1
|
Ajji M. J, Lang JW. Gharial acoustic signaling: Novel underwater pops are temporally based, context-dependent, seasonally stable, male-specific, and individually distinctive. J Anat 2025; 246:415-443. [PMID: 39887971 PMCID: PMC11828749 DOI: 10.1111/joa.14171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/26/2024] [Accepted: 10/22/2024] [Indexed: 02/01/2025] Open
Abstract
Gharials (Gavialis gangeticus) produce a sudden, high amplitude, pulsatile, underwater sound called a POP. In this study, gharial POPs ranged from 9 to 55 ms, and were clearly audible on land and water, at ≥500 m. POPs were only performed underwater by adult males possessing a sex-specific, cartilaginous narial excrescence, termed the ghara. We recorded 130 POP events of seven wild adult males in 115 km stretch of the Chambal River during 2017-2019, using hydrophones and aerial mics. A POP event occurs when a male produces a single or double or triple POP, each with a specific duration and timing. A POP event was incorporated into a complex, multi-modal breathing display, typically performed by each male during the breeding season. Key features of this novel gharial POP signal are documented here for the first time. These include its incorporation into a complex breathing display, its reliance on temporal rather than spectral elements, its dependence on a specific social context, its stability within an individual, and its individually distinctive patterning specific to a particular male. The breathing display consisted of sub-audible vibrations (SAV) preceding each POP, then a stereotyped exhalation-inhalation-exhalation sequence, concluding with bubbling and submergence. In our study, 96% of the variation in POP signal parameters was explained by POP signal timings (92%) and number of POPs (4%), and only 2% was related to spectral features. Each POP event was performed in a specific social setting. Two behavioral contexts were examined: ALERT and PATROL. In each context, male identities were examined using Discriminant Function Analysis (DFA). Within each context, each of the seven males exhibited distinctive POP patterns that were context-specific and denoted a male's identity and his location. POP signal features were stable for individual males, from 1 year to the next. Overall, the seven males showed POP patterns that were individually specific, with minimal overlap amongst males, yet these were remarkably diverse. The stereotypy of POP patterns, based on temporal versus frequency difference was best characterized statistically using DFA metrics, rather than Beecher's Information Statistic, MANOVA, or Discriminant Score computations. Our field observations indicated that audiences of gharial, located nearby, and/or in the distance, responded immediately to POPs by orienting in the signal direction. Extensive auditory studies of crocodylians indicate that their capacity for auditory temporal discrimination and neural processing in relation to locating a sound target is on par with that of birds. How the POP sound is produced and broadcast loudly in both water and air has received little study to date. We briefly summarize existing reports on ghara anatomy, ontogeny, and paleontology. Finally, preliminary observations made in a clear underwater zoo enclosure indicate that jaw claps performed entirely underwater produce POP sounds. Simultaneous bubble clouds emanating from the base of the ghara are suggestive of cavitation phenomena associated with loud high volume sounds such as shrimp snaps and seal/walrus claps. We discuss the likelihood that the adult male's ghara plays an essential role in the production of the non-vocal underwater POP, a sexually dimorphic acoustic signal unique to gharial.
Collapse
Affiliation(s)
- Jailabdeen Ajji M.
- Gharial Ecology ProjectMadras Crocodile Bank TrustMamallapuram, Tamil NaduIndia
| | - Jeffrey W. Lang
- Gharial Ecology ProjectMadras Crocodile Bank TrustMamallapuram, Tamil NaduIndia
| |
Collapse
|
2
|
Rößler H, May A, Dähne M. Biological relevance and methodological implications of unexpected hearing thresholds in a diving bird. Sci Rep 2024; 14:30592. [PMID: 39715765 DOI: 10.1038/s41598-024-82942-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024] Open
Abstract
Many animals alternate between different media, such as air and water, thanks to specific adaptations. Among birds, penguins (Sphenisciformes) have the most extreme morphological, physiological, and behavioural adaptations to their amphibious lifestyle. Their auditory perception of sound, potentially matching different impedances in air and under water, is largely unknown particularly in terms of whether their underwater adaptations may have affected their in-air hearing capacity. In this context, we investigated the hearing ability of four captive Humboldt penguins (Spheniscus humboldti) in air using psychophysical hearing tests. The 50% hit rate was found to be below 76 dB rms re 20 µPa between 0.250 kHz and 10 kHz, with most sensitive hearing at 2 kHz (mean threshold of 15.3 dB rms re 20 µPa). The four penguins showed large inter-individual variation in sensitivity at a given frequency but within a common audiogram shape. Despite the variability, penguins detected 0.250 kHz at comparably low sound levels (mean = 36.8 dB rms re 20 µPa) after a rapid decline of sensitivity at 0.500 kHz (mean = 64.1 dB rms re 20 µPa). This finding was unexpected, and it is therefore difficult to interpret whether it is an artefact of the methods or a biologically relevant finding. An extensive discussion is presented and suggests that this finding may be biologically relevant but would need further investigation to reveal the underlying mechanisms.
Collapse
Affiliation(s)
- Helen Rößler
- Deutsches Meeresmuseum, Katharinenberg 14 - 20, 18439, Stralsund, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, Friedrich-Ludwig-Jahn-Straße 15 a, 17487, Greifswald, Germany
| | - Anne May
- Deutsches Meeresmuseum, Katharinenberg 14 - 20, 18439, Stralsund, Germany
| | - Michael Dähne
- Deutsches Meeresmuseum, Katharinenberg 14 - 20, 18439, Stralsund, Germany.
- Bundesamt Für Naturschutz, Insel Vilm, 18581, Putbus, Germany.
| |
Collapse
|
3
|
Bae A, Peña JL. Barn owls specialized sound-driven behavior: Lessons in optimal processing and coding by the auditory system. Hear Res 2024; 443:108952. [PMID: 38242019 DOI: 10.1016/j.heares.2024.108952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
The barn owl, a nocturnal raptor with remarkably efficient prey-capturing abilities, has been one of the initial animal models used for research of brain mechanisms underlying sound localization. Some seminal findings made from their specialized sound localizing auditory system include discoveries of a midbrain map of auditory space, mechanisms towards spatial cue detection underlying sound-driven orienting behavior, and circuit level changes supporting development and experience-dependent plasticity. These findings have explained properties of vital hearing functions and inspired theories in spatial hearing that extend across diverse animal species, thereby cementing the barn owl's legacy as a powerful experimental system for elucidating fundamental brain mechanisms. This concise review will provide an overview of the insights from which the barn owl model system has exemplified the strength of investigating diversity and similarity of brain mechanisms across species. First, we discuss some of the key findings in the specialized system of the barn owl that elucidated brain mechanisms toward detection of auditory cues for spatial hearing. Then we examine how the barn owl has validated mathematical computations and theories underlying optimal hearing across species. And lastly, we conclude with how the barn owl has advanced investigations toward developmental and experience dependent plasticity in sound localization, as well as avenues for future research investigations towards bridging commonalities across species. Analogous to the informative power of Astrophysics for understanding nature through diverse exploration of planets, stars, and galaxies across the universe, miscellaneous research across different animal species pursues broad understanding of natural brain mechanisms and behavior.
Collapse
Affiliation(s)
- Andrea Bae
- Albert Einstein College of Medicine, NY, USA
| | - Jose L Peña
- Albert Einstein College of Medicine, NY, USA.
| |
Collapse
|
4
|
Maldarelli G, Firzlaff U, Luksch H. Azimuthal sound localization in the chicken. PLoS One 2022; 17:e0277190. [PMID: 36413534 PMCID: PMC9681088 DOI: 10.1371/journal.pone.0277190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/21/2022] [Indexed: 11/23/2022] Open
Abstract
Sound localization is crucial for the survival and reproduction of animals, including non-auditory specialist animals such as the majority of avian species. The chicken (Gallus gallus) is a well-suited representative of a non-auditory specialist bird and several aspects of its auditory system have been well studied in the last decades. We conducted a behavioral experiment where 3 roosters performed a sound localization task with broad-band noise, using a 2-alternative forced choice paradigm. We determined the minimum audible angle (MAA) as measure for localization acuity. In general, our results compare to previous MAA measurements with hens in Go/NoGo tasks. The chicken has high localization acuity compared to other auditory generalist bird species tested so far. We found that chickens were better at localizing broadband noise with long duration (1 s; MAA = 16°) compared to brief duration (0.1 s; MAA = 26°). Moreover, the interaural difference in time of arrival and level (ITD and ILD, respectively) at these MAAs are comparable to what measured in other non-auditory specialist bird species, indicating that they might be sufficiently broad to be informative for azimuthal sound localization.
Collapse
Affiliation(s)
- Gianmarco Maldarelli
- Chair of Zoology, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
- * E-mail:
| | - Uwe Firzlaff
- Chair of Zoology, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Harald Luksch
- Chair of Zoology, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| |
Collapse
|
5
|
Maldarelli G, Firzlaff U, Kettler L, Ondracek JM, Luksch H. Two Types of Auditory Spatial Receptive Fields in Different Parts of the Chicken's Midbrain. J Neurosci 2022; 42:4669-4680. [PMID: 35508384 PMCID: PMC9186802 DOI: 10.1523/jneurosci.2204-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/04/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022] Open
Abstract
The optic tectum (OT) is an avian midbrain structure involved in the integration of visual and auditory stimuli. Studies in the barn owl, an auditory specialist, have shown that spatial auditory information is topographically represented in the OT. Little is known about how auditory space is represented in the midbrain of birds with generalist hearing, i.e., most of avian species lacking peripheral adaptations such as facial ruffs or asymmetric ears. Thus, we conducted in vivo extracellular recordings of single neurons in the OT and in the external portion of the formatio reticularis lateralis (FRLx), a brain structure located between the inferior colliculus (IC) and the OT, in anaesthetized chickens of either sex. We found that most of the auditory spatial receptive fields (aSRFs) were spatially confined both in azimuth and elevation, divided into two main classes: round aSRFs, mainly present in the OT, and annular aSRFs, with a ring-like shape around the interaural axis, mainly present in the FRLx. Our data further indicate that interaural time difference (ITD) and interaural level difference (ILD) play a role in the formation of both aSRF classes. These results suggest that, unlike mammals and owls which have a congruent representation of visual and auditory space in the OT, generalist birds separate the computation of auditory space in two different midbrain structures. We hypothesize that the FRLx-annular aSRFs define the distance of a sound source from the axis of the lateral visual fovea, whereas the OT-round aSRFs are involved in multimodal integration of the stimulus around the lateral fovea.SIGNIFICANCE STATEMENT Previous studies implied that auditory spatial receptive fields (aSRFs) in the midbrain of generalist birds are only confined along azimuth. Interestingly, we found SRFs s in the chicken to be confined along both azimuth and elevation. Moreover, the auditory receptive fields are arranged in a concentric manner around the overlapping interaural and visual axes. These data suggest that in generalist birds, which mainly rely on vision, the auditory system mainly serves to align auditory stimuli with the visual axis, while auditory specialized birds like the barn owl compute sound sources more precisely and integrate sound positions in the multimodal space map of the optic tectum (OT).
Collapse
Affiliation(s)
- Gianmarco Maldarelli
- Chair of Zoology, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan 85354, Germany
| | - Uwe Firzlaff
- Chair of Zoology, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan 85354, Germany
| | - Lutz Kettler
- Chair of Zoology, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan 85354, Germany
| | - Janie M Ondracek
- Chair of Zoology, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan 85354, Germany
| | - Harald Luksch
- Chair of Zoology, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan 85354, Germany
| |
Collapse
|
6
|
Weghorst F, Mirzakhanyan Y, Hernandez KL, Gershon PD, Cramer KS. Non-Apoptotic Caspase Activity Preferentially Targets a Novel Consensus Sequence Associated With Cytoskeletal Proteins in the Developing Auditory Brainstem. Front Cell Dev Biol 2022; 10:844844. [PMID: 35330912 PMCID: PMC8940215 DOI: 10.3389/fcell.2022.844844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/28/2022] [Indexed: 11/24/2022] Open
Abstract
The auditory brainstem relies on precise circuitry to facilitate sound source localization. In the chick, the development of this specialized circuitry requires non-apoptotic activity of caspase-3, for which we previously identified several hundred proteolytic substrates. Here we tested whether the sequence of the caspase cleavage site differentially encodes proteolytic preference in apoptotic and non-apoptotic contexts. We constructed a consensus sequence for caspase activity in the non-apoptotic chick auditory brainstem comprising the four residues N-terminal to the cleavage site: IX(G/R)D↓ where X represents no significant enrichment and ↓ represents the cleavage site. We identified GO terms significantly enriched among caspase substrates containing motifs found in the above consensus sequence. (G/R)D↓ was associated with the term “Structural Constituent of Cytoskeleton” (SCoC), suggesting that SCoC proteins may be specifically targeted by caspase activity during non-apoptotic developmental processes. To ascertain whether this consensus sequence was specific to the non-apoptotic auditory brainstem at embryonic day (E) 10, we used protein mass spectrometry of brainstems harvested at a time when auditory brainstem neurons undergo apoptotic cell death (E13). The apoptotic motif VD was significantly enriched among E13 cleavage sites, indicating that motif preference at the P2 subsite had shifted toward the canonical caspase consensus sequence. Additionally, Monte Carlo simulations revealed that only the GD motif was associated with SCoC substrates in the apoptotic auditory brainstem, indicating that GD encodes specificity for SCoC proteins in both non-apoptotic and apoptotic contexts, despite not being preferred in the latter. Finally, to identify candidate human non-apoptotic consensus sequences, we used Monte Carlo analyses to determine motifs and motif pairs associated with SCoC caspase substrates in the Degrabase, a database of cleavage sites in human apoptotic cell lines. We found 11 motifs significantly associated with SCoC proteolysis, including IXXD and GD. We employed a stepwise method to select motif pairs that optimized SCoC specificity for a given coverage of SCoC cleavage events, yielding 11 motif pairs likely to be preferred in SCoC-directed human non-apoptotic caspase consensus sequences. GD + IXXD was among these motif pairs, suggesting a conservation of non-apoptotic consensus sites among vertebrates.
Collapse
Affiliation(s)
- Forrest Weghorst
- Department of Neurobiology and Behavior, UC Irvine, Irvine, CA, United States
| | - Yeva Mirzakhanyan
- Department of Molecular Biology and Biochemistry, UC Irvine, Irvine, CA, United States
| | | | - Paul D Gershon
- Department of Molecular Biology and Biochemistry, UC Irvine, Irvine, CA, United States
| | - Karina S Cramer
- Department of Neurobiology and Behavior, UC Irvine, Irvine, CA, United States
| |
Collapse
|
7
|
Krumm B, Klump GM, Köppl C, Beutelmann R, Langemann U. Chickens have excellent sound localization ability. J Exp Biol 2022; 225:jeb243601. [PMID: 35156129 DOI: 10.1242/jeb.243601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/08/2022] [Indexed: 02/27/2024]
Abstract
The mechanisms of sound localization are actively debated, especially which cues are predominately used and why. Our study provides behavioural data in chickens (Gallus gallus) and relates these to estimates of the perceived physical cues. Sound localization acuity was quantified as the minimum audible angle (MAA) in azimuth. Pure-tone MAA was 12.3, 9.3, 8.9 and 14.5 deg for frequencies of 500, 1000, 2000 and 4000 Hz, respectively. Broadband-noise MAA was 12.2 deg, which indicates excellent behavioural acuity. We determined 'external cues' from head-related transfer functions of chickens. These were used to derive 'internal cues', taking into account published data on the effect of the coupled middle ears. Our estimates of the internal cues indicate that chickens likely relied on interaural time difference cues alone at low frequencies of 500 and 1000 Hz, whereas at 2000 and 4000 Hz, interaural level differences may be the dominant cue.
Collapse
Affiliation(s)
- Bianca Krumm
- Cluster of Excellence "Hearing4all 2.0", Division for Animal Physiology and Behaviour, School of Medicine and Health Sciences, Department of Neuroscience, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
- Cluster of Excellence "Hearing4all 2.0", Division for Cochlea and Auditory Brainstem Physiology, School of Medicine and Health Sciences, Department of Neuroscience, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
| | - Georg M Klump
- Cluster of Excellence "Hearing4all 2.0", Division for Animal Physiology and Behaviour, School of Medicine and Health Sciences, Department of Neuroscience, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
| | - Christine Köppl
- Cluster of Excellence "Hearing4all 2.0", Division for Cochlea and Auditory Brainstem Physiology, School of Medicine and Health Sciences, Department of Neuroscience, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
| | - Rainer Beutelmann
- Cluster of Excellence "Hearing4all 2.0", Division for Animal Physiology and Behaviour, School of Medicine and Health Sciences, Department of Neuroscience, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
| | - Ulrike Langemann
- Cluster of Excellence "Hearing4all 2.0", Division for Animal Physiology and Behaviour, School of Medicine and Health Sciences, Department of Neuroscience, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
8
|
Kessler D, Carr CE, Kretzberg J, Ashida G. Theoretical Relationship Between Two Measures of Spike Synchrony: Correlation Index and Vector Strength. Front Neurosci 2022; 15:761826. [PMID: 34987357 PMCID: PMC8721039 DOI: 10.3389/fnins.2021.761826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/09/2021] [Indexed: 11/24/2022] Open
Abstract
Information processing in the nervous system critically relies on temporally precise spiking activity. In the auditory system, various degrees of phase-locking can be observed from the auditory nerve to cortical neurons. The classical metric for quantifying phase-locking is the vector strength (VS), which captures the periodicity in neuronal spiking. More recently, another metric, called the correlation index (CI), was proposed to quantify the temporally reproducible response characteristics of a neuron. The CI is defined as the peak value of a normalized shuffled autocorrelogram (SAC). Both VS and CI have been used to investigate how temporal information is processed and propagated along the auditory pathways. While previous analyses of physiological data in cats suggested covariation of these two metrics, general characterization of their connection has never been performed. In the present study, we derive a rigorous relationship between VS and CI. To model phase-locking, we assume Poissonian spike trains with a temporally changing intensity function following a von Mises distribution. We demonstrate that VS and CI are mutually related via the so-called concentration parameter that determines the degree of phase-locking. We confirm that these theoretical results are largely consistent with physiological data recorded in the auditory brainstem of various animals. In addition, we generate artificial phase-locked spike sequences, for which recording and analysis parameters can be systematically manipulated. Our analysis results suggest that mismatches between empirical data and the theoretical prediction can often be explained with deviations from the von Mises distribution, including skewed or multimodal period histograms. Furthermore, temporal relations of spike trains across trials can contribute to higher CI values than predicted mathematically based on the VS. We find that, for most applications, a SAC bin width of 50 ms seems to be a favorable choice, leading to an estimated error below 2.5% for physiologically plausible conditions. Overall, our results provide general relations between the two measures of phase-locking and will aid future analyses of different physiological datasets that are characterized with these metrics.
Collapse
Affiliation(s)
- Dominik Kessler
- Computational Neuroscience, Department of Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Catherine E Carr
- Department of Biology, University of Maryland, College Park, MD, United States
| | - Jutta Kretzberg
- Computational Neuroscience, Department of Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany.,Cluster of Excellence Hearing4all, Department of Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Go Ashida
- Computational Neuroscience, Department of Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany.,Cluster of Excellence Hearing4all, Department of Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
9
|
Li K, Rajendran VG, Mishra AP, Chan CHK, Schnupp JWH. Interaural time difference tuning in the rat inferior colliculus is predictive of behavioral sensitivity. Hear Res 2021; 409:108331. [PMID: 34416492 DOI: 10.1016/j.heares.2021.108331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 11/26/2022]
Abstract
While a large body of literature has examined the encoding of binaural spatial cues in the auditory midbrain, studies that ask how quantitative measures of spatial tuning in midbrain neurons compare with an animal's psychoacoustic performance remain rare. Researchers have tried to explain deficits in spatial hearing in certain patient groups, such as binaural cochlear implant users, in terms of declines in apparent reductions in spatial tuning of midbrain neurons of animal models. However, the quality of spatial tuning can be quantified in many different ways, and in the absence of evidence that a given neural tuning measure correlates with psychoacoustic performance, the interpretation of such finding remains very tentative. Here, we characterize ITD tuning in the rat inferior colliculus (IC) to acoustic pulse train stimuli with varying envelopes and at varying rates, and explore whether quality of tuning correlates behavioral performance. We quantified both mutual information (MI) and neural d' as measures of ITD sensitivity. Neural d' values paralleled behavioral ones, declining with increasing click rates or when envelopes changed from rectangular to Hanning windows, and they correlated much better with behavioral performance than MI. Meanwhile, MI values were larger in an older, more experienced cohort of animals than in naive animals, but neural d' did not differ between cohorts. However, the results obtained with neural d' and MI were highly correlated when ITD values were coded simply as left or right ear leading, rather than specific ITD values. Thus, neural measures of lateralization ability (e.g. d' or left/right MI) appear to be highly predictive of psychoacoustic performance in a two-alternative forced choice task.
Collapse
Affiliation(s)
- Kongyan Li
- Department of Biomedical Sciences & Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China; Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Vani G Rajendran
- Department of Biomedical Sciences & Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China; Laboratoire des systèmes perceptifs, Département d'études cognitives, École normale supérieure, PSL University, CNRS, Paris 75005, France
| | - Ambika Prasad Mishra
- Department of Biomedical Sciences & Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
| | - Chloe H K Chan
- Department of Biomedical Sciences & Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
| | - Jan W H Schnupp
- Department of Biomedical Sciences & Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China; City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
10
|
AIM: A network model of attention in auditory cortex. PLoS Comput Biol 2021; 17:e1009356. [PMID: 34449761 PMCID: PMC8462696 DOI: 10.1371/journal.pcbi.1009356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 09/24/2021] [Accepted: 08/18/2021] [Indexed: 11/19/2022] Open
Abstract
Attentional modulation of cortical networks is critical for the cognitive flexibility required to process complex scenes. Current theoretical frameworks for attention are based almost exclusively on studies in visual cortex, where attentional effects are typically modest and excitatory. In contrast, attentional effects in auditory cortex can be large and suppressive. A theoretical framework for explaining attentional effects in auditory cortex is lacking, preventing a broader understanding of cortical mechanisms underlying attention. Here, we present a cortical network model of attention in primary auditory cortex (A1). A key mechanism in our network is attentional inhibitory modulation (AIM) of cortical inhibitory neurons. In this mechanism, top-down inhibitory neurons disinhibit bottom-up cortical circuits, a prominent circuit motif observed in sensory cortex. Our results reveal that the same underlying mechanisms in the AIM network can explain diverse attentional effects on both spatial and frequency tuning in A1. We find that a dominant effect of disinhibition on cortical tuning is suppressive, consistent with experimental observations. Functionally, the AIM network may play a key role in solving the cocktail party problem. We demonstrate how attention can guide the AIM network to monitor an acoustic scene, select a specific target, or switch to a different target, providing flexible outputs for solving the cocktail party problem. Selective attention plays a key role in how we navigate our everyday lives. For example, at a cocktail party, we can attend to friend’s speech amidst other speakers, music, and background noise. In stark contrast, hundreds of millions of people with hearing impairment and other disorders find such environments overwhelming and debilitating. Understanding the mechanisms underlying selective attention may lead to breakthroughs in improving the quality of life for those negatively affected. Here, we propose a mechanistic network model of attention in primary auditory cortex based on attentional inhibitory modulation (AIM). In the AIM model, attention targets specific cortical inhibitory neurons, which then modulate local cortical circuits to emphasize a particular feature of sounds and suppress competing features. We show that the AIM model can account for experimental observations across different species and stimulus domains. We also demonstrate that the same mechanisms can enable listeners to flexibly switch between attending to specific targets sounds and monitoring the environment in complex acoustic scenes, such as a cocktail party. The AIM network provides a theoretical framework which can work in tandem with new experiments to help unravel cortical circuits underlying attention.
Collapse
|
11
|
Haqqee Z, Valdizón-Rodríguez R, Faure PA. High frequency sensitivity to interaural onset time differences in the bat inferior colliculus. Hear Res 2020; 400:108133. [PMID: 33340969 DOI: 10.1016/j.heares.2020.108133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 02/02/2023]
Abstract
Many neurons in the auditory midbrain are tuned to binaural cues. Two prominent binaural cues are the interaural level difference (ILD) and the interaural time difference (ITD). The ITD cue can further be subdivided into the ongoing envelope ITD cues and transient onset ITD cues. More is known about the sensitivity of single neurons to ongoing envelope ITDs compared to transient onset ITDs in the mammalian auditory system, particularly in bats. The current study examines the response properties of single neurons in the inferior colliculus (IC) of the big brown bat, Eptesicus fuscus, to onset ITDs in response to high frequency pure tones. Measures of neurons' dynamic ITD response revealed an average change of 36% of its maximum response within the behaviorally relevant range of ITDs (±50 µs). Across all IC neurons, we measured an average time-intensity trading ratio of 30 µs/dB in the sensitivity of the ITD response function to changing ILDs. Minimum and maximum ITD responses were clustered within a narrow range of ITDs. The average peak in the ITD response function was at 268 µs, a finding that is consistent with other non-echolocating mammals. Some ITD-sensitive neurons also showed weak facilitation of maximum response during binaural stimulation, compared to monaural stimulation. These results suggest that echolocating bats possess the potential to use onset ITD cues to assist in the azimuthal sound localization of ultrasonic frequencies.
Collapse
Affiliation(s)
- Zeeshan Haqqee
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | | | - Paul A Faure
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
12
|
Klug J, Schmors L, Ashida G, Dietz M. Neural rate difference model can account for lateralization of high-frequency stimuli. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:678. [PMID: 32873019 DOI: 10.1121/10.0001602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Lateralization of complex high-frequency sounds is conveyed by interaural level differences (ILDs) and interaural time differences (ITDs) in the envelope. In this work, the authors constructed an auditory model and simulate data from three previous behavioral studies obtained with, in total, over 1000 different amplitude-modulated stimuli. The authors combine a well-established auditory periphery model with a functional count-comparison model for binaural excitatory-inhibitory (EI) interaction. After parameter optimization of the EI-model stage, the hemispheric rate-difference between pairs of EI-model neurons relates linearly with the extent of laterality in human listeners. If a certain ILD and a certain envelope ITD each cause a similar extent of laterality, they also produce a similar rate difference in the same model neurons. After parameter optimization, the model accounts for 95.7% of the variance in the largest dataset, in which amplitude modulation depth, rate of modulation, modulation exponent, ILD, and envelope ITD were varied. The model also accounts for 83% of the variances in each of the other two datasets using the same EI model parameters.
Collapse
Affiliation(s)
- Jonas Klug
- Department of Medical Physics and Acoustics, University of Oldenburg, 26129 Oldenburg, Germany
| | - Lisa Schmors
- Department of Medical Physics and Acoustics, University of Oldenburg, 26129 Oldenburg, Germany
| | - Go Ashida
- Department of Neuroscience, University of Oldenburg, 26129 Oldenburg, Germany
| | - Mathias Dietz
- Department of Medical Physics and Acoustics, University of Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
13
|
Synthesis of Hemispheric ITD Tuning from the Readout of a Neural Map: Commonalities of Proposed Coding Schemes in Birds and Mammals. J Neurosci 2019; 39:9053-9061. [PMID: 31570537 DOI: 10.1523/jneurosci.0873-19.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 11/21/2022] Open
Abstract
A major cue to infer sound direction is the difference in arrival time of the sound at the left and right ears, called interaural time difference (ITD). The neural coding of ITD and its similarity across species have been strongly debated. In the barn owl, an auditory specialist relying on sound localization to capture prey, ITDs within the physiological range determined by the head width are topographically represented at each frequency. The topographic representation suggests that sound direction may be inferred from the location of maximal neural activity within the map. Such topographical representation of ITD, however, is not evident in mammals. Instead, the preferred ITD of neurons in the mammalian brainstem often lies outside the physiological range and depends on the neuron's best frequency. Because of these disparities, it has been assumed that how spatial hearing is achieved in birds and mammals is fundamentally different. However, recent studies reveal ITD responses in the owl's forebrain and midbrain premotor area that are consistent with coding schemes proposed in mammals. Particularly, sound location in owls could be decoded from the relative firing rates of two broadly and inversely ITD-tuned channels. This evidence suggests that, at downstream stages, the code for ITD may not be qualitatively different across species. Thus, while experimental evidence continues to support the notion of differences in ITD representation across species and brain regions, the latest results indicate notable commonalities, suggesting that codes driving orienting behavior in mammals and birds may be comparable.
Collapse
|
14
|
Köppl C. Internally coupled middle ears enhance the range of interaural time differences heard by the chicken. ACTA ACUST UNITED AC 2019; 222:jeb.199232. [PMID: 31138639 DOI: 10.1242/jeb.199232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 04/30/2019] [Indexed: 11/20/2022]
Abstract
Interaural time differences (ITDs) are one of several principal cues for localizing sounds. However, ITDs are in the sub-millisecond range for most animals. Because the neural processing of such small ITDs pushes the limit of temporal resolution, the precise ITD range for a given species and its usefulness - relative to other localization cues - has been a powerful selective force in the evolution of the neural circuits involved. Birds and other non-mammals have internally coupled middle ears working as pressure-difference receivers that may significantly enhance ITDs, depending on the precise properties of the interaural connection. Here, the extent of this internal coupling was investigated in chickens, specifically under the same experimental conditions as typically used in investigations of the neurophysiology of ITD-coding circuits, i.e. with headphone stimulation and skull openings. Cochlear microphonics (CM) were recorded simultaneously from both ears of anesthetized chickens under monaural and binaural stimulation, using pure tones from 0.1 to 3 kHz. Interaural transmission peaked at 1.5 kHz at a loss of only -5.5 dB; the mean interaural delay was 264 µs. CM amplitude was strongly modulated as a function of ITD, confirming significant interaural coupling. The 'ITD heard' derived from the CM phases in both ears showed enhancement, compared with the acoustic stimuli, by a factor of up to 1.8. However, the experimental conditions impaired interaural transmission at low frequencies (<1 kHz). I identify factors that need to be considered when interpreting neurophysiological data obtained under these conditions and relating them to the natural free-field condition.
Collapse
Affiliation(s)
- Christine Köppl
- Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany .,Cluster of Excellence "Hearing4all" and Research Center Neurosensory Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
15
|
Kettler L, Carr CE. Neural Maps of Interaural Time Difference in the American Alligator: A Stable Feature in Modern Archosaurs. J Neurosci 2019; 39:3882-3896. [PMID: 30886018 PMCID: PMC6520516 DOI: 10.1523/jneurosci.2989-18.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/20/2019] [Accepted: 02/23/2019] [Indexed: 11/21/2022] Open
Abstract
Detection of interaural time differences (ITDs) is crucial for sound localization in most vertebrates. The current view is that optimal computational strategies of ITD detection depend mainly on head size and available frequencies, although evolutionary history should also be taken into consideration. In archosaurs, which include birds and crocodiles, the brainstem nucleus laminaris (NL) developed into the critical structure for ITD detection. In birds, ITDs are mapped in an orderly array or place code, whereas in the mammalian medial superior olive, the analog of NL, maps are not found. As yet, in crocodilians, topographical representations have not been identified. However, nontopographic representations of ITD cannot be excluded due to different anatomical and ethological features of birds and crocodiles. Therefore, we measured ITD-dependent responses in the NL of anesthetized American alligators of either sex and identified the location of the recording sites by lesions made after recording. The measured extracellular field potentials, or neurophonics, were strongly ITD tuned, and their preferred ITDs correlated with the position in NL. As in birds, delay lines, which compensate for external time differences, formed maps of ITD. The broad distributions of best ITDs within narrow frequency bands were not consistent with an optimal coding model. We conclude that the available acoustic cues and the architecture of the acoustic system in early archosaurs led to a stable and similar organization in today's birds and crocodiles, although physical features, such as internally coupled ears, head size, or shape, and audible frequency range, vary among the two groups.SIGNIFICANCE STATEMENT Interaural time difference (ITD) is an important cue for sound localization, and the optimal strategies for encoding ITD in neuronal populations are the subject of ongoing debate. We show that alligators form maps of ITD very similar to birds, suggesting that their common archosaur ancestor reached a stable coding solution different from mammals. Mammals and diapsids evolved tympanic hearing independently, and local optima can be reached in evolution that are not considered by global optimal coding models. Thus, the presence of ITD maps in the brainstem may reflect a local optimum in evolutionary development. Our results underline the importance of comparative animal studies and show that optimal models must be viewed in the light of evolutionary processes.
Collapse
Affiliation(s)
- Lutz Kettler
- Lehrstuhl für Zoologie, Technische Universität München, 85354 Freising, Germany, and
| | - Catherine E Carr
- Department of Biology, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
16
|
Hong H, Sanchez JT. Need for Speed and Precision: Structural and Functional Specialization in the Cochlear Nucleus of the Avian Auditory System. J Exp Neurosci 2018; 12:1179069518815628. [PMID: 30559595 PMCID: PMC6291874 DOI: 10.1177/1179069518815628] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/06/2018] [Indexed: 11/17/2022] Open
Abstract
Birds such as the barn owl and zebra finch are known for their remarkable hearing abilities that are critical for survival, communication, and vocal learning functions. A key to achieving these hearing abilities is the speed and precision required for the temporal coding of sound-a process heavily dependent on the structural, synaptic, and intrinsic specializations in the avian auditory brainstem. Here, we review recent work from us and others focusing on the specialization of neurons in the chicken cochlear nucleus magnocellularis (NM)-a first-order auditory brainstem structure analogous to bushy cells in the mammalian anteroventral cochlear nucleus. Similar to their mammalian counterpart, NM neurons are mostly adendritic and receive auditory nerve input through large axosomatic endbulb of Held synapses. Axonal projections from NM neurons to their downstream auditory targets are sophisticatedly programmed regarding their length, caliber, myelination, and conduction velocity. Specialized voltage-dependent potassium and sodium channel properties also play important and unique roles in shaping the functional phenotype of NM neurons. Working synergistically with potassium channels, an atypical current known as resurgent sodium current promotes rapid and precise action potential firing for NM neurons. Interestingly, these structural and functional specializations vary dramatically along the tonotopic axis and suggest a plethora of encoding strategies for sounds of different acoustic frequencies, mechanisms likely shared across species.
Collapse
Affiliation(s)
- Hui Hong
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Jason Tait Sanchez
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA.,Department of Neurobiology, Northwestern University, Evanston, IL, USA.,The Hugh Knowles Hearing Research Center, Northwestern University, Evanston, IL, USA
| |
Collapse
|
17
|
Lingner A, Pecka M, Leibold C, Grothe B. A novel concept for dynamic adjustment of auditory space. Sci Rep 2018; 8:8335. [PMID: 29844516 PMCID: PMC5974081 DOI: 10.1038/s41598-018-26690-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 05/15/2018] [Indexed: 11/22/2022] Open
Abstract
Traditionally, the auditory system is thought to serve reliable sound localization. Stimulus-history driven feedback circuits in the early binaural pathway, however, contradict this canonical concept and raise questions about their functional significance. Here we show that stimulus-history dependent changes in absolute space perception are poorly captured by the traditional labeled-line and hemispheric-difference models of auditory space coding. We therefore developed a new decoding model incorporating recent electrophysiological findings in which sound location is initially computed in both brain hemispheres independently and combined to yield a hemispherically balanced code. This model closely captures the observed absolute localization errors caused by stimulus history, and furthermore predicts a selective dilation and compression of perceptional space. These model predictions are confirmed by improvement and degradation of spatial resolution in human listeners. Thus, dynamic perception of auditory space facilitates focal sound source segregation at the expense of absolute sound localization, questioning existing concepts of spatial hearing.
Collapse
Affiliation(s)
- A Lingner
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universitaet Muenchen, Großhaderner Str. 2-4, D-82152, Martinsried, Planegg, Germany
| | - M Pecka
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universitaet Muenchen, Großhaderner Str. 2-4, D-82152, Martinsried, Planegg, Germany
| | - C Leibold
- Bernstein Center for Computational Neuroscience Munich, Großhaderner Straße 2-4, D-82152, Martinsried, Germany
| | - B Grothe
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universitaet Muenchen, Großhaderner Str. 2-4, D-82152, Martinsried, Planegg, Germany.
| |
Collapse
|
18
|
Lu Y, Liu Y, Curry RJ. Activity-dependent synaptic integration and modulation of bilateral excitatory inputs in an auditory coincidence detection circuit. J Physiol 2018; 596:1981-1997. [PMID: 29572827 DOI: 10.1113/jp275735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/05/2018] [Indexed: 02/05/2023] Open
Abstract
KEY POINTS Binaural excitatory inputs to coincidence detection neurons in nucleus laminaris (NL) play essential roles in interaural time difference coding for sound localization. Here, we show that the two excitatory inputs are physiologically nearly completely segregated. Synaptic integration shows linear summation of EPSPs, ensuring high efficiency of coincidence detection of the bilateral excitatory inputs. We further show that the two excitatory inputs to single NL neurons are symmetrical in synaptic strength, kinetics and short-term plasticity. Modulation of the EPSCs by metabotropic glutamate receptors (mGluRs) is identical between the two excitatory inputs, maintaining balanced bilateral excitation under neuromodulatory conditions. Unilateral hearing deprivation reduces synaptic excitation and paradoxically strengthens mGluR modulation of EPSCs, suggesting activity-dependent anti-homeostatic regulation, a novel synaptic plasticity in response to sensory manipulations. ABSTRACT Neurons in the avian nucleus laminaris (NL) receive bilateral excitatory inputs from the cochlear nucleus magnocellularis, via morphologically symmetrical dorsal (ipsilateral) and ventral (contralateral) dendrites. Using in vitro whole-cell patch recordings in chicken brainstem slices, we investigated synaptic integration and modulation of the bilateral inputs to NL under normal and hearing deprivation conditions. We found that the two excitatory inputs onto single NL neurons were nearly completely segregated, and integration of the two inputs was linear for EPSPs. The two inputs had similar synaptic strength, kinetics and short-term plasticity. EPSCs in low but not middle and high frequency neurons were suppressed by activation of group I and II metabotropic glutamate receptors (mGluR I and II), with similar modulatory strength between the ipsilateral and contralateral inputs. Unilateral hearing deprivation by cochlea removal reduced the excitatory transmission on the deprived dendritic domain of NL. Interestingly, EPSCs evoked at the deprived domain were modulated more strongly by mGluR II than at the counterpart domain that received intact input in low frequency neurons, suggesting anti-homeostatic regulation. This was supported by a stronger expression of mGluR II protein on the deprived neuropils of NL. Under mGluR II modulation, EPSCs on the deprived input show transient synaptic facilitation, forming a striking contrast with normal hearing conditions under which pure synaptic depression is observed. These results demonstrate physiological symmetry and thus balanced bilateral excitatory inputs to NL neurons. The activity-dependent anti-homeostatic plasticity of mGluR modulation constitutes a novel mechanism regulating synaptic transmission in response to sensory input manipulations.
Collapse
Affiliation(s)
- Yong Lu
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, 44240, USA
| | - Yuwei Liu
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Rebecca J Curry
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, 44240, USA
| |
Collapse
|
19
|
Aralla R, Ashida G, Köppl C. Binaural responses in the auditory midbrain of chicken (Gallus gallus). Eur J Neurosci 2018; 51:1290-1304. [PMID: 29582488 DOI: 10.1111/ejn.13891] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 02/20/2018] [Accepted: 02/26/2018] [Indexed: 11/29/2022]
Abstract
The auditory midbrain is the location in which neurons represent binaural acoustic information necessary for sound localization. The external nucleus of the midbrain inferior colliculus (IC) of the barn owl is a classic example of an auditory space map, but it is unknown to what extent the principles underlying its formation generalize to other, less specialized animals. We characterized the spiking responses of 139 auditory neurons in the IC of the chicken (Gallus gallus) in vivo, focusing on their sensitivities to the binaural localization cues of interaural time (ITD) and level (ILD) differences. Most units were frequency-selective, with best frequencies distributed unevenly into low-frequency and high-frequency (> 2 kHz) clusters. Many units showed sensitivity to either ITD (65%) or ILD (66%) and nearly half to both (47%). ITD selectivity was disproportionately more common among low-frequency units, while ILD-only selective units were predominantly tuned to high frequencies. ILD sensitivities were diverse, and we thus developed a decision tree defining five types. One rare type with a bell-like ILD tuning was also selective for ITD but typically not frequency-selective, and thus matched the characteristics of neurons in the auditory space map of the barn owl. Our results suggest that generalist birds such as the chicken show a prominent representation of ITD and ILD cues in the IC, providing complementary information for sound localization, according to the duplex theory. A broadband response type narrowly selective for both ITD and ILD may form the basis for a representation of auditory space.
Collapse
Affiliation(s)
- Roberta Aralla
- Department of Neuroscience, School of Medicine and Health Sciences, Research Center for Neurosensory Sciences and Cluster of Excellence 'Hearing4all', Carl von Ossietzky University, Carl von Ossietzky Strasse 9-11, 26129, Oldenburg, Germany
| | - Go Ashida
- Department of Neuroscience, School of Medicine and Health Sciences, Research Center for Neurosensory Sciences and Cluster of Excellence 'Hearing4all', Carl von Ossietzky University, Carl von Ossietzky Strasse 9-11, 26129, Oldenburg, Germany
| | - Christine Köppl
- Department of Neuroscience, School of Medicine and Health Sciences, Research Center for Neurosensory Sciences and Cluster of Excellence 'Hearing4all', Carl von Ossietzky University, Carl von Ossietzky Strasse 9-11, 26129, Oldenburg, Germany
| |
Collapse
|
20
|
Affiliation(s)
| | - Jose L Peña
- University of Maryland .,Albert Einstein College of Medicine
| |
Collapse
|
21
|
Kuokkanen PT, Ashida G, Kraemer A, McColgan T, Funabiki K, Wagner H, Köppl C, Carr CE, Kempter R. Contribution of action potentials to the extracellular field potential in the nucleus laminaris of barn owl. J Neurophysiol 2017; 119:1422-1436. [PMID: 29357463 DOI: 10.1152/jn.00175.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Extracellular field potentials (EFP) are widely used to evaluate in vivo neural activity, but identification of multiple sources and their relative contributions is often ambiguous, making the interpretation of the EFP difficult. We have therefore analyzed a model EFP from a simple brainstem circuit with separable pre- and postsynaptic components to determine whether we could isolate its sources. Our previous papers had shown that the barn owl neurophonic largely originates with spikes from input axons and synapses that terminate on the neurons in the nucleus laminaris (NL) (Kuokkanen PT, Wagner H, Ashida G, Carr CE, Kempter R. J Neurophysiol 104: 2274-2290, 2010; Kuokkanen PT, Ashida G, Carr CE, Wagner H, Kempter R. J Neurophysiol 110: 117-130, 2013; McColgan T, Liu J, Kuokkanen PT, Carr CE, Wagner H, Kempter R. eLife 6: e26106, 2017). To determine how much the postsynaptic NL neurons contributed to the neurophonic, we recorded EFP responses in NL in vivo. Power spectral analyses showed that a small spectral component of the evoked response, between 200 and 700 Hz, could be attributed to the NL neurons' spikes, while nucleus magnocellularis (NM) spikes dominate the EFP at frequencies ≳1 kHz. Thus, spikes of NL neurons and NM axons contribute to the EFP in NL in distinct frequency bands. We conclude that if the spectral components of source types are different and if their activities can be selectively modulated, the identification of EFP sources is possible. NEW & NOTEWORTHY Extracellular field potentials (EFPs) generate clinically important signals, but their sources are incompletely understood. As a model, we have analyzed the auditory neurophonic in the barn owl's nucleus laminaris. There the EFP originates predominantly from spiking in the afferent axons, with spectral power ≳1 kHz, while postsynaptic laminaris neurons contribute little. In conclusion, the identification of EFP sources is possible if they have different spectral components and if their activities can be modulated selectively.
Collapse
Affiliation(s)
- Paula T Kuokkanen
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Biology, University of Maryland , College Park, Maryland
| | - Go Ashida
- Cluster of Excellence "Hearing4all," Research Center Neurosensory Science, and Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg , Oldenburg , Germany
| | - Anna Kraemer
- Department of Biology, University of Maryland , College Park, Maryland
| | - Thomas McColgan
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany.,Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Kazuo Funabiki
- Institute of Biomedical Research and Innovation , Kobe , Japan
| | - Hermann Wagner
- Institute for Biology II, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen , Germany
| | - Christine Köppl
- Cluster of Excellence "Hearing4all," Research Center Neurosensory Science, and Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg , Oldenburg , Germany
| | - Catherine E Carr
- Department of Biology, University of Maryland , College Park, Maryland
| | - Richard Kempter
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany.,Bernstein Center for Computational Neuroscience, Berlin, Germany.,Einstein Center for Neurosciences, Berlin, Germany
| |
Collapse
|
22
|
Tonotopic Variation of the T-Type Ca 2+ Current in Avian Auditory Coincidence Detector Neurons. J Neurosci 2017; 38:335-346. [PMID: 29167400 DOI: 10.1523/jneurosci.2237-17.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/29/2022] Open
Abstract
Neurons in avian nucleus laminaris (NL) are binaural coincidence detectors for sound localization and are characterized by striking structural variations in dendrites and axon initial segment (AIS) according to their acoustic tuning [characteristic frequency (CF)]. T-type Ca2+ (CaT) channels regulate synaptic integration and firing behavior at these neuronal structures. However, whether or how CaT channels contribute to the signal processing in NL neurons is not known. In this study, we addressed this issue with whole-cell recording and two-photon Ca2+ imaging in brain slices of posthatch chicks of both sexes. We found that the CaT current was prominent in low-CF neurons, whereas it was almost absent in higher-CF neurons. In addition, a large Ca2+ transient occurred at the dendrites and the AIS of low-CF neurons, indicating a localization of CaT channels at these structures in the neurons. Because low-CF neurons have long dendrites, dendritic CaT channels may compensate for the attenuation of EPSPs at dendrites. Furthermore, the short distance of AIS from the soma may accelerate activation of axonal CaT current in the neurons and help EPSPs reach spike threshold. Indeed, the CaT current was activated by EPSPs and augmented the synaptic response and spike generation of the neurons. Notably, the CaT current was inactivated during repetitive inputs, and these augmenting effects predominated at the initial phase of synaptic activity. These results suggested that dendritic and axonal CaT channels increase the sensitivity to sound at its onset, which may expand the dynamic range for binaural computation in low-CF NL neurons.SIGNIFICANCE STATEMENT Neurons in nucleus laminaris are binaural coincidence detectors for sound localization. We report that T-type Ca2+ (CaT) current was prominent at dendrites and the axonal trigger zone in neurons tuned to low-frequency sound. Because these neurons have long dendrites and a closer trigger zone compared with those tuned to higher-frequency sound, the CaT current augmented EPSPs at dendrites and accelerated spike triggers in the neurons, implying a strategic arrangement of the current within the nucleus. This effect was limited to the onset of repetitive inputs due to progressive inactivation of CaT current. The results suggested that the CaT current increases the sensitivity to sound at its onset, which may expand the dynamic range for binaural computation of low-frequency sound.
Collapse
|
23
|
Walton PL, Christensen-Dalsgaard J, Carr C. Evolution of Sound Source Localization Circuits in the Nonmammalian Vertebrate Brainstem. BRAIN, BEHAVIOR AND EVOLUTION 2017; 90:131-153. [PMID: 28988244 PMCID: PMC5691234 DOI: 10.1159/000476028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 04/25/2017] [Indexed: 12/31/2022]
Abstract
The earliest vertebrate ears likely subserved a gravistatic function for orientation in the aquatic environment. However, in addition to detecting acceleration created by the animal's own movements, the otolithic end organs that detect linear acceleration would have responded to particle movement created by external sources. The potential to identify and localize these external sources may have been a major selection force in the evolution of the early vertebrate ear and in the processing of sound in the central nervous system. The intrinsic physiological polarization of sensory hair cells on the otolith organs confers sensitivity to the direction of stimulation, including the direction of particle motion at auditory frequencies. In extant fishes, afferents from otolithic end organs encode the axis of particle motion, which is conveyed to the dorsal regions of first-order octaval nuclei. This directional information is further enhanced by bilateral computations in the medulla and the auditory midbrain. We propose that similar direction-sensitive neurons were present in the early aquatic tetrapods and that selection for sound localization in air acted upon preexisting brain stem circuits like those in fishes. With movement onto land, the early tetrapods may have retained some sensitivity to particle motion, transduced by bone conduction, and later acquired new auditory papillae and tympanic hearing. Tympanic hearing arose in parallel within each of the major tetrapod lineages and would have led to increased sensitivity to a broader frequency range and to modification of the preexisting circuitry for sound source localization.
Collapse
Affiliation(s)
| | | | - Catherine Carr
- Department of Biology, University of Maryland, College Park MD, 20742-4415, USA
| |
Collapse
|
24
|
Signatures of Somatic Inhibition and Dendritic Excitation in Auditory Brainstem Field Potentials. J Neurosci 2017; 37:10451-10467. [PMID: 28947575 DOI: 10.1523/jneurosci.0600-17.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 01/20/2023] Open
Abstract
Extracellular voltage recordings (Ve ; field potentials) provide an accessible view of in vivo neural activity, but proper interpretation of field potentials is a long-standing challenge. Computational modeling can aid in identifying neural generators of field potentials. In the auditory brainstem of cats, spatial patterns of sound-evoked Ve can resemble, strikingly, Ve generated by current dipoles. Previously, we developed a biophysically-based model of a binaural brainstem nucleus, the medial superior olive (MSO), that accounts qualitatively for observed dipole-like Ve patterns in sustained responses to monaural tones with frequencies >∼1000 Hz (Goldwyn et al., 2014). We have observed, however, that Ve patterns in cats of both sexes appear more monopole-like for lower-frequency tones. Here, we enhance our theory to accurately reproduce dipole and non-dipole features of Ve responses to monaural tones with frequencies ranging from 600 to 1800 Hz. By applying our model to data, we estimate time courses of paired input currents to MSO neurons. We interpret these inputs as dendrite-targeting excitation and soma-targeting inhibition (the latter contributes non-dipole-like features to Ve responses). Aspects of inferred inputs are consistent with synaptic inputs to MSO neurons including the tendencies of inhibitory inputs to attenuate in response to high-frequency tones and to precede excitatory inputs. Importantly, our updated theory can be tested experimentally by blocking synaptic inputs. MSO neurons perform a critical role in sound localization and binaural hearing. By solving an inverse problem to uncover synaptic inputs from Ve patterns we provide a new perspective on MSO physiology.SIGNIFICANCE STATEMENT Extracellular voltages (field potentials) are a common measure of brain activity. Ideally, one could infer from these data the activity of neurons and synapses that generate field potentials, but this "inverse problem" is not easily solved. We study brainstem field potentials in the region of the medial superior olive (MSO); a critical center in the auditory pathway. These field potentials exhibit distinctive spatial and temporal patterns in response to pure tone sounds. We use mathematical modeling in combination with physiological and anatomical knowledge of MSO neurons to plausibly explain how dendrite-targeting excitation and soma-targeting inhibition generate these field potentials. Inferring putative synaptic currents from field potentials advances our ability to study neural processing of sound in the MSO.
Collapse
|
25
|
Tellers P, Lehmann J, Führ H, Wagner H. Envelope contributions to the representation of interaural time difference in the forebrain of barn owls. J Neurophysiol 2017; 118:1871-1887. [PMID: 28679844 DOI: 10.1152/jn.01166.2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 11/22/2022] Open
Abstract
Birds and mammals use the interaural time difference (ITD) for azimuthal sound localization. While barn owls can use the ITD of the stimulus carrier frequency over nearly their entire hearing range, mammals have to utilize the ITD of the stimulus envelope to extend the upper frequency limit of ITD-based sound localization. ITD is computed and processed in a dedicated neural circuit that consists of two pathways. In the barn owl, ITD representation is more complex in the forebrain than in the midbrain pathway because of the combination of two inputs that represent different ITDs. We speculated that one of the two inputs includes an envelope contribution. To estimate the envelope contribution, we recorded ITD response functions for correlated and anticorrelated noise stimuli in the barn owl's auditory arcopallium. Our findings indicate that barn owls, like mammals, represent both carrier and envelope ITDs of overlapping frequency ranges, supporting the hypothesis that carrier and envelope ITD-based localization are complementary beyond a mere extension of the upper frequency limit.NEW & NOTEWORTHY The results presented in this study show for the first time that the barn owl is able to extract and represent the interaural time difference (ITD) information conveyed by the envelope of a broadband acoustic signal. Like mammals, the barn owl extracts the ITD of the envelope and the carrier of a signal from the same frequency range. These results are of general interest, since they reinforce a trend found in neural signal processing across different species.
Collapse
Affiliation(s)
- Philipp Tellers
- Institute of Biology II, RWTH Aachen University, Aachen, Germany; and
| | - Jessica Lehmann
- Lehrstuhl A für Mathematik, RWTH Aachen University, Aachen, Germany
| | - Hartmut Führ
- Lehrstuhl A für Mathematik, RWTH Aachen University, Aachen, Germany
| | - Hermann Wagner
- Institute of Biology II, RWTH Aachen University, Aachen, Germany; and
| |
Collapse
|
26
|
Vedurmudi AP, Young BA, van Hemmen JL. Internally coupled ears: mathematical structures and mechanisms underlying ICE. BIOLOGICAL CYBERNETICS 2016; 110:359-382. [PMID: 27778100 DOI: 10.1007/s00422-016-0696-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/13/2016] [Indexed: 05/22/2023]
Abstract
In internally coupled ears (ICE), the displacement of one eardrum creates pressure waves that propagate through air-filled passages in the skull, causing a displacement of the opposing eardrum and vice versa. In this review, a thorough mathematical analysis of the membranes, passages, and propagating pressure waves reveals how internally coupled ears generate unique amplitude and temporal cues for sound localization. The magnitudes of both of these cues are directionally dependent. On the basis of the geometry of the interaural cavity and the elastic properties of the two eardrums confining it at both ends, the present paper reviews the mathematical theory underlying hearing through ICE and derives analytical expressions for eardrum vibrations as well as the pressures inside the internal passages, which ultimately lead to the emergence of highly directional hearing cues. The derived expressions enable one to explicitly see the influence of different parts of the system, e.g., the interaural cavity and the eardrum, on the internal coupling, and the frequency dependence of the coupling. The tympanic fundamental frequency segregates a low-frequency regime with constant time-difference magnification (time dilation factor) from a high-frequency domain with considerable amplitude magnification. By exploiting the physical properties of the coupling, we describe a concrete method to numerically estimate the eardrum's fundamental frequency and damping solely through measurements taken from a live animal.
Collapse
Affiliation(s)
- Anupam P Vedurmudi
- Physik Department T35 and BCCN-Munich, Technische Universität München, 85747, Garching bei München, Germany
| | - Bruce A Young
- Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO, 63501, USA
| | - J Leo van Hemmen
- Physik Department T35 and BCCN-Munich, Technische Universität München, 85747, Garching bei München, Germany.
| |
Collapse
|
27
|
Carr CE, Christensen-Dalsgaard J, Bierman H. Coupled ears in lizards and crocodilians. BIOLOGICAL CYBERNETICS 2016; 110:291-302. [PMID: 27734148 PMCID: PMC6003244 DOI: 10.1007/s00422-016-0698-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 09/17/2016] [Indexed: 05/22/2023]
Abstract
Lizard ears are coupled across the pharynx, and are very directional. In consequence all auditory responses should be directional, without a requirement for computation of sound source location. Crocodilian ears are connected through sinuses, and thus less tightly coupled. Coupling may improve the processing of low-frequency directional signals, while higher frequency signals appear to be progressively uncoupled. In both lizards and crocodilians, the increased directionality of the coupled ears leads to an effectively larger head and larger physiological range of ITDs. This increased physiological range is reviewed in the light of current theories of sound localization.
Collapse
Affiliation(s)
- Catherine E Carr
- Department of Biology, University of Maryland College Park, College Park, MD, 20742, USA.
| | | | - Hilary Bierman
- Department of Biology, University of Maryland College Park, College Park, MD, 20742, USA
| |
Collapse
|
28
|
The Role of Conduction Delay in Creating Sensitivity to Interaural Time Differences. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016. [PMID: 27080659 DOI: 10.1007/978-3-319-25474-6_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Axons from the nucleus magnocellularis (NM) and their targets in nucleus laminaris (NL) form the circuit responsible for encoding interaural time difference (ITD). In barn owls, NL receives bilateral inputs from NM, such that axons from the ipsilateral NM enter NL dorsally, while contralateral axons enter from the ventral side. These afferents act as delay lines to create maps of ITD in NL. Since delay-line inputs are characterized by a precise latency to auditory stimulation, but the postsynaptic coincidence detectors respond to ongoing phase difference, we asked whether the latencies of a local group of axons were identical, or varied by multiples of the inverse of the frequency they respond to, i.e., to multiples of 2π phase. Intracellular recordings from NM axons were used to measure delay-line latencies in NL. Systematic shifts in conduction delay within NL accounted for the maps of ITD, but recorded latencies of individual inputs at nearby locations could vary by 2π or 4π. Therefore microsecond precision is achieved through sensitivity to phase delays, rather than absolute latencies. We propose that the auditory system "coarsely" matches ipsilateral and contralateral latencies using physical delay lines, so that inputs arrive at NL at about the same time, and then "finely" matches latency modulo 2π to achieve microsecond ITD precision.
Collapse
|
29
|
The Binaural Interaction Component in Barn Owl (Tyto alba) Presents few Differences to Mammalian Data. J Assoc Res Otolaryngol 2016; 17:577-589. [PMID: 27562803 DOI: 10.1007/s10162-016-0583-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 08/15/2016] [Indexed: 01/21/2023] Open
Abstract
The auditory brainstem response (ABR) is an evoked potential that reflects the responses to sound by brainstem neural centers. The binaural interaction component (BIC) is obtained by subtracting the sum of the monaural ABR responses from the binaural response. Its latency and amplitude change in response to variations in binaural cues. The BIC is thus thought to reflect the activity of binaural nuclei and is used to non-invasively test binaural processing. However, any conclusions are limited by a lack of knowledge of the relevant processes at the level of individual neurons. The aim of this study was to characterize the ABR and BIC in the barn owl, an animal where the ITD-processing neural circuits are known in great detail. We recorded ABR responses to chirps and to 1 and 4 kHz tones from anesthetized barn owls. General characteristics of the barn owl ABR were similar to those observed in other bird species. The most prominent peak of the BIC was associated with nucleus laminaris and is thus likely to reflect the known processes of ITD computation in this nucleus. However, the properties of the BIC were very similar to previously published mammalian data and did not reveal any specific diagnostic features. For example, the polarity of the BIC was negative, which indicates a smaller response to binaural stimulation than predicted by the sum of monaural responses. This is contrary to previous predictions for an excitatory-excitatory system such as nucleus laminaris. Similarly, the change in BIC latency with varying ITD was not distinguishable from mammalian data. Contrary to previous predictions, this behavior appears unrelated to the known underlying neural delay-line circuitry. In conclusion, the generation of the BIC is currently inadequately understood and common assumptions about the BIC need to be reconsidered when interpreting such measurements.
Collapse
|
30
|
Evolutionary trends in directional hearing. Curr Opin Neurobiol 2016; 40:111-117. [PMID: 27448850 DOI: 10.1016/j.conb.2016.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 06/30/2016] [Accepted: 07/06/2016] [Indexed: 01/08/2023]
Abstract
Tympanic hearing is a true evolutionary novelty that arose in parallel within early tetrapods. We propose that in these tetrapods, selection for sound localization in air acted upon pre-existing directionally sensitive brainstem circuits, similar to those in fishes. Auditory circuits in birds and lizards resemble this ancestral, directionally sensitive framework. Despite this anatomically similarity, coding of sound source location differs between birds and lizards, although all show mechanisms for enhancing sound source directionality. Comparisons with mammals reveal similarly complex interactions between coding strategies and evolutionary history.
Collapse
|
31
|
Seidl AH, Rubel EW. Systematic and differential myelination of axon collaterals in the mammalian auditory brainstem. Glia 2016; 64:487-94. [PMID: 26556176 PMCID: PMC4752408 DOI: 10.1002/glia.22941] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/20/2015] [Indexed: 12/19/2022]
Abstract
A brainstem circuit for encoding the spatial location of sounds involves neurons in the cochlear nucleus that project to medial superior olivary (MSO) neurons on both sides of the brain via a single bifurcating axon. Neurons in MSO act as coincidence detectors, responding optimally when signals from the two ears arrive within a few microseconds. To achieve this, transmission of signals along the contralateral collateral must be faster than transmission of the same signals along the ipsilateral collateral. We demonstrate that this is achieved by differential regulation of myelination and axon caliber along the ipsilateral and contralateral branches of single axons; ipsilateral axon branches have shorter internode lengths and smaller caliber than contralateral branches. The myelination difference is established prior to the onset of hearing. We conclude that this differential myelination and axon caliber requires local interactions between axon collaterals and surrounding oligodendrocytes on the two sides of the brainstem.
Collapse
Affiliation(s)
- Armin H. Seidl
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA
- Department of Neurology, University of Washington, Seattle, WA
| | - Edwin W Rubel
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA
- Department of Otolaryngology – Head & Neck Surgery, University of Washington, Seattle, WA
| |
Collapse
|
32
|
Cortical Transformation of Spatial Processing for Solving the Cocktail Party Problem: A Computational Model(1,2,3). eNeuro 2016; 3:eN-NWR-0086-15. [PMID: 26866056 PMCID: PMC4745179 DOI: 10.1523/eneuro.0086-15.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 12/16/2015] [Accepted: 12/18/2015] [Indexed: 12/04/2022] Open
Abstract
In multisource, “cocktail party” sound environments, human and animal auditory systems can use spatial cues to effectively separate and follow one source of sound over competing sources. In multisource, “cocktail party” sound environments, human and animal auditory systems can use spatial cues to effectively separate and follow one source of sound over competing sources. While mechanisms to extract spatial cues such as interaural time differences (ITDs) are well understood in precortical areas, how such information is reused and transformed in higher cortical regions to represent segregated sound sources is not clear. We present a computational model describing a hypothesized neural network that spans spatial cue detection areas and the cortex. This network is based on recent physiological findings that cortical neurons selectively encode target stimuli in the presence of competing maskers based on source locations (Maddox et al., 2012). We demonstrate that key features of cortical responses can be generated by the model network, which exploits spatial interactions between inputs via lateral inhibition, enabling the spatial separation of target and interfering sources while allowing monitoring of a broader acoustic space when there is no competition. We present the model network along with testable experimental paradigms as a starting point for understanding the transformation and organization of spatial information from midbrain to cortex. This network is then extended to suggest engineering solutions that may be useful for hearing-assistive devices in solving the cocktail party problem.
Collapse
|
33
|
Carr CE, Christensen-Dalsgaard J. Sound Localization Strategies in Three Predators. BRAIN, BEHAVIOR AND EVOLUTION 2015; 86:17-27. [PMID: 26398572 DOI: 10.1159/000435946] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this paper, we compare some of the neural strategies for sound localization and encoding interaural time differences (ITDs) in three predatory species of Reptilia, alligators, barn owls and geckos. Birds and crocodilians are sister groups among the extant archosaurs, while geckos are lepidosaurs. Despite the similar organization of their auditory systems, archosaurs and lizards use different strategies for encoding the ITDs that underlie localization of sound in azimuth. Barn owls encode ITD information using a place map, which is composed of neurons serving as labeled lines tuned for preferred spatial locations, while geckos may use a meter strategy or population code composed of broadly sensitive neurons that represent ITD via changes in the firing rate.
Collapse
Affiliation(s)
- Catherine E Carr
- Department of Biology, University of Maryland Center for the Comparative and Evolutionary Biology of Hearing, College Park, Md., USA
| | | |
Collapse
|
34
|
Palanca-Castan N, Köppl C. Change in the coding of interaural time difference along the tonotopic axis of the chicken nucleus laminaris. Front Neural Circuits 2015; 9:43. [PMID: 26347616 PMCID: PMC4542463 DOI: 10.3389/fncir.2015.00043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/05/2015] [Indexed: 11/23/2022] Open
Abstract
Interaural time differences (ITDs) are an important cue for the localization of sounds in azimuthal space. Both birds and mammals have specialized, tonotopically organized nuclei in the brain stem for the processing of ITD: medial superior olive in mammals and nucleus laminaris (NL) in birds. The specific way in which ITDs are derived was long assumed to conform to a delay-line model in which arrays of systematically arranged cells create a representation of auditory space with different cells responding maximally to specific ITDs. This model was supported by data from barn owl NL taken from regions above 3 kHz and from chicken above 1 kHz. However, data from mammals often do not show defining features of the Jeffress model such as a systematic topographic representation of best ITDs or the presence of axonal delay lines, and an alternative has been proposed in which neurons are not topographically arranged with respect to ITD and coding occurs through the assessment of the overall response of two large neuron populations, one in each hemisphere. Modeling studies have suggested that the presence of different coding systems could be related to the animal’s head size and frequency range rather than their phylogenetic group. Testing this hypothesis requires data from across the tonotopic range of both birds and mammals. The aim of this study was to obtain in vivo recordings from neurons in the low-frequency range (<1000 Hz) of chicken NL. Our data argues for the presence of a modified Jeffress system that uses the slopes of ITD-selective response functions instead of their peaks to topographically represent ITD at mid- to high frequencies. At low frequencies, below several 100 Hz, the data did not support any current model of ITD coding. This is different to what was previously shown in the barn owl and suggests that constraints in optimal ITD processing may be associated with the particular demands on sound localization determined by the animal’s ecological niche in the same way as other perceptual systems such as field of best vision.
Collapse
Affiliation(s)
- Nicolas Palanca-Castan
- Cluster of Excellence "Hearing4all" and Research Center Neurosensory Science and Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg Oldenburg, Germany
| | - Christine Köppl
- Cluster of Excellence "Hearing4all" and Research Center Neurosensory Science and Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg Oldenburg, Germany
| |
Collapse
|
35
|
Carr CE, Shah S, McColgan T, Ashida G, Kuokkanen PT, Brill S, Kempter R, Wagner H. Maps of interaural delay in the owl's nucleus laminaris. J Neurophysiol 2015. [PMID: 26224776 DOI: 10.1152/jn.00644.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Axons from the nucleus magnocellularis form a presynaptic map of interaural time differences (ITDs) in the nucleus laminaris (NL). These inputs generate a field potential that varies systematically with recording position and can be used to measure the map of ITDs. In the barn owl, the representation of best ITD shifts with mediolateral position in NL, so as to form continuous, smoothly overlapping maps of ITD with iso-ITD contours that are not parallel to the NL border. Frontal space (0°) is, however, represented throughout and thus overrepresented with respect to the periphery. Measurements of presynaptic conduction delay, combined with a model of delay line conduction velocity, reveal that conduction delays can account for the mediolateral shifts in the map of ITD.
Collapse
Affiliation(s)
- Catherine E Carr
- Department of Biology, University of Maryland, College Park, Maryland;
| | - Sahil Shah
- Department of Biology, University of Maryland, College Park, Maryland
| | - Thomas McColgan
- Institute for Biology II, RWTH Aachen, Aachen, Germany; and Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, and Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Go Ashida
- Department of Biology, University of Maryland, College Park, Maryland
| | - Paula T Kuokkanen
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, and Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Sandra Brill
- Institute for Biology II, RWTH Aachen, Aachen, Germany; and
| | - Richard Kempter
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, and Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Hermann Wagner
- Institute for Biology II, RWTH Aachen, Aachen, Germany; and
| |
Collapse
|
36
|
Palanca-Castan N, Köppl C. In vivo Recordings from Low-Frequency Nucleus Laminaris in the Barn Owl. BRAIN, BEHAVIOR AND EVOLUTION 2015; 85:271-86. [PMID: 26182962 DOI: 10.1159/000433513] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/20/2015] [Indexed: 11/19/2022]
Abstract
Localization of sound sources relies on 2 main binaural cues: interaural time differences (ITD) and interaural level differences. ITD computing is first carried out in tonotopically organized areas of the brainstem nucleus laminaris (NL) in birds and the medial superior olive (MSO) in mammals. The specific way in which ITD are derived was long assumed to conform to a delay line model in which arrays of systematically arranged cells create a representation of auditory space, with different cells responding maximally to specific ITD. This model conforms in many details to the particular case of the high-frequency regions (above 3 kHz) in the barn owl NL. However, data from recent studies in mammals are not consistent with a delay line model. A new model has been suggested in which neurons are not topographically arranged with respect to ITD and coding occurs through assessment of the overall response of 2 large neuron populations – 1 in each brainstem hemisphere. Currently available data comprise mainly low-frequency (<1,500 Hz) recordings in the case of mammals and higher-frequency recordings in the case of birds. This makes it impossible to distinguish between group-related adaptations and frequency-related adaptations. Here we report the first comprehensive data set from low-frequency NL in the barn owl and compare it to data from other avian and mammalian studies. Our data are consistent with a delay line model, so differences between ITD processing systems are more likely to have originated through divergent evolution of different vertebrate groups.
Collapse
Affiliation(s)
- Nicolas Palanca-Castan
- Cluster of Excellence Hearing4all, Research Center Neurosensory Science and Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University, Oldenburg, Germany
| | | |
Collapse
|
37
|
Bierman HS, Carr CE. Sound localization in the alligator. Hear Res 2015; 329:11-20. [PMID: 26048335 DOI: 10.1016/j.heares.2015.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 05/12/2015] [Accepted: 05/24/2015] [Indexed: 10/23/2022]
Abstract
In early tetrapods, it is assumed that the tympana were acoustically coupled through the pharynx and therefore inherently directional, acting as pressure difference receivers. The later closure of the middle ear cavity in turtles, archosaurs, and mammals is a derived condition, and would have changed the ear by decoupling the tympana. Isolation of the middle ears would then have led to selection for structural and neural strategies to compute sound source localization in both archosaurs and mammalian ancestors. In the archosaurs (birds and crocodilians) the presence of air spaces in the skull provided connections between the ears that have been exploited to improve directional hearing, while neural circuits mediating sound localization are well developed. In this review, we will focus primarily on directional hearing in crocodilians, where vocalization and sound localization are thought to be ecologically important, and indicate important issues still awaiting resolution.
Collapse
Affiliation(s)
- Hilary S Bierman
- Center for Comparative and Evolutionary Biology of Hearing, Department of Biology, University of Maryland College Park, College Park, Maryland 20742, USA.
| | - Catherine E Carr
- Center for Comparative and Evolutionary Biology of Hearing, Department of Biology, University of Maryland College Park, College Park, Maryland 20742, USA.
| |
Collapse
|
38
|
Minimal conductance-based model of auditory coincidence detector neurons. PLoS One 2015; 10:e0122796. [PMID: 25844803 PMCID: PMC4386812 DOI: 10.1371/journal.pone.0122796] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/20/2015] [Indexed: 11/19/2022] Open
Abstract
Sound localization is a fundamental sensory function of a wide variety of animals. The interaural time difference (ITD), an important cue for sound localization, is computed in the auditory brainstem. In our previous modeling study, we introduced a two-compartment Hodgkin-Huxley type model to investigate how cellular and synaptic specializations may contribute to precise ITD computation of the barn owl's auditory coincidence detector neuron. Although our model successfully reproduced fundamental physiological properties observed in vivo, it was unsuitable for mathematical analyses and large scale simulations because of a number of nonlinear variables. In the present study, we reduce our former model into three types of conductance-based integrate-and-fire (IF) models. We test their electrophysiological properties using data from published in vivo and in vitro studies. Their robustness to parameter changes and computational efficiencies are also examined. Our numerical results suggest that the single-compartment active IF model is superior to other reduced models in terms of physiological reproducibility and computational performance. This model will allow future theoretical studies that use more rigorous mathematical analysis and network simulations.
Collapse
|
39
|
Abstract
The auditory system derives locations of sound sources from spatial cues provided by the interaction of sound with the head and external ears. Those cues are analyzed in specific brainstem pathways and then integrated as cortical representation of locations. The principal cues for horizontal localization are interaural time differences (ITDs) and interaural differences in sound level (ILDs). Vertical and front/back localization rely on spectral-shape cues derived from direction-dependent filtering properties of the external ears. The likely first sites of analysis of these cues are the medial superior olive (MSO) for ITDs, lateral superior olive (LSO) for ILDs, and dorsal cochlear nucleus (DCN) for spectral-shape cues. Localization in distance is much less accurate than that in horizontal and vertical dimensions, and interpretation of the basic cues is influenced by additional factors, including acoustics of the surroundings and familiarity of source spectra and levels. Listeners are quite sensitive to sound motion, but it remains unclear whether that reflects specific motion detection mechanisms or simply detection of changes in static location. Intact auditory cortex is essential for normal sound localization. Cortical representation of sound locations is highly distributed, with no evidence for point-to-point topography. Spatial representation is strictly contralateral in laboratory animals that have been studied, whereas humans show a prominent right-hemisphere dominance.
Collapse
Affiliation(s)
- John C Middlebrooks
- Departments of Otolaryngology, Neurobiology and Behavior, Cognitive Sciences, and Biomedical Engineering, University of California at Irvine, Irvine, CA, USA.
| |
Collapse
|
40
|
Bierman HS, Thornton JL, Jones HG, Koka K, Young BA, Brandt C, Christensen-Dalsgaard J, Carr CE, Tollin DJ. Biophysics of directional hearing in the American alligator (Alligator mississippiensis). ACTA ACUST UNITED AC 2014; 217:1094-107. [PMID: 24671963 DOI: 10.1242/jeb.092866] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Physiological and anatomical studies have suggested that alligators have unique adaptations for spatial hearing. Sound localization cues are primarily generated by the filtering of sound waves by the head. Different vertebrate lineages have evolved external and/or internal anatomical adaptations to enhance these cues, such as pinnae and interaural canals. It has been hypothesized that in alligators, directionality may be enhanced via the acoustic coupling of middle ear cavities, resulting in a pressure difference receiver (PDR) mechanism. The experiments reported here support a role for a PDR mechanism in alligator sound localization by demonstrating that (1) acoustic space cues generated by the external morphology of the animal are not sufficient to generate location cues that match physiological sensitivity, (2) continuous pathways between the middle ears are present to provide an anatomical basis for coupling, (3) the auditory brainstem response shows some directionality, and (4) eardrum movement is directionally sensitive. Together, these data support the role of a PDR mechanism in crocodilians and further suggest this mechanism is a shared archosaur trait, most likely found also in the extinct dinosaurs.
Collapse
Affiliation(s)
- Hilary S Bierman
- Center for Comparative and Evolutionary Biology of Hearing, Department of Biology, University of Maryland College Park, College Park, MD 20742, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
McColgan T, Shah S, Köppl C, Carr C, Wagner H. A functional circuit model of interaural time difference processing. J Neurophysiol 2014; 112:2850-64. [PMID: 25185809 PMCID: PMC4254871 DOI: 10.1152/jn.00484.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/25/2014] [Indexed: 11/22/2022] Open
Abstract
Inputs from the two sides of the brain interact to create maps of interaural time difference (ITD) in the nucleus laminaris of birds. How inputs from each side are matched with high temporal precision in ITD-sensitive circuits is unknown, given the differences in input path lengths from each side. To understand this problem in birds, we modeled the geometry of the input axons and their corresponding conduction velocities and latencies. Consistent with existing physiological data, we assumed a common latency up to the border of nucleus laminaris. We analyzed two biological implementations of the model, the single ITD map in chickens and the multiple maps of ITD in barn owls. For binaural inputs, since ipsi- and contralateral initial common latencies were very similar, we could restrict adaptive regulation of conduction velocity to within the nucleus. Other model applications include the simultaneous derivation of multiple conduction velocities from one set of measurements and the demonstration that contours with the same ITD cannot be parallel to the border of nucleus laminaris in the owl. Physiological tests of the predictions of the model demonstrate its validity and robustness. This model may have relevance not only for auditory processing but also for other computational tasks that require adaptive regulation of conduction velocity.
Collapse
Affiliation(s)
- Thomas McColgan
- Institute for Biology II, Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen, Aachen, Germany; Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sahil Shah
- Department of Biology, University of Maryland, College Park, Maryland
| | - Christine Köppl
- Cluster of Excellence "Hearing4all" and Research Center Neurosensory Science and Department of Neuroscience School of Medicine and Health Science Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Catherine Carr
- Department of Biology, University of Maryland, College Park, Maryland; and
| | | |
Collapse
|
42
|
Estimating characteristic phase and delay from broadband interaural time difference tuning curves. J Comput Neurosci 2014; 38:143-66. [PMID: 25278284 DOI: 10.1007/s10827-014-0529-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 08/14/2014] [Accepted: 09/04/2014] [Indexed: 10/24/2022]
Abstract
Characteristic delay and characteristic phase are shape parameters of interaural time difference tuning curves. The standard procedure for the estimation of these parameters is based on the measurement of delay curves measured for tonal stimuli with varying frequencies. Common to all procedures is the detection of a linear behavior of the phase spectrum. Hence a reliable estimate can only be expected if sufficiently many relevant frequencies are tested. Thus, the estimation precision depends on the given bandwidth. Based on a linear model, we develop and implement methods for the estimation of characteristic phase and delay from a single broadband tuning curve. We present two different estimation algorithms, one based on a Fourier-analytic interpretation of characteristic delay and phase, and the other based on mean square error minimization. Estimation precision and robustness of the algorithms are tested on artificially generated data with predetermined characteristic delay and phase values, and on sample data from electrophysiological measurements in birds and in mammals. Increasing the signal-to-noise ratio or the bandwidth increases the estimation accuracy of the algorithms. Frequency band location and strong rectification also affect the estimation accuracy. For realistic bandwidths and signal-to-noise ratios, the minimization algorithm reliably and robustly estimates characteristic delay and phase and is superior to the Fourier-analytic method. Bandwidth-dependent significance thresholds allow to assess whether the estimated characteristic delay and phase values are meaningful shape parameters of a measured tuning curve. These thresholds also indicate the sampling rates needed to obtain reliable estimates from interaural time difference tuning curves.
Collapse
|
43
|
Fischer BJ, Seidl AH. Resolution of interaural time differences in the avian sound localization circuit-a modeling study. Front Comput Neurosci 2014; 8:99. [PMID: 25206329 PMCID: PMC4143899 DOI: 10.3389/fncom.2014.00099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 08/01/2014] [Indexed: 11/13/2022] Open
Abstract
Interaural time differences (ITDs) are a main cue for sound localization and sound segregation. A dominant model to study ITD detection is the sound localization circuitry in the avian auditory brainstem. Neurons in nucleus laminaris (NL) receive auditory information from both ears via the avian cochlear nucleus magnocellularis (NM) and compare the relative timing of these inputs. Timing of these inputs is crucial, as ITDs in the microsecond range must be discriminated and encoded. We modeled ITD sensitivity of single NL neurons based on previously published data and determined the minimum resolvable ITD for neurons in NL. The minimum resolvable ITD is too large to allow for discrimination by single NL neurons of naturally occurring ITDs for very low frequencies. For high frequency NL neurons (>1 kHz) our calculated ITD resolutions fall well within the natural range of ITDs and approach values of below 10 μs. We show that different parts of the ITD tuning function offer different resolution in ITD coding, suggesting that information derived from both parts may be used for downstream processing. A place code may be used for sound location at frequencies above 500 Hz, but our data suggest the slope of the ITD tuning curve ought to be used for ITD discrimination by single NL neurons at the lowest frequencies. Our results provide an important measure of the necessary temporal window of binaural inputs for future studies on the mechanisms and development of neuronal computation of temporally precise information in this important system. In particular, our data establish the temporal precision needed for conduction time regulation along NM axons.
Collapse
Affiliation(s)
- Brian J Fischer
- Department of Mathematics, Seattle University Seattle, WA, USA
| | - Armin H Seidl
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology - Head and Neck Surgery, University of Washington Seattle, WA, USA ; Department of Neurology, University of Washington Seattle, WA, USA
| |
Collapse
|
44
|
Cramer KS, Gabriele ML. Axon guidance in the auditory system: multiple functions of Eph receptors. Neuroscience 2014; 277:152-62. [PMID: 25010398 DOI: 10.1016/j.neuroscience.2014.06.068] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/05/2014] [Accepted: 06/28/2014] [Indexed: 11/29/2022]
Abstract
The neural pathways of the auditory system underlie our ability to detect sounds and to transform amplitude and frequency information into rich and meaningful perception. While it shares some organizational features with other sensory systems, the auditory system has some unique functions that impose special demands on precision in circuit assembly. In particular, the cochlear epithelium creates a frequency map rather than a space map, and specialized pathways extract information on interaural time and intensity differences to permit sound source localization. The assembly of auditory circuitry requires the coordinated function of multiple molecular cues. Eph receptors and their ephrin ligands constitute a large family of axon guidance molecules with developmentally regulated expression throughout the auditory system. Functional studies of Eph/ephrin signaling have revealed important roles at multiple levels of the auditory pathway, from the cochlea to the auditory cortex. These proteins provide graded cues used in establishing tonotopically ordered connections between auditory areas, as well as discrete cues that enable axons to form connections with appropriate postsynaptic partners within a target area. Throughout the auditory system, Eph proteins help to establish patterning in neural pathways during early development. This early targeting, which is further refined with neuronal activity, establishes the precision needed for auditory perception.
Collapse
Affiliation(s)
- K S Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, United States.
| | - M L Gabriele
- Department of Biology, James Madison University, Harrisonburg, VA 22807, United States
| |
Collapse
|
45
|
Vonderschen K, Wagner H. Detecting interaural time differences and remodeling their representation. Trends Neurosci 2014; 37:289-300. [DOI: 10.1016/j.tins.2014.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/06/2014] [Accepted: 03/11/2014] [Indexed: 10/25/2022]
|
46
|
Seidl AH, Rubel EW, Barría A. Differential conduction velocity regulation in ipsilateral and contralateral collaterals innervating brainstem coincidence detector neurons. J Neurosci 2014; 34:4914-9. [PMID: 24695710 PMCID: PMC3972718 DOI: 10.1523/jneurosci.5460-13.2014] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/20/2014] [Accepted: 02/28/2014] [Indexed: 11/21/2022] Open
Abstract
Information processing in the brain relies on precise timing of signal propagation. The highly conserved neuronal network for computing spatial representations of acoustic signals resolves microsecond timing of sounds processed by the two ears. As such, it provides an excellent model for understanding how precise temporal regulation of neuronal signals is achieved and maintained. The well described avian and mammalian brainstem circuit for computation of interaural time differences is composed of monaural cells in the cochlear nucleus (CN; nucleus magnocellularis in birds) projecting to binaurally innervated coincidence detection neurons in the medial superior olivary nucleus (MSO) in mammals or nucleus laminaris (NL) in birds. Individual axons from CN neurons issue a single axon that bifurcates into an ipsilateral branch and a contralateral branch that innervate segregated dendritic regions of the MSO/NL coincidence detector neurons. We measured conduction velocities of the ipsilateral and contralateral branches of these bifurcating axon collaterals in the chicken by antidromic stimulation of two sites along each branch and whole-cell recordings in the parent neurons. At the end of each experiment, the individual CN neuron and its axon collaterals were filled with dye. We show that the two collaterals of a single axon adjust the conduction velocities individually to achieve the specific conduction velocities essential for precise temporal integration of information from the two ears, as required for sound localization. More generally, these results suggest that individual axonal segments in the CNS interact locally with surrounding neural structures to determine conduction velocity.
Collapse
Affiliation(s)
- Armin H. Seidl
- Virginia Merrill Bloedel Hearing Research Center, and
- Departments of Otolaryngology—Head and Neck Surgery, and
| | - Edwin W Rubel
- Virginia Merrill Bloedel Hearing Research Center, and
- Departments of Otolaryngology—Head and Neck Surgery, and
- Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| | - Andrés Barría
- Virginia Merrill Bloedel Hearing Research Center, and
- Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| |
Collapse
|
47
|
Ashida G, Funabiki K, Carr CE. Theoretical foundations of the sound analog membrane potential that underlies coincidence detection in the barn owl. Front Comput Neurosci 2013; 7:151. [PMID: 24265616 PMCID: PMC3821005 DOI: 10.3389/fncom.2013.00151] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 10/11/2013] [Indexed: 11/15/2022] Open
Abstract
A wide variety of neurons encode temporal information via phase-locked spikes. In the avian auditory brainstem, neurons in the cochlear nucleus magnocellularis (NM) send phase-locked synaptic inputs to coincidence detector neurons in the nucleus laminaris (NL) that mediate sound localization. Previous modeling studies suggested that converging phase-locked synaptic inputs may give rise to a periodic oscillation in the membrane potential of their target neuron. Recent physiological recordings in vivo revealed that owl NL neurons changed their spike rates almost linearly with the amplitude of this oscillatory potential. The oscillatory potential was termed the sound analog potential, because of its resemblance to the waveform of the stimulus tone. The amplitude of the sound analog potential recorded in NL varied systematically with the interaural time difference (ITD), which is one of the most important cues for sound localization. In order to investigate the mechanisms underlying ITD computation in the NM-NL circuit, we provide detailed theoretical descriptions of how phase-locked inputs form oscillating membrane potentials. We derive analytical expressions that relate presynaptic, synaptic, and postsynaptic factors to the signal and noise components of the oscillation in both the synaptic conductance and the membrane potential. Numerical simulations demonstrate the validity of the theoretical formulations for the entire frequency ranges tested (1–8 kHz) and potential effects of higher harmonics on NL neurons with low best frequencies (<2 kHz).
Collapse
Affiliation(s)
- Go Ashida
- Department of Biology, University of Maryland College Park, MD, USA
| | | | | |
Collapse
|
48
|
Ashida G, Funabiki K, Carr CE. Biophysical basis of the sound analog membrane potential that underlies coincidence detection in the barn owl. Front Comput Neurosci 2013; 7:102. [PMID: 24265615 PMCID: PMC3821004 DOI: 10.3389/fncom.2013.00102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 07/07/2013] [Indexed: 11/13/2022] Open
Abstract
Interaural time difference (ITD), or the difference in timing of a sound wave arriving at the two ears, is a fundamental cue for sound localization. A wide variety of animals have specialized neural circuits dedicated to the computation of ITDs. In the avian auditory brainstem, ITDs are encoded as the spike rates in the coincidence detector neurons of the nucleus laminaris (NL). NL neurons compare the binaural phase-locked inputs from the axons of ipsi- and contralateral nucleus magnocellularis (NM) neurons. Intracellular recordings from the barn owl's NL in vivo showed that tonal stimuli induce oscillations in the membrane potential. Since this oscillatory potential resembled the stimulus sound waveform, it was named the sound analog potential (Funabiki et al., 2011). Previous modeling studies suggested that a convergence of phase-locked spikes from NM leads to an oscillatory membrane potential in NL, but how presynaptic, synaptic, and postsynaptic factors affect the formation of the sound analog potential remains to be investigated. In the accompanying paper, we derive analytical relations between these parameters and the signal and noise components of the oscillation. In this paper, we focus on the effects of the number of presynaptic NM fibers, the mean firing rate of these fibers, their average degree of phase-locking, and the synaptic time scale. Theoretical analyses and numerical simulations show that, provided the total synaptic input is kept constant, changes in the number and spike rate of NM fibers alter the ITD-independent noise whereas the degree of phase-locking is linearly converted to the ITD-dependent signal component of the sound analog potential. The synaptic time constant affects the signal more prominently than the noise, making faster synaptic input more suitable for effective ITD computation.
Collapse
Affiliation(s)
- Go Ashida
- Department of Biology, University of Maryland, College Park MD, USA
| | | | | |
Collapse
|
49
|
Hildebrandt KJ. Neural maps in insect versus vertebrate auditory systems. Curr Opin Neurobiol 2013; 24:82-7. [PMID: 24492083 DOI: 10.1016/j.conb.2013.08.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 11/20/2022]
Abstract
The convergent evolution of hearing in insects and vertebrates raises the question about similarity of the central representation of sound in these distant animal groups. Topographic representations of spectral, spatial and temporal cues have been widely described in mammals, but evidence for such maps is scarce in insects. Recent data on insect sound encoding provides evidence for an early integration of sound parameters to form highly-specific representation that predict behavioral output. In mammals, new studies investigating neural representation of perceptual features in behaving animals allow asking similar questions. A comparative approach may help in understanding principles underlying the formation of perceptual categories and behavioral plasticity.
Collapse
Affiliation(s)
- K Jannis Hildebrandt
- Cluster of Excellence "Hearing4all", University of Oldenburg, Germany; Auditory Neuroscience Group, Department of Neuroscience, University of Oldenburg, Germany.
| |
Collapse
|
50
|
Seidl AH. Regulation of conduction time along axons. Neuroscience 2013; 276:126-34. [PMID: 23820043 DOI: 10.1016/j.neuroscience.2013.06.047] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/13/2013] [Accepted: 06/17/2013] [Indexed: 11/17/2022]
Abstract
Timely delivery of information is essential for proper functioning of the nervous system. Precise regulation of nerve conduction velocity is needed for correct exertion of motor skills, sensory integration and cognitive functions. In vertebrates, the rapid transmission of signals along nerve fibers is made possible by the myelination of axons and the resulting saltatory conduction in between nodes of Ranvier. Myelin is a specialization of glia cells and is provided by oligodendrocytes in the central nervous system. Myelination not only maximizes conduction velocity, but also provides a means to systematically regulate conduction times in the nervous system. Systematic regulation of conduction velocity along axons, and thus systematic regulation of conduction time in between neural areas, is a common occurrence in the nervous system. To date, little is understood about the mechanism that underlies systematic conduction velocity regulation and conduction time synchrony. Node assembly, internode distance (node spacing) and axon diameter - all parameters determining the speed of signal propagation along axons - are controlled by myelinating glia. Therefore, an interaction between glial cells and neurons has been suggested. This review summarizes examples of neural systems in which conduction velocity is regulated by anatomical variations along axons. While functional implications in these systems are not always clear, recent studies on the auditory system of birds and mammals present examples of conduction velocity regulation in systems with high temporal precision and a defined biological function. Together these findings suggest an active process that shapes the interaction between axons and myelinating glia to control conduction velocity along axons. Future studies involving these systems may provide further insight into how specific conduction times in the brain are established and maintained in development. Throughout the text, conduction velocity is used for the speed of signal propagation, i.e. the speed at which an action potential travels. Conduction time refers to the time it takes for a specific signal to travel from its origin to its target, i.e. neuronal cell body to axonal terminal.
Collapse
Affiliation(s)
- A H Seidl
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, USA; Department of Otolaryngology - Head & Neck Surgery, University of Washington, Seattle, WA, USA.
| |
Collapse
|