1
|
Silvino VO, Almeida SS, Apaza HM, de Moura RC, Costa CDM, Ferreira CP, Beleense GS, Ribeiro SLG, Dos Santos MAP. Association between ACE (I/D) polymorphism and physical performance in Brazilian handballers. Int J Sports Med 2025; 46:296-301. [PMID: 39879994 DOI: 10.1055/a-2443-9765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
This study investigated the association between the ACE (I/D) polymorphism and strength phenotypes in Brazilian male handball players, considering their playing position. A total of 105 male junior handball players and 92 controls were evaluated. The ACE I/D polymorphism was genotyped by conventional PCR followed by electrophoresis in agarose gel. All participants were anthropometrically evaluated and performed the standing long jump (SLJ) and medicine ball throw (MBT) tests. Athletes presented superior performance in the SLJ and MBT tests compared to the control group in all playing positions (p<0.01). No significant differences were observed in genotype or allele frequencies when comparing athletes and controls or among playing positions. However, a significant difference was observed when comparing all athletes to controls using the over-dominant model (II+DD vs. ID; p=0.035). Additionally, ID athletes had better performance in the MBT than DD players (p=0.04), athletes with II+ID and II+DD genotypes exhibited superior performance in the SLJ test (p<0.04), and ID athletes demonstrated increased height compared to II+DD counterparts (p=0.01). In conclusion, our data showed a potential association between ACE (I/D) polymorphism and overall athletic predisposition in handball players, with no association with playing position.
Collapse
Affiliation(s)
- Valmir Oliveira Silvino
- Department of Biophysics and Physiology, Nucleus of Study in Physiology Applied to Performance and Health (NEFADS), Federal University of Piaui, Teresina, Brazil
- Rede Nordeste de Biotecnologia (RENORBIO) post-graduation program, Teresina, Brazil
| | - Sandro Soares Almeida
- Hospital Israelita Albert Einstein, São Paulo, Brazil
- Faculdade Anhanguera de Guarulhos, Guarulhos, São Paulo, Brazil
- Department of Obstetrics, Escola Paulista de Medicina, Universidade Federal de São Paulo Unifesp, São Paulo, Brazil
| | - Helen Matias Apaza
- Department of Obstetrics, Escola Paulista de Medicina, Universidade Federal de São Paulo Unifesp, São Paulo, Brazil
| | - Rayane Carvalho de Moura
- Department of Biophysics and Physiology, Nucleus of Study in Physiology Applied to Performance and Health (NEFADS), Federal University of Piaui, Teresina, Brazil
| | - Crislane de Moura Costa
- Department of Biophysics and Physiology, Nucleus of Study in Physiology Applied to Performance and Health (NEFADS), Federal University of Piaui, Teresina, Brazil
| | - Cirley Pinheiro Ferreira
- Department of Biophysics and Physiology, Nucleus of Study in Physiology Applied to Performance and Health (NEFADS), Federal University of Piaui, Teresina, Brazil
- Rede Nordeste de Biotecnologia (RENORBIO) post-graduation program, Teresina, Brazil
| | - George Sales Beleense
- Department of Biophysics and Physiology, Nucleus of Study in Physiology Applied to Performance and Health (NEFADS), Federal University of Piaui, Teresina, Brazil
| | - Sérgio Luís Galan Ribeiro
- Department of Biophysics and Physiology, Nucleus of Study in Physiology Applied to Performance and Health (NEFADS), Federal University of Piaui, Teresina, Brazil
| | - Marcos Antonio Pereira Dos Santos
- Department of Biophysics and Physiology, Nucleus of Study in Physiology Applied to Performance and Health (NEFADS), Federal University of Piaui, Teresina, Brazil
- Rede Nordeste de Biotecnologia (RENORBIO) post-graduation program, Teresina, Brazil
| |
Collapse
|
2
|
Bottura RM, Dentillo DB. Genomics May Be the Key to Understanding Endurance Training Pillars. Genes (Basel) 2025; 16:338. [PMID: 40149489 PMCID: PMC11942075 DOI: 10.3390/genes16030338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
Endurance performance is primarily determined by three key physiological pillars: maximal oxygen uptake (VO2max), anaerobic threshold, and economy of movement. Recent research has suggested physiological resilience as a potential fourth dimension, referring to an athlete's ability to sustain performance despite accumulating fatigue. While the role of genetic factors in endurance has been widely studied, their influence on these pillars, particularly on fatigue resistance and long-term adaptation, remains an area of growing interest. This narrative review explores the genomic basis of endurance performance, analyzing genetic contributions to oxygen transport, metabolic efficiency, muscle composition, and recovery. Additionally, it discusses how genetic variability may modulate an athlete's response to training, including aspects of physiological adaptation, injury susceptibility, sleep, and nutrition. The review highlights physiological resilience in the context of endurance sports, discussing its connection to neuromuscular and metabolic regulation. By integrating genetic insights with established physiological principles, this review provides a comprehensive perspective on endurance adaptation. Future research directions are outlined to enhance our understanding of the genetic underpinnings of endurance, with implications for personalized training and performance optimization.
Collapse
Affiliation(s)
- Ricardo Muller Bottura
- Academy—Health, Science and Performance, São Paulo 01549-020, Brazil
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Maternal-Infant Sciences (DINOGMI), Università degli Studi di Genova, 16132 Genoa, Italy
- Department of Neurosciences, Biomedicine and Movement Sciences, Università degli Studi di Verona, 37124 Verona, Italy
| | | |
Collapse
|
3
|
Silvino VO, Almeida SS, Ferreira CP, Apaza HM, de Sousa BLSC, Dos Santos LC, da Silva Pinheiro M, Beleense GS, Ribeiro SLG, Veras-Silva AS, Dos Santos MAP. Association between ACTN3 (R577X), BDKRB2 (-9/+9) and AGT (M235T) polymorphisms and physical performance in Brazilian junior handball players. Sci Rep 2025; 15:5792. [PMID: 39962183 PMCID: PMC11832766 DOI: 10.1038/s41598-025-90684-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/14/2025] [Indexed: 02/20/2025] Open
Abstract
Team handball performance relies on physical and technical abilities, influenced by environmental and genetic factors. Variants in ACTN3 R577X (rs1815739), BDKRB2 -9/+9 (rs5810761), and AGT Met235Thr (rs699) genes are associated with athletic performance, but their relevance in handball remains unclear. Therefore, this study aimed to investigate the association of these polymorphisms with physical performance in Brazilian junior handball players. The study included 91 junior male handball players (16.4 ± 0.7 years) and 74 age-matched non-athletes. Genotypes for ACTN3 (R577X), BDKRB2 (-9/+9), and AGT (M235T) were identified using PCR-based techniques. Physical tests assessed upper limb strength (medicine ball throw) and lower limb strength (standing long jump). Genotypic and allelic frequencies were compared using Chi-square tests, while performance data were analyzed using ANOVA and t-tests (p ≤ 0.05). No significant differences were found in genotypic or allelic frequencies between athletes and controls for ACTN3 (R577X), BDKRB2 (-9/+9), and AGT (M235T) polymorphisms. Among athletes, ACTN3 RR carriers displayed significantly better upper limb strength (p = 0.049, d = 0.48). However, no genotype significantly influenced lower limb strength or anthropometric traits. Additionally, the study found no significant associations between BDKRB2 and AGT polymorphisms and physical performance parameters. This study demonstrates that specific genetic variants of the ACTN3 (R577X) gene may influence individual traits, such as upper-body strength, in Brazilian junior handball players. However, we found limited influence of BDKRB2 (-9/+9), and AGT (M235T) polymorphisms on overall performance. This lack of association may be attributed to the small sample size and the genetic heterogeneity of the studied population, encouraging further research with larger cohorts.
Collapse
Affiliation(s)
- Valmir Oliveira Silvino
- Department of Biophysics and Physiology, Nucleus of Study in Physiology Applied to Performance and Health (NEFADS), Federal University of Piauí, Teresina, Brazil.
- Rede Nordeste de Biotecnologia (RENORBIO) Post-Graduation Program, Teresina, Brazil.
| | - Sandro Soares Almeida
- Hospital Israelita Albert Einstein, São Paulo, Brazil
- Faculdade Anhanguera de Guarulhos, São Paulo, Brazil
- Department of Obstetrics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Cirley Pinheiro Ferreira
- Department of Biophysics and Physiology, Nucleus of Study in Physiology Applied to Performance and Health (NEFADS), Federal University of Piauí, Teresina, Brazil
- Rede Nordeste de Biotecnologia (RENORBIO) Post-Graduation Program, Teresina, Brazil
| | - Helen Matias Apaza
- Department of Obstetrics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Bruna Lorena Soares Cavalcante de Sousa
- Department of Biophysics and Physiology, Nucleus of Study in Physiology Applied to Performance and Health (NEFADS), Federal University of Piauí, Teresina, Brazil
- Rehabilitation Sciences Program, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Leandra Caline Dos Santos
- Department of Biophysics and Physiology, Nucleus of Study in Physiology Applied to Performance and Health (NEFADS), Federal University of Piauí, Teresina, Brazil
- Programa de Pós-Graduação em Alimentos e Nutrição da Universidade Federal do Piauí (PPGAN/UFPI), Teresina, Brazil
| | - Michelly da Silva Pinheiro
- Department of Biophysics and Physiology, Nucleus of Study in Physiology Applied to Performance and Health (NEFADS), Federal University of Piauí, Teresina, Brazil
- Programa de Pós-Graduação em Alimentos e Nutrição da Universidade Federal do Piauí (PPGAN/UFPI), Teresina, Brazil
| | - George Sales Beleense
- Department of Biophysics and Physiology, Nucleus of Study in Physiology Applied to Performance and Health (NEFADS), Federal University of Piauí, Teresina, Brazil
| | - Sérgio Luís Galan Ribeiro
- Department of Biophysics and Physiology, Nucleus of Study in Physiology Applied to Performance and Health (NEFADS), Federal University of Piauí, Teresina, Brazil
| | - Acácio Salvador Veras-Silva
- Department of Biophysics and Physiology, Nucleus of Study in Physiology Applied to Performance and Health (NEFADS), Federal University of Piauí, Teresina, Brazil
| | - Marcos Antonio Pereira Dos Santos
- Department of Biophysics and Physiology, Nucleus of Study in Physiology Applied to Performance and Health (NEFADS), Federal University of Piauí, Teresina, Brazil
- Rede Nordeste de Biotecnologia (RENORBIO) Post-Graduation Program, Teresina, Brazil
| |
Collapse
|
4
|
Sommers L, Akam L, Hunter DJ, Bhatti JS, Mastana S. Role of the ACE I/D Polymorphism in Selected Public Health-Associated Sporting Modalities: An Updated Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1439. [PMID: 39595706 PMCID: PMC11593961 DOI: 10.3390/ijerph21111439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND The ACE I/D polymorphism has been suggested to be associated with multiple chronic diseases and sports modalities, which has public health implications for global populations and sport performance. This updated review aims to strengthen the association and identify sporting disciplines that are most influenced by the ACE gene polymorphism using a meta-analysis approach. METHODS Published studies on the association between the ACE I/D polymorphism and elite endurance and power were collected until 15 June 2024. The studies on public health-associated sports like running, swimming, and cycling were systematically reviewed following pre-agreed criteria, and a meta-analysis was carried out using different genetic models. RESULTS A total of 137 studies were identified in the literature search and screened. There was a significant association between elite endurance and the ACE II genotype compared with healthy inactive controls (OR, 1.54; 95%CI, 1.24-1.91) and elite power athletes (OR = 1.56; 95%CI = 1.07-2.28). Specifically, runners and triathletes were associated with the II genotype compared with controls (OR = 1.76; 95%CI = 1.26-2.47; p-value = 0.001 and OR = 2.69; 95%CI = 1.15-6.32, p-value = 0.023, respectively). Additionally, endurance swimmers were associated with the II genotype compared with short-distance, power swimmers (OR = 2.27; 95%CI = 1.49-3.45; p-value < 0.001). CONCLUSION The meta-analysis results confirm and strengthen the association between elite endurance and the ACE I/D polymorphism in different sporting modalities, which may have implications for public health and sports participation.
Collapse
Affiliation(s)
- Lydia Sommers
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK; (L.S.); (L.A.); (D.J.H.)
| | - Liz Akam
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK; (L.S.); (L.A.); (D.J.H.)
| | - David John Hunter
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK; (L.S.); (L.A.); (D.J.H.)
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda 151401, India;
| | - Sarabjit Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK; (L.S.); (L.A.); (D.J.H.)
| |
Collapse
|
5
|
Chae JH, Eom SH, Lee SK, Jung JH, Kim CH. Association between Complex ACTN3 and ACE Gene Polymorphisms and Elite Endurance Sports in Koreans: A Case-Control Study. Genes (Basel) 2024; 15:1110. [PMID: 39336701 PMCID: PMC11431688 DOI: 10.3390/genes15091110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
ACTN3 R577X and ACE I/D polymorphisms are associated with endurance exercise ability. This case-control study explored the association of ACTN3 and ACE gene polymorphisms with elite pure endurance in Korean athletes, hypothesizing that individuals with both ACTN3 XX and ACE II genotypes would exhibit superior endurance. We recruited 934 elite athletes (713 males, 221 females) and selected 45 pure endurance athletes (36 males, 9 females) requiring "≥90% aerobic energy metabolism during sports events", in addition to 679 healthy non-athlete Koreans (361 males, 318 females) as controls. Genomic DNA was extracted and genotyped for ACTN3 R577X and ACE I/D polymorphisms. ACE ID (p = 0.090) and ACTN3 RX+XX (p = 0.029) genotype distributions were significantly different between the two groups. Complex ACTN3-ACE genotypes also exhibited significant differences (p = 0.014), with dominant complex genotypes positively affecting endurance (p = 0.039). The presence of RX+II or XX+II was associated with a 1.763-fold higher likelihood of possessing a superior endurance capacity than that seen in healthy controls (90% CI = 1.037-3.089). Our findings propose an association of combined ACTN3 RX+XX and ACE II genotypes with enhanced endurance performance in elite Korean athletes. While causality remains to be confirmed, our study highlights the potential of ACTN3-ACE polymorphisms in predicting elite endurance.
Collapse
Affiliation(s)
- Ji Heon Chae
- Department of Sports Medicine, Soonchunhyang University, Asan 31538, Republic of Korea; (J.H.C.); (S.-H.E.)
| | - Seon-Ho Eom
- Department of Sports Medicine, Soonchunhyang University, Asan 31538, Republic of Korea; (J.H.C.); (S.-H.E.)
| | - Sang-Ki Lee
- Department of Physical Education, Korea National Sports University, Seoul 05541, Republic of Korea;
| | - Joo-Ha Jung
- Center for Sport Science in Chungnam, Asan 31580, Republic of Korea
| | - Chul-Hyun Kim
- Department of Sports Medicine, Soonchunhyang University, Asan 31538, Republic of Korea; (J.H.C.); (S.-H.E.)
| |
Collapse
|
6
|
Ahmetov II, John G, Semenova EA, Hall ECR. Genomic predictors of physical activity and athletic performance. ADVANCES IN GENETICS 2024; 111:311-408. [PMID: 38908902 DOI: 10.1016/bs.adgen.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Physical activity and athletic performance are complex phenotypes influenced by environmental and genetic factors. Recent advances in lifestyle and behavioral genomics led to the discovery of dozens of DNA polymorphisms (variants) associated with physical activity and allowed to use them as genetic instruments in Mendelian randomization studies for identifying the causal links between physical activity and health outcomes. On the other hand, exercise and sports genomics studies are focused on the search for genetic variants associated with athlete status, sports injuries and individual responses to training and supplement use. In this review, the findings of studies investigating genetic markers and their associations with physical activity and athlete status are reported. As of the end of September 2023, a total of 149 variants have been associated with various physical activity traits (of which 42 variants are genome-wide significant) and 253 variants have been linked to athlete status (115 endurance-related, 96 power-related, and 42 strength-related).
Collapse
Affiliation(s)
- Ildus I Ahmetov
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, St. Petersburg, Russia; Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, Kazan, Russia; Department of Physical Education, Plekhanov Russian University of Economics, Moscow, Russia.
| | - George John
- Transform Specialist Medical Centre, Dubai, United Arab Emirates
| | - Ekaterina A Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia; Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, Kazan, Russia
| | - Elliott C R Hall
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
7
|
Semenova EA, Hall ECR, Ahmetov II. Genes and Athletic Performance: The 2023 Update. Genes (Basel) 2023; 14:1235. [PMID: 37372415 PMCID: PMC10298527 DOI: 10.3390/genes14061235] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Phenotypes of athletic performance and exercise capacity are complex traits influenced by both genetic and environmental factors. This update on the panel of genetic markers (DNA polymorphisms) associated with athlete status summarises recent advances in sports genomics research, including findings from candidate gene and genome-wide association (GWAS) studies, meta-analyses, and findings involving larger-scale initiatives such as the UK Biobank. As of the end of May 2023, a total of 251 DNA polymorphisms have been associated with athlete status, of which 128 genetic markers were positively associated with athlete status in at least two studies (41 endurance-related, 45 power-related, and 42 strength-related). The most promising genetic markers include the AMPD1 rs17602729 C, CDKN1A rs236448 A, HFE rs1799945 G, MYBPC3 rs1052373 G, NFIA-AS2 rs1572312 C, PPARA rs4253778 G, and PPARGC1A rs8192678 G alleles for endurance; ACTN3 rs1815739 C, AMPD1 rs17602729 C, CDKN1A rs236448 C, CPNE5 rs3213537 G, GALNTL6 rs558129 T, IGF2 rs680 G, IGSF3 rs699785 A, NOS3 rs2070744 T, and TRHR rs7832552 T alleles for power; and ACTN3 rs1815739 C, AR ≥21 CAG repeats, LRPPRC rs10186876 A, MMS22L rs9320823 T, PHACTR1 rs6905419 C, and PPARG rs1801282 G alleles for strength. It should be appreciated, however, that elite performance still cannot be predicted well using only genetic testing.
Collapse
Affiliation(s)
- Ekaterina A. Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420138 Kazan, Russia
| | - Elliott C. R. Hall
- Faculty of Health Sciences and Sport, University of Stirling, Stirling FK9 4UA, UK
| | - Ildus I. Ahmetov
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
- Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, 191040 St. Petersburg, Russia
- Department of Physical Education, Plekhanov Russian University of Economics, 115093 Moscow, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
| |
Collapse
|
8
|
Yang S, Lin W, Jia M, Chen H. Association between ACE and ACTN3 genes polymorphisms and athletic performance in elite and sub-elite Chinese youth male football players. PeerJ 2023; 11:e14893. [PMID: 36992938 PMCID: PMC10042156 DOI: 10.7717/peerj.14893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/23/2023] [Indexed: 03/31/2023] Open
Abstract
Background Previous studies have shown controversial relationships between ACE I/D and ACTN3 R577x polymorphisms and athletic performance. Therefore, the aim of this study was to assess athletic performance indicators of Chinese youth male football players with different ACE and ACTN3 gene profiles. Methods and Materials This study recruited 73 elite (26 13-year-olds, 28 14-year-olds, and 19 15-year-olds) and 69 sub-elite (37 13-year-olds, 19 14-year-olds, and 13 15-year-olds) and 107 controls (63 13-year-olds, and 44 14-year olds aged 13-15 years, all participants were of Chinese Han origin. We measured height, body mass, thigh circumference, speed, explosive power, repeat sprints ability, and aerobic endurance in elite and sub-elite players. We used single nucleotide polymorphism technology to detect controls elite and sub-elite players' ACE and ACTN3 genotypes, Chi-squared (χ 2) tests were employed to test for Hardy-Weinberg equilibrium. χ 2 tests were also used to observe the association between the genotype distribution and allele frequencies between controls and elite and sub-elite players. The differences in parameters between the groups were analyzed using one-way analysis of variance and a Bonferroni's post-hoc test, with statistical significance set at p ≤ 0.05. Results (1) The genotype distribution of the ACE I/D and ACTN3 R577x polymorphisms in controls, elite and sub-elite football players were consistent with Hardy-Weinberg equilibrium, except for the ACE genotype distribution of sub-elite players. (2) The RR and DD genotypes were significantly different between elite and sub-elite players (p = 0.024 and p = 0.02, respectively). (3) Elite players were more likely to have the RR genotype and less likely to have the DD genotype compared with sub-elite players. (4) Both elite and sub-elite RR players' Yo-yo intermittent recovery level 1 (YYIR1) running distance was significantly longer than that of RX players (p = 0.05 and p = 0.025, respectively). However, there was no significantly different in YYIR1 running distance between elite and sub-elite RR players. (5) Elite XX players' VO2 max was significantly higher than that of RX and sub-elite players. Conclusion These results indicate that ACE I/D and ACTN3 R577x polymorphisms are not associated with muscle power in Chinese elite and sub-elite players. The XX genotype of ACTN3 is associated with the aerobic endurance of elite players.
Collapse
Affiliation(s)
- Shidong Yang
- Department of Physical Education, Nanjing Xiaozhuang University, Nan Jing, China
- Department of Physical Education and Sports Science, Fujian Normal University, Fu Zhou, China
| | - Wentao Lin
- Department of Physical Education, Zhuhai University of Science and Technology, Zhuhai, China
| | - Mengmeng Jia
- Department of Physical Education and Sports Science, Fujian Normal University, Fu Zhou, China
| | - Haichun Chen
- Department of Physical Education and Sports Science, Fujian Normal University, Fu Zhou, China
| |
Collapse
|
9
|
Yıldırım DS, Erdoğan M, Dalip M, Bulğay C, Cerit M. Evaluation of the soldier's physical fitness test results (strength endurance) ın relation to genotype: longitudinal study. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00325-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The aim of this study is to determine the effect of ACE gene polymorphism on the parameters studied (push-up & sit-up) in a long-term study, which has been carried out for many years and to find out whether the differences in ACE gene's metabolism due to the influence of parameters such as outside impacts and lifestyle (active or sedentary life) have a role in the development of strength endurance or not.
Main text
59 male army officers made up the research team. A follow-up study of strength endurance (push-up and sit-up) test was conducted in the gym. The exam took two minutes to complete, and each application was tested separately. In both 2004 and 2019, persons with genotype ID had the best mean sit-up and push-up outcomes, followed by participants with genotype DD, and finally participants with genotype II (P 0.05). Compared to the original rates in 2004, all genotype groups showed a significant reduction in push-up and sit-up scores in the test.
Conclusion
The findings of this study may reveal if strength and lifestyle choices affect the metabolic implications of the genetic polymorphism in the body. Particular varieties actuated by genes, on either hand, don’t result in significant improvements without any changes in individuals’ practices or ways of living, as per the conclusions.
Collapse
|
10
|
Konopka MJ, van den Bunder JCML, Rietjens G, Sperlich B, Zeegers MP. Genetics of long-distance runners and road cyclists-A systematic review with meta-analysis. Scand J Med Sci Sports 2022; 32:1414-1429. [PMID: 35839336 PMCID: PMC9544934 DOI: 10.1111/sms.14212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 01/12/2023]
Abstract
The aim of this systematic review and meta-analysis was to identify the genetic variants of (inter)national competing long-distance runners and road cyclists compared with controls. The Medline and Embase databases were searched until 15 November 2021. Eligible articles included genetic epidemiological studies published in English. A homogenous group of endurance athletes competing at (inter)national level and sedentary controls were included. Pooled odds ratios based on the genotype frequency with corresponding 95% confidence intervals (95%CI) were calculated using random effects models. Heterogeneity was addressed by Q-statistics, and I2 . Sources of heterogeneity were examined by meta-regression and risk of bias was assessed with the Clark Baudouin scale. This systematic review comprised of 43 studies including a total of 3938 athletes and 10 752 controls in the pooled analysis. Of the 42 identified genetic variants, 13 were investigated in independent studies. Significant associations were found for five polymorphisms. Pooled odds ratio [95%CI] favoring athletes compared with controls was 1.42 [1.12-1.81] for ACE II (I/D), 1.66 [1.26-2.19] for ACTN3 TT (rs1815739), 1.75 [1.34-2.29] for PPARGC1A GG (rs8192678), 2.23 [1.42-3.51] for AMPD1 CC (rs17602729), and 2.85 [1.27-6.39] for HFE GG + CG (rs1799945). Risk of bias was low in 25 (58%) and unclear in 18 (42%) articles. Heterogeneity of the results was low (0%-20%) except for HFE (71%), GNB3 (80%), and NOS3 (76%). (Inter)national competing runners and cyclists have a higher probability to carry specific genetic variants compared with controls. This study confirms that (inter)national competing endurance athletes constitute a unique genetic make-up, which likely contributes to their performance level.
Collapse
Affiliation(s)
- Magdalena Johanna Konopka
- Care and Public Health Research Institute (CAPHRI)Maastricht UniversityMaastrichtThe Netherlands,Department of EpidemiologyMaastricht University Medical CentreMaastrichtThe Netherlands
| | | | - Gerard Rietjens
- Department of Human Physiology and Sports MedicineVrije Universiteit BrusselBrusselsBelgium
| | - Billy Sperlich
- Integrative & Experimental Exercise Science & Training, Institute of Sport ScienceUniversity of WürzburgWürzburgGermany
| | - Maurice Petrus Zeegers
- Care and Public Health Research Institute (CAPHRI)Maastricht UniversityMaastrichtThe Netherlands,Department of EpidemiologyMaastricht University Medical CentreMaastrichtThe Netherlands,School of Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
11
|
Sierra APR, Martínez Galán BS, de Sousa CAZ, de Menezes DC, Branquinho JLDO, Neves RL, Arata JG, Bittencourt CA, Barbeiro HV, de Souza HP, Pesquero JB, Cury-Boaventura MF. Exercise Induced-Cytokines Response in Marathon Runners: Role of ACE I/D and BDKRB2 +9/-9 Polymorphisms. Front Physiol 2022; 13:919544. [PMID: 36117688 PMCID: PMC9479100 DOI: 10.3389/fphys.2022.919544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/24/2022] [Indexed: 11/24/2022] Open
Abstract
Renin-angiotensin system (RAS) and kallikrein-kinin system (KKS) have a different site of interaction and modulate vascular tone and inflammatory response as well on exercise adaptation, which is modulated by exercise-induced cytokines. The aim of the study was to evaluate the role of ACE I/D and BDKRB2 +9/−9 polymorphism on exercise-induced cytokine response. Seventy-four male marathon finishers, aged 30 to 55 years, participated in this study. Plasma levels of exercise-induced cytokines were determined 24 h before, immediately after, and 24 h and 72 h after the São Paulo International Marathon. Plasma concentrations of MCP-1, IL-6 and FGF-21 increased after marathon in all genotypes of BDKRB2. IL-10, FSTL and BDNF increased significantly after marathon in the genotypes with the presence of the −9 allele. FSTL and BDNF concentrations were higher in the −9/−9 genotype compared to the +9/+9 genotype before (p = 0.006) and after the race (p = 0.023), respectively. Apelin, IL-15, musclin and myostatin concentrations were significantly reduced after the race only in the presence of −9 allele. Marathon increased plasma concentrations of MCP1, IL-6, BDNF and FGF-21 in all genotypes of ACE I/D polymorphism. Plasma concentrations of IL-8 and MIP-1alpha before the race (p = 0.015 and p = 0.031, respectively), of MIP-1alpha and IL-10 after the race (p = 0.033 and p = 0.047, respectively) and VEGF 72 h after the race (p = 0.018) were lower in II homozygotes compared to runners with the presence of D allele. One day after the race we also observed lower levels of MIP-1alpha in runners with II homozygotes compared to DD homozygotes (p = 0.026). Before the marathon race myostatin concentrations were higher in DD compared to II genotypes (p = 0.009). Myostatin, musclin, IL-15, IL-6 and apelin levels decreased after race in genotypes with the presence of D allele. After the race ACE activity was negatively correlated with MCP1 (r = −56, p < 0.016) and positively correlated with IL-8, IL-10 and MIP1-alpha (r = 0.72, p < 0.0007, r = 0.72, p < 0.0007, r = 0.47, p < 0.048, respectively). The runners with the −9/−9 genotype have greater response in exercise-induced cytokines related to muscle repair and cardioprotection indicating that BDKRB2 participate on exercise adaptations and runners with DD genotype have greater inflammatory response as well as ACE activity was positively correlated with inflammatory mediators. DD homozygotes also had higher myostatin levels which modulates protein homeostasis.
Collapse
Affiliation(s)
| | - Bryan Steve Martínez Galán
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Cesar Augustus Zocoler de Sousa
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Duane Cardoso de Menezes
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | | | - Raquel Leão Neves
- Department of Biophysics, Federal University of Sao Paulo, São Paulo, Brazil
| | | | | | | | | | - João Bosco Pesquero
- Department of Biophysics, Federal University of Sao Paulo, São Paulo, Brazil
| | - Maria Fernanda Cury-Boaventura
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, São Paulo, Brazil
- *Correspondence: Maria Fernanda Cury-Boaventura,
| |
Collapse
|
12
|
Nakamichi R, Ma S, Nonoyama T, Chiba T, Kurimoto R, Ohzono H, Olmer M, Shukunami C, Fuku N, Wang G, Morrison E, Pitsiladis YP, Ozaki T, D'Lima D, Lotz M, Patapoutian A, Asahara H. The mechanosensitive ion channel PIEZO1 is expressed in tendons and regulates physical performance. Sci Transl Med 2022; 14:eabj5557. [PMID: 35648809 DOI: 10.1126/scitranslmed.abj5557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
How mechanical stress affects physical performance via tendons is not fully understood. Piezo1 is a mechanosensitive ion channel, and E756del PIEZO1 was recently found as a gain-of-function variant that is common in individuals of African descent. We generated tendon-specific knock-in mice using R2482H Piezo1, a mouse gain-of-function variant, and found that they had higher jumping abilities and faster running speeds than wild-type or muscle-specific knock-in mice. These phenotypes were associated with enhanced tendon anabolism via an increase in tendon-specific transcription factors, Mohawk and Scleraxis, but there was no evidence of changes in muscle. Biomechanical analysis showed that the tendons of R2482H Piezo1 mice were more compliant and stored more elastic energy, consistent with the enhancement of jumping ability. These phenotypes were replicated in mice with tendon-specific R2482H Piezo1 replacement after tendon maturation, indicating that PIEZO1 could be a target for promoting physical performance by enhancing function in mature tendon. The frequency of E756del PIEZO1 was higher in sprinters than in population-matched nonathletic controls in a small Jamaican cohort, suggesting a similar function in humans. Together, this human and mouse genetic and physiological evidence revealed a critical function of tendons in physical performance, which is tightly and robustly regulated by PIEZO1 in tenocytes.
Collapse
Affiliation(s)
- Ryo Nakamichi
- Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, USA.,Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan.,Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shang Ma
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA, 92037, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| | - Takayuki Nonoyama
- Faculty of Advanced Life Science and Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GSS, GI-CoRE), Hokkaido University, Sapporo 001-0021, Japan
| | - Tomoki Chiba
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan
| | - Ryota Kurimoto
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan
| | - Hiroki Ohzono
- Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, USA
| | - Merissa Olmer
- Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, USA
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry and Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Noriyuki Fuku
- Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1965, Japan
| | - Guan Wang
- School of Sport and Health Sciences, University of Brighton, Brighton BN2 4AT, UK.,Centre for Regenerative Medicine and Devices, University of Brighton, Brighton BN2 4AT, UK
| | - Errol Morrison
- National Commission on Science and Technology, PCJ Building, 36 Trafalgar Road, Kingston 10, Jamaica
| | - Yannis P Pitsiladis
- School of Sport and Health Sciences, University of Brighton, Brighton BN2 4AT, UK.,Centre of Stress and Age-related Disease, University of Brighton, Brighton BN2 4AT, UK
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Darryl D'Lima
- Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, USA
| | - Martin Lotz
- Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, USA
| | - Ardem Patapoutian
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA, 92037, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| | - Hiroshi Asahara
- Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, USA.,Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan
| |
Collapse
|
13
|
Abstract
Sports genomics is the scientific discipline that focuses on the organization and function of the genome in elite athletes, and aims to develop molecular methods for talent identification, personalized exercise training, nutritional need and prevention of exercise-related diseases. It postulates that both genetic and environmental factors play a key role in athletic performance and related phenotypes. This update on the panel of genetic markers (DNA polymorphisms) associated with athlete status and soft-tissue injuries covers advances in research reported in recent years, including one whole genome sequencing (WGS) and four genome-wide association (GWAS) studies, as well as findings from collaborative projects and meta-analyses. At end of 2020, the total number of DNA polymorphisms associated with athlete status was 220, of which 97 markers have been found significant in at least two studies (35 endurance-related, 24 power-related, and 38 strength-related). Furthermore, 29 genetic markers have been linked to soft-tissue injuries in at least two studies. The most promising genetic markers include HFE rs1799945, MYBPC3 rs1052373, NFIA-AS2 rs1572312, PPARA rs4253778, and PPARGC1A rs8192678 for endurance; ACTN3 rs1815739, AMPD1 rs17602729, CPNE5 rs3213537, CKM rs8111989, and NOS3 rs2070744 for power; LRPPRC rs10186876, MMS22L rs9320823, PHACTR1 rs6905419, and PPARG rs1801282 for strength; and COL1A1 rs1800012, COL5A1 rs12722, COL12A1 rs970547, MMP1 rs1799750, MMP3 rs679620, and TIMP2 rs4789932 for soft-tissue injuries. It should be appreciated, however, that hundreds and even thousands of DNA polymorphisms are needed for the prediction of athletic performance and injury risk.
Collapse
|
14
|
Ipekoglu G, Bulbul A, Cakir HI. A meta-analysis on the association of ACE and PPARA gene variants and endurance athletic status. J Sports Med Phys Fitness 2021; 62:795-802. [PMID: 34028240 DOI: 10.23736/s0022-4707.21.12417-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Genetics has an important role in determining the athletic ability and endurance performance potential. This study aimed to investigate the variable results obtained from endurance athletes and control participants in terms of angiotensin-converting enzyme (ACE) and peroxisome proliferator-activated receptor alpha (PPARA) polymorphism distributions. METHODS Multiple electronic databases were investigated independently by two researchers. A meta-analysis was conducted on the association of ACE insertion/deletion (I/D) polymorphism and PPARA G/C polymorphisms with endurance athletes. Odds ratios (OR) and 95% confidence intervals (CI) were estimated. Twenty-six studies were identified for the ACE I/D for 2979 endurance athletes and 10048 control participants while seven studies were identified for PPARA G/C for 901 endurance athletes and 2292 control participants. RESULTS There was a significant difference in ACE genotype distribution between endurance athletes and control (II vs. ID+DD: OR=1.48; 95% CI=0.30-2.67; p=0.001). On the other hand, there was no a significant difference in PPARA G/C polymorphism genotype distribution between endurance athletes and control (GC+CC vs. GG: OR=0.93; 95% CI=-0.46-2.32; p=0.192; GC+GG vs CC: OR=0.62; 95% CI=-1.75-2.99; p=0.604). CONCLUSIONS The results have shown that ACE I/D polymorphism may be associated with endurance performance in sports and that the predominance of the ACE II genotype in a person may play an advantageous role in being an endurance athlete. However, this effect has not been observed in PPARA G/C polymorphism.
Collapse
Affiliation(s)
| | - Alpay Bulbul
- Faculty of Sports Sciences, Sinop University, Sinop, Turkey
| | - Halil I Cakir
- High School of Physical Education and Sports, Recep Tayyip Erdogan University, Rize, Turkey -
| |
Collapse
|
15
|
Coelho DB, Pimenta EM, Rosse IC, de Oliveira EC, Becker LK, Ferreira-JÚnior JB, Lopes LM, Carvalho MR, Silami-Garcia E. Polymorphism of the angiotensin converting enzyme gene (ACE-I/D) differentiates the aerobic and speed performance of football players. J Sports Med Phys Fitness 2021; 62:192-198. [PMID: 33728841 DOI: 10.23736/s0022-4707.21.12060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The aim was to evaluate the distribution of ACE-I/D polymorphisms on Brazilian football players performance in aerobic capacity, strength, and speed tests. METHODS The participants in this study were 212 Brazilian first division male football players genotyped in DD, ID. or II. Genotyping of DNA from leucocytes was performed using polymerase chain reaction and restriction fragment length polymorphism methods. We evaluated speed using a 30-m sprint test with speed measured at 10 m (V10), 20 m (V20), and 30 m (V30); muscular strength using counter-movement-jump and squat jump tests; and aerobic endurance using the Yo-Yo endurance test. The athletes were ranked in ascending order according to their performance in each test and divided into quartiles: first quartile (0-25%, Weak), second (25-50%, Normal), third (50-75%, Good), and fourth (75-100%, Excellent); these were clustered according to genotype frequency. RESULTS We identified significant differences in the V20 test values and in the aerobic capacity test. Higher frequencies of the ACE-DD genotype were observed in the Excellent performance group in the V20. In the aerobic capacity test, higher frequencies of the ACE-II genotype were observed in Excellent and Good performance groups. CONCLUSIONS Players with higher performance in anaerobic and aerobic tests are ACE-DD and ACE-II genotypes, respectively.
Collapse
Affiliation(s)
- Daniel B Coelho
- Federal University of Ouro Preto, School of Physical Education, Health and Nutrition Postgraduate Program, Ouro Preto, Brazil
| | - Eduardo M Pimenta
- Federal University of Minas Gerais, School of Physical Education, Physiotherapy and Occupational Therapy, Belo Horizonte, Brazil
| | - Izinara C Rosse
- Federal University of Ouro Preto, School of Pharmacy, Ouro Preto, Brazil
| | - Emerson C de Oliveira
- Federal University of Ouro Preto, School of Physical Education, Health and Nutrition Postgraduate Program, Ouro Preto, Brazil -
| | - Lenice K Becker
- Federal University of Ouro Preto, School of Physical Education, Health and Nutrition Postgraduate Program, Ouro Preto, Brazil
| | | | - Lilian M Lopes
- Federal University of Ouro Preto, School of Nutrition, Health and Nutrition Postgraduate Program, Ouro Preto, Brazil
| | - Maria R Carvalho
- Federal University of Minas Gerais, Institute of Biological Sciences, Belo Horizonte, Brazil
| | - Emerson Silami-Garcia
- Federal University of Minas Gerais, School of Physical Education, Physiotherapy and Occupational Therapy, Belo Horizonte, Brazil
| |
Collapse
|
16
|
Angiotensin-converting enzyme (ACE) insertion/deletion gene polymorphism across ethnicity: a narrative review of performance gene. SPORT SCIENCES FOR HEALTH 2021. [DOI: 10.1007/s11332-020-00712-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Wei Q. The ACE and ACTN3 polymorphisms in female soccer athletes. Genes Environ 2021; 43:5. [PMID: 33602343 PMCID: PMC7890855 DOI: 10.1186/s41021-021-00177-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/10/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTS We investigated the association of ACE I/D and ACTN3 R577X polymorphisms with the performance of Chinese elite female soccer athletes for the first time. MATERIAL AND METHODS The genotype distributions of ACE I/D and ACTN3 R577X in the athlete group and the control group of Chinese females were evaluated via PCR and compared. VO2max value was tested as per standard protocol. RESULTS Regarding the distribution of ACE polymorphisms, the genotype frequency was indifferent between the athletes (II 40 %, ID 46.7 %, DD 13.3 %) and the controls (II 42 %, ID 48 %, DD 10 %). No difference in the I/D allele frequency was observed between the athlete group and the control group. Regarding the distribution of ACTN3 polymorphisms, the genotype frequency was significantly different between the athletes (XX 0 %, XR 53.3 %, RR 46.7 %) and the controls (XX 16 %, XR 44 %, RR 40 %). The allele frequency was observed no different between the athlete and the control group. The ACE ID and ACTN3 RR genotype combination was associated with higher VO2max values among defenders than among other players. According to VO2max values,The ACE and ACTN3 genotype combinations (II/ID/DD + RR/XR) significantly differed between the athletes and the controls (p < 0.05). CONCLUSION These results suggested that the Chinese elite female soccer athletes were more likely to harbor the I allele and the R allele and that the combination of ACE II/ID and ACTN3 RR/XR was a synergetic determinant of the athletic performance of females in soccer.
Collapse
Affiliation(s)
- Qi Wei
- Key Laboratory of General Administration of Sport of China, Hubei Olympic Center , High-tech Road No.1 of the East Lake High-tech Zone, Hubei, 430050, Wuhan, China. .,Hubei Institute of Sports Science, Hubei Olympic Center , High-tech Road No.1 of the East Lake High-tech Zone, Hubei, 430050, Wuhan, China.
| |
Collapse
|
18
|
McAuley ABT, Hughes DC, Tsaprouni LG, Varley I, Suraci B, Roos TR, Herbert AJ, Kelly AL. The association of the ACTN3 R577X and ACE I/D polymorphisms with athlete status in football: a systematic review and meta-analysis. J Sports Sci 2021; 39:200-211. [PMID: 32856541 DOI: 10.1080/02640414.2020.1812195] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2020] [Indexed: 02/07/2023]
Abstract
The aim of this review was to assess the association of ACTN3 R577X and ACE I/D polymorphisms with athlete status in football and determine which allele and/or genotypes are most likely to influence this phenotype via a meta-analysis. A comprehensive search identified 17 ACTN3 and 19 ACE studies. Significant associations were shown between the presence of the ACTN3 R allele and professional footballer status (OR = 1.35, 95% CI: 1.18-1.53) and the ACE D allele and youth footballers (OR = 1.18, 95% CI: 1.01-1.38). More specifically, the ACTN3 RR genotype (OR = 1.48, 95% CI: 1.23-1.77) and ACE DD genotype (OR = 1.29, 95% CI: 1.02-1.63) exhibited the strongest associations, respectively. These findings may be explained by the association of the ACTN3 RR genotype and ACE DD genotype with power-orientated phenotypes and the relative contribution of power-orientated phenotypes to success in football. As such, the results of this review provide further evidence that individual genetic variation may contribute towards athlete status and can differentiate athletes of different competitive playing statuses in a homogenous team-sport cohort. Moreover, the ACTN3 R577X and ACE I/D polymorphisms are likely (albeit relatively minor) contributing factors that influence athlete status in football.
Collapse
Affiliation(s)
- Alexander B T McAuley
- Faculty of Health, Education and Life Sciences, Birmingham City University , Birmingham, UK
| | - David C Hughes
- Faculty of Health, Education and Life Sciences, Birmingham City University , Birmingham, UK
| | - Loukia G Tsaprouni
- Faculty of Health, Education and Life Sciences, Birmingham City University , Birmingham, UK
| | - Ian Varley
- Department of Sport Science, Nottingham Trent University , Nottingham, UK
| | - Bruce Suraci
- Academy Coaching Department, AFC Bournemouth , Bournemouth, UK
| | - Thomas R Roos
- The International Academy of Sports Science and Technology (AISTS), University of Lausanne , Lausanne, Switzerland
| | - Adam J Herbert
- Faculty of Health, Education and Life Sciences, Birmingham City University , Birmingham, UK
| | - Adam L Kelly
- Faculty of Health, Education and Life Sciences, Birmingham City University , Birmingham, UK
| |
Collapse
|
19
|
John R, Dhillon MS, Dhillon S. Genetics and the Elite Athlete: Our Understanding in 2020. Indian J Orthop 2020; 54:256-263. [PMID: 32399143 PMCID: PMC7205921 DOI: 10.1007/s43465-020-00056-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 02/17/2020] [Indexed: 02/04/2023]
Abstract
Modern competitive sport has evolved so much that athletes would go to great extremes to develop themselves into champions; medicine has also evolved to the point that many genetic elements have been identified to be associated with specific athletic traits, and genetic alterations are also possible. The current review examines the published literature and looks at three important factors: genetic polymorphism influencing sporting ability, gene doping and genetic tendency to injury. The ACTN3 gene has an influence on type II muscle fibres, with the R allele being advantageous to power sports like sprinting and the XX genotype being associated with lower muscle strength and sprinting ability. The ACE gene polymorphisms are associated with cardio-respiratory efficiency and could influence endurance athletes. Many other genes are being looked at, with specific focus on those that are potentially related to enhancement of athletic ability. Recognition of these specific gene polymorphisms brings into play the concept of genetic engineering in athletes, which constitutes gene doping and is outlawed. This has the potential to develop into the next big threat in elite sports; gene doping could have dangerous and even fatal outcomes, as the knowledge of gene therapy is still in its infancy. Genetic predisposition to injury is also being identified; recent publications have increased the awareness of gene polymorphisms predisposing to injuries of ligaments and tendons due to influence on collagen structure and extracellular matrix. Ongoing work is looking at identifying the same genes from different races and different sexes to see if there are quantitative racial or sexual differences. All of the above have led to serious ethical concerns; in the twenty-first century some sports associations and some countries are looking at genetic testing for their players. Unfortunately, the science is still developing, and the experience of its application is limited worldwide. Nevertheless, this field has caught the imagination of both the public and the sportsperson, and hence the concerned doctors should be aware of the potential problems and current issues involved in understanding genetic traits and polymorphisms, genetic testing and genetic engineering.
Collapse
Affiliation(s)
- Rakesh John
- Department of Trauma and Orthopaedics, Hull University Teaching Hospital, East Yorkshire, Hull, HU3 2JZ UK
| | - Mandeep Singh Dhillon
- Department of Orthopaedics, Post Graduate Institute of Medical Education and Research, Chandigarh, India 160012
| | | |
Collapse
|
20
|
Chiu YH, Lai JI, Tseng CY, Wang SH, Li LH, Kao WF, How CK, Chang WH, Hsieh CY. Impact of angiotension I converting enzyme gene I/D polymorphism on running performance, lipid, and biochemical parameters in ultra-marathoners. Medicine (Baltimore) 2019; 98:e16476. [PMID: 31335708 PMCID: PMC6709287 DOI: 10.1097/md.0000000000016476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The insertion (I) or deletion (D) polymorphism in the angiotension I converting enzyme gene, (ACE I/D, rs1799752) is associated with human exercise endurance and performance. However, most of the aforementioned studies focus on marathons, swimming, and triathlons, while the ACE polymorphism in ultra-marathoners has not yet been reported. We studied the impact of ACE I/D polymorphism in ultra-marathoners and investigated its relationship with lipid profiles, interleukin-6 (IL-6), and high-sensitivity C-reactive protein (hs-CRP) levels in runners before and after ultra-marathon racing.This observational study used data from a 100-km ultra-marathon in Taipei, Taiwan. Twenty-four male participants were analyzed for their ACE insertion/deletion polymorphism, lipid profiles, hs-CRP, IL-6 in serum immediately before and after ultra-marathon running.In our 24 subjects analyzed, 7, 14, and 3 subjects were of I/I, I/D, and D/D genotypes, respectively. Runners with the D polymorphism (I/D and D/D) showed a trend of better performance in the 100-km ultra-marathon (measured by completion time in minutes, P = .036). In this group, the previous best marathon performance was also significantly better than the I/I group (P = .047). After adjusting for body mass index (BMI), the difference in performance was not significant. Ketone levels, IL-6, and hs-CRP levels were highly increased at immediately and 24-hour post-race. No correlation was found between different ACE polymorphisms and common biochemical parameters examined.We report the first study in the impact of the ACE I/D (rs1799752) on ultra-marathoners. Presence of the D polymorphism in ACE gene is associated with better performance, although the BMI of the runners contribute as a major factor. There was no difference in the biochemical or lipid parameters measured among different ACE polymorphisms.
Collapse
Affiliation(s)
- Yu-Hui Chiu
- Department of Emergency Medicine, Mackay Memorial Hospital
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei
- Department of Medicine, Mackay Medical College, New Taipei City
| | - Jiun-I Lai
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital
- School of Medicine, National Yang-Ming University, Taipei
| | - Chia-Ying Tseng
- Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung
- Emergency Medicine, College of Medicine, National Yang-Ming University, Taipei
| | - Shih-Hao Wang
- Department of Recreation and Leisure Industry Management, College of Management, National Taiwan Sport University, Taoyuan City
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital
- Department of Emergency Medicine, Dali Tzu Chi Hospital, Chiayi
| | - Li-Hua Li
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University
| | - Wei-Fong Kao
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei
- Department of Emergency and Critical Care Medicine, Taipei Medical University Hospital
| | - Chorng-Kuang How
- Department of Emergency Medicine, Taipei Veterans General Hospital
- Institute of Emergency and Critical Care Medicine, National Yang-Ming University, Taipei
| | - Wen-Han Chang
- Department of Emergency Medicine, Mackay Memorial Hospital
- Department of Medicine, Mackay Medical College, New Taipei City
| | - Chin-Yi Hsieh
- Department of Medicine, Mackay Medical College, New Taipei City
- Department of Emergency Medicine, Hsinchu Mackay Memorial Hospital, Hsinchu, Taiwan, ROC
| |
Collapse
|
21
|
Is mitochondrial DNA profiling predictive for athletic performance? Mitochondrion 2019; 47:125-138. [PMID: 31228565 DOI: 10.1016/j.mito.2019.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 06/03/2019] [Accepted: 06/17/2019] [Indexed: 11/20/2022]
Abstract
Mitochondrial DNA encodes some proteins of the oxidative phosphorylation enzymatic complex, playing an important role in aerobic ATP production; therefore, it can contribute to the ability to respond to endurance exercise training. The accumulation of mitochondrial mutations and the migratory processes of populations have given a great contribution to the development of haplogroups with a different distribution in the world. Several studies have shown the important role of gene polymorphisms in aerobic performance. In this review, some mitochondrial haplogroups and multiple rare alleles were taken into consideration and could be linked to the athlete's physical performance of different ethnic groups.
Collapse
|
22
|
Zehsaz F, Safabakhsh AH, Farhangi N, Keynezhad N, Monfaredan A, Ghahramani M. Do ACE and CKMM gene variations have potent effects on physical performance in inactive male adolescents? Mol Biol Rep 2019; 46:1835-1843. [PMID: 30710235 DOI: 10.1007/s11033-019-04636-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/22/2019] [Indexed: 10/27/2022]
Abstract
We studied to ascertain whether the ACE and/or CKMM genotypes independently influence the baseline level of some sport performances in 613 inactive male adolescents (mean ± SD age: 13.24 ± 0.28 years). All DNA samples were extracted and genotyped for ACE I/D and CKMM A/G polymorphisms using a PCR based procedure. One-way analysis of covariance was used to examine the discrepancies in the research phenotypes among various ACE and CKMM polymorphisms. The comparisons of genotype and allele frequencies between adolescents with the best and the worst performances were calculated and analyzed by the Chi square test. All procedures were approved by Medical University Ethics Committee. Written informed consent signed and approved by all subject`s parents were obtained. We observed the effect of the ACE and CKMM polymorphisms on VO2max (P = 0.001 & P = 0.001 respectively). ACE and CKMM genotypes differed between groups (< 90th vs. ≥ 90) in the multi-stage 20 m shuttle run (P = 0.001 and 0.001). ACE allele frequencies differed between groups (< 90th vs. ≥ 90) in the multi-stage 20-m shuttle run (P = 0.001). This study suggests that the ACE and CKMM polymorphisms influence the endurance performance phenotype in non-trained adolescent males.
Collapse
Affiliation(s)
- Farzad Zehsaz
- Department of Physical Education and Sport Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Amir Hamzeh Safabakhsh
- Department of Physical Education and Sport Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Negin Farhangi
- Department of Physical Education and Sport Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Narmin Keynezhad
- Department of Physical Education and Sport Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Amir Monfaredan
- Department of Hematology, Faculty of Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Mehri Ghahramani
- Department of Physical Education and Sport Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
23
|
Turgut G, Turgut S, Genç O, Atalay A, Atalay EÖ. The Angiotensin Converting Enzyme I/D Polymorphism in Turkish Athletes and Sedentary Controls. ACTA MEDICA (HRADEC KRÁLOVÉ) 2019. [DOI: 10.14712/18059694.2018.79] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The angiotensin converting enzyme (ACE) gene is located on human chromosome 17 expressing three genotypes within the intron 16 of the related gene structure. These genotypes are classified as I and D alleles which are termed as insertion and deletion, respectively. This study was carried out to identify possible relationships between the insertion/ deletion (I/D) polymorphisms and athletic performance in Turkish athletes. To be able to determine these relationships, eighty healthy athletes and eighty healthy sedentary controls were genotyped for the ACE I/D polymorphism at gene level. According to the results obtained, we found significant difference on ACE I/D polymorphism in between athletes and healthy controls (x2 = 7.32, df = 2, P = 0.026). This result supports the association in ACE genotype in Turkish athletes, suggesting that this might be a genetic factor influencing the physical performance.
Collapse
|
24
|
Gronek P, Gronek J, Lulińska-Kuklik E, Spieszny M, Niewczas M, Kaczmarczyk M, Petr M, Fischerova P, Ahmetov II, Żmijewski P. Polygenic Study of Endurance-Associated Genetic Markers NOS3 (Glu298Asp), BDKRB2 (-9/+9), UCP2 (Ala55Val), AMPD1 (Gln45Ter) and ACE (I/D) in Polish Male Half Marathoners. J Hum Kinet 2018; 64:87-98. [PMID: 30429902 PMCID: PMC6231335 DOI: 10.1515/hukin-2017-0204] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The purpose of this study was to investigate individually and in combination the association between the ACE (I/D), NOS3 (Glu298Asp), BDKRB2 (-9/+9), UCP2 (Ala55Val) and AMPD1 (Gln45Ter) variants with endurance performance in a large, performance-homogenous cohort of elite Polish half marathoners. The study group consisted of 180 elite half marathoners: 76 with time < 100 minutes and 104 with time > 100 minutes. DNA of the subjects was extracted from buccal cells donated by the runners and genotyping was carried out using an allelic discrimination assay with a C1000 Touch Thermal Cycler (Bio-Rad, Germany) instrument with TaqMan® probes (NOS3, UCP2, and AMPD1) and a T100™ Thermal Cycler (Bio-Rad, Germany) instrument (ACE and BDKRB2). We found that the UCP2 Ala55Val polymorphism was associated with running performance, with the subjects carrying the Val allele being overrepresented in the group of most successful runners (<100 min) compared to the >100 min group (84.2 vs. 55.8%; OR = 4.23, p < 0.0001). Next, to assess the combined impact of 4 gene polymorphisms, all athletes were classified according to the number of 'endurance' alleles (ACE I, NOS3 Glu, BDKRB2 -9, UCP2 Val) they possessed. The proportion of subjects with a high (4-7) number of 'endurance' alleles was greater in the better half marathoners group compared with the >100 min group (73.7 vs. 51.9%; OR = 2.6, p = 0.0034). These data suggest that the likelihood of becoming an elite half marathoner partly depends on the carriage of a high number of endurance-related alleles.
Collapse
Affiliation(s)
- Piotr Gronek
- Laboratory of Genetics, Department of Gymnastics and Dance, University School of Physical Education in Poznań, Poznań, Poland
| | - Joanna Gronek
- Laboratory of Genetics, Department of Gymnastics and Dance, University School of Physical Education in Poznań, Poznań, Poland
| | - Ewelina Lulińska-Kuklik
- Department of Tourism and Recreation, University of Physical Education and Sport, Gdańsk, Poland
| | - Michał Spieszny
- Institute of Sports, Faculty of Physical Education and Sports, University of Physical Education, Krakow, Poland
| | - Marta Niewczas
- Faculty of Physical Education University of Rzeszów, RzeszówPoland
| | - Mariusz Kaczmarczyk
- Department of Tourism and Recreation, University of Physical Education and Sport, Gdańsk, Poland
| | - Miroslav Petr
- Department of Sport Games, Charles University in Prague, Prague, Czech Republic
| | - Patricia Fischerova
- Department of Methodology, Statistics and Informatics, J.Kukuczka Academy of Physical Education in Katowice, KatowicePoland
| | - Ildus I. Ahmetov
- Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia
| | - Piotr Żmijewski
- Faculty of Medicine, University of Information Technology and Management in Rzeszow, Rzeszow, Poland
| |
Collapse
|
25
|
The Potential Role of Genetic Markers in Talent Identification and Athlete Assessment in Elite Sport. Sports (Basel) 2018; 6:sports6030088. [PMID: 30200182 PMCID: PMC6162373 DOI: 10.3390/sports6030088] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/25/2018] [Accepted: 08/27/2018] [Indexed: 01/05/2023] Open
Abstract
In elite sporting codes, the identification and promotion of future athletes into specialised talent pathways is heavily reliant upon objective physical, technical, and tactical characteristics, in addition to subjective coach assessments. Despite the availability of a plethora of assessments, the dependence on subjective forms of identification remain commonplace in most sporting codes. More recently, genetic markers, including several single nucleotide polymorphisms (SNPs), have been correlated with enhanced aerobic capacity, strength, and an overall increase in athletic ability. In this review, we discuss the effects of a number of candidate genes on athletic performance, across single-skilled and multifaceted sporting codes, and propose additional markers for the identification of motor skill acquisition and learning. While displaying some inconsistencies, both the ACE and ACTN3 polymorphisms appear to be more prevalent in strength and endurance sporting teams, and have been found to correlate to physical assessments. More recently, a number of polymorphisms reportedly correlating to athlete performance have gained attention, however inconsistent research design and varying sports make it difficult to ascertain the relevance to the wider sporting population. In elucidating the role of genetic markers in athleticism, existing talent identification protocols may significantly improve—and ultimately enable—targeted resourcing in junior talent pathways.
Collapse
|
26
|
Alves CR, Fernandes T, Lemos JR, Magalhães FDC, Trombetta IC, Alves GB, da Mota GDFA, Dias RG, Pereira AC, Krieger JE, Negrão CE, Oliveira EM. Aerobic exercise training differentially affects ACE C- and N-domain activities in humans: Interactions with ACE I/D polymorphism and association with vascular reactivity. J Renin Angiotensin Aldosterone Syst 2018; 19:1470320318761725. [PMID: 29629833 PMCID: PMC5894927 DOI: 10.1177/1470320318761725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 12/15/2017] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Previous studies have linked angiotensin-converting enzyme ( ACE) insertion (I)/deletion (D) polymorphism (II, ID and DD) to physical performance. Moreover, ACE has two catalytic domains: NH2 (N) and COOH (C) with distinct functions, and their activity has been found to be modulated by ACE polymorphism. The aim of the present study is to investigate the effects of the interaction between aerobic exercise training (AET) and ACE I/D polymorphism on ACE N- and C-domain activities and vascular reactivity in humans. MATERIALS AND METHODS A total of 315 pre-selected healthy males were genotyped for II, ID and DD genotypes. Fifty completed the full AET (II, n = 12; ID, n = 25; and DD, n = 13), performed in three 90-minute sessions weekly, in the four-month exercise protocol. Pre- and post-training resting heart rate (HR), peak O2 consumption (VO2 peak), mean blood pressure (MBP), forearm vascular conduction (FVC), total circulating ACE and C- and N-domain activities were assessed. One-way ANOVA and two -way repeated-measures ANOVA were used. RESULTS In pre-training, all variables were similar among the three genotypes. In post-training, a similar increase in FVC (35%) was observed in the three genotypes. AET increased VO2 peak similarly in II, ID and DD (49±2 vs. 57±1; 48±1 vs. 56±3; and 48±5 vs. 58±2 ml/kg/min, respectively). Moreover, there were no changes in HR and MBP. The DD genotype was also associated with greater ACE and C-domain activities at pre- and post-training when compared to II. AET decreased similarly the total ACE and C-domain activities in all genotypes, while increasing the N-domain activity in the II and DD genotypes. However, interestingly, the measurements of N-domain activity after training indicate a greater activity than the other genotypes. These results suggest that the vasodilation in response to AET may be associated with the decrease in total ACE and C-domain activities, regardless of genotype, and that the increase in N-domain activity is dependent on the DD genotype. CONCLUSIONS AET differentially affects the ACE C- and N-domain activities, and the N-domain activity is dependent on ACE polymorphism.
Collapse
Affiliation(s)
- Cléber Rene Alves
- School of Physical Education and Sport, University of São Paulo, Brazil
- Heart Institute (Incor), Medical School, University of São Paulo, Brazil
- University Nove de Julho, UNINOVE, São Paulo, Brazil
| | - Tiago Fernandes
- School of Physical Education and Sport, University of São Paulo, Brazil
| | - José Ribeiro Lemos
- Heart Institute (Incor), Medical School, University of São Paulo, Brazil
- University Nove de Julho, UNINOVE, São Paulo, Brazil
| | - Flávio de Castro Magalhães
- School of Physical Education and Sport, University of São Paulo, Brazil
- Multicentric Program of Post-graduation in Physiological Sciences, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| | | | | | | | | | | | | | - Carlos Eduardo Negrão
- School of Physical Education and Sport, University of São Paulo, Brazil
- Heart Institute (Incor), Medical School, University of São Paulo, Brazil
| | | |
Collapse
|
27
|
Jin T, Ren Y, Zhu X, Li X, Ouyang Y, He X, Zhang Z, Zhang Y, Kang L, Yuan D. Angiotensin II receptor 1 gene variants are associated with high-altitude pulmonary edema risk. Oncotarget 2018; 7:77117-77123. [PMID: 27732943 PMCID: PMC5363573 DOI: 10.18632/oncotarget.12489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/25/2016] [Indexed: 01/28/2023] Open
Abstract
Previous studies demonstrated that Angiotensin II Receptor 1 (AGTR1) may play an important role in the development of high-altitude pulmonary edema. We envisaged a role for AGTR1 gene variants in the pathogenesis of HAPE and investigated their potential associations with HAPE in a Han Chinese population. We genotyped seven AGTR1 polymorphisms in 267 patients with diagnosed HAPE and 304 controls and evaluated their association with risk of HAPE. Statistically significant associations were found for the single nucleotide polymorphisms (SNPs) rs275651 (p = 0.017; odds ratio [OR] = 0.65) and rs275652 (p = 0.016; OR = 0.64). Another SNP rs10941679 showed a marginally significant association after adjusting for age and sex in the additive genetic model (adjusted OR = 1.44, 95% CI = 1.01-2.04, p = 0.040). Haplotype analysis confirmed that the haplotype "AG" was associated with a 35% reduction in the risk of developing HAPE, while the haplotype "AA" increased the risk of developing HAPE by 44%. These results provide the first evidence linking genetic variations in AGTR1 with HAPE risk in Han Chinese individuals.
Collapse
Affiliation(s)
- Tianbo Jin
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, China.,Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China.,School of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yongchao Ren
- School of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.,Qiannan Institute for Food and Drug Control, Duyun, Guizhou 558000, China
| | - Xikai Zhu
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, China.,Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Xun Li
- The Center of Altitude Disease, General Hospital of Tibet Military Area Command, Lasa 850000, China
| | - Yongri Ouyang
- School of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Xue He
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, China.,Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Zhiying Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, China.,Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Yuan Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, China.,Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Longli Kang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, China.,Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Dongya Yuan
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, China.,Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| |
Collapse
|
28
|
The influence of angiotensin-converting enzyme gene ID polymorphism on human physical fitness performance in European and other populations. SPORT SCIENCES FOR HEALTH 2017. [DOI: 10.1007/s11332-016-0340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Shader RI. Forgotten Influences and Reflections on Exercise and on the End of the Year 2017. Clin Ther 2017; 39:2331-2336. [PMID: 29180060 DOI: 10.1016/j.clinthera.2017.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 10/18/2022]
|
30
|
Bordoni L, Napolioni V, Marchegiani F, Amadio E, Gabbianelli R. Angiotensin-Converting Enzyme Ins/Del Polymorphism and Body Composition: The Intermediary Role of Hydration Status. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2017; 10:1-8. [PMID: 28315876 DOI: 10.1159/000458154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 01/26/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND The well-known insertion/deletion polymorphism (rs4646994) of the angiotensin-converting enzyme (ACE) gene has been previously associated with obesity, blood flow, muscular strength, and ACE enzyme activity. Despite the relevant role of ACE in homeostasis, few data are currently available on the relationship between rs4646994 and hydration status. Thus, we tested the association between the ACE Ins/Del polymorphism, body composition, and hydration status in a young Italian population. METHODS A total of 306 healthy children and adolescents who regularly practice sports were recruited. Anthropometric, bioimpedentiometric parameters, and urine samples were collected, while ACE rs4646994 genotyping was performed on DNA from buccal swabs. General linear models were used for association testing. RESULTS The ACE Ins/Del polymorphism was associated with body composition. Ins/Ins individuals had higher phase angle (PhA) and body cellular mass index (BCMI) values. A significant influence of the ACE rs4646994 according to hydration status on body composition was also identified. In particular, Ins/Ins individuals displayed higher PhA and BCMI values only if norm-hydrated, while they showed values similar to Del carriers if dehydrated. CONCLUSION Our results confirm the relationship between the ACE Ins/Del polymorphism and body composition and suggest a role for hydration status in modulating this relationship. These interesting preliminary results warrant further investigation to disentangle the genetic role of ACE on hydration homeostasis.
Collapse
Affiliation(s)
- Laura Bordoni
- School of Advanced Studies, University of Camerino, Camerino, Italy
| | | | | | | | | |
Collapse
|
31
|
Moran CN, Pitsiladis YP. Tour de France Champions born or made: where do we take the genetics of performance? J Sports Sci 2016; 35:1411-1419. [PMID: 27498724 DOI: 10.1080/02640414.2016.1215494] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cyclists in the Tour de France are endurance specialists. Twin and family studies have shown that approximately 50% of the variance in a number of performance-related phenotypes (whether measured at baseline, i.e., natural talent, or in response to training) including those important to cycling can be explained by genetic variation. Research into the specific genetic variants that are responsible has identified over 200 genes containing common genetic variants involved in the genetic predisposition to physical performance. However, typically these explain only a small portion of the variance, perhaps 1-2% and collectively they rarely explain anything approaching the 50% of the variance identified in the twin and family studies. Thus, there is a gap in our understanding of the relationship between heritability and performance. This gap may be bridged by investigation of rare variants or epigenetic variation or by altering study designs through increased collaborations to pool existing cohorts together. Initial findings from such efforts show promising results. This mini-review will touch on the genetics and epigenetics of sporting performance, how they relate to cyclists in the Tour de France and where best future efforts may be directed as well as discuss some preliminary research findings.
Collapse
Affiliation(s)
- Colin N Moran
- a Physiology, Exercise and Nutrition Research Group , University of Stirling , Stirling , Scotland
| | - Yannis P Pitsiladis
- b FIMS Reference Collaborating Centre of Sports Medicine for Anti-Doping Research , University of Brighton , Eastbourne , England
| |
Collapse
|
32
|
Coelho DB, Pimenta E, Rosse IC, Veneroso C, Pussieldi G, Becker LK, Carvalho MR, Silami-Garcia E. Angiotensin-converting enzyme (ACE-I/D) polymorphism frequency in Brazilian soccer players. Appl Physiol Nutr Metab 2016; 41:692-4. [PMID: 27232187 DOI: 10.1139/apnm-2015-0514] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aimed to analyze the angiotensin-converting enzyme (ACE-I/D) allelic and genotypic frequencies in Brazilian soccer players of different ages. The study group comprised 353 players from first-division clubs in the under (U)-14, U-15, U-17, U-20, and professional categories. The allelic and genotypic frequencies did not differ significantly in any of the categories between the group of players and the control group. This was the first study of ACE-I/D polymorphism in Brazilian soccer players.
Collapse
Affiliation(s)
- Daniel Barbosa Coelho
- a Sports Center, Federal University of Ouro Preto, CEP-35400-000 Minas Gerais, Brazil
| | - Eduardo Pimenta
- b Physical Education Department, School of Physical Education, Physiotherapy, and Occupational Therapy, Federal University of Minas Gerais, CEP-31270-901, Minas Gerais, Brazil
| | - Izinara Cruz Rosse
- c Laboratory of Human and Medical Genetics, Department of General Biology - Institute of Biological Sciences - CEP-31270-901, Federal University of Minas Gerais, Brazil
| | - Christiano Veneroso
- e Physical Education Department, Federal University of Maranhão, CEP-65080-805, São Luís, Brazil
| | - Guilherme Pussieldi
- d Physical Education Department, Federal University of Viçosa - Campus Florestal, CEP-35690-000 Florestal, Minas Gerais, Brazil
| | - Lenice Kapes Becker
- a Sports Center, Federal University of Ouro Preto, CEP-35400-000 Minas Gerais, Brazil
| | - Maria-Raquel Carvalho
- c Laboratory of Human and Medical Genetics, Department of General Biology - Institute of Biological Sciences - CEP-31270-901, Federal University of Minas Gerais, Brazil
| | - Emerson Silami-Garcia
- e Physical Education Department, Federal University of Maranhão, CEP-65080-805, São Luís, Brazil
| |
Collapse
|
33
|
Association between angiotensin-converting enzyme gene polymorphism and competitive anxiety in Tunisian athlete. SPORT SCIENCES FOR HEALTH 2016. [DOI: 10.1007/s11332-016-0280-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Coelho VA, Probst VS, Nogari BM, Teixeira DC, Felcar JM, Santos DC, Gomes MVM, Andraus RAC, Fernandes KBP. Angiotensin-II blockage, muscle strength, and exercise capacity in physically independent older adults. J Phys Ther Sci 2016; 28:547-52. [PMID: 27065543 PMCID: PMC4793008 DOI: 10.1589/jpts.28.547] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/17/2015] [Indexed: 11/24/2022] Open
Abstract
[Purpose] This study aimed to assess the exercise capacity and muscle strength in elderly people using drugs for angiotensin-II blockage. [Subjects and Methods] Four hundred and seven older adults were recruited for this study. Data about comorbidities and medication use were recorded and the individuals were divided into three groups: control group- elderly people with normal exercise capacity (n=235); angiotensin-converting enzyme inhibitor group - individuals using angiotensin-converting enzyme inhibitors (n=140); and angiotensin-II receptor blocker group- patients using angiotensin-II receptor blockers (n= 32). Exercise capacity was evaluated by a 6-minute walking test and muscle strength was measured using a handgrip dynamometer. [Results] Patients from the angiotensin-converting enzyme inhibitor group (mean: 99 ± 12%) and the angiotensin-II receptor blocker group (mean: 101 ± 14%) showed higher predicted values in the 6-minute walking test than the control group patients (mean: 96 ± 10%). Patients from the angiotensin-converting enzyme inhibitor group (mean: 105 ± 19%) and the angiotensin-II receptor blocker group (mean: 105.1 ± 18.73%) showed higher predicted values of muscle strength than control group patients (mean: 98.15 ± 18.77%). [Conclusion] Older adults using angiotensin-converting enzyme inhibitors or angiotensin-II receptor blockers have better functional exercise capacity and muscle strength.
Collapse
Affiliation(s)
- Vinícius A Coelho
- Health Sciences Research Center, University of Northern Parana (UNOPAR), Brazil
| | - Vanessa S Probst
- Health Sciences Research Center, University of Northern Parana (UNOPAR), Brazil
| | - Bruna M Nogari
- Health Sciences Research Center, University of Northern Parana (UNOPAR), Brazil
| | - Denilson C Teixeira
- Health Sciences Research Center, University of Northern Parana (UNOPAR), Brazil; Department of Physical Education, State University of Londrina (UEL), Brazil
| | - Josiane M Felcar
- Doctoral Program in Health Sciences, State University of Londrina (UEL), Brazil
| | - Denis C Santos
- Health Sciences Research Center, University of Northern Parana (UNOPAR), Brazil
| | | | - Rodrigo A C Andraus
- Health Sciences Research Center, University of Northern Parana (UNOPAR), Brazil
| | - Karen B P Fernandes
- Health Sciences Research Center, University of Northern Parana (UNOPAR), Brazil; School of Medicine, Pontificial Catholic University of Paraná (PUCPR), Brazil
| |
Collapse
|
35
|
Gultekin GI, Yilmaz SG, Kahraman OT, Atasoy H, Dalan AB, Attar R, Buyukoren A, Ucunoglu N, Isbir T. Lack of influence of the ACE1 gene I/D polymorphism on the formation and growth of benign uterine leiomyoma in Turkish patients. Asian Pac J Cancer Prev 2015; 16:1123-7. [PMID: 25735342 DOI: 10.7314/apjcp.2015.16.3.1123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Uterine leiomyomas (ULM), are benign tumors of the smooth muscle cells of the myometrium. They represent a common health problem and are estimated to be present in 30-70% of clinically reproductive women. Abnormal angiogenesis and vascular-related growth factors have been suggested to be associated with ULM growth. The angiotensin-I converting enzyme (ACE) is related with several tumors. The aim of this study was to identify possible correlation between ULM and the ACE I/D polymorphism, to evaluate whether the ACE I/D polymorphism could be a marker for early diagnosis and prognosis. ACE I/D was amplified with specific primer sets recognizing genomic DNA from ULM (n=72) and control (n=83) volunteers and amplicons were separated on agarose gels. The observed genotype frequencies were in agreement with Hardy-Weinberg equilibrium (χ2=2.162, p=0.339). There was no association between allele frequencies and study groups (χ2=0.623; p=0.430 for ACE I allele, χ2=0.995; p=0.339 for ACE D allele). In addition, there were no significant differences between ACE I/D polymorphism genotype frequencies and ULM range in size and number (χ2=1.760; p=0.415 for fibroid size, χ2=0.342; p=0.843 for fibroid number). We conclude that the ACE gene I/D polymorphism is not related with the size or number of ULM fibroids in Turkish women. Thus it cannot be regarded as an early diagnostic parameter nor as a risk estimate for ULM predisposition.
Collapse
Affiliation(s)
- Guldal Inal Gultekin
- Department of Molecular Medicine, Institute of Experimental Medicine, Istanbul University, Istanbul Turkey E-mail : ,
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
The angiotensin I-converting enzyme I/D gene polymorphism in well-trained Malaysian athletes. SPORT SCIENCES FOR HEALTH 2015. [DOI: 10.1007/s11332-015-0222-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Abstract
Understanding the genetic architecture of athletic performance is an important step in the development of methods for talent identification in sport. Research concerned with molecular predictors has highlighted a number of potentially important DNA polymorphisms contributing to predisposition to success in certain types of sport. This review summarizes the evidence and mechanistic insights on the associations between DNA polymorphisms and athletic performance. A literature search (period: 1997-2014) revealed that at least 120 genetic markers are linked to elite athlete status (77 endurance-related genetic markers and 43 power/strength-related genetic markers). Notably, 11 (9%) of these genetic markers (endurance markers: ACE I, ACTN3 577X, PPARA rs4253778 G, PPARGC1A Gly482; power/strength markers: ACE D, ACTN3 Arg577, AMPD1 Gln12, HIF1A 582Ser, MTHFR rs1801131 C, NOS3 rs2070744 T, PPARG 12Ala) have shown positive associations with athlete status in three or more studies, and six markers (CREM rs1531550 A, DMD rs939787 T, GALNT13 rs10196189 G, NFIA-AS1 rs1572312 C, RBFOX1 rs7191721 G, TSHR rs7144481 C) were identified after performing genome-wide association studies (GWAS) of African-American, Jamaican, Japanese, and Russian athletes. On the other hand, the significance of 29 (24%) markers was not replicated in at least one study. Future research including multicenter GWAS, whole-genome sequencing, epigenetic, transcriptomic, proteomic, and metabolomic profiling and performing meta-analyses in large cohorts of athletes is needed before these findings can be extended to practice in sport.
Collapse
Affiliation(s)
- Ildus I Ahmetov
- Sport Technology Research Center, Volga Region State Academy of Physical Culture, Sport and Tourism, Kazan, Russia; Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia.
| | - Olga N Fedotovskaya
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
38
|
Kim JH, Jung ES, Kim CH, Youn H, Kim HR. Genetic associations of body composition, flexibility and injury risk with ACE, ACTN3 and COL5A1 polymorphisms in Korean ballerinas. J Exerc Nutrition Biochem 2014; 18:205-14. [PMID: 25566457 PMCID: PMC4241924 DOI: 10.5717/jenb.2014.18.2.205] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 05/24/2014] [Accepted: 05/30/2014] [Indexed: 11/04/2022] Open
Abstract
PURPOSE The purpose of this study was to exam the association of body composition, flexibility, and injury risk to genetic polymorphisms including ACE ID, ACTN3 RX, and COL5A1 polymorphisms in ballet dancers in Korea. METHODS For the purpose of this study, elite ballerinas (n = 97) and normal female adults (n = 203) aged 18 to 39 were recruited and these participants were tested for body weight, height, body fat, fat free mass, flexibility, injury risks on the joints and gene polymorphisms (ACE, ACTN3, COL5A1 polymorphism). RESULTS As results, the ACE DD genotype in ballerinas was associated with higher body fat and percentage of body fat than the ACE II and ID genotypes (p < 0.05). In the study on the ACTN3 polymorphism and ballerinas, the XX genotype in ballerinas had lower body weight and lower fat-free mass than the RR and RX genotype (p < 0.005). Also, the means of sit and reach test for flexibility was lower in the ACTN3 XX genotype of ballerinas than the RR and RX genotype of ballerinas (p < 0.05). Among the sports injuries, the ankle injury of the XX-genotyped ballerinas was in significantly more prevalence than the RR and XX-genotyped ballerinas (p < 0.05). According to the odd ratio analysis, XX-genotyped ballerinas have the injury risk on the ankle about 4.7 (95% CI: 1.6~13.4, p < 0.05) times more than the RR and RX-genotyped ballerinas. Meanwhile, the COL5A1 polymorphism in ballerinas has no association with any factors including flexibility and injury risks. CONCLUSION In conclusion, ACE polymorphism and ACTN3 polymorphism were associated with ballerinas' performance capacity; COL5A1 was not associated with any factors of performance of Ballerinas. The results suggested that the ACE DD genotype is associated with high body fat, the ACTN3 XX genotype is associated with low fat-free mass, low flexibility, and higher risk of ankle-joint injury.
Collapse
Affiliation(s)
- Jun Ho Kim
- School of Dance, Kyunghee University, Seoul, Korea
| | - Eun Sun Jung
- School of Dance, Kyunghee University, Seoul, Korea
| | - Chul-Hyun Kim
- Department of Sports Medicine, Soonchunhyang University, Asan, Korea
| | - Hyeon Youn
- Department of Judo, Yong In University, Yong In, Korea
| | - Hwa Rye Kim
- School of Dance, Kyunghee University, Seoul, Korea
| |
Collapse
|
39
|
Leischik R, Spelsberg N, Niggemann H, Dworrak B, Tiroch K. Exercise-induced arterial hypertension - an independent factor for hypertrophy and a ticking clock for cardiac fatigue or atrial fibrillation in athletes? F1000Res 2014; 3:105. [PMID: 25132960 PMCID: PMC4118759 DOI: 10.12688/f1000research.4001.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/06/2014] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Background : Exercise-induced arterial hypertension (EIAH) leads to myocardial hypertrophy and is associated with a poor prognosis. EIAH might be related to the "cardiac fatigue" caused by endurance training. The goal of this study was to examine whether there is any relationship between EIAH and left ventricular hypertrophy in Ironman-triathletes. METHODS We used echocardiography and spiroergometry to determine the left ventricular mass (LVM), the aerobic/anaerobic thresholds and the steady-state blood pressure of 51 healthy male triathletes. The main inclusion criterion was the participation in at least one middle or long distance triathlon. RESULTS When comparing triathletes with LVM <220g and athletes with LVM >220g there was a significant difference between blood pressure values (BP) at the anaerobic threshold (185.2± 21.5 mmHg vs. 198.8 ±22.3 mmHg, p=0.037). The spiroergometric results were: maximum oxygen uptake (relative VO 2max) 57.3 ±7.5ml/min/kg vs. 59.8±9.5ml/min/kg (p=ns). Cut-point analysis for the relationship of BP >170 mmHg at the aerobic threshold and the probability of LVM >220g showed a sensitivity of 95.8%, a specificity of 33.3%, with a positive predictive value of 56.8 %, a good negative predictive value of 90%. The probability of LVM >220g increased with higher BP during exercise (OR: 1.027, 95% CI 1.002-1.052, p= 0.034) or with higher training volume (OR: 1.23, 95% CI 1.04 -1.47, p = 0.019). Echocardiography showed predominantly concentric remodelling, followed by concentric hypertrophy. CONCLUSION Significant left ventricular hypertrophy with LVM >220g is associated with higher arterial blood pressure at the aerobic or anaerobic threshold. The endurance athletes with EIAH may require a therapeutic intervention to at least prevent extensive stiffening of the heart muscle and exercise-induced cardiac fatigue.
Collapse
Affiliation(s)
- Roman Leischik
- Department of Cardiology, Section of Prevention, Health Promotion and Sports Medicine, Faculty of Health, School of Medicine, Witten/Herdecke University, Hagen, 58095, Germany
| | - Norman Spelsberg
- Department of Cardiology, Section of Prevention, Health Promotion and Sports Medicine, Faculty of Health, School of Medicine, Witten/Herdecke University, Hagen, 58095, Germany
| | - Hiltrud Niggemann
- Department of Cardiology, Section of Prevention, Health Promotion and Sports Medicine, Faculty of Health, School of Medicine, Witten/Herdecke University, Hagen, 58095, Germany
| | - Birgit Dworrak
- Department of Cardiology, Section of Prevention, Health Promotion and Sports Medicine, Faculty of Health, School of Medicine, Witten/Herdecke University, Hagen, 58095, Germany
| | - Klaus Tiroch
- Department of Cardiology, Faculty of Health, School of Medicine, Witten/Herdecke University, Helios Hospital Wuppertal, 42117, Germany
| |
Collapse
|
40
|
Eider J, Cieszczyk P, Ficek K, Leonska-Duniec A, Sawczuk M, Maciejewska-Karlowska A, Zarebska A. The association between D allele of the ACE gene and power performance in Polish elite athletes. Sci Sports 2013. [DOI: 10.1016/j.scispo.2012.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
Kwon YJ, Eo J, Choi BH, Choi Y, Gim JA, Kim D, Kim TH, Seong HH, Kim HS. Bioinformatic Analysis of the Canine Genes Related to Phenotypes for the Working Dogs. ACTA ACUST UNITED AC 2013. [DOI: 10.5352/jls.2013.23.11.1325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
42
|
Vaughan D, Huber-Abel FA, Graber F, Hoppeler H, Flück M. The angiotensin converting enzyme insertion/deletion polymorphism alters the response of muscle energy supply lines to exercise. Eur J Appl Physiol 2013; 113:1719-29. [PMID: 23397151 PMCID: PMC3677975 DOI: 10.1007/s00421-012-2583-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 12/28/2012] [Indexed: 11/25/2022]
Abstract
The presence of a silencing sequence (the I-allele) in the gene for the upstream regulator of blood flow, angiotensin I-converting enzyme (ACE), is associated with superior endurance performance and its trainability. We tested in a retrospective study with 36 Caucasian men of Swiss descent whether carriers of the ACE I-allele demonstrate a modified adaptive response of energy supply lines in knee extensor muscle, and aerobic fitness, to endurance training based on 6 weeks of supervised bicycle exercise or 6 months of self-regulated running (p value <Bonferroni-corrected 5 %). Body weight related maximal oxygen uptake and capillary density in vastus lateralis muscle before training were 20 and 23 % lower, respectively, in carriers of the I-allele. Bicycle (n = 16) but not running type endurance training (n = 19) increased the volume content of subsarcolemmal mitochondria (2.5-fold) and intramyocellular lipid (2.1-fold). This was specifically amplified in I-allele carriers after 6 weeks of bicycle exercise. The enhanced adjustment in myocellular organelles of aerobic metabolism with bicycle training corresponded to ACE I-allele dependent upregulation of 23 muscle transcripts during recovery from the bicycle stimulus and with training. The majority of affected transcripts were associated with glucose (i.e. ALDOC, Glut2, LDHC) and lipid metabolism (i.e. ACADL, CPTI, CPTII, LIPE, LPL, FATP, CD36/FAT); all demonstrating an enhanced magnitude of change in carriers of the ACE I-allele. Our observations suggest that local improvements in mitochondrial metabolism, through a novel expression pathway, contribute to the varying trainability in endurance performance between subjects with genetically modified expression of the regulator of vascular tone, ACE.
Collapse
Affiliation(s)
- David Vaughan
- Institute for Biomedical Research into Human Movement and Health, School of HealthCare Science, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD UK
| | | | | | - Hans Hoppeler
- Department of Anatomy, University of Berne, Berne, Switzerland
| | - Martin Flück
- Institute for Biomedical Research into Human Movement and Health, School of HealthCare Science, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD UK
- Department of Orthopaedics, University of Zürich, Balgrist University Hospital, Zurich, Switzerland
| |
Collapse
|
43
|
Hamilton NA, Tammen I, Raadsma HW. Multi-species comparative analysis of the equine ACE gene identifies a highly conserved potential transcription factor binding site in intron 16. PLoS One 2013; 8:e55434. [PMID: 23408978 PMCID: PMC3568152 DOI: 10.1371/journal.pone.0055434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 12/23/2012] [Indexed: 11/18/2022] Open
Abstract
Angiotensin converting enzyme (ACE) is essential for control of blood pressure. The human ACE gene contains an intronic Alu indel (I/D) polymorphism that has been associated with variation in serum enzyme levels, although the functional mechanism has not been identified. The polymorphism has also been associated with cardiovascular disease, type II diabetes, renal disease and elite athleticism. We have characterized the ACE gene in horses of breeds selected for differing physical abilities. The equine gene has a similar structure to that of all known mammalian ACE genes. Nine common single nucleotide polymorphisms (SNPs) discovered in pooled DNA were found to be inherited in nine haplotypes. Three of these SNPs were located in intron 16, homologous to that containing the Alu polymorphism in the human. A highly conserved 18 bp sequence, also within that intron, was identified as being a potential binding site for the transcription factors Oct-1, HFH-1 and HNF-3β, and lies within a larger area of higher than normal homology. This putative regulatory element may contribute to regulation of the documented inter-individual variation in human circulating enzyme levels, for which a functional mechanism is yet to be defined. Two equine SNPs occurred within the conserved area in intron 16, although neither of them disrupted the putative binding site. We propose a possible regulatory mechanism of the ACE gene in mammalian species which was previously unknown. This advance will allow further analysis leading to a better understanding of the mechanisms underpinning the associations seen between the human Alu polymorphism and enzyme levels, cardiovascular disease states and elite athleticism.
Collapse
Affiliation(s)
- Natasha A Hamilton
- ReproGen-Animal Bioscience Group, Faculty of Veterinary Science, University of Sydney, Camperdown, New South Wales, Australia.
| | | | | |
Collapse
|
44
|
Di Cagno A, Sapere N, Piazza M, Aquino G, Iuliano E, Intrieri M, Calcagno G. ACE and AGTR1 Polymorphisms in Elite Rhythmic Gymnastics. Genet Test Mol Biomarkers 2013; 17:99-103. [DOI: 10.1089/gtmb.2012.0209] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Alessandra Di Cagno
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
- Department of Health Sciences, University of Rome “Foro Italico,” Rome, Italy
| | - Nadia Sapere
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Marina Piazza
- Department of Anatomy, Histology, and Forensic Medicine, University of Florence, Florence, Italy
| | - Giovanna Aquino
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Enzo Iuliano
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Giuseppe Calcagno
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| |
Collapse
|
45
|
Association of genome variations in the renin-angiotensin system with physical performance. Hum Genomics 2012; 6:24. [PMID: 23176367 PMCID: PMC3543191 DOI: 10.1186/1479-7364-6-24] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 10/26/2012] [Indexed: 11/25/2022] Open
Abstract
Background The aim of this study was to determine the genotype distribution and allelic frequencies of ACE (I/D), AGTR1 (A +1166 C), BDKRB2 (+9/−9) and LEP (G–2548A) genomic variations in 175 Greek athletes who excelled at a national and/or international level and 169 healthy Greek adults to identify whether some particular combinations of these loci might serve as predictive markers for superior physical condition. Results The D/D genotype of the ACE gene (p = 0.034) combined with the simultaneous existence of BDKRB2 (+9/−9) (p = 0.001) or LEP (G/A) (p = 0.021) genotypes was the most prevalent among female athletes compared to female controls. A statistical trend was also observed in BDKRB2 (+9/−9) and LEP (G–2548A) heterozygous genotypes among male and female Greek athletes, and in ACE (I/D) only in male athletes. Finally, both male and female athletes showed the highest rates in the AGTR1 (A/A) genotype. Conclusions Our results suggest that the co-existence of ACE (D/D), BDKRB2 (+9/−9) or LEP (G/A) genotypes in female athletes might be correlated with a superior level of physical performance.
Collapse
|
46
|
De Mello Costa MF, Slocombe R. The use of Angiotensin-I converting enzyme i/d genetic polymorphism as a biomarker of athletic performance in humans. BIOSENSORS-BASEL 2012; 2:396-404. [PMID: 25586030 PMCID: PMC4263561 DOI: 10.3390/bios2040396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 09/17/2012] [Accepted: 09/24/2012] [Indexed: 11/24/2022]
Abstract
Angiotensin II is a key regulator of blood pressure and cardiovascular function in mammals. The conversion of angiotensin into its active form is carried out by Angiotensin I-Converting Enzyme (ACE). The measurement of ACE concentration in plasma or serum, its enzymatic activity, and the correlation between an insertion/deletion (I/D) genetic polymorphism of the ACE gene have been investigated as possible indicators of superior athletic performance in humans. In this context, other indicators of superior adaptation to exercise resulting in better athletic performance (such as ventricular hypertrophy, VO2 max, and competition results) were mostly used to study the association between ACE I/D polymorphism and improved performance. Despite the fact that the existing literature presents little consensus, there is sufficient scientific evidence to warrant further investigation on the usage of ACE activity and the I/D ACE gene polymorphism as biomarkers of superior athletic performance in humans of specific ethnicities or in athletes involved in certain sports. In this sense, a biomarker would be a substance or genetic component that could be measured to provide a degree of certainty, or an indication, of the presence of a certain trait or characteristic that would be beneficial to the athlete’s performance. Difficulties in interpreting and comparing the results of scientific research on the topic arise from dissimilar protocols and variation in study design. This review aims to investigate the current literature on the use of ACE I/D polymorphism as a biomarker of performance in humans through the comparison of scientific publications.
Collapse
Affiliation(s)
| | - Ron Slocombe
- Faculty of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee 3030, VIC, Australia.
| |
Collapse
|
47
|
Kang HJ, Kim CH, Park DS, Choi SY, Lee DH, Nam HS, Hur JG, Woo JH. The Impacts of ACE Activity according to ACE I/D Polymorphisms on Muscular Functions of People Aged 65. Ann Rehabil Med 2012; 36:433-46. [PMID: 22977768 PMCID: PMC3438409 DOI: 10.5535/arm.2012.36.4.433] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 04/02/2012] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To investigate associations between angiotensin-converting enzyme (ACE) polymorphisms and muscle fatigability in 65-year-old Koreans. METHOD The study participants were 49 Koreans aged 65 years. ACE insertion/deletion (I/D) polymorphisms were determined by polymerase chain reaction and serum ACE activity, by spectrophotometry. Body mass index (BMI), body fat mass (BFM), and lean body mass (LBM) were determined. To evaluate muscle fatigability, dynamic Electromyography was used to measure maximum voluntary isometric contractions (MVICs) of ankle plantar flexor muscles. Patients were seated with their hips flexed at 90°, knees fully extended, and ankles at 0°. Continuous submaximal VICs (40% MVIC) were then performed, and contraction duration and EMG frequency changes during the initial 2 min were measured. A self-reported physical activity questionnaire was used to evaluate effects of ACE activity levels on muscle fatigability. RESULTS Among the 49 volunteers, 15 showed II genotype; 22, ID genotype; and 12, DD genotype. Serum ACE activity levels were significantly higher in DD genotype subjects than in II genotype subjects (p<0.05). Furthermore, the duration of submaximal isometric contractions was longer in II and ID genotype subjects than in DD genotype subjects (p<0.05). Dynamic EMG showed significantly lower mean frequency changes in II genotype subjects than in DD genotype subjects (p<0.05). However, LBM, BFM, and BMI were independent of ACE genotypes. CONCLUSION ACE II genotype subjects showed significantly higher resistant to muscle fatigue than that by DD genotype subjects. However, body composition and BMI showed no correlations with ACE I/D polymorphisms.
Collapse
Affiliation(s)
- Hyeon-Jung Kang
- Department of Rehabilitation Medicine, Hallym University College of Medicine, Seoul 134-701, Korea
| | - Chul-Hyun Kim
- Department of Physiology and Biophysics, Antiaging Research Center, School of Medicine, Eulji University, Daejeon 301-832, Korea
| | - Dong-Sik Park
- Department of Rehabilitation Medicine, Hallym University College of Medicine, Seoul 134-701, Korea
| | - Seung-Yeon Choi
- Department of Rehabilitation Medicine, Hallym University College of Medicine, Seoul 134-701, Korea
| | - Dong-Hoon Lee
- Department of Rehabilitation Medicine, Hallym University College of Medicine, Seoul 134-701, Korea
| | - Hee-Seung Nam
- Department of Rehabilitation Medicine, Hallym University College of Medicine, Seoul 134-701, Korea
| | - Jin-Gang Hur
- Department of Physical Therapy, Hallym College, Chuncheon 200-711, Korea
| | - Ji-Hea Woo
- Department of Physical Therapy, Hallym College, Chuncheon 200-711, Korea
| |
Collapse
|
48
|
Srivastava S, Bhagi S, Kumari B, Chandra K, Sarkar S, Ashraf MZ. Association of polymorphisms in angiotensin and aldosterone synthase genes of the renin–angiotensin–aldosterone system with high-altitude pulmonary edema. J Renin Angiotensin Aldosterone Syst 2011; 13:155-60. [DOI: 10.1177/1470320311430990] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Studies on different populations have suggested variability in individual susceptibility to altitude sickness depending on genetic makeup. The renin–angiotensin–aldosterone system (RAAS) pathway plays a key role in regulation of vascular tone and circulatory homeostasis. The present study was undertaken to investigate the possible association of the RAAS in the development of high-altitude pulmonary edema (HAPE) in lowlanders exposed to high altitude. Three categories of subjects were selected: individuals who developed HAPE on acute induction to high altitude ( HAPE); individuals tolerant to high-altitude exposure who showed no symptoms of HAPE (resistant controls; rCON); and natives of high altitude ( HAN). Genetic variants in the genes of the RAAS such as renin ( REN), angiotensin ( AGT), angiotensin-converting enzyme ( ACE), aldosterone synthase ( CYP11B2) and angiotensin II receptor type 1 ( AGTR1) have been investigated. The T174M polymorphism in AGT showed a significant difference in HAPE and HAN and also HAN and controls. Also, genotyping in the CYP11B2 T-344C promoter region resulted in a significant difference between HAPE and HAN both at genotypic and allelic levels. The genotypic difference was statistically insignificant for the AGTR1 A1166C 3’ UTR. The present investigation demonstrates a possible association between the polymorphisms existing in the RAAS pathway T174M and CYP11B2 C-344T and sensitivity of an individual to develop HAPE. The results also indicate the existence of ethnic variation between the HAN and the other two groups comprising lowlanders.
Collapse
Affiliation(s)
- Swati Srivastava
- Genomics Group, Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Shuchi Bhagi
- Genomics Group, Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Babita Kumari
- Genomics Group, Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Khem Chandra
- Genomics Group, Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Soma Sarkar
- Division of Molecular Biology, Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Mohammad Z Ashraf
- Genomics Group, Defence Institute of Physiology and Allied Sciences, Delhi, India
| |
Collapse
|
49
|
The higher exercise intensity and the presence of allele I of ACE gene elicit a higher post-exercise blood pressure reduction and nitric oxide release in elderly women: an experimental study. BMC Cardiovasc Disord 2011; 11:71. [PMID: 22136292 PMCID: PMC3261092 DOI: 10.1186/1471-2261-11-71] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 12/02/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The absence of the I allele of the angiotensin converting enzyme (ACE) gene has been associated with higher levels of circulating ACE, lower nitric oxide (NO) release and hypertension. The purposes of this study were to analyze the post-exercise salivary nitrite (NO2-) and blood pressure (BP) responses to different exercise intensities in elderly women divided according to their ACE genotype. METHODS Participants (n = 30; II/ID = 20 and DD = 10) underwent three experimental sessions: incremental test - IT (15 watts workload increase/3 min) until exhaustion; 20 min exercise 90% anaerobic threshold (90% AT); and 20 min control session without exercise. Volunteers had their BP and NO2- measured before and after experimental sessions. RESULTS Despite both intensities showed protective effect on preventing the increase of BP during post-exercise recovery compared to control, post-exercise hypotension and increased NO2- release was observed only for carriers of the I allele (p < 0.05). CONCLUSION Genotypes of the ACE gene may exert a role in post-exercise NO release and BP response.
Collapse
|
50
|
Abstract
Clinical and experimental studies in humans provide evidence that moderate physical activity significantly decreases artery oxidative damage to nuclear DNA, DNA-adducts related to age and dyslipedemia, and mitochondrial DNA damage. Maintenance of adequate mitochondrial function is crucial for preventing lipid accumulation and peroxidation occurring in atherosclerosis. Studies performed on human muscle biopsies analyzing gene expression in living humans reveal that physically active subjects improve the expression of genes involved in mitochondrial function and of related microRNAs. The attenuation of oxidative damage to nuclear and mitochondrial DNA by physical activity resulted in beneficial effects due to polymorphisms of glutathione S-transferases genes. Subjects bearing null GSTM1/T1 polymorphisms have poor life expectancy in the case of being sedentary, which was increased 2.6-fold in case they performed physical activity. These findings indicate that the preventive effect of physical activity undergoes interindividual variation affected by genetic polymorphisms.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Health Sciences, Faculty of Medicine, University of Genoa, Genoa, Italy.
| |
Collapse
|