1
|
Geng J, Yang Y, Li B, Yu Z, Qiu S, Zhang W, Gao S, Liu N, Liu Y, Wang B, Fan Y, Xing C, Liu X. Opto-chemogenetic inhibition of L-type Ca V1 channels in neurons through a membrane-assisted molecular linkage. CELL REPORTS METHODS 2024; 4:100898. [PMID: 39515337 PMCID: PMC11705922 DOI: 10.1016/j.crmeth.2024.100898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/28/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Genetically encoded inhibitors of CaV1 channels that operate via C-terminus-mediated inhibition (CMI) have been actively pursued. Here, we advance the design of CMI peptides by proposing a membrane-anchoring tag that is sufficient to link the inhibitory modules to the target channel as well as chemical and optogenetic modes of system control. We designed and implemented the constitutive and inducible CMI modules with appropriate dynamic ranges for the short and long variants of CaV1.3, both naturally occurring in neurons. Upon optical (near-infrared-responsive nanoparticles) and/or chemical (rapamycin) induction of FRB/FKBP binding, the designed peptides translocated onto the membrane via FRB-Ras, where the physical linkage requirement for CMI could be satisfied. The peptides robustly produced acute, potent, and specific inhibitions on both recombinant and neuronal CaV1 activities, including Ca2+ influx-neuritogenesis coupling. Validated through opto-chemogenetic induction, this prototype demonstrates Ca2+ channel modulation via membrane-assisted molecular linkage, promising broad applicability to diverse membrane proteins.
Collapse
Affiliation(s)
- Jinli Geng
- Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing 100083, China
| | - Yaxiong Yang
- Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing 100083, China
| | - Boying Li
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Zhen Yu
- Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing 100083, China
| | - Shuang Qiu
- Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing 100083, China
| | - Wen Zhang
- Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing 100083, China
| | - Shixin Gao
- Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing 100083, China
| | - Nan Liu
- School of Life Sciences, Yunnan University, Kunming Yunnan 650091, China
| | - Yi Liu
- Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing 100083, China
| | - Bo Wang
- Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing 100083, China
| | - Yubo Fan
- Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing 100083, China.
| | - Chengfen Xing
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Xiaodong Liu
- Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing 100083, China.
| |
Collapse
|
2
|
Xu F, Cai W, Liu B, Qiu Z, Zhang X. Natural L-type calcium channels antagonists from Chinese medicine. Chin Med 2024; 19:72. [PMID: 38773596 PMCID: PMC11107034 DOI: 10.1186/s13020-024-00944-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/08/2024] [Indexed: 05/24/2024] Open
Abstract
L-type calcium channels (LTCCs), the largest subfamily of voltage-gated calcium channels (VGCCs), are the main channels for Ca2+ influx during extracellular excitation. LTCCs are widely present in excitable cells, especially cardiac and cardiovascular smooth muscle cells, and participate in various Ca2+-dependent processes. LTCCs have been considered as worthy drug target for cardiovascular, neurological and psychological diseases for decades. Natural products from Traditional Chinese medicine (TCM) have shown the potential as new drugs for the treatment of LTCCs related diseases. In this review, the basic structure, function of LTCCs, and the related human diseases caused by structural or functional abnormalities of LTCCs, and the natural LTCCs antagonist and their potential usages were summarized.
Collapse
Affiliation(s)
- Fangfang Xu
- The Second Clinical College , Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Wanna Cai
- The Second Clinical College , Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Bo Liu
- The Second Clinical College , Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Zhenwen Qiu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.
| | - Xiaoqi Zhang
- Guangdong Provincial Engineering Research Center for Modernization of TCM, NMPA Key Laboratory for Quality Evaluation of TCM, Jinan University, Guangzhou, 510632, People's Republic of China.
| |
Collapse
|
3
|
Heigl T, Netzer MA, Zanetti L, Ganglberger M, Fernández-Quintero ML, Koschak A. Characterization of two pathological gating-charge substitutions in Cav1.4 L-type calcium channels. Channels (Austin) 2023; 17:2192360. [PMID: 36943941 PMCID: PMC10038055 DOI: 10.1080/19336950.2023.2192360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/14/2023] [Indexed: 03/23/2023] Open
Abstract
Cav1.4 L-type calcium channels are predominantly expressed at the photoreceptor terminals and in bipolar cells, mediating neurotransmitter release. Mutations in its gene, CACNA1F, can cause congenital stationary night-blindness type 2 (CSNB2). Due to phenotypic variability in CSNB2, characterization of pathological variants is necessary to better determine pathological mechanism at the site of action. A set of known mutations affects conserved gating charges in the S4 voltage sensor, two of which have been found in male CSNB2 patients. Here, we describe two disease-causing Cav1.4 mutations with gating charge neutralization, exchanging an arginine 964 with glycine (RG) or arginine 1288 with leucine (RL). In both, charge neutralization was associated with a reduction channel expression also reflected in smaller ON gating currents. In RL channels, the strong decrease in whole-cell current densities might additionally be explained by a reduction of single-channel currents. We further identified alterations in their biophysical properties, such as a hyperpolarizing shift of the activation threshold and an increase in slope factor of activation and inactivation. Molecular dynamic simulations in RL substituted channels indicated water wires in both, resting and active, channel states, suggesting the development of omega (ω)currents as a new pathological mechanism in CSNB2. This sum of the respective channel property alterations might add to the differential symptoms in patients beside other factors, such as genomic and environmental deviations.
Collapse
Affiliation(s)
- Thomas Heigl
- University of Innsbruck, Institute of Pharmacy, Pharmacology and Toxicology, Innsbruck, Austria
| | - Michael A. Netzer
- University of Innsbruck, Institute of Pharmacy, Pharmacology and Toxicology, Innsbruck, Austria
| | - Lucia Zanetti
- University of Innsbruck, Institute of Pharmacy, Pharmacology and Toxicology, Innsbruck, Austria
| | - Matthias Ganglberger
- University of Innsbruck, Institute of Pharmacy, Pharmacology and Toxicology, Innsbruck, Austria
| | - Monica L. Fernández-Quintero
- Institute of General, Inorganic and Theoretical Chemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innsbruck, Austria
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Alexandra Koschak
- University of Innsbruck, Institute of Pharmacy, Pharmacology and Toxicology, Innsbruck, Austria
| |
Collapse
|
4
|
Kameyama M, Minobe E, Shao D, Xu J, Gao Q, Hao L. Regulation of Cardiac Cav1.2 Channels by Calmodulin. Int J Mol Sci 2023; 24:ijms24076409. [PMID: 37047381 PMCID: PMC10094977 DOI: 10.3390/ijms24076409] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Cav1.2 Ca2+ channels, a type of voltage-gated L-type Ca2+ channel, are ubiquitously expressed, and the predominant Ca2+ channel type, in working cardiac myocytes. Cav1.2 channels are regulated by the direct interactions with calmodulin (CaM), a Ca2+-binding protein that causes Ca2+-dependent facilitation (CDF) and inactivation (CDI). Ca2+-free CaM (apoCaM) also contributes to the regulation of Cav1.2 channels. Furthermore, CaM indirectly affects channel activity by activating CaM-dependent enzymes, such as CaM-dependent protein kinase II and calcineurin (a CaM-dependent protein phosphatase). In this article, we review the recent progress in identifying the role of apoCaM in the channel ‘rundown’ phenomena and related repriming of channels, and CDF, as well as the role of Ca2+/CaM in CDI. In addition, the role of CaM in channel clustering is reviewed.
Collapse
Affiliation(s)
- Masaki Kameyama
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Sakura-ga-oka, Kagoshima 890-8544, Japan
- Correspondence:
| | - Etsuko Minobe
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Sakura-ga-oka, Kagoshima 890-8544, Japan
| | - Dongxue Shao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110012, China (L.H.)
| | - Jianjun Xu
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Sakura-ga-oka, Kagoshima 890-8544, Japan
| | - Qinghua Gao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110012, China (L.H.)
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110012, China (L.H.)
| |
Collapse
|
5
|
Alzahrani A, Alshalan M, Alfurayh M, Bin Akrish A, Alsubeeh NA, Al Mutairi F. Case Report: Clinical delineation of CACNA1D mutation: New cases and literature review. Front Neurol 2023; 14:1131490. [PMID: 37122292 PMCID: PMC10140517 DOI: 10.3389/fneur.2023.1131490] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/14/2023] [Indexed: 05/02/2023] Open
Abstract
Background Calcium ions are involved in several human cellular processes; nevertheless, the relationship between calcium channelopathies (CCs) and autism spectrum disorder (ASD) or intellectual disability (ID) has been previously investigated. We delineate the spectrum of clinical phenotypes and the symptoms associated with a syndrome caused by an inherited gain-of-function mutation in CACNA1D in a family with a history of neuropsychiatric disorders. We also review the clinical and molecular phenotype of previously reported variants of CACNA1D. Case presentation We report the case of a 9-year-old female patient, diagnosed with ASD, severe ID, hyperactivity, and aggressive impulsive behaviors. The father, who was a 65-year-old at the time of his death, had ID and developed major depressive disorder with catatonic features and nihilistic delusion, followed by rapidly progressive dementia. He died after experiencing prolonged seizures followed by post-cardiac arrest. The patient's sister was a 30-year-old woman, known to have a severe ID with aggressive behaviors and sleep disorders. The sister has been diagnosed with bipolar disorder and psychosis. Through whole exome sequencing, a heterozygous previously identified and functionally characterized missense likely pathogenic variant was identified in the CACNA1D gene NM_001128840.3: c.2015C > T (p.Ser672Leu). These findings are consistent with the genetic diagnosis of autosomal dominant primary aldosteronism, seizures, and neurological abnormalities. This variant was found in the heterozygous status in the patient, her father, and her affected sister. Conclusion This case report will help to determine the key clinical features of this syndrome, which exhibits variable clinical presentations.
Collapse
Affiliation(s)
- Alshaimaa Alzahrani
- Genetic and Precision Medicine Department, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Maha Alshalan
- Genetic and Precision Medicine Department, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Mohammed Alfurayh
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Abdulaziz Bin Akrish
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Najlaa A. Alsubeeh
- Genetic and Precision Medicine Department, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Fuad Al Mutairi
- Genetic and Precision Medicine Department, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
- *Correspondence: Fuad Al Mutairi,
| |
Collapse
|
6
|
Zaveri S, Srivastava U, Qu YS, Chahine M, Boutjdir M. Pathophysiology of Ca v1.3 L-type calcium channels in the heart. Front Physiol 2023; 14:1144069. [PMID: 37025382 PMCID: PMC10070707 DOI: 10.3389/fphys.2023.1144069] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
Ca2+ plays a crucial role in excitation-contraction coupling in cardiac myocytes. Dysfunctional Ca2+ regulation alters the force of contraction and causes cardiac arrhythmias. Ca2+ entry into cardiomyocytes is mediated mainly through L-type Ca2+ channels, leading to the subsequent Ca2+ release from the sarcoplasmic reticulum. L-type Ca2+ channels are composed of the conventional Cav1.2, ubiquitously expressed in all heart chambers, and the developmentally regulated Cav1.3, exclusively expressed in the atria, sinoatrial node, and atrioventricular node in the adult heart. As such, Cav1.3 is implicated in the pathogenesis of sinoatrial and atrioventricular node dysfunction as well as atrial fibrillation. More recently, Cav1.3 de novo expression was suggested in heart failure. Here, we review the functional role, expression levels, and regulation of Cav1.3 in the heart, including in the context of cardiac diseases. We believe that the elucidation of the functional and molecular pathways regulating Cav1.3 in the heart will assist in developing novel targeted therapeutic interventions for the aforementioned arrhythmias.
Collapse
Affiliation(s)
- Sahil Zaveri
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY, United States
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, New York, NY, United States
| | - Ujala Srivastava
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY, United States
| | - Yongxia Sarah Qu
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY, United States
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, New York, NY, United States
- Department of Cardiology, New York Presbyterian Brooklyn Methodist Hospital, New York, NY, United States
| | - Mohamed Chahine
- CERVO Brain Research Center, Institut Universitaire en Santé Mentale de Québec, Québec, QC, Canada
- Department of Medicine, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY, United States
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, New York, NY, United States
- Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, New York, NY, United States
- *Correspondence: Mohamed Boutjdir,
| |
Collapse
|
7
|
Morgenstern TJ, Nirwan N, Hernández-Ochoa EO, Bibollet H, Choudhury P, Laloudakis YD, Ben Johny M, Bannister RA, Schneider MF, Minor DL, Colecraft HM. Selective posttranslational inhibition of Ca Vβ 1-associated voltage-dependent calcium channels with a functionalized nanobody. Nat Commun 2022; 13:7556. [PMID: 36494348 PMCID: PMC9734117 DOI: 10.1038/s41467-022-35025-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
Ca2+ influx through high-voltage-activated calcium channels (HVACCs) controls diverse cellular functions. A critical feature enabling a singular signal, Ca2+ influx, to mediate disparate functions is diversity of HVACC pore-forming α1 and auxiliary CaVβ1-CaVβ4 subunits. Selective CaVα1 blockers have enabled deciphering their unique physiological roles. By contrast, the capacity to post-translationally inhibit HVACCs based on CaVβ isoform is non-existent. Conventional gene knockout/shRNA approaches do not adequately address this deficit owing to subunit reshuffling and partially overlapping functions of CaVβ isoforms. Here, we identify a nanobody (nb.E8) that selectively binds CaVβ1 SH3 domain and inhibits CaVβ1-associated HVACCs by reducing channel surface density, decreasing open probability, and speeding inactivation. Functionalizing nb.E8 with Nedd4L HECT domain yielded Chisel-1 which eliminated current through CaVβ1-reconstituted CaV1/CaV2 and native CaV1.1 channels in skeletal muscle, strongly suppressed depolarization-evoked Ca2+ influx and excitation-transcription coupling in hippocampal neurons, but was inert against CaVβ2-associated CaV1.2 in cardiomyocytes. The results introduce an original method for probing distinctive functions of ion channel auxiliary subunit isoforms, reveal additional dimensions of CaVβ1 signaling in neurons, and describe a genetically-encoded HVACC inhibitor with unique properties.
Collapse
Affiliation(s)
- Travis J. Morgenstern
- grid.239585.00000 0001 2285 2675Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY USA
| | - Neha Nirwan
- grid.266102.10000 0001 2297 6811Cardiovascular Research Institute, University of California, San Francisco, CA USA
| | - Erick O. Hernández-Ochoa
- grid.411024.20000 0001 2175 4264Department of Biochemistry and Biology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Hugo Bibollet
- grid.411024.20000 0001 2175 4264Department of Biochemistry and Biology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Papiya Choudhury
- grid.239585.00000 0001 2285 2675Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY USA
| | - Yianni D. Laloudakis
- grid.239585.00000 0001 2285 2675Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY USA
| | - Manu Ben Johny
- grid.239585.00000 0001 2285 2675Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY USA
| | - Roger A. Bannister
- grid.411024.20000 0001 2175 4264Department of Biochemistry and Biology, University of Maryland School of Medicine, Baltimore, MD USA ,grid.411024.20000 0001 2175 4264Department of Pathology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Martin F. Schneider
- grid.411024.20000 0001 2175 4264Department of Biochemistry and Biology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Daniel L. Minor
- grid.266102.10000 0001 2297 6811Cardiovascular Research Institute, University of California, San Francisco, CA USA ,grid.266102.10000 0001 2297 6811Department of Biochemistry and Biophysics, University of California, San Francisco, CA USA ,grid.266102.10000 0001 2297 6811Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA USA ,grid.266102.10000 0001 2297 6811California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA USA ,grid.266102.10000 0001 2297 6811Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA USA ,grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Henry M. Colecraft
- grid.239585.00000 0001 2285 2675Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY USA ,grid.239585.00000 0001 2285 2675Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY USA
| |
Collapse
|
8
|
Subbamanda YD, Bhargava A. Intercommunication between Voltage-Gated Calcium Channels and Estrogen Receptor/Estrogen Signaling: Insights into Physiological and Pathological Conditions. Cells 2022; 11:cells11233850. [PMID: 36497108 PMCID: PMC9739980 DOI: 10.3390/cells11233850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Voltage-gated calcium channels (VGCCs) and estrogen receptors are important cellular proteins that have been shown to interact with each other across varied cells and tissues. Estrogen hormone, the ligand for estrogen receptors, can also exert its effects independent of estrogen receptors that collectively constitute non-genomic mechanisms. Here, we provide insights into the VGCC regulation by estrogen and the possible mechanisms involved therein across several cell types. Notably, most of the interaction is described in neuronal and cardiovascular tissues given the importance of VGCCs in these electrically excitable tissues. We describe the modulation of various VGCCs by estrogen known so far in physiological conditions and pathological conditions. We observed that in most in vitro studies higher concentrations of estrogen were used while a handful of in vivo studies used meager concentrations resulting in inhibition or upregulation of VGCCs, respectively. There is a need for more relevant physiological assays to study the regulation of VGCCs by estrogen. Additionally, other interacting receptors and partners need to be identified that may be involved in exerting estrogen receptor-independent effects of estrogen.
Collapse
|
9
|
Modulation of L-type calcium channels in Alzheimer's disease: A potential therapeutic target. Comput Struct Biotechnol J 2022; 21:11-20. [PMID: 36514335 PMCID: PMC9719069 DOI: 10.1016/j.csbj.2022.11.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/28/2022] Open
Abstract
Calcium plays a fundamental role in various signaling pathways and cellular processes in the human organism. In the nervous system, voltage-gated calcium channels such as L-type calcium channels (LTCCs) are critical elements in mediating neurotransmitter release, synaptic integration and plasticity. Dysfunction of LTCCs has been implicated in both aging and Alzheimer's Disease (AD), constituting a key component of calcium hypothesis of AD. As such, LTCCs are a promising drug target in AD. However, due to their structural and functional complexity, the mechanisms by which LTCCs contribute to AD are still unclear. In this review, we briefly summarize the structure, function, and modulation of LTCCs that are the backbone for understanding pathological processes involving LTCCs. We suggest targeting molecular pathways up-regulating LTCCs in AD may be a more promising approach, given the diverse physiological functions of LTCCs and the ineffectiveness of LTCC blockers in clinical studies.
Collapse
Key Words
- AC, adenylyl cyclase
- AD, Alzheimer’s Disease
- AHP, afterhyperpolarization
- AR, adrenoceptor
- Aging
- Alzheimer’s disease
- Aβ, β-amyloid
- BIN1, bridging integrator 1
- BTZs, benzothiazepines
- CDF, calcium-dependent facilitation
- CDI, calcium-dependent inactivation
- CaMKII, calmodulin-dependent protein kinase II
- DHP, dihydropyridine
- L-type calcium channel
- LTCC, L-type calcium channels
- LTD, long-term depression
- LTP, long-term potentiation
- NFT, neurofibrillary tangles
- NMDAR, N-methyl-D-aspartate receptor
- PAA, phenylalkylamines
- PKA, protein kinase A
- PKC, protein kinase C
- PKG, protein kinase G
- SFK, Src family kinase
- Tau
- VSD, voltage sensing domain
- β-Amyloid
Collapse
|
10
|
Glutamate Signaling and Filopodiagenesis of Astrocytoma Cells in Brain Cancers: Survey and Questions. Cells 2022; 11:cells11172657. [PMID: 36078065 PMCID: PMC9454653 DOI: 10.3390/cells11172657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022] Open
Abstract
Astrocytes are non-excitable cells in the CNS that can cause life-threatening astrocytoma tumors when they transform to cancerous cells. Perturbed homeostasis of the neurotransmitter glutamate is associated with astrocytoma tumor onset and progression, but the factors that govern this phenomenon are less known. Herein, we review possible mechanisms by which glutamate may act in facilitating the growth of projections in astrocytic cells. This review discusses the similarities and differences between the morphology of astrocytes and astrocytoma cells, and the role that dysregulation in glutamate and calcium signaling plays in the aberrant morphology of astrocytoma cells. Converging reports suggest that ionotropic glutamate receptors and voltage-gated calcium channels expressed in astrocytes may be responsible for the abnormal filopodiagenesis or process extension leading to astrocytoma cells’ infiltration throughout the brain.
Collapse
|
11
|
Bin X, Wang B, Tang Z. Malignant Hyperthermia: A Killer If Ignored. J Perianesth Nurs 2022; 37:435-444. [DOI: 10.1016/j.jopan.2021.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 11/26/2022]
|
12
|
Lanzetti S, Di Biase V. Small Molecules as Modulators of Voltage-Gated Calcium Channels in Neurological Disorders: State of the Art and Perspectives. Molecules 2022; 27:1312. [PMID: 35209100 PMCID: PMC8879281 DOI: 10.3390/molecules27041312] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 01/03/2023] Open
Abstract
Voltage-gated calcium channels (VGCCs) are widely expressed in the brain, heart and vessels, smooth and skeletal muscle, as well as in endocrine cells. VGCCs mediate gene transcription, synaptic and neuronal structural plasticity, muscle contraction, the release of hormones and neurotransmitters, and membrane excitability. Therefore, it is not surprising that VGCC dysfunction results in severe pathologies, such as cardiovascular conditions, neurological and psychiatric disorders, altered glycemic levels, and abnormal smooth muscle tone. The latest research findings and clinical evidence increasingly show the critical role played by VGCCs in autism spectrum disorders, Parkinson's disease, drug addiction, pain, and epilepsy. These findings outline the importance of developing selective calcium channel inhibitors and modulators to treat such prevailing conditions of the central nervous system. Several small molecules inhibiting calcium channels are currently used in clinical practice to successfully treat pain and cardiovascular conditions. However, the limited palette of molecules available and the emerging extent of VGCC pathophysiology require the development of additional drugs targeting these channels. Here, we provide an overview of the role of calcium channels in neurological disorders and discuss possible strategies to generate novel therapeutics.
Collapse
Affiliation(s)
| | - Valentina Di Biase
- Institute of Pharmacology, Department of Medical Statistics, Informatics and Health Economics, Medical University of Innsbruck, Peter-Mayr Strasse 1, A-6020 Innsbruck, Austria;
| |
Collapse
|
13
|
Wichmann C, Kuner T. Heterogeneity of glutamatergic synapses: cellular mechanisms and network consequences. Physiol Rev 2022; 102:269-318. [PMID: 34727002 DOI: 10.1152/physrev.00039.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chemical synapses are commonly known as a structurally and functionally highly diverse class of cell-cell contacts specialized to mediate communication between neurons. They represent the smallest "computational" unit of the brain and are typically divided into excitatory and inhibitory as well as modulatory categories. These categories are subdivided into diverse types, each representing a different structure-function repertoire that in turn are thought to endow neuronal networks with distinct computational properties. The diversity of structure and function found among a given category of synapses is referred to as heterogeneity. The main building blocks for this heterogeneity are synaptic vesicles, the active zone, the synaptic cleft, the postsynaptic density, and glial processes associated with the synapse. Each of these five structural modules entails a distinct repertoire of functions, and their combination specifies the range of functional heterogeneity at mammalian excitatory synapses, which are the focus of this review. We describe synapse heterogeneity that is manifested on different levels of complexity ranging from the cellular morphology of the pre- and postsynaptic cells toward the expression of different protein isoforms at individual release sites. We attempt to define the range of structural building blocks that are used to vary the basic functional repertoire of excitatory synaptic contacts and discuss sources and general mechanisms of synapse heterogeneity. Finally, we explore the possible impact of synapse heterogeneity on neuronal network function.
Collapse
Affiliation(s)
- Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, InnerEarLab and Institute for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg, Germany
| |
Collapse
|
14
|
Borgarelli C, Klingl YE, Escamilla-Ayala A, Munck S, Van Den Bosch L, De Borggraeve WM, Ismalaj E. Lighting Up the Plasma Membrane: Development and Applications of Fluorescent Ligands for Transmembrane Proteins. Chemistry 2021; 27:8605-8641. [PMID: 33733502 DOI: 10.1002/chem.202100296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 12/16/2022]
Abstract
Despite the fact that transmembrane proteins represent the main therapeutic targets for decades, complete and in-depth knowledge about their biochemical and pharmacological profiling is not fully available. In this regard, target-tailored small-molecule fluorescent ligands are a viable approach to fill in the missing pieces of the puzzle. Such tools, coupled with the ability of high-precision optical techniques to image with an unprecedented resolution at a single-molecule level, helped unraveling many of the conundrums related to plasma proteins' life-cycle and druggability. Herein, we review the recent progress made during the last two decades in fluorescent ligand design and potential applications in fluorescence microscopy of voltage-gated ion channels, ligand-gated ion channels and G-coupled protein receptors.
Collapse
Affiliation(s)
- Carlotta Borgarelli
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven Campus Arenberg Celestijnenlaan 200F -, box 2404, 3001, Leuven, Belgium
| | - Yvonne E Klingl
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Laboratory of Neurobiology, VIB, Center for Brain &, Disease Research, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Abril Escamilla-Ayala
- Center for Brain & Disease Research, & VIB BioImaging Core, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Department of Neurosciences, Leuven Brain Institute, KU Leuven, Campus Gasthuisberg O&N5 - box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Sebastian Munck
- Center for Brain & Disease Research, & VIB BioImaging Core, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Department of Neurosciences, Leuven Brain Institute, KU Leuven, Campus Gasthuisberg O&N5 - box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Laboratory of Neurobiology, VIB, Center for Brain &, Disease Research, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Wim M De Borggraeve
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven Campus Arenberg Celestijnenlaan 200F -, box 2404, 3001, Leuven, Belgium
| | - Ermal Ismalaj
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven Campus Arenberg Celestijnenlaan 200F -, box 2404, 3001, Leuven, Belgium
| |
Collapse
|
15
|
Hydroxysafflor Yellow A Ameliorates Myocardial Ischemia/Reperfusion Injury by Suppressing Calcium Overload and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6643615. [PMID: 34093960 PMCID: PMC8163549 DOI: 10.1155/2021/6643615] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/30/2021] [Accepted: 04/20/2021] [Indexed: 12/17/2022]
Abstract
Myocardial ischemia/reperfusion injury (MI/RI) is an urgent problem with a great impact on health globally. However, its pathological mechanisms have not been fully elucidated. Hydroxysafflor yellow A (HSYA) has a protective effect against MI/RI. This study is aimed at further clarifying the relationship between HSYA cardioprotection and calcium overload as well as the underlying mechanisms. We verified the protective effect of HSYA on neonatal rat primary cardiomyocytes (NPCMs) and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from hypoxia-reoxygenation (HR) injury. To explore the cardioprotective mechanism of HSYA, we employed calcium fluorescence, TUNEL assay, JC-1 staining, and western blotting. Finally, cardio-ECR and patch-clamp experiments were used to explain the regulation of L-type calcium channels (LTCC) in cardioprotection mediated by HSYA. The results showed that HSYA reduced the levels of myocardial enzymes and protected NPCMs from HR injury. HSYA also restored the contractile function of hiPSC-CMs and field potential signal abnormalities caused by HR and exerted a protective effect on cardiac function. Further, we demonstrated that HSYA protects cardiomyocytes from HR injury by decreasing mitochondrial membrane potential and inhibiting apoptosis and calcium overload. Patch-clamp results revealed that MI/RI caused a sharp increase in calcium currents, which was inhibited by pretreatment with HSYA. Furthermore, we found that HSYA restored contraction amplitude, beat rate, and field potential duration of hiPSC-CMs, which were disrupted by the LTCC agonist Bay-K8644. Patch-clamp experiments also showed that HSYA inhibits Bay-K8644-induced calcium current, with an effect similar to that of the LTCC inhibitor nisoldipine. Therefore, our data suggest that HSYA targets LTCC to inhibit calcium overload and apoptosis of cardiomyocytes, thereby exerting a cardioprotective effect and reducing MI/RI injury.
Collapse
|
16
|
Tabatabaee MS, Kerkovius J, Menard F. Design of an Imaging Probe to Monitor Real-Time Redistribution of L-type Voltage-Gated Calcium Channels in Astrocytic Glutamate Signaling. Mol Imaging Biol 2021; 23:407-416. [PMID: 33432518 DOI: 10.1007/s11307-020-01573-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE In the brain, astrocytes are non-excitable cells that undergo rapid morphological changes when stimulated by the excitatory neurotransmitter glutamate. We developed a chemical probe to monitor how glutamate affects the density and distribution of astrocytic L-type voltage-gated calcium channels (LTCC). PROCEDURES The imaging probe FluoBar1 was created from a barbiturate ligand modified with a fluorescent coumarin moiety. The probe selectivity was examined with colocalization analyses of confocal fluorescence imaging in U118-MG and transfected COS-7 cells. Living cells treated with 50 nM FluoBar1 were imaged in real time to reveal changes in density and distribution of astrocytic LTCCs upon exposure to glutamate. RESULTS FluoBar1 was synthesized in ten steps. The selectivity of the probe was demonstrated with immunoblotting and confocal imaging of immunostained cells expressing the CaV1.2 isoform of LTCCs proteins. Applying FluoBar1 to astrocyte model cells U118-MG allowed us to measure a fivefold increase in fluorescence density of LTCCs upon glutamate exposure. CONCLUSIONS Imaging probe FluoBar1 allows the real-time monitoring of LTCCs in living cells, revealing for first time that glutamate causes a rapid increase of LTCC membranar density in astrocyte model cells. FluoBar1 may help tackle previously intractable questions about LTCC dynamics in cellular events.
Collapse
Affiliation(s)
- Mitra Sadat Tabatabaee
- Department of Biochemistry & Molecular Biology, I.K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| | - Jeff Kerkovius
- Department of Chemistry, I.K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| | - Frederic Menard
- Department of Biochemistry & Molecular Biology, I.K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada. .,Department of Chemistry, I.K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|
17
|
Mosa FES, C S, Feng T, Barakat K. Effects of selective calcium channel blockers on ions' permeation through the human Cav1.2 ion channel: A computational study. J Mol Graph Model 2020; 102:107776. [PMID: 33137694 DOI: 10.1016/j.jmgm.2020.107776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/03/2020] [Accepted: 10/09/2020] [Indexed: 11/28/2022]
Abstract
Selective calcium channel antagonists are widely used in the treatment of cardiovascular disorders. They are mainly classified into 1,4-dihydropyridine (1,4-DHPs) and non-DHPs. The non-DHPs class is further classified into phenylalkylamines (PAAs) and benzothiazepines (BZTs) derivatives. These blockers are used for the treatment of hypertension, angina pectoris, and cardiac arrhythmias. Despite their well-established efficiency, the structural basis behind their activity is not very clear. Here we report the use of a near-open confirmation (NOC) model of the Cav1.2 cardiac ion channel to examine the mode of binding of these antagonists within the pore domain as well as the fenestration of the pore-forming domains. Effects of calcium ion permeation in the presence of drug molecules were assessed using steered molecular dynamics (SMD) simulations. These studies reveal that nicardipine, a DHP derivative, shows a strong Cav1.2 blocking activity, requiring more 2500 pN force to pull calcium ion towards the channel's pore in the presence of the compound. Similar blocking activity was observed for verapamil, a PAA derivative, requiring almost 2300 pN of force. The least blocking activity was observed for Diltiazem, a BZT derivative. Our results explain the structural basis and the binding details of 1,4-DHPs, PAAs and BZTs at their distinct Cav1.2 sites and offer detailed insights into their mechanism of action in modulating the Cav1.2 channel.
Collapse
Affiliation(s)
- Farag E S Mosa
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Ab, Canada
| | - Suryanarayanan C
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Ab, Canada
| | - Tianhua Feng
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Ab, Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Ab, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
18
|
Wang R, Wang M, Zhou J, Dai Z, Sun G, Sun X. Calenduloside E suppresses calcium overload by promoting the interaction between L-type calcium channels and Bcl2-associated athanogene 3 to alleviate myocardial ischemia/reperfusion injury. J Adv Res 2020; 34:173-186. [PMID: 35024189 PMCID: PMC8655133 DOI: 10.1016/j.jare.2020.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 01/12/2023] Open
Abstract
Introduction Intracellular calcium overload is an important contributor to myocardial ischemia/reperfusion (MI/R) injury. Total saponins of the traditional Chinese medicinal plant Aralia elata (Miq.) Seem. (AS) are beneficial for treating MI/R injury, and Calenduloside E (CE) is the main active ingredient of AS. Objectives This study aimed to investigate the effects of CE on MI/R injury and determine its specific regulatory mechanisms. Methods To verify whether CE mediated cardiac protection in vivo and in vitro, we performed MI/R surgery in SD rats and subjected neonatal rat ventricular myocytes (NRVMs) to hypoxia-reoxygenation (HR). CE’s cardioprotective against MI/R injury was detected by Evans blue/TTC staining, echocardiography, HE staining, myocardial enzyme levels. Impedance and field potential recording, and patch-clamp techniques of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were used to detect the function of L-type calcium channels (LTCC). The mechanisms underlying between CE and LTCC was studied through western blot, immunofluorescence, and immunohistochemistry. Drug affinity responsive target stability (DARTS) and co-immunoprecipitation (co-IP) used to further clarify the effect of CE on LTCC and BAG3. Results We found that CE protected against MI/R injury by inhibiting calcium overload. Furthermore, CE improved contraction and field potential signals of hiPSC-CMs and restored sarcomere contraction and calcium transient of adult rat ventricular myocytes (ARVMs). Moreover, patch-clamp data showed that CE suppressed increased L-type calcium current (ICa,L) caused by LTCC agonist, proving that CE could regulate calcium homeostasis through LTCC. Importantly, we found that CE promoted the interaction between LTCC and Bcl2-associated athanogene 3 (BAG3) by co-IP and DARTS. Conclusion Our results demonstrate that CE enhanced LTCC-BAG3 interaction to reduce MI/R induced-calcium overload, exerting a cardioprotective effect.
Collapse
Affiliation(s)
- Ruiying Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Min Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Jiahui Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Ziru Dai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
| |
Collapse
|
19
|
Cooper G, Kang S, Perez-Rosello T, Guzman JN, Galtieri D, Xie Z, Kondapalli J, Mordell J, Silverman RB, Surmeier DJ. A Single Amino Acid Determines the Selectivity and Efficacy of Selective Negative Allosteric Modulators of Ca V1.3 L-Type Calcium Channels. ACS Chem Biol 2020; 15:2539-2550. [PMID: 32881483 DOI: 10.1021/acschembio.0c00577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ca2+ channels with a CaV1.3 pore-forming α1 subunit have been implicated in both neurodegenerative and neuropsychiatric disorders, motivating the development of selective and potent inhibitors of CaV1.3 versus CaV1.2 channels, the calcium channels implicated in hypertensive disorders. We have previously identified pyrimidine-2,4,6-triones (PYTs) that preferentially inhibit CaV1.3 channels, but the structural determinants of their interaction with the channel have not been identified, impeding their development into drugs. By a combination of biochemical, computational, and molecular biological approaches, it was found that PYTs bind to the dihydropyridine (DHP) binding pocket of the CaV1.3 subunit, establishing them as negative allosteric modulators of channel gating. Site-directed mutagenesis, based on homology models of CaV1.3 and CaV1.2 channels, revealed that a single amino acid residue within the DHP binding pocket (M1078) is responsible for the selectivity of PYTs for CaV1.3 over CaV1.2. In addition to providing direction for chemical optimization, these results suggest that, like dihydropyridines, PYTs have pharmacological features that could make them of broad clinical utility.
Collapse
Affiliation(s)
- Garry Cooper
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
| | - Soosung Kang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
- Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Tamara Perez-Rosello
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Jaime N. Guzman
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Daniel Galtieri
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Zhong Xie
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Jyothisri Kondapalli
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Jack Mordell
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Richard B. Silverman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
- Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - D. James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
20
|
Sallah SR, Sergouniotis PI, Barton S, Ramsden S, Taylor RL, Safadi A, Kabir M, Ellingford JM, Lench N, Lovell SC, Black GCM. Using an integrative machine learning approach utilising homology modelling to clinically interpret genetic variants: CACNA1F as an exemplar. Eur J Hum Genet 2020; 28:1274-1282. [PMID: 32313206 PMCID: PMC7608274 DOI: 10.1038/s41431-020-0623-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 01/13/2020] [Accepted: 03/10/2020] [Indexed: 02/04/2023] Open
Abstract
Advances in DNA sequencing technologies have revolutionised rare disease diagnostics and have led to a dramatic increase in the volume of available genomic data. A key challenge that needs to be overcome to realise the full potential of these technologies is that of precisely predicting the effect of genetic variants on molecular and organismal phenotypes. Notably, despite recent progress, there is still a lack of robust in silico tools that accurately assign clinical significance to variants. Genetic alterations in the CACNA1F gene are the commonest cause of X-linked incomplete Congenital Stationary Night Blindness (iCSNB), a condition associated with non-progressive visual impairment. We combined genetic and homology modelling data to produce CACNA1F-vp, an in silico model that differentiates disease-implicated from benign missense CACNA1F changes. CACNA1F-vp predicts variant effects on the structure of the CACNA1F encoded protein (a calcium channel) using parameters based upon changes in amino acid properties; these include size, charge, hydrophobicity, and position. The model produces an overall score for each variant that can be used to predict its pathogenicity. CACNA1F-vp outperformed four other tools in identifying disease-implicated variants (area under receiver operating characteristic and precision recall curves = 0.84; Matthews correlation coefficient = 0.52) using a tenfold cross-validation technique. We consider this protein-specific model to be a robust stand-alone diagnostic classifier that could be replicated in other proteins and could enable precise and timely diagnosis.
Collapse
Affiliation(s)
- Shalaw R Sallah
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester, UK.
| | - Panagiotis I Sergouniotis
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester, UK
| | - Stephanie Barton
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester, UK
| | - Simon Ramsden
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester, UK
| | - Rachel L Taylor
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester, UK
| | - Amro Safadi
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Mitra Kabir
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jamie M Ellingford
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester, UK
| | - Nick Lench
- Congenica Ltd, Biodata Innovation Centre, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Simon C Lovell
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Graeme C M Black
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester, UK
| |
Collapse
|
21
|
Zaucha J, Heinzinger M, Kulandaisamy A, Kataka E, Salvádor ÓL, Popov P, Rost B, Gromiha MM, Zhorov BS, Frishman D. Mutations in transmembrane proteins: diseases, evolutionary insights, prediction and comparison with globular proteins. Brief Bioinform 2020; 22:5872174. [PMID: 32672331 DOI: 10.1093/bib/bbaa132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022] Open
Abstract
Membrane proteins are unique in that they interact with lipid bilayers, making them indispensable for transporting molecules and relaying signals between and across cells. Due to the significance of the protein's functions, mutations often have profound effects on the fitness of the host. This is apparent both from experimental studies, which implicated numerous missense variants in diseases, as well as from evolutionary signals that allow elucidating the physicochemical constraints that intermembrane and aqueous environments bring. In this review, we report on the current state of knowledge acquired on missense variants (referred to as to single amino acid variants) affecting membrane proteins as well as the insights that can be extrapolated from data already available. This includes an overview of the annotations for membrane protein variants that have been collated within databases dedicated to the topic, bioinformatics approaches that leverage evolutionary information in order to shed light on previously uncharacterized membrane protein structures or interaction interfaces, tools for predicting the effects of mutations tailored specifically towards the characteristics of membrane proteins as well as two clinically relevant case studies explaining the implications of mutated membrane proteins in cancer and cardiomyopathy.
Collapse
Affiliation(s)
- Jan Zaucha
- Department of Bioinformatics of the TUM School of Life Sciences Weihenstephan in Freising, Germany
| | - Michael Heinzinger
- Department of Informatics, Bioinformatics and Computational Biology of the TUM Faculty of Informatics in Garching, Germany
| | - A Kulandaisamy
- Department of Biotechnology of the IIT Bhupat and Jyoti Mehta School of BioSciences in Madras, India
| | - Evans Kataka
- Department of Bioinformatics of the TUM School of Life Sciences Weihenstephan in Freising, Germany
| | - Óscar Llorian Salvádor
- Department of Informatics, Bioinformatics and Computational Biology of the TUM Faculty of Informatics in Garching, Germany
| | - Petr Popov
- Center for Computational and Data-Intensive Science and Engineering of the Skolkovo Institute of Science and Technology in Moscow, Russia
| | - Burkhard Rost
- Department of Informatics, Bioinformatics and Computational Biology at the TUM Faculty of Informatics in Garching, Germany
| | | | - Boris S Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University in Hamilton, Canada
| | - Dmitrij Frishman
- Department of Bioinformatics at the TUM School of Life Sciences Weihenstephan in Freising, Germany
| |
Collapse
|
22
|
Abstract
Vascular smooth muscle cells (VSMCs) of small peripheral arteries contribute to blood pressure control by adapting their contractile state. These adaptations depend on the VSMC cytosolic Ca2+ concentration, regulated by complex local elementary Ca2+ signaling pathways. Ca2+ sparks represent local, transient, rapid calcium release events from a cluster of ryanodine receptors (RyRs) in the sarcoplasmic reticulum. In arterial SMCs, Ca2+ sparks activate nearby calcium-dependent potassium channels, cause membrane hyperpolarization and thus decrease the global intracellular [Ca2+] to oppose vasoconstriction. Arterial SMC Cav1.2 L-type channels regulate intracellular calcium stores content, which in turn modulates calcium efflux through RyRs. Cav3.2 T-type channels contribute to a minor extend to Ca2+ spark generation in certain types of arteries. Their localization within cell membrane caveolae is essential. We summarize present data on local elementary calcium signaling (Ca2+ sparks) in arterial SMCs with focus on RyR isoforms, large-conductance calcium-dependent potassium (BKCa) channels, and cell membrane-bound calcium channels (Cav1.2 and Cav3.2), particularly in caveolar microdomains.
Collapse
Affiliation(s)
- Gang Fan
- Charité - Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Yingqiu Cui
- Charité - Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Maik Gollasch
- Charité - Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Mario Kassmann
- Charité - Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| |
Collapse
|
23
|
Ortner NJ, Kaserer T, Copeland JN, Striessnig J. De novo CACNA1D Ca 2+ channelopathies: clinical phenotypes and molecular mechanism. Pflugers Arch 2020; 472:755-773. [PMID: 32583268 PMCID: PMC7351864 DOI: 10.1007/s00424-020-02418-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022]
Abstract
The identification of rare disease-causing variants in humans by large-scale next-generation sequencing (NGS) studies has also provided us with new insights into the pathophysiological role of de novo missense variants in the CACNA1D gene that encodes the pore-forming α1-subunit of voltage-gated Cav1.3 L-type Ca2+ channels. These CACNA1D variants have been identified somatically in aldosterone-producing adenomas as well as germline in patients with neurodevelopmental and in some cases endocrine symptoms. In vitro studies in heterologous expression systems have revealed typical gating changes that indicate enhanced Ca2+ influx through Cav1.3 channels as the underlying disease-causing mechanism. Here we summarize the clinical findings of 12 well-characterized individuals with a total of 9 high-risk pathogenic CACNA1D variants. Moreover, we propose how information from somatic mutations in aldosterone-producing adenomas could be used to predict the potential pathogenicity of novel germline variants. Since these pathogenic de novo variants can cause a channel-gain-of function, we also discuss the use of L-type Ca2+ channel blockers as a potential therapeutic option.
Collapse
Affiliation(s)
- Nadine J Ortner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| | - Teresa Kaserer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - J Nathan Copeland
- Duke Center for Autism and Brain Development, Duke Child and Family Mental Health and Developmental Neuroscience, Durham, USA
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
24
|
Wang R, Wang M, He S, Sun G, Sun X. Targeting Calcium Homeostasis in Myocardial Ischemia/Reperfusion Injury: An Overview of Regulatory Mechanisms and Therapeutic Reagents. Front Pharmacol 2020; 11:872. [PMID: 32581817 PMCID: PMC7296066 DOI: 10.3389/fphar.2020.00872] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022] Open
Abstract
Calcium homeostasis plays an essential role in maintaining excitation–contraction coupling (ECC) in cardiomyocytes, including calcium release, recapture, and storage. Disruption of calcium homeostasis may affect heart function, leading to the development of various heart diseases. Myocardial ischemia/reperfusion (MI/R) injury may occur after revascularization, which is a treatment used in coronary heart disease. MI/R injury is a complex pathological process, and the main cause of increased mortality and disability after treatment of coronary heart disease. However, current methods and drugs for treating MI/R injury are very scarce, not ideal, and have limitations. Studies have shown that MI/R injury can cause calcium overload that can further aggravate MI/R injury. Therefore, we reviewed the effects of critical calcium pathway regulators on MI/R injury and drew an intuitive diagram of the calcium homeostasis pathway. We also summarized and analyzed calcium pathway-related or MI/R drugs under research or marketing by searching Therapeutic Target and PubMed Databases. The data analysis showed that six drugs and corresponding targets are used to treat MI/R injury and involved in calcium signaling pathways. We emphasize the relevance of further detailed investigation of MI/R injury and calcium homeostasis and the therapeutic role of calcium homeostasis in MI/R injury, which bridges basic research and clinical applications of MI/R injury.
Collapse
Affiliation(s)
- Ruiying Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Min Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuaibing He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
25
|
Pinggera A, Negro G, Tuluc P, Brown MJ, Lieb A, Striessnig J. Gating defects of disease-causing de novo mutations in Ca v1.3 Ca 2+ channels. Channels (Austin) 2019; 12:388-402. [PMID: 30465465 PMCID: PMC6287693 DOI: 10.1080/19336950.2018.1546518] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Recently, we and others identified somatic and germline de novo gain-of-function mutations in CACNA1D, the gene encoding the α1-subunit of voltage-gated Cav1.3 Ca2+-channels. While somatic mutations identified in aldosterone producing adenomas (APAs) underlie treatment-resistant hypertension, germline CACNA1D mutations are associated with a neurodevelopmental disorder characterized by a wide symptomatic spectrum, including autism spectrum disorder. The number of newly identified CACNA1D missense mutations is constantly growing, but their pathogenic potential is difficult to predict in silico, making functional studies indispensable to assess their contribution to disease risk. Here we report the functional characterization of previously identified CACNA1D APA mutations F747L and M1354I using whole-cell patch-clamp electrophysiology upon recombinant expression in tsA-201 cells. We also investigated if alternative splicing of Cav1.3 affects the aberrant gating of the previously characterized APA mutation R990H and two mutations associated with autism spectrum disorder (A479G and G407R). Splice-variant dependent gating changes are of particular interest for germline mutations, since the relative expression of Cav1.3 splice variants differs across different tissues and within brain regions and might therefore result in tissue-specific phenotypes. Our data revealed a complex gain-of-function phenotype for APA mutation F747L confirming its pathogenic role. Furthermore, we found splice-variant dependent gating changes in R990H, A749G and G407R. M1354I did not change channel function of Cav1.3 splice variants and should therefore be considered a rare non-pathogenic variant until further proof for its pathogenicity is obtained. Our new findings together with previously published data allow classification of pathogenic CACNA1D mutations into four categories based on prototypical functional changes.
Collapse
Affiliation(s)
- Alexandra Pinggera
- a Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences , University of Innsbruck , Innsbruck , Austria
| | - Giulia Negro
- a Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences , University of Innsbruck , Innsbruck , Austria
| | - Petronel Tuluc
- a Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences , University of Innsbruck , Innsbruck , Austria
| | - Morris J Brown
- b William Harvey Research Institute , Queen Mary University of London , London , UK
| | - Andreas Lieb
- a Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences , University of Innsbruck , Innsbruck , Austria
| | - Jörg Striessnig
- a Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences , University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
26
|
Laird JG, Gardner SH, Kopel AJ, Kerov V, Lee A, Baker SA. Rescue of Rod Synapses by Induction of Cav Alpha 1F in the Mature Cav1.4 Knock-Out Mouse Retina. Invest Ophthalmol Vis Sci 2019; 60:3150-3161. [PMID: 31335952 PMCID: PMC6656410 DOI: 10.1167/iovs.19-27226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/24/2019] [Indexed: 01/10/2023] Open
Abstract
Purpose Cav1.4 is a voltage-gated calcium channel clustered at the presynaptic active zones of photoreceptors. Cav1.4 functions in communication by mediating the Ca2+ influx that triggers neurotransmitter release. It also aids in development since rod ribbon synapses do not form in Cav1.4 knock-out mice. Here we used a rescue strategy to investigate the ability of Cav1.4 to trigger synaptogenesis in both immature and mature mouse rods. Methods In vivo electroporation was used to transiently express Cav α1F or tamoxifen-inducible Cav α1F in a subset of Cav1.4 knock-out mouse rods. Synaptogenesis was assayed using morphologic markers and a vision-guided water maze. Results We found that introduction of Cav α1F to knock-out terminals rescued synaptic development as indicated by PSD-95 expression and elongated ribbons. When expression of Cav α1F was induced in mature animals, we again found restoration of PSD-95 and elongated ribbons. However, the induced expression of Cav α1F led to diffuse distribution of Cav α1F in the terminal instead of being clustered beneath the ribbon. Approximately a quarter of treated animals passed the water maze test, suggesting the rescue of retinal signaling in these mice. Conclusions These data confirm that Cav α1F expression is necessary for rod synaptic terminal development and demonstrate that rescue is robust even in adult animals with late stages of synaptic disease. The degree of rod synaptic plasticity seen here should be sufficient to support future vision-restoring treatments such as gene or cell replacement that will require photoreceptor synaptic rewiring.
Collapse
Affiliation(s)
- Joseph G. Laird
- Department of Biochemistry, University of Iowa, Iowa City, United States
| | - Sarah H. Gardner
- Department of Biochemistry, University of Iowa, Iowa City, United States
| | - Ariel J. Kopel
- Department of Biochemistry, University of Iowa, Iowa City, United States
| | - Vasily Kerov
- Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Amy Lee
- Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
- Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, United States
- Department of Neurology, University of Iowa, Iowa City, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, United States
| | - Sheila A. Baker
- Department of Biochemistry, University of Iowa, Iowa City, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, United States
- Ophthalmology and Visual Sciences and the Institute for Vision Research, University of Iowa, Iowa City, United States
| |
Collapse
|
27
|
The Transfer Characteristics of Hair Cells Encoding Mechanical Stimuli in the Lateral Line of Zebrafish. J Neurosci 2018; 39:112-124. [PMID: 30413644 PMCID: PMC6325263 DOI: 10.1523/jneurosci.1472-18.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/09/2018] [Accepted: 10/12/2018] [Indexed: 12/01/2022] Open
Abstract
Hair cells transmit mechanical information by converting deflection of the hair bundle into synaptic release of glutamate. We have investigated this process in the lateral line of larval zebrafish (male and female) to understand how stimuli are encoded within a neuromast. Using multiphoton microscopy in vivo, we imaged synaptic release of glutamate using the reporter iGluSnFR as well as deflections of the cupula. We found that the neuromast is composed of a functionally diverse population of hair cells. Half the hair cells signaled cupula motion in both directions from rest, either by increasing glutamate release in response to a deflection in the positive direction or by reducing release in the negative direction. The relationship between cupula deflection and glutamate release demonstrated maximum sensitivity at displacements of just ∼40 nm in the positive direction. The remaining hair cells only signaled motion in one direction and were less sensitive, extending the operating range of the neuromast beyond 1 μm. Adaptation of the synaptic output was also heterogeneous, with some hair cells generating sustained glutamate release in response to a steady deflection of the cupula and others generating transient outputs. Finally, a distinct signal encoded a return of the cupula to rest: a large and transient burst of glutamate release from hair cells unresponsive to the initial stimulus. A population of hair cells with these different sensitivities, operating ranges, and adaptive properties will allow the neuromast to encode weak stimuli while maintaining the dynamic range to signal the amplitude and duration of stronger deflections. SIGNIFICANCE STATEMENT Hair cells transmit information about mechanical stimuli by converting very small deflections of their hair bundle into changes in the release of the neurotransmitter glutamate. We have measured this input/output relation in the live fish using a fluorescent protein and find that different hair cells vary in their mechanical sensitivity and the time course of their response. These variations will allow the fish to sense the timing and duration of both very weak stimuli (∼40 nm deflections) and strong stimuli (∼1 μm), underlying the ability of the fish to avoid predators and maintain its body position in flowing water.
Collapse
|
28
|
Niu J, Dick IE, Yang W, Bamgboye MA, Yue DT, Tomaselli G, Inoue T, Ben-Johny M. Allosteric regulators selectively prevent Ca 2+-feedback of Ca V and Na V channels. eLife 2018; 7:35222. [PMID: 30198845 PMCID: PMC6156082 DOI: 10.7554/elife.35222] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 09/09/2018] [Indexed: 12/31/2022] Open
Abstract
Calmodulin (CaM) serves as a pervasive regulatory subunit of CaV1, CaV2, and NaV1 channels, exploiting a functionally conserved carboxy-tail element to afford dynamic Ca2+-feedback of cellular excitability in neurons and cardiomyocytes. Yet this modularity counters functional adaptability, as global changes in ambient CaM indiscriminately alter its targets. Here, we demonstrate that two structurally unrelated proteins, SH3 and cysteine-rich domain (stac) and fibroblast growth factor homologous factors (fhf) selectively diminish Ca2+/CaM-regulation of CaV1 and NaV1 families, respectively. The two proteins operate on allosteric sites within upstream portions of respective channel carboxy-tails, distinct from the CaM-binding interface. Generalizing this mechanism, insertion of a short RxxK binding motif into CaV1.3 carboxy-tail confers synthetic switching of CaM regulation by Mona SH3 domain. Overall, our findings identify a general class of auxiliary proteins that modify Ca2+/CaM signaling to individual targets allowing spatial and temporal orchestration of feedback, and outline strategies for engineering Ca2+/CaM signaling to individual targets.
Collapse
Affiliation(s)
- Jacqueline Niu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, United States
| | - Ivy E Dick
- Department of Physiology, University of Maryland, Baltimore, United States
| | - Wanjun Yang
- Department of Cardiology, Johns Hopkins University, Baltimore, United States
| | | | - David T Yue
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, United States
| | - Gordon Tomaselli
- Department of Cardiology, Johns Hopkins University, Baltimore, United States
| | - Takanari Inoue
- Department of Cell Biology, Johns Hopkins University, Baltimore, United States.,Center for Cell Dynamics, Institute for Basic Biomedical Sciences, Johns Hopkins University, Baltimore, United States
| | - Manu Ben-Johny
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, United States
| |
Collapse
|
29
|
Hering S, Zangerl-Plessl EM, Beyl S, Hohaus A, Andranovits S, Timin EN. Calcium channel gating. Pflugers Arch 2018; 470:1291-1309. [PMID: 29951751 PMCID: PMC6096772 DOI: 10.1007/s00424-018-2163-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022]
Abstract
Tuned calcium entry through voltage-gated calcium channels is a key requirement for many cellular functions. This is ensured by channel gates which open during membrane depolarizations and seal the pore at rest. The gating process is determined by distinct sub-processes: movement of voltage-sensing domains (charged S4 segments) as well as opening and closure of S6 gates. Neutralization of S4 charges revealed that pore opening of CaV1.2 is triggered by a "gate releasing" movement of all four S4 segments with activation of IS4 (and IIIS4) being a rate-limiting stage. Segment IS4 additionally plays a crucial role in channel inactivation. Remarkably, S4 segments carrying only a single charged residue efficiently participate in gating. However, the complete set of S4 charges is required for stabilization of the open state. Voltage clamp fluorometry, the cryo-EM structure of a mammalian calcium channel, biophysical and pharmacological studies, and mathematical simulations have all contributed to a novel interpretation of the role of voltage sensors in channel opening, closure, and inactivation. We illustrate the role of the different methodologies in gating studies and discuss the key molecular events leading CaV channels to open and to close.
Collapse
Affiliation(s)
- S Hering
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| | - E-M Zangerl-Plessl
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - S Beyl
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - A Hohaus
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - S Andranovits
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - E N Timin
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| |
Collapse
|
30
|
Garza-Lopez E, Lopez JA, Hagen J, Sheffer R, Meiner V, Lee A. Role of a conserved glutamine in the function of voltage-gated Ca 2+ channels revealed by a mutation in human CACNA1D. J Biol Chem 2018; 293:14444-14454. [PMID: 30054272 DOI: 10.1074/jbc.ra118.003681] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/24/2018] [Indexed: 12/11/2022] Open
Abstract
Voltage-gated Cav Ca2+ channels play crucial roles in regulating gene transcription, neuronal excitability, and synaptic transmission. Natural or pathological variations in Cav channels have yielded rich insights into the molecular determinants controlling channel function. Here, we report the consequences of a natural, putatively disease-associated mutation in the CACNA1D gene encoding the pore-forming Cav1.3 α1 subunit. The mutation causes a substitution of a glutamine residue that is highly conserved in the extracellular S1-S2 loop of domain II in all Cav channels with a histidine and was identified by whole-exome sequencing of an individual with moderate hearing impairment, developmental delay, and epilepsy. When introduced into the rat Cav1.3 cDNA, Q558H significantly decreased the density of Ca2+ currents in transfected HEK293T cells. Gating current analyses and cell-surface biotinylation experiments suggested that the smaller current amplitudes caused by Q558H were because of decreased numbers of functional Cav1.3 channels at the cell surface. The substitution also produced more sustained Ca2+ currents by weakening voltage-dependent inactivation. When inserted into the corresponding locus of Cav2.1, the substitution had similar effects as in Cav1.3. However, the substitution introduced in Cav3.1 reduced current density, but had no effects on voltage-dependent inactivation. Our results reveal a critical extracellular determinant of current density for all Cav family members and of voltage-dependent inactivation of Cav1.3 and Cav2.1 channels.
Collapse
Affiliation(s)
- Edgar Garza-Lopez
- From the Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, and Neurology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242 and
| | - Josue A Lopez
- From the Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, and Neurology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242 and
| | - Jussara Hagen
- From the Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, and Neurology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242 and
| | - Ruth Sheffer
- Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Vardiella Meiner
- Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Amy Lee
- From the Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, and Neurology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242 and
| |
Collapse
|
31
|
Waldner DM, Bech-Hansen NT, Stell WK. Channeling Vision: Ca V1.4-A Critical Link in Retinal Signal Transmission. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7272630. [PMID: 29854783 PMCID: PMC5966690 DOI: 10.1155/2018/7272630] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/15/2018] [Indexed: 01/09/2023]
Abstract
Voltage-gated calcium channels (VGCC) are key to many biological functions. Entry of Ca2+ into cells is essential for initiating or modulating important processes such as secretion, cell motility, and gene transcription. In the retina and other neural tissues, one of the major roles of Ca2+-entry is to stimulate or regulate exocytosis of synaptic vesicles, without which synaptic transmission is impaired. This review will address the special properties of one L-type VGCC, CaV1.4, with particular emphasis on its role in transmission of visual signals from rod and cone photoreceptors (hereafter called "photoreceptors," to the exclusion of intrinsically photoreceptive retinal ganglion cells) to the second-order retinal neurons, and the pathological effects of mutations in the CACNA1F gene which codes for the pore-forming α1F subunit of CaV1.4.
Collapse
Affiliation(s)
- D. M. Waldner
- Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - N. T. Bech-Hansen
- Department of Medical Genetics and Department of Surgery, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - W. K. Stell
- Department of Cell Biology and Anatomy and Department of Surgery, Hotchkiss Brain Institute, and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
32
|
Allard B. From excitation to intracellular Ca 2+ movements in skeletal muscle: Basic aspects and related clinical disorders. Neuromuscul Disord 2018; 28:394-401. [DOI: 10.1016/j.nmd.2018.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/19/2018] [Accepted: 03/05/2018] [Indexed: 01/18/2023]
|
33
|
Abstract
Calmodulin (CaM) regulation of voltage-gated calcium (CaV) channels is a powerful Ca2+ feedback mechanism that adjusts Ca2+ influx, affording rich mechanistic insights into Ca2+ decoding. CaM possesses a dual-lobed architecture, a salient feature of the myriad Ca2+-sensing proteins, where two homologous lobes that recognize similar targets hint at redundant signaling mechanisms. Here, by tethering CaM lobes, we demonstrate that bilobal architecture is obligatory for signaling to CaV channels. With one lobe bound, CaV carboxy tail rearranges itself, resulting in a preinhibited configuration precluded from Ca2+ feedback. Reconstitution of two lobes, even as separate molecules, relieves preinhibition and restores Ca2+ feedback. CaV channels thus detect the coincident binding of two Ca2+-free lobes to promote channel opening, a molecular implementation of a logical NOR operation that processes spatiotemporal Ca2+ signals bifurcated by CaM lobes. Overall, a unified scheme of CaV channel regulation by CaM now emerges, and our findings highlight the versatility of CaM to perform exquisite Ca2+ computations.
Collapse
|
34
|
González-Ramírez R, Felix R. Transcriptional regulation of voltage-gated Ca 2+ channels. Acta Physiol (Oxf) 2018; 222. [PMID: 28371478 DOI: 10.1111/apha.12883] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/14/2017] [Accepted: 03/21/2017] [Indexed: 12/30/2022]
Abstract
The transcriptional regulation of voltage-gated Ca2+ (CaV ) channels is an emerging research area that promises to improve our understanding of how many relevant physiological events are shaped in the central nervous system, the skeletal muscle and other tissues. Interestingly, a picture of how transcription of CaV channel subunit genes is controlled is evolving with the identification of the promoter regions required for tissue-specific expression and the identification of transcription factors that control their expression. These promoters share several characteristics that include multiple transcriptional start sites, lack of a TATA box and the presence of elements conferring tissue-selective expression. Likewise, changes in CaV channel expression occur throughout development, following ischaemia, seizures or chronic drug administration. This review focuses on insights achieved regarding the control of CaV channel gene expression. To further understand the complexities of expression and to increase the possibilities of detecting CaV channel alterations causing human disease, a deeper knowledge on the structure of the 5' upstream regions of the genes encoding these remarkable proteins will be necessary.
Collapse
Affiliation(s)
- R. González-Ramírez
- Departamento de Biología Molecular e Histocompatibilidad; Hospital General ‘Dr. Manuel Gea González’; Secretaría de Salud; Ciudad de México México
| | - R. Felix
- Departmento de Biología Celular; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN); Ciudad de México México
| |
Collapse
|
35
|
Monteleone S, Lieb A, Pinggera A, Negro G, Fuchs JE, Hofer F, Striessnig J, Tuluc P, Liedl KR. Mechanisms Responsible for ω-Pore Currents in Ca v Calcium Channel Voltage-Sensing Domains. Biophys J 2017; 113:1485-1495. [PMID: 28978442 PMCID: PMC5627182 DOI: 10.1016/j.bpj.2017.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/28/2017] [Accepted: 08/07/2017] [Indexed: 12/27/2022] Open
Abstract
Mutations of positively charged amino acids in the S4 transmembrane segment of a voltage-gated ion channel form ion-conducting pathways through the voltage-sensing domain, named ω-current. Here, we used structure modeling and MD simulations to predict pathogenic ω-currents in CaV1.1 and CaV1.3 Ca2+ channels bearing several S4 charge mutations. Our modeling predicts that mutations of CaV1.1-R1 (R528H/G, R897S) or CaV1.1-R2 (R900S, R1239H) linked to hypokalemic periodic paralysis type 1 and of CaV1.3-R3 (R990H) identified in aldosterone-producing adenomas conducts ω-currents in resting state, but not during voltage-sensing domain activation. The mechanism responsible for the ω-current and its amplitude depend on the number of charges in S4, the position of the mutated S4 charge and countercharges, and the nature of the replacing amino acid. Functional characterization validates the modeling prediction showing that CaV1.3-R990H channels conduct ω-currents at hyperpolarizing potentials, but not upon membrane depolarization compared with wild-type channels.
Collapse
Affiliation(s)
- Stefania Monteleone
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Andreas Lieb
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria; Institute of Neurology, University College London, London, United Kingdom
| | - Alexandra Pinggera
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria; Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Giulia Negro
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Julian E Fuchs
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Florian Hofer
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Petronel Tuluc
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria.
| | - Klaus R Liedl
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
36
|
Anguita E, Villalobo A. Src-family tyrosine kinases and the Ca 2+ signal. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:915-932. [PMID: 27818271 DOI: 10.1016/j.bbamcr.2016.10.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/25/2016] [Accepted: 10/30/2016] [Indexed: 01/08/2023]
Abstract
In this review, we shall describe the rich crosstalk between non-receptor Src-family kinases (SFKs) and the Ca2+ transient generated in activated cells by a variety of extracellular and intracellular stimuli, resulting in diverse signaling events. The exchange of information between SFKs and Ca2+ is reciprocal, as it flows in both directions. These kinases are main actors in pathways leading to the generation of the Ca2+ signal, and reciprocally, the Ca2+ signal modulates SFKs activity and functions. We will cover how SFKs participate in the generation of the cytosolic Ca2+ rise upon activation of a series of receptors and the mechanism of clearance of this Ca2+ signal. The role of SFKs modulating Ca2+-translocating channels participating in these events will be amply discussed. Finally, the role of the Ca2+ sensor protein calmodulin on the activity of c-Src, and potentially on other SFKs, will be outlined as well. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Estefanía Anguita
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/ Arturo Duperier 4, E-28029 Madrid, Spain
| | - Antonio Villalobo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/ Arturo Duperier 4, E-28029 Madrid, Spain.
| |
Collapse
|
37
|
Affiliation(s)
- Jörg Striessnig
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria.
| |
Collapse
|
38
|
Thomas JR, Lee A. Measuring Ca2+-Dependent Modulation of Voltage-Gated Ca2+ Channels in HEK-293T Cells. Cold Spring Harb Protoc 2016; 2016:2016/9/pdb.prot087213. [PMID: 27587775 DOI: 10.1101/pdb.prot087213] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Voltage-gated Ca(2+) (Cav) channels regulate a variety of biological processes, such as muscle contraction, gene expression, and neurotransmitter release. Cav channels are subject to diverse forms of regulation, including those involving the Ca(2+) ions that permeate the pore. High voltage-activated Cav channels undergo Ca(2+)-dependent inactivation (CDI) and facilitation (CDF), which can regulate processes such as cardiac rhythm and synaptic plasticity. CDI and CDF differ slightly between Cav1 (L-type) and Cav2 (P/Q-, N-, and R-type) channels. Human embryonic kidney cells transformed with SV40 large T-antigen (HEK-293T) are advantageous for studying CDI and CDF of a particular type of Cav channel. HEK-293T cells do not express endogenous Cav channels, but Cav channels can be expressed exogenously at high levels in these cells by transient transfection. This protocol describes how to characterize and analyze Ca(2+)-dependent modulation of recombinant Cav channels in HEK-293T cells.
Collapse
Affiliation(s)
- Jessica R Thomas
- Departments of Molecular Physiology and Biophysics, Otolaryngology-Head and Neck Surgery, and Neurology, University of Iowa, Iowa City, Iowa 52242; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa 52242
| | - Amy Lee
- Departments of Molecular Physiology and Biophysics, Otolaryngology-Head and Neck Surgery, and Neurology, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
39
|
Ben-Johny M, Dick IE, Sang L, Limpitikul WB, Kang PW, Niu J, Banerjee R, Yang W, Babich JS, Issa JB, Lee SR, Namkung H, Li J, Zhang M, Yang PS, Bazzazi H, Adams PJ, Joshi-Mukherjee R, Yue DN, Yue DT. Towards a Unified Theory of Calmodulin Regulation (Calmodulation) of Voltage-Gated Calcium and Sodium Channels. Curr Mol Pharmacol 2016; 8:188-205. [PMID: 25966688 DOI: 10.2174/1874467208666150507110359] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 01/29/2015] [Accepted: 04/20/2015] [Indexed: 12/13/2022]
Abstract
Voltage-gated Na and Ca(2+) channels represent two major ion channel families that enable myriad biological functions including the generation of action potentials and the coupling of electrical and chemical signaling in cells. Calmodulin regulation (calmodulation) of these ion channels comprises a vital feedback mechanism with distinct physiological implications. Though long-sought, a shared understanding of the channel families remained elusive for two decades as the functional manifestations and the structural underpinnings of this modulation often appeared to diverge. Here, we review recent advancements in the understanding of calmodulation of Ca(2+) and Na channels that suggest a remarkable similarity in their regulatory scheme. This interrelation between the two channel families now paves the way towards a unified mechanistic framework to understand vital calmodulin-dependent feedback and offers shared principles to approach related channelopathic diseases. An exciting era of synergistic study now looms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - David T Yue
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Ross Building, Room 713, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| |
Collapse
|
40
|
Buchanan PJ, McCloskey KD. Ca V channels and cancer: canonical functions indicate benefits of repurposed drugs as cancer therapeutics. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:621-633. [PMID: 27342111 PMCID: PMC5045480 DOI: 10.1007/s00249-016-1144-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/17/2016] [Accepted: 05/23/2016] [Indexed: 01/19/2023]
Abstract
The importance of ion channels in the hallmarks of many cancers is increasingly recognised. This article reviews current knowledge of the expression of members of the voltage-gated calcium channel family (CaV) in cancer at the gene and protein level and discusses their potential functional roles. The ten members of the CaV channel family are classified according to expression of their pore-forming α-subunit; moreover, co-expression of accessory α2δ, β and γ confers a spectrum of biophysical characteristics including voltage dependence of activation and inactivation, current amplitude and activation/inactivation kinetics. CaV channels have traditionally been studied in excitable cells including neurones, smooth muscle, skeletal muscle and cardiac cells, and drugs targeting the channels are used in the treatment of hypertension and epilepsy. There is emerging evidence that several CaV channels are differentially expressed in cancer cells compared to their normal counterparts. Interestingly, a number of CaV channels also have non-canonical functions and are involved in transcriptional regulation of the expression of other proteins including potassium channels. Pharmacological studies show that CaV canonical function contributes to the fundamental biology of proliferation, cell-cycle progression and apoptosis. This raises the intriguing possibility that calcium channel blockers, approved for the treatment of other conditions, could be repurposed to treat particular cancers. Further research will reveal the full extent of both the canonical and non-canonical functions of CaV channels in cancer and whether calcium channel blockers are beneficial in cancer treatment.
Collapse
Affiliation(s)
- Paul J Buchanan
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7AE, UK.,National Institute of Cellular Biotechnology, School of Nursing and Human Science, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Karen D McCloskey
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7AE, UK.
| |
Collapse
|
41
|
|
42
|
GDF-15 enhances intracellular Ca2+ by increasing Cav1.3 expression in rat cerebellar granule neurons. Biochem J 2016; 473:1895-904. [PMID: 27114559 PMCID: PMC4925162 DOI: 10.1042/bcj20160362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 04/25/2016] [Indexed: 12/17/2022]
Abstract
GDF-15 (growth/differentiation factor 15) is a novel member of the TGF (transforming growth factor)-β superfamily that has critical roles in the central and peripheral nervous systems. We reported previously that GDF-15 increased delayed rectifier outward K+ currents and Kv2.1 α subunit expression through TβRII (TGF-β receptor II) to activate Src kinase and Akt/mTOR (mammalian target of rapamycin) signalling in rat CGNs (cerebellar granule neurons). In the present study, we found that treatment of CGNs with GDF-15 for 24 h increased the intracellular Ca2+ concentration ([Ca2+]i) in response to membrane depolarization, as determined by Ca2+ imaging. Whole-cell current recordings indicated that GDF-15 increased the inward Ca2+ current (ICa) without altering steady-state activation of Ca2+ channels. Treatment with nifedipine, an inhibitor of L-type Ca2+ channels, abrogated GDF-15-induced increases in [Ca2+]i and ICa. The GDF-15-induced increase in ICa was mediated via up-regulation of the Cav1.3 α subunit, which was attenuated by inhibiting Akt/mTOR and ERK (extracellular-signal-regulated kinase) pathways and by pharmacological inhibition of Src-mediated TβRII phosphorylation. Given that Cav1.3 is not only a channel for Ca2+ influx, but also a transcriptional regulator, our data confirm that GDF-15 induces protein expression via TβRII and activation of a non-Smad pathway, and provide novel insight into the mechanism of GDF-15 function in neurons.
Collapse
|
43
|
Frolov RV, Weckström M. Harnessing the Flow of Excitation: TRP, Voltage-Gated Na(+), and Voltage-Gated Ca(2+) Channels in Contemporary Medicine. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 103:25-95. [PMID: 26920687 DOI: 10.1016/bs.apcsb.2015.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cellular signaling in both excitable and nonexcitable cells involves several classes of ion channels. Some of them are of minor importance, with very specialized roles in physiology, but here we concentrate on three major channel classes: TRP (transient receptor potential channels), voltage-gated sodium channels (Nav), and voltage-gated calcium channels (Cav). Here, we first propose a conceptual framework binding together all three classes of ion channels, a "flow-of-excitation model" that takes into account the inputs mediated by TRP and other similar channels, the outputs invariably provided by Cav channels, and the regenerative transmission of signals in the neural networks, for which Nav channels are responsible. We use this framework to examine the function, structure, and pharmacology of these channel classes both at cellular and also at whole-body physiological level. Building on that basis we go through the pathologies arising from the direct or indirect malfunction of the channels, utilizing ion channel defects, the channelopathies. The pharmacological interventions affecting these channels are numerous. Part of those are well-established treatments, like treatment of hypertension or some forms of epilepsy, but many other are deeply problematic due to poor drug specificity, ion channel diversity, and widespread expression of the channels in tissues other than those actually targeted.
Collapse
Affiliation(s)
- Roman V Frolov
- Division of Biophysics, Department of Physics, University of Oulu, Oulun Yliopisto, Finland.
| | - Matti Weckström
- Division of Biophysics, Department of Physics, University of Oulu, Oulun Yliopisto, Finland
| |
Collapse
|
44
|
Abstract
The first synapses transmitting visual information contain an unusual organelle, the ribbon, which is involved in the transport and priming of vesicles to be released at the active zone. The ribbon is one of many design features that allow efficient refilling of the active zone, which in turn enables graded changes in membrane potential to be transmitted using a continuous mode of neurotransmitter release. The ribbon also plays a key role in supplying vesicles for rapid and transient bursts of release that signal fast changes, such as the onset of light. We increasingly understand how the physiological properties of ribbon synapses determine basic transformations of the visual signal and, in particular, how the process of refilling the active zone regulates the gain and adaptive properties of the retinal circuit. The molecular basis of ribbon function is, however, far from clear.
Collapse
Affiliation(s)
- Leon Lagnado
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom;
| | - Frank Schmitz
- Department of Neuroanatomy, Institute for Anatomy and Cell Biology, Medical School Saarland University, Homburg/Saar, Germany;
| |
Collapse
|
45
|
Åkerström T, Willenberg HS, Cupisti K, Ip J, Backman S, Moser A, Maharjan R, Robinson B, Iwen KA, Dralle H, D Volpe C, Bäckdahl M, Botling J, Stålberg P, Westin G, Walz MK, Lehnert H, Sidhu S, Zedenius J, Björklund P, Hellman P. Novel somatic mutations and distinct molecular signature in aldosterone-producing adenomas. Endocr Relat Cancer 2015; 22:735-44. [PMID: 26285814 DOI: 10.1530/erc-15-0321] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Aldosterone-producing adenomas (APAs) are found in 1.5-3.0% of hypertensive patients in primary care and can be cured by surgery. Elucidation of genetic events may improve our understanding of these tumors and ultimately improve patient care. Approximately 40% of APAs harbor a missense mutation in the KCNJ5 gene. More recently, somatic mutations in CACNA1D, ATP1A1 and ATP2B3, also important for membrane potential/intracellular Ca(2) (+) regulation, were observed in APAs. In this study, we analyzed 165 APAs for mutations in selected regions of these genes. We then correlated mutational findings with clinical and molecular phenotype using transcriptome analysis, immunohistochemistry and semiquantitative PCR. Somatic mutations in CACNA1D in 3.0% (one novel mutation), ATP1A1 in 6.1% (six novel mutations) and ATP2B3 in 3.0% (two novel mutations) were detected. All observed mutations were located in previously described hotspot regions. Patients with tumors harboring mutations in CACNA1D, ATP1A1 and ATP2B3 were operated at an older age, were more often male and had tumors that were smaller than those in patients with KCNJ5 mutated tumors. Microarray transcriptome analysis segregated KCNJ5 mutated tumors from ATP1A1/ATP2B3 mutated tumors and those without mutation. We observed significant transcription upregulation of CYP11B2, as well as the previously described glomerulosa-specific gene NPNT, in ATP1A1/ATP2B3 mutated tumors compared to KCNJ5 mutated tumors. In summary, we describe novel somatic mutations in proteins regulating the membrane potential/intracellular Ca(2) (+) levels, and also a distinct mRNA and clinical signature, dependent on genetic alteration.
Collapse
Affiliation(s)
- Tobias Åkerström
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - Holger Sven Willenberg
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - Kenko Cupisti
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - Julian Ip
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - Samuel Backman
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - Ana Moser
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - Rajani Maharjan
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - Bruce Robinson
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - K Alexander Iwen
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - Henning Dralle
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - Cristina D Volpe
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - Martin Bäckdahl
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - Johan Botling
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - Peter Stålberg
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - Gunnar Westin
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - Martin K Walz
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - Hendrik Lehnert
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - Stan Sidhu
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - Jan Zedenius
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - Peyman Björklund
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| | - Per Hellman
- Department of Surgical SciencesUppsala University, Uppsala, SwedenDepartment of Endocrinology and MetabolismRostock University Medical Center, GermanyGeneralVisceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, GermanyUniversity of SydneyEndocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, AustraliaDepartment of Medicine IUniversity of Lübeck, University Hospital, Lübeck, GermanyDepartment of GeneralVisceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, GermanyDepartment of Molecular Medicine and SurgeryEndocrine Surgery Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, SwedenDepartment of ImmunologyGenetics and Pathology, Uppsala University, Uppsala, SwedenKlinik für Chirurgie und Zentrum für Minimal Invasive ChirurgieKliniken Essen-Mitte, Essen, Germany
| |
Collapse
|
46
|
Abstract
Ca2+-dependent inactivation (CDI) is a negative feedback regulation of voltage-gated Cav1 and Cav2 channels that is mediated by the Ca2+ sensing protein, calmodulin (CaM), binding to the pore-forming Cav α1 subunit. David Yue and his colleagues made seminal contributions to our understanding of this process, as well as factors that regulate CDI. Important in this regard are members of a family of Ca2+ binding proteins (CaBPs) that are related to calmodulin. CaBPs are expressed mainly in neural tissues and can antagonize CaM-dependent CDI for Cav1 L-type channels. This review will focus on the roles of CaBPs as Cav1-interacting proteins, and the significance of these interactions for vision, hearing, and neuronal Ca2+ signaling events.
Collapse
Affiliation(s)
- Jason Hardie
- a Departments of Molecular Physiology and Biophysics ; Otolaryngology-Head and Neck Surgery and Neurology; University of Iowa ; Iowa City , IA USA
| | - Amy Lee
- a Departments of Molecular Physiology and Biophysics ; Otolaryngology-Head and Neck Surgery and Neurology; University of Iowa ; Iowa City , IA USA
| |
Collapse
|
47
|
Nguyen MN, Kiriazis H, Ruggiero D, Gao XM, Su Y, Jian A, Han LP, McMullen JR, Du XJ. Spontaneous ventricular tachyarrhythmias in β2-adrenoceptor transgenic mice in relation to cardiac interstitial fibrosis. Am J Physiol Heart Circ Physiol 2015; 309:H946-57. [PMID: 26116714 DOI: 10.1152/ajpheart.00405.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/26/2015] [Indexed: 12/21/2022]
Abstract
Myocardial fibrosis is regarded as a pivotal proarrhythmic substrate, but there have been no comprehensive studies showing a correlation between the severity of fibrosis and ventricular tachyarrhythmias (VTAs). Our purpose was to document this relationship in a transgenic (TG) strain of mice with fibrotic cardiomyopathy. TG mice with cardiac overexpression of β2-adrenoceptors (β2-AR mice) and non-TG (NTG) littermates were studied at 4-12 mo of age. VTA was quantified by ECG telemetry. The effect of pharmacological blockade of β2-ARs on VTA was examined. Myocardial collagen content was determined by hydroxyproline assay. NTG and TG mice displayed circadian variation in heart rate, which was higher in TG mice than in NTG mice (P <0.05). Frequent spontaneous ventricular ectopic beats (VEBs) and ventricular tachycardia (VT) were prominent in TG mice but not present in NTG mice. The frequency of VEB and VT episodes in TG mice increased with age (P < 0.01). Ventricular collagen content was greater in TG mice than in NTG mice (P <0.001) and correlated with age (r = 0.71, P < 0.01). The number of VEBs or VT episodes correlated with age (r = 0.83 and r = 0.73) and the content of total or cross-linked collagen (r = 0.62∼0.66, all P <0.01). While having no effect in younger β2-TG mice, β2-AR blockade reduced the frequency of VTA in old β2-TG mice with more severe fibrosis. In conclusion, β2-TG mice exhibit interstitial fibrosis and spontaneous onset of VTA, becoming more severe with aging. The extent of cardiac fibrosis is a major determinant for both the frequency of VTA and proarrhythmic action of β2-AR activation.
Collapse
Affiliation(s)
- My-Nhan Nguyen
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia; Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Helen Kiriazis
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Diego Ruggiero
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia; University of Milan, Milan, Italy
| | - Xiao-Ming Gao
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia; Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Yidan Su
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Anne Jian
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Li-Ping Han
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia; WenZhou Medical University, WenZhou, China; and
| | - Julie R McMullen
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia; Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Physiology, Monash University, Melbourne, Australia
| | - Xiao-Jun Du
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia; Central Clinical School, Monash University, Melbourne, Victoria, Australia;
| |
Collapse
|
48
|
Decreased temporal precision of neuronal signaling as a candidate mechanism of auditory processing disorder. Hear Res 2015; 330:213-20. [PMID: 26119177 DOI: 10.1016/j.heares.2015.06.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 06/09/2015] [Accepted: 06/23/2015] [Indexed: 11/22/2022]
Abstract
The sense of hearing is the fastest of our senses and provides the first all-or-none action potential in the auditory nerve in less than four milliseconds. Short stimulus evoked latencies and their minimal variability are hallmarks of auditory processing from spiral ganglia to cortex. Here, we review how even small changes in first spike latencies (FSL) and their variability (jitter) impact auditory temporal processing. We discuss a number of mouse models with degraded FSL/jitter whose mutations occur exclusively in the central auditory system and therefore might serve as candidates to investigate the cellular mechanisms underlying auditory processing disorders (APD).
Collapse
|
49
|
Gaviño MA, Ford KJ, Archila S, Davis GW. Homeostatic synaptic depression is achieved through a regulated decrease in presynaptic calcium channel abundance. eLife 2015; 4. [PMID: 25884248 PMCID: PMC4443758 DOI: 10.7554/elife.05473] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/16/2015] [Indexed: 11/13/2022] Open
Abstract
Homeostatic signaling stabilizes synaptic transmission at the neuromuscular junction (NMJ) of Drosophila, mice, and human. It is believed that homeostatic signaling at the NMJ is bi-directional and considerable progress has been made identifying mechanisms underlying the homeostatic potentiation of neurotransmitter release. However, very little is understood mechanistically about the opposing process, homeostatic depression, and how bi-directional plasticity is achieved. Here, we show that homeostatic potentiation and depression can be simultaneously induced, demonstrating true bi-directional plasticity. Next, we show that mutations that block homeostatic potentiation do not alter homeostatic depression, demonstrating that these are genetically separable processes. Finally, we show that homeostatic depression is achieved by decreased presynaptic calcium channel abundance and calcium influx, changes that are independent of the presynaptic action potential waveform. Thus, we identify a novel mechanism of homeostatic synaptic plasticity and propose a model that can account for the observed bi-directional, homeostatic control of presynaptic neurotransmitter release.
Collapse
Affiliation(s)
- Michael A Gaviño
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Kevin J Ford
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Santiago Archila
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Graeme W Davis
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
50
|
Congenital stationary night blindness: An analysis and update of genotype–phenotype correlations and pathogenic mechanisms. Prog Retin Eye Res 2015; 45:58-110. [DOI: 10.1016/j.preteyeres.2014.09.001] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/25/2014] [Accepted: 09/30/2014] [Indexed: 01/18/2023]
|