerance in patients with diabetes mellitus, multiple sclerosis, Parkinson's, spinal cord injury (SCI)] or those on multiple medications (polypharmacy). Understanding these aspects, along with cardio-postural interactions, is particularly important as blood pressure destabilization leading to orthostatic intolerance affects 3-4% of the general population, and in 4 out of 10 cases the exact cause remains elusive. Reviewed also are countermeasures to orthostatic intolerance such as exercise, water drinking, mental arithmetic, cognitive training, and respiration training in SCI patients. We speculate that optimally applied countermeasures such as mental challenge maintain sympathetic activity, and improve venous return, stroke volume, and consequently, blood pressure during upright standing. Finally, this paper emphasizes the importance of an active life style in old age and why early re-mobilization following bedrest confinement or bedrest is crucial in preventing orthostatic intolerance, falls and falls-related injuries in older persons.
Collapse
Affiliation(s)
- Nandu Goswami
- Gravitational Physiology and Medicine Research Unit, Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Andrew P Blaber
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Helmut Hinghofer-Szalkay
- Gravitational Physiology and Medicine Research Unit, Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Jean-Pierre Montani
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
29
|
LI XT, YANG CB, ZHU YS, SUN J, SHI F, WANG YC, GAO Y, ZHAO JD, SUN XQ. Moderate Exercise Based on Artificial Gravity Preserves Orthostatic Tolerance and Exercise Capacity During Short-Term Head-Down Bed Rest. Physiol Res 2017; 66:567-580. [DOI: 10.33549/physiolres.933493] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Numerous countermeasures have been proposed to minimize microgravity-induced physical deconditioning, but their benefits are limited. The present study aimed to investigate whether personalized aerobic exercise based on artificial gravity (AG) mitigates multisystem physical deconditioning. Fourteen men were assigned to the control group (n=6) and the countermeasure group (CM, n=8). Subjects in the CM group were exposed to AG (2 Gz at foot level) for 30 min twice daily, during which time cycling exercise of 80-95 % anaerobic threshold (AT) intensity was undertaken. Orthostatic tolerance (OT), exercise tests, and blood assays were determined before and after 4 days head-down bed rest (HDBR). Cardiac systolic function was measured every day. After HDBR, OT decreased to 50.9 % and 77.5 % of pre-HDBR values in control and CM groups, respectively. Exercise endurance, maximal oxygen consumption, and AT decreased to 96.5 %, 91.5 % and 91.8 % of pre-HDBR values, respectively, in the control group. Nevertheless, there were slight changes in the CM group. HDBR increased heart rate, sympathetic activity, and the pre-ejection period, but decreased plasma volume, parasympathetic activity and left-ventricular ejection time in the control group, whereas these effects were eliminated in the CM group. Aldosterone had no change in the control group but increased significantly in the CM group. Our study shows that 80-95 % AT aerobic exercise based on 2 Gz of AG preserves OT and exercise endurance, and affects body fluid regulation during short-term HDBR. The underlying mechanisms might involve maintained cardiac systolic function, preserved plasma volume, and improved sympathetic responses to orthostatic stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - X.-Q. SUN
- Department of Aerospace Biodynamics, Faculty of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
30
|
Bosutti A, Salanova M, Blottner D, Buehlmeier J, Mulder E, Rittweger J, Yap MH, Ganse B, Degens H. Whey protein with potassium bicarbonate supplement attenuates the reduction in muscle oxidative capacity during 19 days of bed rest. J Appl Physiol (1985) 2016; 121:838-848. [DOI: 10.1152/japplphysiol.00936.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 08/02/2016] [Indexed: 12/29/2022] Open
Abstract
The effectiveness of whey protein plus potassium bicarbonate-enriched diet (WP+KHCO3) in mitigating disuse-induced changes in muscle fiber oxidative capacity and capillarization was investigated in a 21-day crossover design bed rest study. Ten healthy men (31 ± 6 yr) once received WP+KHCO3 and once received a standardized isocaloric diet. Muscle biopsies were taken 2 days before and during the 19th day of bed rest (BR) from the soleus (SOL) and vastus lateralis (VL) muscle. Whole-body aerobic power (V̇o2 max), muscle fatigue, and isometric strength of knee extensor and plantar flexor muscles were monitored. Muscle fiber types and capillaries were identified by immunohistochemistry. Fiber oxidative capacity was determined as the optical density (OD) at 660 nm of succinate dehydrogenase (SDH)-stained sections. The product of fiber cross-sectional area and SDH-OD (integrated SDH) indicated the maximal oxygen consumption of that fiber. The maximal oxygen consumption supported by a capillary was calculated as the integrated SDH in its supply area. BR reduced isometric strength of knee extensor muscles ( P < 0.05), and the fiber oxidative capacity ( P < 0.001) and V̇o2 max ( P = 0.042), but had no significant impact on muscle capillarization or fatigue resistance of thigh muscles. The maximal oxygen consumption supported by a capillary was reduced by 24% in SOL and 16% in VL ( P < 0.001). WP+KHCO3 attenuated the disuse-induced reduction in fiber oxidative capacity in both muscles ( P < 0.01). In conclusion, following 19 days of bed rest, the decrement in fiber oxidative capacity is proportionally larger than the loss of capillaries. WP+KHCO3 appears to attenuate disuse-induced reductions in fiber oxidative capacity.
Collapse
Affiliation(s)
- Alessandra Bosutti
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Trieste, Italy
- School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom
| | | | - Dieter Blottner
- Center for Space Medicine Berlin (ZWMB), Berlin, Germany
- Charité Universitätsmedizin Berlin, Vegetative Anatomy, Berlin, Germany
| | - Judith Buehlmeier
- University of Bonn, Department of Nutrition and Food Science, Bonn, Germany
- Institute of Aerospace Medicine, German Aerospace Center DLR, Cologne, Germany; and
| | - Edwin Mulder
- Institute of Aerospace Medicine, German Aerospace Center DLR, Cologne, Germany; and
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center DLR, Cologne, Germany; and
| | - Moi Hoon Yap
- School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom
| | - Bergita Ganse
- Institute of Aerospace Medicine, German Aerospace Center DLR, Cologne, Germany; and
| | - Hans Degens
- School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|
31
|
Clément G, Paloski WH, Rittweger J, Linnarsson D, Bareille MP, Mulder E, Wuyts FL, Zange J. Centrifugation as a countermeasure during bed rest and dry immersion: What has been learned? JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2016; 16:84-91. [PMID: 27282452 PMCID: PMC5114351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 03/10/2016] [Indexed: 10/29/2022]
Abstract
OBJECTIVES We review the studies that have evaluated intermittent short-radius centrifugation as a potential countermeasure for cardiovascular, musculoskeletal, and sensorimotor deconditioning in simulated weightlessness. METHODS The findings from 18 experimental protocols that have used bed rest and dry immersion for comparing the protective effects of centrifugation versus standing upright or walking, and the effects of continuous vs. periodic exposure to centrifugation are discussed. RESULTS Centrifugation for as little as 30 min per day was found to be effective in mitigating orthostatic intolerance and strength in postural muscle after 5 days of bed rest, but it was not effective in mitigating plasma volume loss. CONCLUSION To determine the optimal prescription for centrifugation as a countermeasure, we recommend further studies using (a) bed rest of longer duration, (b) individualized prescriptions of centrifugation combined with exercise, and
Collapse
Affiliation(s)
- G Clément
- Lyon Neuroscience Research Center, Bron, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Grimm D, Grosse J, Wehland M, Mann V, Reseland JE, Sundaresan A, Corydon TJ. The impact of microgravity on bone in humans. Bone 2016; 87:44-56. [PMID: 27032715 DOI: 10.1016/j.bone.2015.12.057] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/17/2015] [Accepted: 12/18/2015] [Indexed: 12/22/2022]
Abstract
Experiencing real weightlessness in space is a dream for many of us who are interested in space research. Although space traveling fascinates us, it can cause both short-term and long-term health problems. Microgravity is the most important influence on the human organism in space. The human body undergoes dramatic changes during a long-term spaceflight. In this review, we will mainly focus on changes in calcium, sodium and bone metabolism of space travelers. Moreover, we report on the current knowledge on the mechanisms of bone loss in space, available models to simulate the effects of microgravity on bone on Earth as well as the combined effects of microgravity and cosmic radiation on bone. The available countermeasures applied in space will also be evaluated.
Collapse
Affiliation(s)
- Daniela Grimm
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark.
| | - Jirka Grosse
- Department of Nuclear Medicine Germany, University of Regensburg, D-93042 Regensburg, Germany
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, D-39120 Magdeburg, Germany
| | - Vivek Mann
- Department of Biology, Texas Southern University, 3100 Cleburne, Houston, TX 77004, USA
| | - Janne Elin Reseland
- Department of Biomaterials, Faculty of Dentistry, University of Oslo, N-0317 Oslo, Norway
| | - Alamelu Sundaresan
- Department of Biology, Texas Southern University, 3100 Cleburne, Houston, TX 77004, USA
| | | |
Collapse
|
33
|
Niziolek PJ, Bullock W, Warman ML, Robling AG. Missense Mutations in LRP5 Associated with High Bone Mass Protect the Mouse Skeleton from Disuse- and Ovariectomy-Induced Osteopenia. PLoS One 2015; 10:e0140775. [PMID: 26554834 PMCID: PMC4640505 DOI: 10.1371/journal.pone.0140775] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/30/2015] [Indexed: 12/17/2022] Open
Abstract
The low density lipoprotein receptor-related protein-5 (LRP5), a co-receptor in the Wnt signaling pathway, modulates bone mass in humans and in mice. Lrp5 knock-out mice have severely impaired responsiveness to mechanical stimulation whereas Lrp5 gain-of-function knock-in and transgenic mice have enhanced responsiveness to mechanical stimulation. Those observations highlight the importance of Lrp5 protein in bone cell mechanotransduction. It is unclear if and how high bone mass-causing (HBM) point mutations in Lrp5 alter the bone-wasting effects of mechanical disuse. To address this issue we explored the skeletal effects of mechanical disuse using two models, tail suspension and Botulinum toxin-induced muscle paralysis, in two different Lrp5 HBM knock-in mouse models. A separate experiment employing estrogen withdrawal-induced bone loss by ovariectomy was also conducted as a control. Both disuse stimuli induced significant bone loss in WT mice, but Lrp5 A214V and G171V were partially or fully protected from the bone loss that normally results from disuse. Trabecular bone parameters among HBM mice were significantly affected by disuse in both models, but these data are consistent with DEXA data showing a failure to continue growing in HBM mice, rather than a loss of pre-existing bone. Ovariectomy in Lrp5 HBM mice resulted in similar protection from catabolism as was observed for the disuse experiments. In conclusion, the Lrp5 HBM alleles offer significant protection from the resorptive effects of disuse and from estrogen withdrawal, and consequently, present a potential mechanism to mimic with pharmaceutical intervention to protect against various bone-wasting stimuli.
Collapse
MESH Headings
- Animals
- Bone Density/genetics
- Bone Density/physiology
- Bone Diseases, Metabolic/etiology
- Bone Diseases, Metabolic/pathology
- Bone Diseases, Metabolic/prevention & control
- Botulinum Toxins/toxicity
- Disease Models, Animal
- Estrogens/deficiency
- Estrogens/physiology
- Female
- Femur/pathology
- Gene Knock-In Techniques
- Humans
- Immobilization/adverse effects
- Low Density Lipoprotein Receptor-Related Protein-5/genetics
- Low Density Lipoprotein Receptor-Related Protein-5/physiology
- Mechanotransduction, Cellular/genetics
- Mechanotransduction, Cellular/physiology
- Mice
- Mutation, Missense
- Osteoporosis, Postmenopausal/pathology
- Osteoporosis, Postmenopausal/prevention & control
- Ovariectomy/adverse effects
- Paralysis/chemically induced
- Paralysis/complications
- Paralysis/pathology
- Point Mutation
- Stress, Mechanical
- Weight-Bearing
Collapse
Affiliation(s)
- Paul J. Niziolek
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Whitney Bullock
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Matthew L. Warman
- Department of Orthopaedic Surgery, Children’s Hospital, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Massachusetts, United States of America
| | - Alexander G. Robling
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Biomedical Engineering, Indiana University–Purdue University at Indianapolis (IUPUI), Indianapolis, Indiana, United States of America
- Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
34
|
Objective Assessment of Activity in Inpatients with Traumatic Brain Injury: Initial Findings. BRAIN IMPAIR 2015. [DOI: 10.1017/brimp.2015.20] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose:Use accelerometers to examine the physical activity behaviours of individuals following TBI undergoing inpatient rehabilitation.Method:Twenty-one individuals with Traumatic brain injury (TBI) undergoing inpatient rehabilitation (9 females, 12 males;Mage = 43.8 ± 14.7 years;MGCS = 9.1 ± 4.3;Mtime since injury = 40.8 ± 22.1 days;Mlength of stay (LOS) = 30 ± 14 days) wore accelerometers for an average of 8.4 ± 2.0 consecutive days (1440 minutes/day). Activity counts (AC) were collected at 1 minute epochs and descriptive statistics were calculated to assess intensity of activity and time spent being active and sedentary.Results:During scheduled therapy, time individuals completed an average of 161.4 ± 65.5 AC/minute, which decreased to 114.5 ± 51.3 during non-therapy time and 22.2 ± 10 when sleeping. Using population level cut points, individuals were on average considered inactive during therapy, inactive or sedentary during non-therapy time, and only one participant spent >1 minute in moderate intensity activity. The mean length of active and sedentary bouts was 9 minutes.Discussion:Findings indicate that the amount and intensity of activity completed is low amongst individuals completing inpatient rehabilitation after TBI, with the majority considered sedentary or inactive. While the sample is small, it is important to develop and implement safe and effective strategies to increase activity levels during rehabilitation.
Collapse
|