1
|
Ebrahimi M, Ebrahimi M, Vergroesen JE, Aschner M, Sillanpää M. Environmental exposures to cadmium and lead as potential causes of eye diseases. J Trace Elem Med Biol 2024; 82:127358. [PMID: 38113800 DOI: 10.1016/j.jtemb.2023.127358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Humans are exposed to cadmium and lead in various regions of the world daily due to industrial development and climate change. Increasing numbers of preclinical and clinical studies indicate that heavy metals, such as cadmium and lead, play a role in the pathogenesis of eye diseases. Excessive exposure to heavy metals such as cadmium and lead can increase the risk of impaired vision. Therefore, it is essential to better characterize the role of these non-essential metals in disease etiology and progression. This article discusses the potential role of cadmium and lead in the development of age-related eye diseases, including age-related macular degeneration, cataracts, and glaucoma. Furthermore, we discuss how cadmium and lead affect ocular cells and provide an overview of putative pathological mechanisms associated with their propensity to damage the eye.
Collapse
Affiliation(s)
- Moein Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy, and Autoimmunity, Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Ebrahimi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Joëlle E Vergroesen
- Department of Ophthalmology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands; Department of Epidemiology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India; Zhejiang Rongsheng Environmental Protection Paper Co. LTD, NO.588 East Zhennan Road, Pinghu Economic Development Zone, Zhejiang 314213, PR China; Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India
| |
Collapse
|
2
|
Garrudo FFF, Linhardt RJ, Ferreira FC, Morgado J. Designing Electrical Stimulation Platforms for Neural Cell Cultivation Using Poly(aniline): Camphorsulfonic Acid. Polymers (Basel) 2023; 15:2674. [PMID: 37376320 DOI: 10.3390/polym15122674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Electrical stimulation is a powerful strategy to improve the differentiation of neural stem cells into neurons. Such an approach can be implemented, in association with biomaterials and nanotechnology, for the development of new therapies for neurological diseases, including direct cell transplantation and the development of platforms for drug screening and disease progression evaluation. Poly(aniline):camphorsulfonic acid (PANI:CSA) is one of the most well-studied electroconductive polymers, capable of directing an externally applied electrical field to neural cells in culture. There are several examples in the literature on the development of PANI:CSA-based scaffolds and platforms for electrical stimulation, but no review has examined the fundamentals and physico-chemical determinants of PANI:CSA for the design of platforms for electrical stimulation. This review evaluates the current literature regarding the application of electrical stimulation to neural cells, specifically reviewing: (1) the fundamentals of bioelectricity and electrical stimulation; (2) the use of PANI:CSA-based systems for electrical stimulation of cell cultures; and (3) the development of scaffolds and setups to support the electrical stimulation of cells. Throughout this work, we critically evaluate the revised literature and provide a steppingstone for the clinical application of the electrical stimulation of cells using electroconductive PANI:CSA platforms/scaffolds.
Collapse
Affiliation(s)
- Fábio F F Garrudo
- Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Biology and Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Frederico Castelo Ferreira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Jorge Morgado
- Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
3
|
Fan WW, Yang D, Cheng ZQ, Xu FQ, Dong FW, Wei XY, Hu JM. Ten picrotoxane-type sesquiterpenoids from the stems of Dendrobium wardianum Warner. PHYTOCHEMISTRY 2021; 190:112858. [PMID: 34246870 DOI: 10.1016/j.phytochem.2021.112858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 06/21/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Ten undescribed picrotoxane-type sesquiterpenoids, dendrowardins A-J, together with two known ones, were isolated from the stems of Dendrobium wardianum Warner (Orchidaceae). Dendrowardins A-D feature the unusual 5,2-δ-lactone and additionally dendrowardins C-D are the first examples containing the 11,10-γ-lactone moiety. The structures were established using spectroscopic methods and by comparison with literature data. Further, dendrowardin E, amotin, and aduncin exhibited significant effects of promoting the proliferation on human lens epithelial cells (HLECs) induced by D-galactose.
Collapse
Affiliation(s)
- Wei-Wei Fan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; Henan Engineering Research Center of Funiu Mountain's Medicinal Resources Utilization and Molecular Medicine, College of Medicine, Pingdingshan University, Pingdingshan, 467000, People's Republic of China
| | - Dan Yang
- College of Pharmacy, Guangdong Medical University, Dongguan, 523808, People's Republic of China
| | - Zhong-Quan Cheng
- College of Pharmacy, Guangzhou Health Science College, Guangzhou, 510450, People's Republic of China
| | - Feng-Qing Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Fa-Wu Dong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Xiao-Yong Wei
- College of Pharmacy, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Jiang-Miao Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| |
Collapse
|
4
|
5‑Nitro‑2‑(3‑phenylpropylamino) benzoic acid induces apoptosis of human lens epithelial cells via reactive oxygen species and endoplasmic reticulum stress through the mitochondrial apoptosis pathway. Int J Mol Med 2021; 47:59. [PMID: 33604681 PMCID: PMC7910017 DOI: 10.3892/ijmm.2021.4892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Cataracts have a high incidence and prevalence rate worldwide, and they are the leading cause of blindness. Lens epithelial cell (LEC) apoptosis is often analysed in cataract research since it is the pathological basis of cataracts, except for congenital cataract. Chloride channels are present in ocular tissues, such as in trabecular cells, LECs and other cells. They serve an important role in apoptosis and participate in endoplasmic reticulum (ER) stress and oxidative stress. However, their role in the apoptosis of LECs has not been discussed. The present study examined the effects of the chloride channel blocker 5‑nitro‑2‑(3‑phenylpropylamino) benzoic acid (NPPB) in human LECs (HLECs) to elucidate the role of NPPB in HLECs and investigate the role and mechanism of chloride channels in cataract formation. HLECs were exposed to NPPB. Cell survival rate was evaluated using Cell Counting Kit‑8 assays. Oxidative stress was detected as reactive oxygen species (ROS) in cells by using a ROS assay kit. Apoptosis was examined by assessing mitochondrial membrane potential and using a JC‑1 assay kit, and western blot analysis was performed to measure the expression levels of mitochondrial‑dependent apoptosis pathway‑associated proteins. ER stress was evaluated by determining the intracellular calcium ion fluorescence intensity, and western blot analysis was performed to measure ER stress‑associated protein expression. The results revealed that NPPB treatment decreased the viability of HLECs and increased apoptosis. Additionally, NPPB increased intracellular ROS levels, as well as the number of JC‑1 monomers and the protein expression levels of B‑cell lymphoma‑2 (Bcl‑2)‑associated X and cleaved caspase‑3, and decreased Bcl‑2 protein expression. NPPB increased intracellular calcium ions, the protein expression levels of activating transcription factor 6, JNK, C/EBP homologous protein and caspase‑12, and the phosphorylation of protein kinase R‑like endoplasmic reticulum kinase. N‑acetylcysteine and 4‑phenylbutyric acid inhibited NPPB‑induced oxidative stress, ER stress and apoptosis. Therefore, NPPB treatment decreased cell viability and promoted apoptosis of HLECs via the promotion of oxidative and ER stress.
Collapse
|
5
|
Patejdl R, Gromann A, Bänsch D, Noack T. Effects of ajmaline on contraction patterns of isolated rat gastric antrum and portal vein smooth muscle strips and on neurogenic relaxations of gastric fundus. Pflugers Arch 2019; 471:995-1005. [PMID: 31044280 DOI: 10.1007/s00424-019-02279-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/03/2019] [Accepted: 04/24/2019] [Indexed: 12/23/2022]
Abstract
Class-I-antiarrhythmics like ajmaline are known to alter smooth muscle function, which may cause alterations in gastrointestinal motility. The effects of ajmaline on isolated gastric and portal vein smooth muscle and the underlying mechanisms are unknown. We studied the effects of ajmaline on the contractile patterns of isolated preparations of gastric antrum and portal vein from Wistar rats. The organ bath technique was used to measure spontaneous or pharmacologically induced isometric contractions. Changes in force observed after application of ajmaline or under control conditions are reported as % of the amplitude of an initial K+-induced contraction. Electric field stimulation was used to study neurogenic relaxations of gastric fundus smooth muscle. Ajmaline increased the amplitude of spontaneous contractions of muscle strips (portal vein: control 31.1 ± 15.2%, with 100 μM ajmaline 76.6 ± 32.3%, n = 9, p < 0.01; gastric antrum: control 9.5 ± 1.6%, with 100 μM ajmaline 63.9 ± 9.96%, n = 14, p < 0.01). The frequency of spontaneous activity was reduced in portal vein, but not in gastric antrum strips. The effects of ajmaline were not blocked by tetrodotoxin, L-nitroarginine methyl ester, or atropine. Ajmaline abolished coordinated neurogenic relaxations triggered by electric field stimulation and partly reversed the inhibition of GA spontaneous activity caused by the gap junction blocker carbenoxolone. Ajmaline enhances the amplitude of spontaneous contractions in rat gastric and portal vein smooth muscle. This effect may be accompanied, but not caused by an inhibition of enteric neurotransmission. Enhanced syncytial coupling as indicated by its ability to antagonize the effects of carbenoxolone is likely to underlie the enhancement of contractility.
Collapse
Affiliation(s)
- Robert Patejdl
- Oscar-Langendorff-Institut für Physiologie, Universitätsmedizin Rostock, Gertrudenstraße 9, 18057, Rostock, Germany.
| | - Alina Gromann
- Oscar-Langendorff-Institut für Physiologie, Universitätsmedizin Rostock, Gertrudenstraße 9, 18057, Rostock, Germany
| | - Dietmar Bänsch
- Department of Cardiac Electrophysiology, KMG Hospital Güstrow, Güstrow, Germany
| | - Thomas Noack
- Oscar-Langendorff-Institut für Physiologie, Universitätsmedizin Rostock, Gertrudenstraße 9, 18057, Rostock, Germany
| |
Collapse
|
6
|
Keckeis S, Wernecke L, Salchow DJ, Reichhart N, Strauß O. Activation of a Ca 2+-dependent cation conductance with properties of TRPM2 by reactive oxygen species in lens epithelial cells. Exp Eye Res 2017; 161:61-70. [PMID: 28603015 DOI: 10.1016/j.exer.2017.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 05/23/2017] [Accepted: 06/01/2017] [Indexed: 02/03/2023]
Abstract
Ion channels are crucial for maintenance of ion homeostasis and transparency of the lens. The lens epithelium is the metabolically and electrophysiologically active cell type providing nutrients, ions and water to the lens fiber cells. Ca2+-dependent non-selective ion channels seem to play an important role for ion homeostasis. The aim of the study was to identify and characterize Ca2+- and reactive oxygen species (ROS)-dependent non-selective cation channels in human lens epithelial cells. RT-PCR revealed gene expression of the Ca2+-activated non-selective cation channels TRPC3, TRPM2, TRPM4 and Ano6 in both primary lens epithelial cells and the cell line HLE-B3, whereas TRPM5 mRNA was only found in HLE-B3 cells. Using whole-cell patch-clamp technique, ionomycin evoked non-selective cation currents with linear current-voltage relationship in both cell types. The current was decreased by flufenamic acid (FFA), 2-APB, 9-phenanthrol and miconazole, but insensitive to DIDS, ruthenium red, and intracellularly applied spermine. H2O2 evoked a comparable current, abolished by FFA. TRPM2 protein expression in HLE-B3 cells was confirmed by means of immunocytochemistry and western blot. In summary, we conclude that lens epithelial cells functionally express Ca2+- and H2O2-activated non-selective cation channels with properties of TRPM2.
Collapse
Affiliation(s)
- Susanne Keckeis
- Experimental Ophthalmology, Department of Ophthalmology, Charité University Medicine Berlin, Berlin, Germany
| | - Laura Wernecke
- Experimental Ophthalmology, Department of Ophthalmology, Charité University Medicine Berlin, Berlin, Germany
| | - Daniel J Salchow
- Department of Ophthalmology, Charité University Medicine Berlin, Berlin, Germany
| | - Nadine Reichhart
- Experimental Ophthalmology, Department of Ophthalmology, Charité University Medicine Berlin, Berlin, Germany.
| | - Olaf Strauß
- Experimental Ophthalmology, Department of Ophthalmology, Charité University Medicine Berlin, Berlin, Germany.
| |
Collapse
|
7
|
Chang C, Zhang K, Veluchamy A, Hébert HL, Looker HC, Colhoun HM, Palmer CNA, Meng W. A Genome-Wide Association Study Provides New Evidence That CACNA1C Gene is Associated With Diabetic Cataract. Invest Ophthalmol Vis Sci 2016; 57:2246-50. [PMID: 27124316 PMCID: PMC4855826 DOI: 10.1167/iovs.16-19332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Purpose Diabetic cataract is one of the major eye complications of diabetes. It was reported that cataract occurs two to five times more frequently in patients with diabetes compared with those with no diabetes. The purpose of this study was to identify genetic contributors of diabetic cataract based on a genome-wide association approach using a well-defined Scottish diabetic cohort. Methods We adapted linked e-health records to define diabetic cataract. A diabetic cataract case in this study was defined as a type 2 diabetic patient who has ever been recorded in the linked e-health records to have cataracts in both eyes or who had previous cataract extraction surgeries in at least one eye. A control in this study was defined as a type 2 diabetic individual who has never been diagnosed as cataract in the linked e-health records and had no history of cataract surgeries. A standard genome-wide association approach was applied. Results Overall, we have 2341 diabetic cataract cases and 2878 controls in the genetics of diabetes audit and research in Tayside Scotland (GoDARTS) dataset. We found that the P value of rs2283290 in the CACNA1C gene was 8.81 × 10−10, which has reached genome-wide significance. We also identified that the blood calcium level was statistically different between diabetic cataract cases and controls. Conclusions We identified supporting evidence that CACNA1C gene is associated with diabetic cataract. The role of calcium in the cataractogenesis needs to be reevaluated in future studies.
Collapse
Affiliation(s)
- Cheng Chang
- Division of Population Health Sciences Ninewells Hospital and School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Kaida Zhang
- Division of Population Health Sciences Ninewells Hospital and School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Abirami Veluchamy
- Division of Population Health Sciences Ninewells Hospital and School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Harry L Hébert
- Division of Population Health Sciences Ninewells Hospital and School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Helen C Looker
- Division of Population Health Sciences Ninewells Hospital and School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Helen M Colhoun
- Division of Population Health Sciences Ninewells Hospital and School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Colin N A Palmer
- Centre for Pharmacogenetics and Pharmacogenomics, Ninewells Hospital and School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Weihua Meng
- Division of Population Health Sciences Ninewells Hospital and School of Medicine, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
8
|
Wu J, Li X, Fang H, Yi Y, Chen D, Long Y, Gao X, Wei X, Chen CYO. Investigation of synergistic mechanism and identification of interaction site of aldose reductase with the combination of gigantol and syringic acid for prevention of diabetic cataract. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:286. [PMID: 27520089 PMCID: PMC4983052 DOI: 10.1186/s12906-016-1251-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 07/29/2016] [Indexed: 11/23/2022]
Abstract
BACKGROUND Gigantol and syringic acid (SA) have been shown to synergistically prevent formation of diabetic cataract (DC). However, the exact mechanism of this effect is unknown. Here, we investigate the effect of these compounds on the activity of aldose reductase (AR) and cataract formation. METHODS We examined the synergistic anti-cataract efficacy of gigantol and SA in the high glucose- and streptozotocin -induced DC rat model; synergism was evaluated using Jin's formula. We investigated possible mechanisms of action by measuring AR expression and activity and levels of sorbitol using enzyme kinetics, Western blot, and RT-PCR. Finally, we examined binding interaction between AR and both compounds using a combination of site-directed mutagenesis, recombinant expression of wild-type and mutant proteins, and enzyme kinetics. RESULTS Combination treatment of gigantol and SA synergistically protected both HLECs(human lens epithelial cells) grown in vitro and DC formation in STZ-induced rats in vivo. Synergism was attributed to inhibition of AR activity, downregulation of AR expression via impaired transcription, and decreased sorbitol levels. Enzyme kinetics studies showed that the activity of an AR Asn160Ala mutant protein was significantly decreased compared to wild-type AR, confirming that Asn160 is a key residue for interaction between AR and both compounds. CONCLUSION Combined administration of gigantol and SA synergize to enhance anti-cataract efficacy. The synergistic effect is mainly attributed to disruption of the polyol pathway and inhibition of AR activity.
Collapse
Affiliation(s)
- Jie Wu
- Department of Histology and Embryology, Guangzhou University of Chinese Medicine, 510006, Guangzhou, China
| | - Xue Li
- Department of Histology and Embryology, Guangzhou University of Chinese Medicine, 510006, Guangzhou, China
| | - Hua Fang
- Department of Histology and Embryology, Guangzhou University of Chinese Medicine, 510006, Guangzhou, China.
| | - Yanqun Yi
- Department of Histology and Embryology, Guangzhou University of Chinese Medicine, 510006, Guangzhou, China
| | - Dan Chen
- Department of Histology and Embryology, Guangzhou University of Chinese Medicine, 510006, Guangzhou, China
| | - Yan Long
- Department of Histology and Embryology, Guangzhou University of Chinese Medicine, 510006, Guangzhou, China
| | - Xinxin Gao
- Department of Histology and Embryology, Guangzhou University of Chinese Medicine, 510006, Guangzhou, China
| | - Xiaoyong Wei
- Department of Histology and Embryology, Guangzhou University of Chinese Medicine, 510006, Guangzhou, China.
- Antioxidants Research Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, 02111, Boston, MA, USA.
| | - C-Y Oliver Chen
- Antioxidants Research Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, 02111, Boston, MA, USA
| |
Collapse
|
9
|
Wertheimer C, Liegl R, Kernt M, Docheva D, Kampik A, Eibl-Lindner KH. EGFR-blockade with erlotinib reduces EGF and TGF-β2 expression and the actin-cytoskeleton which influences different aspects of cellular migration in lens epithelial cells. Curr Eye Res 2014; 39:1000-12. [PMID: 24588338 DOI: 10.3109/02713683.2014.888453] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION After cataract surgery, residual lens epithelial cells migrate and proliferate within the capsular bag resulting in posterior capsule opacification (PCO). The up-regulation of TGF-β2, EGF and FGF-2 has been identified as a key factor in PCO pathogenesis leading to actin fiber assembly and alterations in the migration pattern. In this in vitro study, the influence of Erlotinib as a selective EGFR inhibitor is investigated on the cellular features indicated, which might promote a future clinical application. METHODS Expression of EGF, FGF-2 and TGF-β2 was measured using RT-PCR and ELISA in human lens epithelial cells (HLEC). Computational data of an in vitro time lapse microscopy assay were used for statistical analysis of single cell migration with a particular focus on cell-cell interaction; cell velocity distribution; and displacement before, during and after mitosis. The effect of Erlotinib on the actin-cytoskeleton was evaluated using Alexa Fluor 488 Phalloidin and epifluorescence microscopy. RESULTS EGF and TGF-β2 mRNA expression and protein levels are reduced by Erlotinib, while FGF-2 expression remained stable. Overall fluidity of cell-cell interaction is less in the presence of Erlotinib compared to the control and the velocity distribution across all cells becomes less uniform within the cell cluster. After mitosis, HLEC move significantly faster without EGFR inhibition, which can be completely blocked by Erlotinib. Furthermore, Erlotinib diminishes the amount of actin stress fibers and the stress fiber diameter. CONCLUSION As a novel effect of Erlotinib on HLEC, we describe the down-regulation of EGF and TGF-β2 expression, both are crucial factors for PCO development. Cellular movement displays complex alterations under EGFR inhibition, which is partly explained by actin fiber depletion. These findings further underline the role of Erlotinib in pharmacologic PCO prophylaxis.
Collapse
Affiliation(s)
- C Wertheimer
- Cell- and Molecular Biology Laboratory, Department of Ophthalmology, Ludwig-Maximilians-University , Munich , Germany and
| | | | | | | | | | | |
Collapse
|
10
|
Maddala R, Nagendran T, de Ridder GG, Schey KL, Rao PV. L-type calcium channels play a critical role in maintaining lens transparency by regulating phosphorylation of aquaporin-0 and myosin light chain and expression of connexins. PLoS One 2013; 8:e64676. [PMID: 23734214 PMCID: PMC3667166 DOI: 10.1371/journal.pone.0064676] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/17/2013] [Indexed: 01/18/2023] Open
Abstract
Homeostasis of intracellular calcium is crucial for lens cytoarchitecture and transparency, however, the identity of specific channel proteins regulating calcium influx within the lens is not completely understood. Here we examined the expression and distribution profiles of L-type calcium channels (LTCCs) and explored their role in morphological integrity and transparency of the mouse lens, using cDNA microarray, RT-PCR, immunoblot, pharmacological inhibitors and immunofluorescence analyses. The results revealed that Ca (V) 1.2 and 1.3 channels are expressed and distributed in both the epithelium and cortical fiber cells in mouse lens. Inhibition of LTCCs with felodipine or nifedipine induces progressive cortical cataract formation with time, in association with decreased lens weight in ex-vivo mouse lenses. Histological analyses of felodipine treated lenses revealed extensive disorganization and swelling of cortical fiber cells resembling the phenotype reported for altered aquaporin-0 activity without detectable cytotoxic effects. Analysis of both soluble and membrane rich fractions from felodipine treated lenses by SDS-PAGE in conjunction with mass spectrometry and immunoblot analyses revealed decreases in β-B1-crystallin, Hsp-90, spectrin and filensin. Significantly, loss of transparency in the felodipine treated lenses was preceded by an increase in aquaporin-0 serine-235 phosphorylation and levels of connexin-50, together with decreases in myosin light chain phosphorylation and the levels of 14-3-3ε, a phosphoprotein-binding regulatory protein. Felodipine treatment led to a significant increase in gene expression of connexin-50 and 46 in the mouse lens. Additionally, felodipine inhibition of LTCCs in primary cultures of mouse lens epithelial cells resulted in decreased intracellular calcium, and decreased actin stress fibers and myosin light chain phosphorylation, without detectable cytotoxic response. Taken together, these observations reveal a crucial role for LTCCs in regulation of expression, activity and stability of aquaporin-0, connexins, cytoskeletal proteins, and the mechanical properties of lens, all of which have a vital role in maintaining lens function and cytoarchitecture.
Collapse
Affiliation(s)
- Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Tharkika Nagendran
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Gustaaf G. de Ridder
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Kevin L. Schey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Ponugoti Vasantha Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
11
|
|
12
|
Dry H, Jorgenson K, Ando W, Hart DA, Frank CB, Sen A. Effect of calcium on the proliferation kinetics of synovium-derived mesenchymal stromal cells. Cytotherapy 2013; 15:805-19. [PMID: 23477785 DOI: 10.1016/j.jcyt.2013.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 12/31/2012] [Accepted: 01/18/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND AIMS Synovium-derived mesenchymal stromal cells (S-MSCs) have potential utility in clinical joint repair applications. However, their scarcity in tissues means S-MSCs cannot be isolated in large quantities and need to be expanded in culture. Because synovial tissues in vivo are exposed to higher calcium (Ca(2+)) levels than typically found in culture media, this study examined the impact of Ca(2+) supplementation on the rate of S-MSC proliferation in culture. METHODS S-MSCs were serially cultured with or without Ca(2+) supplementation. The effect of inhibiting Ca(2+) uptake was assessed using Ca(2+) channel blockers. After extended exposure to elevated Ca(2+) concentrations, S-MSCs were characterized by evaluating surface marker profiles, performing reverse transcriptase quantitative polymerase chain reaction and carrying out tri-lineage differentiation assays. RESULTS Elevated Ca(2+) concentrations resulted in enhanced S-MSC proliferation. Peak growth occurred at 5.0 mmol/L Ca(2+), with an average fold increase of 4.52 ± 0.65 per passage over 8 passages compared with 2.03 ± 0.46 in un-supplemented medium. Proliferation was inhibited by Ca(2+) channel blockers. Ca(2+)-supplemented cells showed enhanced capacity toward osteogenesis (17.82 ± 4.21 μg Ca(2+) deposited/sample vs. 12.70 ± 2.11 μg Ca(2+) deposited/sample) and adipogenesis (0.47 ± 0.04 mg oil red O/sample vs. 0.352 ± 0.005 mg oil red O/sample) and retained their capacity to undergo chondrogenesis (1.37 ± 0.07 μg glycosaminoglycan/pellet vs. 1.33 ± 0.17 μg glycosaminoglycan/pellet). S-MSCs cultured in elevated Ca(2+) expressed enhanced messenger RNA levels for SOX-9 and peroxisome proliferator activated receptor gamma and depressed levels for collagen I. CONCLUSIONS S-MSC sensitivity to Ca(2+) has not been reported previously. These findings indicate that S-MSC population expansion rates may be up-regulated by Ca(2+) supplementation without compromising defining cell characteristics. This study exemplifies the need to consider medium composition when culturing stem cells.
Collapse
Affiliation(s)
- Helen Dry
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
13
|
EGF receptor inhibitor erlotinib as a potential pharmacological prophylaxis for posterior capsule opacification. Graefes Arch Clin Exp Ophthalmol 2013; 251:1529-40. [DOI: 10.1007/s00417-013-2257-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 12/02/2012] [Accepted: 01/02/2013] [Indexed: 11/25/2022] Open
|
14
|
Feng DF, Wang CY, Wang H, Wang J, Zhang MM, Jiao XH. bFGF-induced human periodontal ligament fibroblasts proliferation through T-type voltage-dependent calcium channels. Acta Odontol Scand 2013; 71:9-14. [PMID: 22251131 DOI: 10.3109/00016357.2011.645067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To test the hypothesis that T-type voltage-dependent calcium channels (T-CaCNs) are involved in basic fibroblast growth factor (bFGF)-induced proliferation of human periodontal ligament fibroblasts (HPLFs). MATERIALS AND METHODS This study examined the expression of the T-type calcium channel sub-units Ca(V) 3.1, Ca(V) 3.2 and Ca(V) 3.3 in HPLFs by real-time PCR. Mibefradil, a T-CaCNs antagonist, was used to block the effect of T-CaCNs and the proliferation of HPLFs was evaluated by the water-soluble tetrazolium (WST) assay. The level of intracellular calcium was measured by laser confocal microscopy. RESULTS Expression of the three subunits of T-CaCNs in HPLFs was detected, which was strongly up-regulated upon stimulation by bFGF. The proliferation of HPLFs induced by bFGF was decreased significantly by treatment with Mibefradil. This effect was associated with the decreased expression of T-CaCNs and a decreased level of intracellular calcium. CONCLUSIONS Expression of the T-CaCNs affected the proliferation of HPLFs that was induced by bFGF, indicating that T-CaCNs could be important in mediating periodontal ligament (PDL) remodeling.
Collapse
Affiliation(s)
- Dong-Fei Feng
- School of Stomatology, the First Affiliated Hospital, Harbin Medical University, Harbin, PR China
| | | | | | | | | | | |
Collapse
|
15
|
Syringic Acid Extracted from Herba dendrobii Prevents Diabetic Cataract Pathogenesis by Inhibiting Aldose Reductase Activity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:426537. [PMID: 23365598 PMCID: PMC3545393 DOI: 10.1155/2012/426537] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/25/2012] [Accepted: 12/02/2012] [Indexed: 11/18/2022]
Abstract
Objective. Effects of Syringic acid (SA) extracted from dendrobii on diabetic cataract (DC) pathogenesis were explored. Methods. Both in vitro and in vivo DC lens models were established using D-gal, and proliferation of HLEC exposed to SA was determined by MMT assay. After 60-day treatment with SA, rat lens transparency was observed by anatomical microscopy using a slit lamp. SA protein targets were extracted and isolated using 2-DE and MALDI TOF/TOF. AR gene expression was investigated using qRT-PCR. Interaction sites and binding characteristics were determined by molecule-docking techniques and dynamic models. Results. Targeting AR, SA provided protection from D-gal-induced damage by consistently maintaining lens transparency and delaying lens turbidity development. Inhibition of AR gene expression by SA was confirmed by qRT-PCR. IC(50) of SA for inhibition of AR activity was 213.17 μg/mL. AR-SA binding sites were Trp111, His110, Tyr48, Trp20, Trp79, Leu300, and Phe122. The main binding modes involved hydrophobic interactions and hydrogen bonding. The stoichiometric ratio of non-covalent bonding between SA and AR was 1.0 to 13.3. Conclusion. SA acts to prevent DC in rat lenses by inhibiting AR activity and gene expression, which has potential to be developed into a novel drug for therapeutic management of DC.
Collapse
|
16
|
Miyata Y, Oshitari T, Okuyama Y, Shimada A, Takahashi H, Natsugari H, Kosano H. Polymethoxyflavones as agents that prevent formation of cataract: nobiletin congeners show potent growth inhibitory effects in human lens epithelial cells. Bioorg Med Chem Lett 2012. [PMID: 23199882 DOI: 10.1016/j.bmcl.2012.10.133] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Posterior capsular opacification (PCO) is the most frequent complication and the primary reason for visual decrease after extracapsular cataract surgery. The proliferation and migration of leftover lens epithelial cells (LECs) after surgery may contribute to the development of PCO. To prevent PCO, a rational approach would be to inhibit both the proliferation and the migration of LECs using nontoxic xenobiotics. Nobiletin, one of the most abundant polymethoxyflavones (PMFs) in citrus peel, and its synthetic congeners displayed a potent inhibition of LEC proliferation. Structural features which enhance anti-proliferative activity have also been discussed.
Collapse
Affiliation(s)
- Yoshiki Miyata
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Wang Y, Li W, Wang Y, Huang Y. Growth inhibition of human lens epithelial cells by short hairpin RNA in transcription factor forkhead box E3 (FOXE3). Graefes Arch Clin Exp Ophthalmol 2012; 250:999-1007. [PMID: 22527307 DOI: 10.1007/s00417-012-1944-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 01/19/2012] [Accepted: 01/24/2012] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Posterior capsule opacification occurs mainly due to the remnant lens epithelial cell proliferation and migration after cataract surgery. The purpose of this study was to investigate whether small hairpin RNA (shRNA)-mediated gene silencing of transcription factor forkhead box E3 (FOXE3) can be employed to inhibit the expression of FOXE3 and suppress the growth in lens epithelial cells. METHODS FOXE3-targeted shRNA was transfected into a human lens epithelial cell line (HLEB-3) using Lipofectamine 2000 reagent. Quantitative PCR was used to confirm the downregulation of FOXE3 mRNA expression following infection of lens epithelial cells, and FOXE3 protein expression levels were evaluated by Western blot analysis and immunofluorescence staining. HLEB-3 cell growth after the transduction was analyzed by cell counting and MTT colorimetric assay. Cell cycle of the HLEB-3 cells was examined by flowcytometric analysis. RESULTS Compared with the control groups, both mRNA and protein levels of FOXE3 expression were significantly decreased in shRNA-treated groups, and cytostatic effects were obvious within 48 h after transfection. An increased incidence of G1-phase arrest was identified in FOXE3-shRNA transfected HLEB-3 cells. CONCLUSIONS shRNA-mediated gene silencing of FOXE3 could significantly inhibit cell growth and induce the G1-phase arrest in HLEB-3 cells. Formation of posterior capsular opacification might be repressed if lens epithelial cell growth ceases after the FOXE3 gene is silenced with molecular biology technology.
Collapse
Affiliation(s)
- Ye Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | | | | | | |
Collapse
|
18
|
Chernyavskaya Y, Ebert AM, Milligan E, Garrity DM. Voltage-gated calcium channel CACNB2 (β2.1) protein is required in the heart for control of cell proliferation and heart tube integrity. Dev Dyn 2012; 241:648-62. [DOI: 10.1002/dvdy.23746] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2012] [Indexed: 01/11/2023] Open
|
19
|
Li W, Zhang SL, Wang N, Zhang BB, Li M. Blockade of T-type Ca(2+) channels inhibits human ovarian cancer cell proliferation. Cancer Invest 2011; 29:339-46. [PMID: 21438841 DOI: 10.3109/07357907.2011.568565] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Regulation of Ca(2+) channels has been implicated in the progression of tumor cells. We report here that T-type Ca(2+) channel expression in human ovarian cancer tissues is greatly increased compared to normal ovarian tissues. Blockade of T-type Ca(2+) channel with NNC 55-0396, mibefradil, or by specifically knocking down the expression of these proteins with siRNA-Ca(v)3.1/3.2 suppressed the proliferation of two ovarian cancer cell lines and increased G0/G1 phase distribution in the cell cycle. Furthermore, NNC 55-0396 slowed ovarian cancer formation in nude mice. Therefore the function of T-type Ca(2+) channels is important for the proliferation of human ovarian cancer cells.
Collapse
Affiliation(s)
- Wei Li
- Department of Gynecology, Shengjing Hospital, China Medical University, Shenyang, China
| | | | | | | | | |
Collapse
|
20
|
Hashimoto R, Katoh Y, Itoh S, Iesaki T, Daida H, Nakazato Y, Okada T. T-type ca(2+) channel blockers increase smooth muscle progenitor cells and endothelial progenitor cells in bone marrow stromal cells in culture by suppression of cell death. Ann Vasc Dis 2010; 3:117-26. [PMID: 23555398 PMCID: PMC3595759 DOI: 10.3400/avd.avdoa01008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 06/02/2010] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To examine the expression patterns and roles of voltage-dependent Ca2+ channels in bone marrow stromal cells (BMSCs). MATERIALS AND METHODS Ca(2+) currents of BMSCs were measured by the whole-cell patch clamp method. The number and percentage of deaths of BMSCs cultured for 14 days with or without Ca(2+) channel blockers were evaluated using a MTT assay and an LDH assay, respectively. RESULTS T-type Ca(2+) channel current was recorded in 0, 2, 10, and 4% of BMSCs on days 3, 10, 17, and 24 in culture, respectively. L-type Ca(2+) channel current was first recorded on day 24 in 6% of BMSCs. Addition of the T-type Ca(2+) channel blocker mibefradil but not the L-type Ca(2+) channel blocker nifedipine significantly increased the cell count. Immunocytochemical analysis revealed increases in the counts of smooth muscle progenitor cells (SMPCs) and endothelial progenitor cells (EPCs). Mibefradil but not nifedipine significantly decreased the rate of cell death. CONCLUSION T-type Ca(2+) channel blockers increased the numbers of SMPCs and EPCs in cultured BMSCs, partly through suppression of cell death. Thus, T-type Ca(2+) channel blockers may have the potential to provide an increased number of both BMSC-derived SMCs and ECs of potential use in cell and gene therapy.
Collapse
Affiliation(s)
- Ryota Hashimoto
- Department of Physiology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Hashimoto R, Katoh Y, Itoh S, Iesaki T, Daida H, Nakazato Y, Okada T. T-Type Ca2+ Channel Blockers Increase Smooth Muscle Progenitor Cells and Endothelial Progenitor Cells in Bone Marrow Stromal Cells in Culture by Suppression of Cell Death. Ann Vasc Dis 2010. [DOI: 10.3400/avd.oa01008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Weidmann A, Kwittner S, Beck R, Teller J, Jonas L, Nebe JB. Prevention of lens epithelial cell growth in vitro using mibefradil-containing PLGA micro particles. Open Ophthalmol J 2008; 2:112-8. [PMID: 19517036 PMCID: PMC2694602 DOI: 10.2174/1874364100802010112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 05/22/2008] [Accepted: 05/24/2008] [Indexed: 11/22/2022] Open
Abstract
The prevention of the posterior capsule opacification is still unsolved. To interfere with proliferating cells the T-type calcium channel antagonist Mibefradil was immobilized in poly-lactic-co-glycolic-acid micro particles which were fixed at a capsular tension ring and tested in a human organ culture model as well as in human lens cells HLE-B3 in vitro. It is feasible to get a release significantly affecting cell viability and growth evaluated by MTT test and cell cycle analysis. In addition, Bionas® sensor chips were used for time-dependent adhesion experiments in living lens cells. Interestingly, the concentration of Mibefradil which inhibited subconfluent cells is not effective in confluent cells. This is an important feature for the protection of the intact tissue in the eye.
Collapse
Affiliation(s)
- Arne Weidmann
- Biomedical Research Centre, Cell Biology, University of Rostock, Schillingallee 69, D-18057 Rostock, Germany
| | | | | | | | | | | |
Collapse
|