1
|
Zhang C, Shi J, Dai Y, Li X, Leng J. Progress of the study of pericytes and their potential research value in adenomyosis. Sci Prog 2024; 107:368504241257126. [PMID: 38863331 PMCID: PMC11179483 DOI: 10.1177/00368504241257126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Pericytes (PCs) are versatile cells integral to the microcirculation wall, exhibiting specific stem cell traits. They are essential in modulating blood flow, ensuring vascular permeability, maintaining homeostasis, and aiding tissue repair process. Given their involvement in numerous disease-related pathological and physiological processes, the regulation of PCs has emerged as a focal point of research. Adenomyosis is characterized by the presence of active endometrial glands and stroma encased by an enlarged and proliferative myometrial layer, further accompanied by fibrosis and new blood vessel formation. This distinct pathological condition might be intricately linked with PCs. This article comprehensively reviews the markers associated with PCs, their contributions to angiogenesis, blood flow modulation, and fibrotic processes. Moreover, it provides a comprehensive overview of the current research on adenomyosis pathophysiology, emphasizing the potential correlation and future implications regarding PCs and the development of adenomyosis.
Collapse
Affiliation(s)
- Chenyu Zhang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Jinghua Shi
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Yi Dai
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Xiaoyan Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Jinhua Leng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| |
Collapse
|
2
|
Middel CS, Dietrich N, Hammes HP, Kroll J. Analysis of the morphology of retinal vascular cells in zebrafish ( Danio rerio). Front Cell Dev Biol 2023; 11:1267232. [PMID: 37849743 PMCID: PMC10577293 DOI: 10.3389/fcell.2023.1267232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
Background: Zebrafish (Danio rerio) have been established in recent years as a model organism to study Diabetic Retinopathy (DR). Loss of endothelial cells and pericytes is an early hallmark sign of developing DR in the mammalian retina. However, morphology, numbers, ratios, and distributions of different vascular cells in the retinal compartment in zebrafish have not yet been analyzed and compared with the mammalian retina. Methods: The retinal trypsin digest protocol was established on the zebrafish retina. Cell types were identified using the Tg(nflk:EGFP)-reporter line. Cells were quantified using quantitative morphometry. Results: Vascular cells in the zebrafish retina have distinct morphologies and locations. Nuclei of vascular mural cells appear as long and flat nuclei located near the vessel wall. Round nuclei within the vessel walls can be identified as endothelial cells. The vessel diameter decreases from central to peripheral parts of the retina. Additionally, the numbers of vascular cells decrease from central to peripheral parts of the retina. Discussion: The retinal trypsin digest protocol, which can be applied to the zebrafish retina, provides novel insights into the zebrafish retinal vascular architecture. Quantification of the different cell types shows that, in comparison to the mammalian retina, zebrafish have higher numbers of mural cells and an increased mural cell to endothelial cell ratio. This protocol enables to quantify mural cell and endothelial cell numbers, is easily adaptable to different transgenic and mutant zebrafish lines and will enable investigators to compare novel models on a single cell level.
Collapse
Affiliation(s)
- Chiara Simone Middel
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Fifth Medical Department and European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nadine Dietrich
- Fifth Medical Department and European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hans-Peter Hammes
- Fifth Medical Department and European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
3
|
Yang W, Xia F, Mei F, Shi S, Robichaux WG, Lin W, Zhang W, Liu H, Cheng X. Upregulation of Epac1 Promotes Pericyte Loss by Inducing Mitochondrial Fission, Reactive Oxygen Species Production, and Apoptosis. Invest Ophthalmol Vis Sci 2023; 64:34. [PMID: 37651112 PMCID: PMC10476449 DOI: 10.1167/iovs.64.11.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023] Open
Abstract
Purpose The pathogenic mechanisms behind the development of ischemic retinopathy are complex and poorly understood. This study investigates the involvement of exchange protein directly activated by cAMP (Epac)1 signaling in pericyte injury during ischemic retinopathy, including diabetic retinopathy, a disease that threatens vision. Methods Mouse models of retinal ischemia-reperfusion injury and type 1 diabetes induced by streptozotocin were used to investigate the pathogenesis of these diseases. The roles of Epac1 signaling in the pathogenesis of ischemic retinopathy were determined by an Epac1 knockout mouse model. The cellular and molecular mechanisms of Epac1-mediated pericyte dysfunction in response to high glucose were investigated by specific modulation of Epac1 activity in primary human retinal pericytes using Epac1-specific RNA interference and a pharmacological inhibitor. Results Ischemic injury or diabetes-induced retinal capillary degeneration were associated with an increased expression of Epac1 in the mouse retinal vasculature, including both endothelial cells and pericytes. Genetic deletion of Epac1 protected ischemic injury-induced pericyte loss and capillary degeneration in the mouse retina. Furthermore, high glucose-induced Epac1 expression in retinal pericytes was accompanied by increased Drp1 phosphorylation, mitochondrial fission, reactive oxygen species production, and caspase 3 activation. Inhibition of Epac1 via RNA interference or pharmacological approaches blocked high glucose-mediated mitochondrial dysfunction and caspase 3 activation. Conclusions Our study reveals an important role of Epac1 signaling in mitochondrial dynamics, reactive oxygen species production, and apoptosis in retinal pericytes and identifies Epac1 as a therapeutic target for treating ischemic retinopathy.
Collapse
Affiliation(s)
- Wenli Yang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, United States
- Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas, United States
| | - Fan Xia
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Fang Mei
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, United States
- Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas, United States
| | - Shuizhen Shi
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - William G. Robichaux
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, United States
- Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas, United States
| | - Wei Lin
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, United States
- Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas, United States
| | - Wenbo Zhang
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
- Department of Neurobiology, University of Texas Medical Branch, Galveston, Texas, United States
| | - Hua Liu
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, United States
- Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas, United States
| |
Collapse
|
4
|
Crincoli E, Colantuono D, Miere A, Zhao Z, Ferrara S, Souied EH. Perivenular Capillary Rarefaction in Diabetic Retinopathy: Interdevice Characterization and Association to Clinical Staging. OPHTHALMOLOGY SCIENCE 2023; 3:100269. [PMID: 36875334 PMCID: PMC9978849 DOI: 10.1016/j.xops.2023.100269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/29/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023]
Abstract
Purpose Geometric perfusion deficit (GPD) is a newly described OCT angiography (OCTA) parameter identifying the total area of presumed retinal ischemia. The aim of our study is to characterize differences in GPD and other common quantitative OCTA parameters between macular full field, perivenular zones, and periarteriolar zones for each clinical stage of nonproliferative diabetic retinopathy (DR) and to assess the influence of ultrahigh-speed acquisition and averaging on the described differences. Design Prospective observational study. Participants Forty-nine patients, including 11 (22.4%) with no sign of DR, 12 (24.5%) with mild DR, 13 (26.5%) with moderate DR, and 13 (26.5%) with severe DR. Patients with diabetic macular edema, proliferative DR, media opacity, head tremor, and overlapping retinal diseases or systemic diseases influencing OCTA were excluded. Methods OCT angiography was performed 3 times for each patient: 1 using Solix Fullrange single volume (V1) mode, 1 using Solix Fullrange 4 volumes mode with automatically averaged scan (V4), and 1 using AngioVue. Main Outcome Measures Full macular, periarteriolar, and perivenular perfusion density (PD), vessel length density (VLD), vessel density index, and GPD for both the superficial capillary plexus (SCP) and deep capillary plexus (DCP). Results In patients showing no sign of DR, PD and VLD were significantly lower in the perivenular area in both the DCP and SCP using V1 and V4, whereas GPD was significantly higher in the perivenular zone in the DCP and SCP with all 3 devices. In patients with mild DR, all 3 measurements (PD, VLD, and GPD) were significantly different in the perivenular zone with all 3 devices. In patients with moderate DR, PD and VLD were lower in the DCP and SCP when measured with V1 and V4. Moreover, GPD was higher in the perivenular zone in the DCP with all 3 devices, whereas only V4 detected a difference in the SCP. In severe DR, only V4 detected a lower PD and VLD and a higher GPD in the DCP of the perivenular zone. V4 also detected a higher GPD in the SCP. Conclusions Geometric perfusion deficit highlights prevalent perivenular location of macular capillary ischemia in all stages of DR. In severe DR patients, only averaging technology allows detection of the same finding. Financial Disclosures The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Key Words
- Capillary ischemia
- DCP, deep capillary plexus
- DR, diabetic retinopathy
- Diabetic retinopathy
- GPD, geometric perfusion deficit
- Geometric perfusion density
- OCT angiography
- OCTA, OCT angiography
- PD, perfusion density
- ROIs, regions of interest
- SCP, superficial capillary plexus
- V1, single volume
- V4, 4 volumes mode with automatically averaged scan
- VDI, vessel density index
- VLD, vessel length density
Collapse
Affiliation(s)
- Emanuele Crincoli
- Department of Ophthalmology, Centre Hospitalier Intercommunal de Créteil 40, Créteil, France
- Catholic University of “Sacro Cuore”, Rome, Italy
| | - Donato Colantuono
- Department of Ophthalmology, Centre Hospitalier Intercommunal de Créteil 40, Créteil, France
| | - Alexandra Miere
- Department of Ophthalmology, Centre Hospitalier Intercommunal de Créteil 40, Créteil, France
| | - Zhanlin Zhao
- Department of Ophthalmology, Centre Hospitalier Intercommunal de Créteil 40, Créteil, France
| | | | - Eric H. Souied
- Department of Ophthalmology, Centre Hospitalier Intercommunal de Créteil 40, Créteil, France
| |
Collapse
|
5
|
Rodent Models of Diabetic Retinopathy as a Useful Research Tool to Study Neurovascular Cross-Talk. BIOLOGY 2023; 12:biology12020262. [PMID: 36829539 PMCID: PMC9952991 DOI: 10.3390/biology12020262] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
Diabetes is a group of metabolic diseases leading to dysfunction of various organs, including ocular complications such as diabetic retinopathy (DR). Nowadays, DR treatments involve invasive options and are applied at the sight-threatening stages of DR. It is important to investigate noninvasive or pharmacological methods enabling the disease to be controlled at the early stage or to prevent ocular complications. Animal models are useful in DR laboratory practice, and this review is dedicated to them. The first part describes the characteristics of the most commonly used genetic rodent models in DR research. The second part focuses on the main chemically induced models. The authors pay particular attention to the streptozotocin model. Moreover, this section is enriched with practical aspects and contains the current protocols used in research in the last three years. Both parts include suggestions on which aspect of DR can be tested using a given model and the disadvantages of each model. Although animal models show huge variability, they are still an important and irreplaceable research tool. Note that the choice of a research model should be thoroughly considered and dependent on the aspect of the disease to be analyzed.
Collapse
|
6
|
Klotzsche-von Ameln A, Sprott D. Harnessing retinal phagocytes to combat pathological neovascularization in ischemic retinopathies? Pflugers Arch 2022; 474:575-590. [PMID: 35524802 PMCID: PMC9117346 DOI: 10.1007/s00424-022-02695-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022]
Abstract
Ischemic retinopathies (IR) are vision-threatening diseases that affect a substantial amount of people across all age groups worldwide. The current treatment options of photocoagulation and anti-VEGF therapy have side effects and are occasionally unable to prevent disease progression. It is therefore worthwhile to consider other molecular targets for the development of novel treatment strategies that could be safer and more efficient. During the manifestation of IR, the retina, normally an immune privileged tissue, encounters enhanced levels of cellular stress and inflammation that attract mononuclear phagocytes (MPs) from the blood stream and activate resident MPs (microglia). Activated MPs have a multitude of effects within the retinal tissue and have the potential to both counter and exacerbate the harmful tissue microenvironment. The present review discusses the current knowledge about the role of inflammation and activated retinal MPs in the major IRs: retinopathy of prematurity and diabetic retinopathy. We focus particularly on MPs and their secreted factors and cell–cell-based interactions between MPs and endothelial cells. We conclude that activated MPs play a major role in the manifestation and progression of IRs and could therefore become a promising new target for novel pharmacological intervention strategies in these diseases.
Collapse
Affiliation(s)
| | - David Sprott
- Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
7
|
Zeng X, Peng Y, Wang Y, Kang K. C1q/tumor necrosis factor-related protein-3 (CTRP3) activated by forkhead box O4 (FOXO4) down-regulation protects retinal pericytes against high glucose-induced oxidative damage through nuclear factor erythroid 2-related factor 2 (Nrf2)/Nuclear factor-kappaB (NF-κB) signaling. Bioengineered 2022; 13:6080-6091. [PMID: 35196182 PMCID: PMC8974204 DOI: 10.1080/21655979.2022.2031413] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Diabetic retinopathy (DR) remains a major cause of blindness among diabetes mellitus patients. C1q/tumor necrosis factor-related protein-3 (CTRP3) is a novel adipokine which is associated with multiple types of metabolism. Nevertheless, little is known about the role of CTRP3 in high glucose (HG)-induced human retinal pericytes (HRPs). This study set out to assess the influence of CTRP3 on HG-induced HRPs and elucidate the latent regulatory mechanism. RT-qPCR and Western blot were to analyze CTRP3 and forkhead box O4 (FOXO4) expression. Western blot was also utilized to detect the protein levels of apoptosis-related factors and nuclear factor erythroid 2-related factor 2 (Nrf2)/Nuclear factor-kappaB (NF-κB) signaling-related factors. CCK-8 was to measure cell proliferation while TUNEL assay was to estimate cell apoptosis. Levels of oxidative stress biomarkers including manganese (MnSOD), catalase (CAT) and malonedialdehyde (MDA) were evaluated by the corresponding kits. JASPAR database, ChIP and luciferase reporter assay were to verify the interaction between FOXO4 and CTRP3 promoter. The experimental results uncovered that CTRP3 expression was decreased in HG-stimulated HRPs. Moreover, CTRP3 overexpression strengthened the viability while abrogated the apoptosis and oxidative stress of HG-induced HRPs. Furthermore. FOXO4 was up-regulated in HG-induced HRPs. Besides, FOXO4 bond to CTRP3 promoter and inhibited CTRP3 transcription to modulate the Nrf2/NF-κB signaling pathway. FOXO4 up-regulation reversed the influence of CTRP3 elevation on the proliferation, apoptosis and oxidative stress of HG-induced HRPs. To be summarized, CTRP3 negatively modulated by FOXO4 prevented HG-induced oxidative damage in DR via modulation of Nrf2/NF-κB signaling.
Collapse
Affiliation(s)
- XiuYa Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.,Xiamen Key Laboratory of Genetic Testing, Xiamen, China
| | - YouYuan Peng
- Department of Hepatobiliary Surgery, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - YanFeng Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.,Xiamen Key Laboratory of Genetic Testing, Xiamen, China
| | - KeMing Kang
- Department of Ophthalmic Fundus Disease, Xiamen Eye Center of Xiamen University, Xiamen, China
| |
Collapse
|
8
|
Accumulation of acetaldehyde in aldh2.1 zebrafish causes increased retinal angiogenesis and impaired glucose metabolism. Redox Biol 2022; 50:102249. [PMID: 35114580 PMCID: PMC8818574 DOI: 10.1016/j.redox.2022.102249] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/03/2022] [Accepted: 01/21/2022] [Indexed: 01/22/2023] Open
Abstract
Reactive carbonyl species (RCS) are spontaneously formed in the metabolism and modify and impair the function of DNA, proteins and lipids leading to several organ complications. In zebrafish, knockout of the RCS detoxifying enzymes glyoxalase 1 (Glo 1), aldehyde dehydrogenase 3a1 (Aldh3a1) and aldo-ketoreductase 1a1a (Akr1a1a) showed a signature of elevated RCS which specifically regulated glucose metabolism, hyperglycemia and diabetic organ damage. aldh2.1 was compensatory upregulated in glo1−/− animals and therefore this study aimed to investigate the detoxification ability for RCS by Aldh2.1 in zebrafish independent of ethanol exposure. aldh2.1 knockout zebrafish were generated using CRISPR/Cas9 and subsequently analyzed on a histological, metabolomic and transcriptomic level. aldh2.1−/− zebrafish displayed increased endogenous acetaldehyde (AA) inducing an increased angiogenesis in retinal vasculature. Expression and pharmacological interventional studies identified an imbalance of c-Jun N-terminal kinase (JNK) and p38 MAPK induced by AA, which mediate an activation of angiogenesis. Moreover, increased AA in aldh2.1−/− zebrafish did not induce hyperglycemia, instead AA inhibited the expression of glucokinase (gck) and glucose-6-phosphatase (g6pc), which led to an impaired glucose metabolism. In conclusion, the data have identified AA as the preferred substrate for Aldh2.1's detoxification ability, which subsequently causes microvascular organ damage and impaired glucose metabolism. ALDH2.1 was compensatory upregulated in glyoxalase 1 zebrafish mutants. Loss of ALDH2.1 increases acetaldehyde leading to vascular retinal alterations. Acetaldehyde controls glucose metabolism via glucose-6-phosphate and glucokinase. Altered JNK and p38 cause microvascular complications.
Collapse
|
9
|
Advancing Diabetic Retinopathy Research: Analysis of the Neurovascular Unit in Zebrafish. Cells 2021; 10:cells10061313. [PMID: 34070439 PMCID: PMC8228394 DOI: 10.3390/cells10061313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/30/2022] Open
Abstract
Diabetic retinopathy is one of the most important microvascular complications associated with diabetes mellitus, and a leading cause of vision loss or blindness worldwide. Hyperglycaemic conditions disrupt microvascular integrity at the level of the neurovascular unit. In recent years, zebrafish (Danio rerio) have come into focus as a model organism for various metabolic diseases such as diabetes. In both mammals and vertebrates, the anatomy and the function of the retina and the neurovascular unit have been highly conserved. In this review, we focus on the advances that have been made through studying pathologies associated with retinopathy in zebrafish models of diabetes. We discuss the different cell types that form the neurovascular unit, their role in diabetic retinopathy and how to study them in zebrafish. We then present new insights gained through zebrafish studies. The advantages of using zebrafish for diabetic retinopathy are summarised, including the fact that the zebrafish has, so far, provided the only animal model in which hyperglycaemia-induced retinal angiogenesis can be observed. Based on currently available data, we propose potential investigations that could advance the field further.
Collapse
|
10
|
Synergistic interactions of PlGF and VEGF contribute to blood-retinal barrier breakdown through canonical NFκB activation. Exp Cell Res 2020; 397:112347. [PMID: 33130176 DOI: 10.1016/j.yexcr.2020.112347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 12/22/2022]
Abstract
To investigate the role of placental growth factor/vascular endothelial growth factor (PlGF-VEGF) heterodimers are involved in the blood-retinal barrier (BRB) breakdown and the associated mechanism, human retinal endothelial cells (HRECs) were treated with recombinant human (rh)PlGF-VEGF heterodimers and rhPlGF and studied in normal and high-glucose conditions. HREC barrier function was evaluated by the measurement of trans-endothelial electrical resistance (TEER). Adeno-Associated Virus Type 5 (AAV5) vectors overexpressed PlGF in the retina by intravitreal injection into the C57BL6 mouse eye. AAV5-GFP vector and naïve animals were used as controls. Immunofluorescence (IF) and western blots examined the protein expression of PlGF-VEGF heterodimers, VEGF, PlGF, NFκB, p-IκBα, ZO-1, and VE-cadherin in HREC and mouse retina. PlGF-VEGF heterodimers were detected predominantly in the HREC cell nuclei based on IF and cytoplasmic and nuclear fractionation experiments. High glucose treatment increased PlGF-VEGF nuclear abundance. Dot immunoblotting demonstrated a strong affinity of the 5D11D4 antibody to PlGF-VEGF heterodimers. rhPlGF-VEGF disrupted the barrier function of HREC, which was prevented by the neutralization of PlGF-VEGF by the 5D11D4 antibody. Stimulation of HRECs with rhPlGF also led to an increase in the nuclear signals for PlGF-VEGF, p-IκBα, and colocalization of NFκB p65 and PlGF-VEGF in the nuclei. The selective IKK2 inhibitor IMD0354 disrupted the nuclear colocalization. Treatment with IMD0354 restored the barrier function of HREC, as indicated by the ZO-1 and VE-cadherin expression. In the mouse retinas, PlGF overexpression by AAV5 vector reduced ZO-1 expression and increased abundance of pIκBα. PIGF/VEGF heterodimers mediate BRB breakdown potentially through the canonical NFκB activation.
Collapse
|
11
|
Eyre JJ, Williams RL, Levis HJ. A human retinal microvascular endothelial-pericyte co-culture model to study diabetic retinopathy in vitro. Exp Eye Res 2020; 201:108293. [PMID: 33039459 DOI: 10.1016/j.exer.2020.108293] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/22/2020] [Accepted: 10/05/2020] [Indexed: 11/24/2022]
Abstract
This human primary co-culture model using human retinal microvascular endothelial cells (hREC) and human retinal pericyte cells (hRP) aims to improve current understanding of the cellular changes occurring in the retinal microvasculature during diabetic retinopathy (DR). Currently, patients often present in clinic with late-stage DR, only when vision becomes impaired. Therefore, new strategies for earlier detection in clinic, combined with novel pharmaceutical and cellular interventions are essential in order to slow or halt the progression of DR from background to sight-threatening stage. This co-culture model can be used as a simple, replicable in vitro tool to discover and assess novel drug therapies and improve fundamental understanding of alterations to cell behaviour in the human retinal microvasculature during DR. hRP and hREC were cultured for up to 21 days in normoxic (20%) or hypoxic (2%) oxygen levels and physiological (5.5 mM) or very high (33 mM) glucose, to maintain a healthy, or induce a diabetic-like phenotype in vitro. Mono- or co-cultured hREC and hRP were seeded 1:1 in healthy (20% oxygen and 5.5 mM glucose) or diabetic-like (2% oxygen and 33 mM glucose) conditions, on either side of untreated polyethylene terephthalate (PET) transwell inserts, and cultured for 21 days. Mono- and co-cultures were analysed for changes in metabolic activity, angiogenic response and junctional protein expression, using immunofluorescence antibody labelling, flow cytometry and multiplex ELISA technology. hRP and hREC were successfully co-cultured, and the glucose and oxygen concentrations selected for the in vitro healthy and diabetic-like conditions were sufficient for cell viability and EC monolayer integrity, with evidence of an angiogenic response in diabetic-like conditions within the 21 day timeframe. Angiopoietin-2 (Ang-2), vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF) secretion were all increased, whilst hepatocyte growth factor (hHGF), tissue inhibitor for metalloproteinase-2 (TIMP-2) and interleukin-8 (IL-8) secretion were all reduced in the in vitro diabetic-like conditions. The secretion profile of co-cultures was different to mono-cultures, highlighting the importance of using co-culture models to collect data more reflective of the close relationship between hRP-hREC in vivo. Previous groups have developed useful co-culture models utilising non-human, immortalised or large vessel-sourced cells to explore changes to the vasculature during hypoxia and/or high glucose insult. In this study the use of human primary, retina-specific microvascular cells, mono- and co-cultured, collected over a longer culture period, has enabled detection of changes that may have been missed in previous models.
Collapse
Affiliation(s)
- Jessica J Eyre
- Department of Eye and Vision Science, Institute of Life Course & Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby St, Liverpool, United Kingdom.
| | - Rachel L Williams
- Department of Eye and Vision Science, Institute of Life Course & Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby St, Liverpool, United Kingdom.
| | - Hannah J Levis
- Department of Eye and Vision Science, Institute of Life Course & Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby St, Liverpool, United Kingdom.
| |
Collapse
|
12
|
Kremer H, Gebauer J, Elvers-Hornung S, Uhlig S, Hammes HP, Beltramo E, Steeb L, Harmsen MC, Sticht C, Klueter H, Bieback K, Fiori A. Pro-angiogenic Activity Discriminates Human Adipose-Derived Stromal Cells From Retinal Pericytes: Considerations for Cell-Based Therapy of Diabetic Retinopathy. Front Cell Dev Biol 2020; 8:387. [PMID: 32582693 PMCID: PMC7295949 DOI: 10.3389/fcell.2020.00387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Diabetic retinopathy (DR) is a frequent diabetes-associated complication. Pericyte dropout can cause increased vascular permeability and contribute to vascular occlusion. Adipose-derived stromal cells (ASC) have been suggested to replace pericytes and restore microvascular support as potential therapy of DR. In models of DR, ASC not only generated a cytoprotective and reparative environment by the secretion of trophic factors but also engrafted and integrated into the retina in a pericyte-like fashion. The aim of this study was to compare the pro-angiogenic features of human ASC and human retinal microvascular pericytes (HRMVPC) in vitro. The proliferation and the expression of ASC and HRMVPC markers were compared. Adhesion to high glucose-conditioned endothelial extracellular matrix, mimicking the diabetic microenvironment, was measured. The angiogenesis-promoting features of both cell types and their conditioned media on human retinal endothelial cells (EC) were assessed. To identify a molecular basis for the observed differences, gene expression profiling was performed using whole-genome microarrays, and data were validated using PCR arrays and flow cytometry. Based on multiplex cytokine results, functional studies on selected growth factors were performed to assess their role in angiogenic support. Despite a distinct heterogeneity in ASC and HRMVPC cultures with an overlap of expressed markers, ASC differed functionally from HRMVPC. Most importantly, the pro-angiogenic activity was solely featured by ASC, whereas HRMVPC actively suppressed vascular network formation. HRMVPC, in contrast to ASC, showed impaired adhesion and proliferation on the high glucose-conditioned endothelial extracellular matrix. These data were supported by gene expression profiles with differentially expressed genes. The vessel-stabilizing factors were more highly expressed in HRMVPC, and the angiogenesis-promoting factors were more highly expressed in ASC. The vascular endothelial growth factor receptor-2 inhibition efficiently abolished the ASC angiogenic supportive capacities, whereas the addition of angiopoietin-1 and angiopoietin-2 did not alter these effects. Our results clearly show that ASC are pro-angiogenic, whereas HRMVPC are marked by anti-angiogenic/EC-stabilizing features. These data support ASC as pericyte replacement in DR but also suggest a careful risk-to-benefit analysis to take full advantage of the ASC therapeutic features.
Collapse
Affiliation(s)
- Heiner Kremer
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Red Cross Blood Donation Service Baden-Württemberg - Hessen, Mannheim, Germany
| | - Julian Gebauer
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Red Cross Blood Donation Service Baden-Württemberg - Hessen, Mannheim, Germany
| | - Susanne Elvers-Hornung
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Red Cross Blood Donation Service Baden-Württemberg - Hessen, Mannheim, Germany
| | - Stefanie Uhlig
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Red Cross Blood Donation Service Baden-Württemberg - Hessen, Mannheim, Germany.,FlowCore Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Elena Beltramo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Martin C Harmsen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Carsten Sticht
- Center for Medical Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Harald Klueter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Red Cross Blood Donation Service Baden-Württemberg - Hessen, Mannheim, Germany.,Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Red Cross Blood Donation Service Baden-Württemberg - Hessen, Mannheim, Germany.,FlowCore Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,HEiKA-Heidelberg Karlsruhe Strategic Partnership, Karlsruhe Institute of Technology (KIT), Heidelberg University, Heidelberg, Germany
| | - Agnese Fiori
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Red Cross Blood Donation Service Baden-Württemberg - Hessen, Mannheim, Germany.,HEiKA-Heidelberg Karlsruhe Strategic Partnership, Karlsruhe Institute of Technology (KIT), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
13
|
Fiori A, Hammes HP, Bieback K. Adipose-derived mesenchymal stromal cells reverse high glucose-induced reduction of angiogenesis in human retinal microvascular endothelial cells. Cytotherapy 2020; 22:261-275. [PMID: 32247542 DOI: 10.1016/j.jcyt.2020.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/12/2020] [Accepted: 02/22/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND AIMS Diabetic retinopathy (DR) is characterized by a progressive alteration of the retinal microvasculature, arising from microaneurysms to leaky vessels and finally abnormal neovascularization. The hyperglycemia-mediated loss of pericytes is a key event in vessel degeneration causing vascular destabilization. To overcome this, mesenchymal stromal cells (MSCs) have been tested as pericyte replacement in several animal models showing repair and regeneration of DR-damaged vasculature. METHODS We hypothesized that adipose-derived mesenchymal stromal cells (ASCs) resist high glucose-induced challenges and protect human retinal microvascular endothelial cells (HRMVECs) from glucose-mediated injury. ASCs and HRMVECs were cultured under normal-glucose (NG; 1 g/L) and high-glucose (HG; 4.5 g/L) conditions comparing their phenotype and angiogenic potential. RESULTS Whereas ASCs were generally unaffected by HG, HG caused a reduction of the angiogenic potential in HRMVEC. Indeed, HG-treated HRMVECs formed fewer vascular tube structures in a basement membrane angiogenesis assay. However, this was not observed in a direct ASC and HRMVEC coculture angiogenesis assay. Increased oxidative stress levels appeared to be linked to the HG-induced reduction of angiogenesis, which could be restored by ASC-conditioned medium and antioxidant treatment. CONCLUSIONS These findings suggest that ASC resist HG-stress whereas endothelial cell angiogenic capacity is reduced. Thus, ASC may be potentially therapeutically active in DR by restoring angiogenic deficits in retinal endothelial cells by the secretion of proangiogenic factors. However, these data also inquire for a thorough risk assessment about the timing of the ASC-based cell therapy, which can be considered advantageous at early stage of DR, but possibly detrimental at the late neo-angiogenic stage of DR.
Collapse
Affiliation(s)
- Agnese Fiori
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Institute Mannheim, Germany
| | - Hans-Peter Hammes
- Endocrinology Department, 5th Medical Department, Medical Faculty Mannheim, Heidelberg University Mannheim, Baden-Württemberg, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Institute Mannheim, Germany; Flow Core Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Baden-Württemberg, Germany.
| |
Collapse
|
14
|
Mangialardi G, Ferland-McCollough D, Maselli D, Santopaolo M, Cordaro A, Spinetti G, Sambataro M, Sullivan N, Blom A, Madeddu P. Bone marrow pericyte dysfunction in individuals with type 2 diabetes. Diabetologia 2019; 62:1275-1290. [PMID: 31001672 PMCID: PMC6560025 DOI: 10.1007/s00125-019-4865-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/04/2019] [Indexed: 12/17/2022]
Abstract
AIMS/HYPOTHESIS Previous studies have shown that diabetes mellitus destabilises the integrity of the microvasculature in different organs by damaging the interaction between pericytes and endothelial cells. In bone marrow, pericytes exert trophic functions on endothelial cells and haematopoietic cells through paracrine mechanisms. However, whether bone marrow pericytes are a target of diabetes-induced damage remains unknown. Here, we investigated whether type 2 diabetes can affect the abundance and function of bone marrow pericytes. METHODS We conducted an observational clinical study comparing the abundance and molecular/functional characteristics of CD146+ pericytes isolated from the bone marrow of 25 individuals without diabetes and 14 individuals with uncomplicated type 2 diabetes, referring to our Musculoskeletal Research Unit for hip reconstructive surgery. RESULTS Immunohistochemistry revealed that diabetes causes capillary rarefaction and compression of arteriole size in bone marrow, without changing CD146+ pericyte counts. These data were confirmed by flow cytometry on freshly isolated bone marrow cells. We then performed an extensive functional and molecular characterisation of immunosorted CD146+ pericytes. Type 2 diabetes caused a reduction in pericyte proliferation, viability, migration and capacity to support in vitro angiogenesis, while inducing apoptosis. AKT is a key regulator of the above functions and its phosphorylation state is reportedly reduced in the bone marrow endothelium of individuals with diabetes. Surprisingly, we could not find a difference in AKT phosphorylation (at either Ser473 or Thr308) in bone marrow pericytes from individuals with and without diabetes. Nonetheless, the angiocrine signalling reportedly associated with AKT was found to be significantly downregulated, with lower levels of fibroblast growth factor-2 (FGF2) and C-X-C motif chemokine ligand 12 (CXCL12), and activation of the angiogenesis inhibitor angiopoietin 2 (ANGPT2). Transfection with the adenoviral vector carrying the coding sequence for constitutively active myristoylated AKT rescued functional defects and angiocrine signalling in bone marrow pericytes from diabetic individuals. Furthermore, an ANGPT2 blocking antibody restored the capacity of pericytes to promote endothelial networking. CONCLUSIONS/INTERPRETATION This is the first demonstration of pericyte dysfunction in bone marrow of people with type 2 diabetes. An altered angiocrine signalling from pericytes may participate in bone marrow microvascular remodelling in individuals with diabetes.
Collapse
Affiliation(s)
- Giuseppe Mangialardi
- Bristol Heart Institute, University of Bristol, Bristol Royal Infirmary, Level 7, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - David Ferland-McCollough
- Bristol Heart Institute, University of Bristol, Bristol Royal Infirmary, Level 7, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Davide Maselli
- Bristol Heart Institute, University of Bristol, Bristol Royal Infirmary, Level 7, Upper Maudlin Street, Bristol, BS2 8HW, UK
- IRCCS Multimedica, Milan, Italy
- Department of Biochemistry, University of Sassari, Sassari, Italy
| | - Marianna Santopaolo
- Bristol Heart Institute, University of Bristol, Bristol Royal Infirmary, Level 7, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Andrea Cordaro
- Bristol Heart Institute, University of Bristol, Bristol Royal Infirmary, Level 7, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | | | - Maria Sambataro
- Department of Specialized Medicines, Endocrine, Metabolic and Nutrition Diseases Unit, Santa Maria of Ca' Foncello Hospital, Treviso, Italy
| | - Niall Sullivan
- Muscloskeletal Research Unit, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Ashley Blom
- Muscloskeletal Research Unit, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Paolo Madeddu
- Bristol Heart Institute, University of Bristol, Bristol Royal Infirmary, Level 7, Upper Maudlin Street, Bristol, BS2 8HW, UK.
| |
Collapse
|
15
|
Ragelle H, Goncalves A, Kustermann S, Antonetti DA, Jayagopal A. Organ-On-A-Chip Technologies for Advanced Blood-Retinal Barrier Models. J Ocul Pharmacol Ther 2019; 36:30-41. [PMID: 31140899 PMCID: PMC6985766 DOI: 10.1089/jop.2019.0017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022] Open
Abstract
The blood-retinal barrier (BRB) protects the retina by maintaining an adequate microenvironment for neuronal function. Alterations of the junctional complex of the BRB and consequent BRB breakdown in disease contribute to a loss of neuronal signaling and vision loss. As new therapeutics are being developed to prevent or restore barrier function, it is critical to implement physiologically relevant in vitro models that recapitulate the important features of barrier biology to improve disease modeling, target validation, and toxicity assessment. New directions in organ-on-a-chip technology are enabling more sophisticated 3-dimensional models with flow, multicellularity, and control over microenvironmental properties. By capturing additional biological complexity, organs-on-chip can help approach actual tissue organization and function and offer additional tools to model and study disease compared with traditional 2-dimensional cell culture. This review describes the current state of barrier biology and barrier function in ocular diseases, describes recent advances in organ-on-a-chip design for modeling the BRB, and discusses the potential of such models for ophthalmic drug discovery and development.
Collapse
Affiliation(s)
- Héloïse Ragelle
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Andreia Goncalves
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Harbor, Michigan
| | - Stefan Kustermann
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - David A. Antonetti
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Harbor, Michigan
| | - Ashwath Jayagopal
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| |
Collapse
|
16
|
Barreto RSN, Romagnolli P, Cereta AD, Coimbra-Campos LMC, Birbrair A, Miglino MA. Pericytes in the Placenta: Role in Placental Development and Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1122:125-151. [PMID: 30937867 DOI: 10.1007/978-3-030-11093-2_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The placenta is the most variable organ, in terms of structure, among the species. Besides it, all placental types have the same function: production of viable offspring, independent of pregnancy length, litter number, or invasion level. The angiogenesis is a central mechanism for placental functionality, due to proper maternal-fetal communication and exchanges. Much is known about the vasculature structure, but little is known about vasculature development and cellular interactions. Pericytes are perivascular cells that were described to control vasculature stability and permeability. Nowadays there are several new functions discovered, such as lymphocyte modulation and activation, macrophage-like phagocytic properties, tissue regenerative and repair processes, and also the ability to modulate stem cells, majorly the hematopoietic. In parallel, placental tissues are known to be a particularly immune microenvironment and a rich stem cell niche. The pericyte function plethora could be similar in the placental microenvironment and could have a central role in placental development and homeostasis.
Collapse
Affiliation(s)
- Rodrigo S N Barreto
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, Butantã, Sao Paulo, Brazil
| | - Patricia Romagnolli
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, Butantã, Sao Paulo, Brazil
| | - Andressa Daronco Cereta
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, Butantã, Sao Paulo, Brazil
| | - Leda M C Coimbra-Campos
- Department of Pathology, Federal University of Minas Gerais, Pampulha, Belo Horizonte, Brazil
| | - Alexander Birbrair
- Department of Radiology, Columbia University Medical Center, New York, NY, USA.,Department of Pathology, Federal University of Minas Gerais, Pampulha, Belo Horizonte, Brazil
| | - Maria Angelica Miglino
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, Butantã, Sao Paulo, Brazil.
| |
Collapse
|
17
|
Liu H, Zhang W, Lilly B. Evaluation of Notch3 Deficiency in Diabetes-Induced Pericyte Loss in the Retina. J Vasc Res 2018; 55:308-318. [PMID: 30347392 PMCID: PMC6280662 DOI: 10.1159/000493151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/22/2018] [Indexed: 12/14/2022] Open
Abstract
Loss of vascular pericytes has long been associated with the onset of diabetic retinopathy; however, mechanisms contributing to pericyte dropout are not understood. Notch3 has been implicated in pericyte stability and survival, and linked to vascular integrity. Notch3 mutant mice exhibit progressive loss of retinal pericytes. Given that diabetic retinopathy is associated with pericyte loss, we sought to determine whether perturbation of Notch3 signaling contributes to diabetes-induced pericyte dropout and capillary degeneration. We utilized a pericyte-expressed LacZ transgene (XlacZ4) to examine pericyte loss in retinas of a type I diabetic mouse model (Ins2Akita) and Notch3-deficient mice. Notch3 null animals showed a dramatic loss of the LacZ marker by 8 weeks of age, while Ins2Akita diabetic and Notch3 heterozygous mice exhibited a much slower and subtler loss of LacZ. Although combined Notch3 heterozygosity in Ins2Akita diabetic animals did not show further deficits, the trypsin digest method revealed that Notch3 haploinsufficiency increased the formation of acellular capillaries in diabetic mice. Our data further indicate that Notch signaling is blunted in diabetic retinas and in cells exposed to hyperglycemia. These results are the first to demonstrate an association between Notch3 signaling, pericyte loss, and diabetic retinopathy.
Collapse
Affiliation(s)
- Hua Liu
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, Texas, USA
| | - Wenbo Zhang
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, USA
- Departments of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, USA
| | - Brenda Lilly
- Center for Cardiovascular Research, Columbus, Ohio,
- The Heart Center, Nationwide Children's Hospital, Columbus, Ohio,
- Department of Pediatrics, The Ohio State University, Columbus, Ohio,
| |
Collapse
|
18
|
Bruckner D, Kaser-Eichberger A, Bogner B, Runge C, Schrödl F, Strohmaier C, Silva ME, Zaunmair P, Couillard-Despres S, Aigner L, Rivera FJ, Reitsamer HA, Trost A. Retinal Pericytes: Characterization of Vascular Development-Dependent Induction Time Points in an Inducible NG2 Reporter Mouse Model. Curr Eye Res 2018; 43:1274-1285. [DOI: 10.1080/02713683.2018.1493130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Daniela Bruckner
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria
| | - Barbara Bogner
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria
| | - Christian Runge
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria
| | - Falk Schrödl
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria
- Department of Anatomy, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Clemens Strohmaier
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria
| | - Maria Elena Silva
- Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Pia Zaunmair
- Institute of Experimental Neuroregeneration, Paracelsus Medical University Salzburg, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Sebastien Couillard-Despres
- Institute of Experimental Neuroregeneration, Paracelsus Medical University Salzburg, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Ludwig Aigner
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria
- Institute of Mol. Regenerative Medicine, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Francisco J. Rivera
- Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria
- Institute of Mol. Regenerative Medicine, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Herbert A. Reitsamer
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria
- Director of the Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Andrea Trost
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, Salzburg, Austria
| |
Collapse
|
19
|
Cathery W, Faulkner A, Maselli D, Madeddu P. Concise Review: The Regenerative Journey of Pericytes Toward Clinical Translation. Stem Cells 2018; 36:1295-1310. [PMID: 29732653 PMCID: PMC6175115 DOI: 10.1002/stem.2846] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/15/2018] [Accepted: 04/19/2018] [Indexed: 12/27/2022]
Abstract
Coronary artery disease (CAD) is the single leading cause of death worldwide. Advances in treatment and management have significantly improved patient outcomes. On the other hand, although mortality rates have decreased, more people are left with sequelae that require additional treatment and hospitalization. Moreover, patients with severe nonrevascularizable CAD remain with only the option of heart transplantation, which is limited by the shortage of suitable donors. In recent years, cell-based regenerative therapy has emerged as a possible alternative treatment, with several regenerative medicinal products already in the clinical phase of development and others emerging as competitive preclinical solutions. Recent evidence indicates that pericytes, the mural cells of blood microvessels, represent a promising therapeutic candidate. Pericytes are abundant in the human body, play an active role in angiogenesis, vessel stabilization and blood flow regulation, and possess the capacity to differentiate into multiple cells of the mesenchymal lineage. Moreover, early studies suggest a robustness to hypoxic insult, making them uniquely equipped to withstand the ischemic microenvironment. This review summarizes the rationale behind pericyte-based cell therapy and the progress that has been made toward its clinical application. We present the different sources of pericytes and the case for harvesting them from tissue leftovers of cardiovascular surgery. We also discuss the healing potential of pericytes in preclinical animal models of myocardial ischemia (MI) and current practices to upgrade the production protocol for translation to the clinic. Standardization of these procedures is of utmost importance, as lack of uniformity in cell manufacturing may influence clinical outcome. Stem Cells 2018;36:1295-1310.
Collapse
Affiliation(s)
- William Cathery
- Experimental Cardiovascular Medicine, University of Bristol, Bristol Heart Institute, Bristol Royal Infirmary, Bristol, United Kingdom
| | - Ashton Faulkner
- Experimental Cardiovascular Medicine, University of Bristol, Bristol Heart Institute, Bristol Royal Infirmary, Bristol, United Kingdom
| | - Davide Maselli
- School of Bioscience and Medicine, University of Surrey, Guildford, United Kingdom & IRCCS Multimedica, Milan, Italy
| | - Paolo Madeddu
- Experimental Cardiovascular Medicine, University of Bristol, Bristol Heart Institute, Bristol Royal Infirmary, Bristol, United Kingdom
| |
Collapse
|
20
|
Bertlich M, Ihler F, Weiss BG, Freytag S, Strupp M, Canis M. Cochlear Pericytes Are Capable of Reversibly Decreasing Capillary Diameter In Vivo After Tumor Necrosis Factor Exposure. Otol Neurotol 2018; 38:e545-e550. [PMID: 29135875 DOI: 10.1097/mao.0000000000001523] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The aim of this work was to evaluate the effect of tumor necrosis factor (TNF) and its neutralization with etanercept on the capability of cochlear pericytes to alter capillary diameter in the stria vascularis. METHODS Twelve Dunkin-Hartley guinea pigs were randomly assigned to one of three groups. Each group was treated either with placebo and then placebo, TNF and then placebo, or TNF and then etanercept. Cochlear pericytes were visualized using diaminofluorescein-2-diacetate and intravasal blood flow by fluorescein-dextrane. Vessel diameter at sites of pericyte somas and downstream controls were quantified by specialized software. Values were obtained before treatment, after first treatment with tumor necrosis factor or placebo and after second treatment with etanercept or placebo. RESULTS Overall, 199 pericytes in 12 animals were visualized. After initial treatment with TNF, a significant decrease in vessel diameter at sites of pericyte somas (3.6 ±4.3%, n = 141) compared with placebo and downstream controls was observed. After initial treatment with TNF, the application of etanercept caused a significant increase (3.3 ±5.5%, n = 59) in vessel diameter at the sites of pericyte somata compared with placebo and downstream controls. CONCLUSION We have been able to show that cochlear pericytes are capable of reducing capillary diameter after exposition to TNF. Moreover, the reduction in capillary diameter observed after the application of TNF is revertible after neutralization of tumor necrosis factor by the application of etanercept. It seems that contraction of cochlear pericytes contributes to the regulation of cochlear blood flow.
Collapse
Affiliation(s)
- Mattis Bertlich
- *Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Center Göttingen, Göttingen, Germany †Population Health and Immunity Division, Walter and Eliza Hall Institute ‡Department of Medical Biology, University of Melbourne, Parkville, Australia §Department of Neurology, Munich University Hospital, Munich, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Hammes HP. Diabetic retinopathy: hyperglycaemia, oxidative stress and beyond. Diabetologia 2018; 61:29-38. [PMID: 28942458 DOI: 10.1007/s00125-017-4435-8] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 07/04/2017] [Indexed: 12/15/2022]
Abstract
Diabetic retinopathy remains a relevant clinical problem. In parallel with diagnostic and therapeutic improvements, the role of glycaemia and reactive metabolites causing cell stress and biochemical abnormalities as treatment targets needs continuous re-evaluation. Furthermore, the basic mechanisms of physiological angiogenesis, remodelling and pruning give important clues about the origins of vasoregression during the very early stages of diabetic retinopathy and can be modelled in animals. This review summarises evidence supporting a role for the neurovascular unit-composed of neuronal, glial and vascular cells-as a responder to the biochemical changes imposed by reactive metabolites and high glucose. Normoglycaemic animal models developing retinal degeneration, provide valuable information about common pathways downstream of progressive neuronal damage that induce vasoregression, as in diabetic models. These models can serve to assess novel treatments addressing the entire neurovascular unit for the benefit of early diabetic retinopathy.
Collapse
Affiliation(s)
- Hans-Peter Hammes
- 5. Med. Department, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167, Mannheim, Germany.
| |
Collapse
|
22
|
Beck SC, Feng Y, Sothilingam V, Garcia Garrido M, Tanimoto N, Acar N, Shan S, Seebauer B, Berger W, Hammes HP, Seeliger MW. Long-term consequences of developmental vascular defects on retinal vessel homeostasis and function in a mouse model of Norrie disease. PLoS One 2017; 12:e0178753. [PMID: 28575130 PMCID: PMC5456345 DOI: 10.1371/journal.pone.0178753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/18/2017] [Indexed: 11/18/2022] Open
Abstract
Loss of Norrin signalling due to mutations in the Norrie disease pseudoglioma gene causes severe vascular defects in the retina, leading to visual impairment and ultimately blindness. While the emphasis of experimental work so far was on the developmental period, we focus here on disease mechanisms that induce progression into severe adult disease. The goal of this study was the comprehensive analysis of the long-term effects of the absence of Norrin on vascular homeostasis and retinal function. In a mouse model of Norrie disease retinal vascular morphology and integrity were studied by means of in vivo angiography; the vascular constituents were assessed in detailed histological analyses using quantitative retinal morphometry. Finally, electroretinographic analyses were performed to assess the retinal function in adult Norrin deficient animals. We could show that the primary developmental defects not only persisted but developed into further vascular abnormalities and microangiopathies. In particular, the overall vessel homeostasis, the vascular integrity, and also the cellular constituents of the vascular wall were affected in the adult Norrin deficient retina. Moreover, functional analyses indicated to persistent hypoxia in the neural retina which was suggested as one of the major driving forces of disease progression. In summary, our data provide evidence that the key to adult Norrie disease are ongoing vascular modifications, driven by the persistent hypoxic conditions, which are ineffective to compensate for the primary Norrin-dependent defects.
Collapse
MESH Headings
- Angiography
- Animals
- Blindness/congenital
- Blindness/diagnostic imaging
- Blindness/genetics
- Blindness/pathology
- Capillaries/pathology
- Cell Hypoxia
- Disease Models, Animal
- Disease Progression
- Electroretinography
- Eye Proteins/genetics
- Eye Proteins/physiology
- Genetic Diseases, X-Linked/diagnostic imaging
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/pathology
- Lasers
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neovascularization, Pathologic/etiology
- Neovascularization, Pathologic/pathology
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Nervous System Diseases/diagnostic imaging
- Nervous System Diseases/genetics
- Nervous System Diseases/pathology
- Ophthalmoscopy/methods
- Retinal Degeneration
- Retinal Vessels/diagnostic imaging
- Retinal Vessels/pathology
- Spasms, Infantile/diagnostic imaging
- Spasms, Infantile/genetics
- Spasms, Infantile/pathology
Collapse
Affiliation(s)
- Susanne C. Beck
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Tuebingen, Germany
- * E-mail:
| | - Yuxi Feng
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Vithiyanjali Sothilingam
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Tuebingen, Germany
| | - Marina Garcia Garrido
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Tuebingen, Germany
| | - Naoyuki Tanimoto
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Tuebingen, Germany
| | - Niyazi Acar
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Tuebingen, Germany
| | - Shenliang Shan
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Britta Seebauer
- Institute of Medical Molecular Genetics, University of Zurich, Zurich, Switzerland
| | - Wolfgang Berger
- Institute of Medical Molecular Genetics, University of Zurich, Zurich, Switzerland
- Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University and ETH Zurich, Zurich, Switzerland
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Mathias W. Seeliger
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Tuebingen, Germany
| |
Collapse
|
23
|
Lee S, Elaskandrany M, Lau LF, Lazzaro D, Grant MB, Chaqour B. Interplay between CCN1 and Wnt5a in endothelial cells and pericytes determines the angiogenic outcome in a model of ischemic retinopathy. Sci Rep 2017; 7:1405. [PMID: 28469167 PMCID: PMC5431199 DOI: 10.1038/s41598-017-01585-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/31/2017] [Indexed: 02/06/2023] Open
Abstract
CYR61-CTGF-NOV (CCN)1 is a dynamically expressed extracellular matrix (ECM) protein with critical functions in cardiovascular development and tissue repair. Angiogenic endothelial cells (ECs) are a major cellular source of CCN1 which, once secreted, associates with the ECM and the cell surface and tightly controls the bidirectional flow of information between cells and the surrounding matrix. Endothelium-specific CCN1 deletion in mice using a cre/lox strategy induces EC hyperplasia and causes blood vessels to coalesce into large flat hyperplastic sinuses with no distinctive hierarchical organization. This is consistent with the role of CCN1 as a negative feedback regulator of vascular endothelial growth factor (VEGF) receptor activation. In the mouse model of oxygen-induced retinopathy (OIR), pericytes become the predominant CCN1 producing cells. Pericyte-specific deletion of CCN1 significantly decreases pathological retinal neovascularization following OIR. CCN1 induces the expression of the non-canonical Wnt5a in pericyte but not in EC cultures. In turn, exogenous Wnt5a inhibits CCN1 gene expression, induces EC proliferation and increases hypersprouting. Concordantly, treatment of mice with TNP470, a non-canonical Wnt5a inhibitor, reestablishes endothelial expression of CCN1 and significantly decreases pathological neovascular growth in OIR. Our data highlight the significance of CCN1-EC and CCN1-pericyte communication signals in driving physiological and pathological angiogenesis.
Collapse
Affiliation(s)
- Sangmi Lee
- Department of Cell Biology, State University of New York (SUNY), Downstate Medical Center, College of Medicine, Brooklyn, NY, 11203, USA
| | - Menna Elaskandrany
- Department of Cell Biology, State University of New York (SUNY), Downstate Medical Center, College of Medicine, Brooklyn, NY, 11203, USA
| | - Lester F Lau
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, IL, 60607, USA
| | - Douglas Lazzaro
- Department of Ophthalmology, Downstate Medical Center, Brooklyn, NY, 11203, USA
| | - Maria B Grant
- Departments of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Brahim Chaqour
- Department of Cell Biology, State University of New York (SUNY), Downstate Medical Center, College of Medicine, Brooklyn, NY, 11203, USA.
- Department of Ophthalmology, Downstate Medical Center, Brooklyn, NY, 11203, USA.
| |
Collapse
|
24
|
Leaf IA, Nakagawa S, Johnson BG, Cha JJ, Mittelsteadt K, Guckian KM, Gomez IG, Altemeier WA, Duffield JS. Pericyte MyD88 and IRAK4 control inflammatory and fibrotic responses to tissue injury. J Clin Invest 2016; 127:321-334. [PMID: 27869651 DOI: 10.1172/jci87532] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 10/13/2016] [Indexed: 12/21/2022] Open
Abstract
Fibrotic disease is associated with matrix deposition that results in the loss of organ function. Pericytes, the precursors of myofibroblasts, are a source of pathological matrix collagens and may be promising targets for treating fibrogenesis. Here, we have shown that pericytes activate a TLR2/4- and MyD88-dependent proinflammatory program in response to tissue injury. Similarly to classic immune cells, pericytes activate the NLRP3 inflammasome, leading to IL-1β and IL-18 secretion. Released IL-1β signals through pericyte MyD88 to amplify this response. Unexpectedly, we found that MyD88 and its downstream effector kinase IRAK4 intrinsically control pericyte migration and conversion to myofibroblasts. Specific ablation of MyD88 in pericytes or pharmacological inhibition of MyD88 signaling by an IRAK4 inhibitor in vivo protected against kidney injury by profoundly attenuating tissue injury, activation, and differentiation of myofibroblasts. Our data show that in pericytes, MyD88 and IRAK4 are key regulators of 2 major injury responses: inflammatory and fibrogenic. Moreover, these findings suggest that disruption of this MyD88-dependent pathway in pericytes might be a potential therapeutic approach to inhibit fibrogenesis and promote regeneration.
Collapse
|
25
|
Bauer PM, Zalis MC, Abdshill H, Deierborg T, Johansson F, Englund-Johansson U. Inflamed In Vitro Retina: Cytotoxic Neuroinflammation and Galectin-3 Expression. PLoS One 2016; 11:e0161723. [PMID: 27612287 PMCID: PMC5017668 DOI: 10.1371/journal.pone.0161723] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/10/2016] [Indexed: 12/20/2022] Open
Abstract
Background Disease progression in retinal neurodegeneration is strongly correlated to immune cell activation, which may have either a neuroprotective or neurotoxic effect. Increased knowledge about the immune response profile and retinal neurodegeneration may lead to candidate targets for treatments. Therefore, we have used the explanted retina as a model to explore the immune response and expression of the immune modulator galectin-3 (Gal-3), induced by the cultivation per se and after additional immune stimulation with lipopolysaccharide (LPS), and how this correlates with retinal neurotoxicity. Methods Post-natal mouse retinas were cultured in a defined medium. One group was stimulated with LPS (100 ng/ml, 24 h). Retinal architecture, apoptotic cell death, and micro- and macroglial activity were studied at the time of cultivation (0 days in vitro (DIV)) and at 3, 4 and 7 DIV using morphological staining, biochemical- and immunohistochemical techniques. Results Our results show that sustained activation of macro- and microglia, characterized by no detectable cytokine release and limited expression of Gal-3, is not further inducing apoptosis additional to the axotomy-induced apoptosis in innermost nuclear layer. An elevated immune response was detected after LPS stimulation, as demonstrated primarily by release of immune mediators (i.e. interleukin 2 (IL-2), IL-6, KC/GRO (also known as CLCX1) and tumour necrosis factor-α (TNF-α)), increased numbers of microglia displaying morphologies of late activation stages as well as Gal-3 expression. This was accompanied with increased apoptosis in the two additional nuclear layers, and damage to retinal gross architecture. Conclusion We demonstrate that an immune response characterized by sustained and increased release of cytokines, along with an increase in Gal-3 expression, is accompanied by significant increased neurotoxicity in the explanted retina. Further investigations using the current setting may lead to increased understanding on the mechanisms involved in neuronal loss in retinal neurodegenerations.
Collapse
Affiliation(s)
- Patrik Maximilian Bauer
- Dept. of Biology, Sec. Functional Zoology, Lund University, Lund, Sweden
- Dept. Clinical Sciences in Lund, Div. Ophthalmology, Lund University, Lund, Sweden
| | - Marina Castro Zalis
- Dept. Clinical Sciences in Lund, Div. Ophthalmology, Lund University, Lund, Sweden
| | - Hodan Abdshill
- Dept. Clinical Sciences in Lund, Div. Ophthalmology, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Dept. Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Fredrik Johansson
- Dept. of Biology, Sec. Functional Zoology, Lund University, Lund, Sweden
| | | |
Collapse
|
26
|
Kim JM, Hong KS, Song WK, Bae D, Hwang IK, Kim JS, Chung HM. Perivascular Progenitor Cells Derived From Human Embryonic Stem Cells Exhibit Functional Characteristics of Pericytes and Improve the Retinal Vasculature in a Rodent Model of Diabetic Retinopathy. Stem Cells Transl Med 2016; 5:1268-76. [PMID: 27388242 DOI: 10.5966/sctm.2015-0342] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/30/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED : Diabetic retinopathy (DR) is the leading cause of blindness in working-age people. Pericyte loss is one of the pathologic cellular events in DR, which weakens the retinal microvessels. Damage to the microvascular networks is irreversible and permanent; thus further progression of DR is inevitable. In this study, we hypothesize that multipotent perivascular progenitor cells derived from human embryonic stem cells (hESC-PVPCs) improve the damaged retinal vasculature in the streptozotocin-induced diabetic rodent models. We describe a highly efficient and feasible protocol to derive such cells with a natural selection method without cell-sorting processes. As a cellular model of pericytes, hESC-PVPCs exhibited marker expressions such as CD140B, CD146, NG2, and functional characteristics of pericytes. Following a single intravitreal injection into diabetic Brown Norway rats, we demonstrate that the cells localized alongside typical perivascular regions of the retinal vasculature and stabilized the blood-retinal barrier breakdown. Findings in this study highlight a therapeutic potential of hESC-PVPCs in DR by mimicking the role of pericytes in vascular stabilization. SIGNIFICANCE This study provides a simple and feasible method to generate perivascular progenitor cells from human embryonic stem cells. These cells share functional characteristics with pericytes, which are irreversibly lost at the onset of diabetic retinopathy. Animal studies demonstrated that replenishing the damaged pericytes with perivascular progenitor cells could restore retinal vascular integrity and prevent fluid leakage. This provides promising and compelling evidence that perivascular progenitor cells can be used as a novel therapeutic agent to treat diabetic retinopathy patients.
Collapse
Affiliation(s)
- Jung Mo Kim
- Department of Tissue Morphogenesis, Max-Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Ki-Sung Hong
- Stem Cell Research Lab, Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Won Kyung Song
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Daekyeong Bae
- Stem Cell Research Lab, Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - In-Kyu Hwang
- Stem Cell Research Lab, Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jong Soo Kim
- Stem Cell Research Lab, Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hyung-Min Chung
- Stem Cell Research Lab, Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
27
|
Ahl M, Avdic U, Skoug C, Ali I, Chugh D, Johansson UE, Ekdahl CT. Immune response in the eye following epileptic seizures. J Neuroinflammation 2016; 13:155. [PMID: 27346214 PMCID: PMC4922060 DOI: 10.1186/s12974-016-0618-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 06/08/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Epileptic seizures are associated with an immune response in the brain. However, it is not known whether it can extend to remote areas of the brain, such as the eyes. Hence, we investigated whether epileptic seizures induce inflammation in the retina. METHODS Adult rats underwent electrically induced temporal status epilepticus, and the eyes were studied 6 h, 1, and 7 weeks later with biochemical and immunohistochemical analyses. An additional group of animals received CX3CR1 antibody intracerebroventricularly for 6 weeks after status epilepticus. RESULTS Biochemical analyses and immunohistochemistry revealed no increased cell death and unaltered expression of several immune-related cytokines and chemokines as well as no microglial activation, 6 h post-status epilepticus compared to non-stimulated controls. At 1 week, again, retinal cytoarchitecture appeared normal and there was no cell death or micro- or macroglial reaction, apart from a small decrease in interleukin-10. However, at 7 weeks, even if the cytoarchitecture remained normal and no ongoing cell death was detected, the numbers of microglia were increased ipsi- and contralateral to the epileptic focus. The microglia remained within the synaptic layers but often in clusters and with more processes extending into the outer nuclear layer. Morphological analyses revealed a decrease in surveying and an increase in activated microglia. In addition, increased levels of the chemokine KC/GRO and cytokine interleukin-1β were found. Furthermore, macroglial activation was noted in the inner retina. No alterations in numbers of phagocytic cells, infiltrating macrophages, or vascular pericytes were observed. Post-synaptic density-95 cluster intensity was reduced in the outer nuclear layer, reflecting seizure-induced synaptic changes without disrupted cytoarchitecture in areas with increased microglial activation. The retinal gliosis was decreased by a CX3CR1 immune modulation known to reduce gliosis within epileptic foci, suggesting a common immunological reaction. CONCLUSIONS Our results are the first evidence that epileptic seizures induce an immune response in the retina. It has a potential to become a novel non-invasive tool for detecting brain inflammation through the eyes.
Collapse
Affiliation(s)
- Matilda Ahl
- Inflammation and Stem Cell Therapy Group, Division of Clinical Neurophysiology, Lund University, BMC A11, Sölvegatan 17, SE-221 84, Lund, Sweden.,Lund Epilepsy Center, Lund University, SE-221 85, Lund, Sweden
| | - Una Avdic
- Inflammation and Stem Cell Therapy Group, Division of Clinical Neurophysiology, Lund University, BMC A11, Sölvegatan 17, SE-221 84, Lund, Sweden.,Lund Epilepsy Center, Lund University, SE-221 85, Lund, Sweden
| | - Cecilia Skoug
- Division of Ophthalmology, Department of Clinical Sciences, Lund University, SE-221 85, Lund, Sweden
| | - Idrish Ali
- Inflammation and Stem Cell Therapy Group, Division of Clinical Neurophysiology, Lund University, BMC A11, Sölvegatan 17, SE-221 84, Lund, Sweden.,Lund Epilepsy Center, Lund University, SE-221 85, Lund, Sweden
| | - Deepti Chugh
- Inflammation and Stem Cell Therapy Group, Division of Clinical Neurophysiology, Lund University, BMC A11, Sölvegatan 17, SE-221 84, Lund, Sweden.,Lund Epilepsy Center, Lund University, SE-221 85, Lund, Sweden
| | - Ulrica Englund Johansson
- Division of Ophthalmology, Department of Clinical Sciences, Lund University, SE-221 85, Lund, Sweden
| | - Christine T Ekdahl
- Inflammation and Stem Cell Therapy Group, Division of Clinical Neurophysiology, Lund University, BMC A11, Sölvegatan 17, SE-221 84, Lund, Sweden. .,Lund Epilepsy Center, Lund University, SE-221 85, Lund, Sweden.
| |
Collapse
|
28
|
Gökçinar-Yagci B, Uçkan-Çetinkaya D, Çelebi-Saltik B. Pericytes: Properties, Functions and Applications in Tissue Engineering. Stem Cell Rev Rep 2016; 11:549-59. [PMID: 25865146 DOI: 10.1007/s12015-015-9590-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Mesenchymal stem cells (MSCs) are one of the most studied adult stem cells and in recent years. They have become attractive agents/cell source for cellular therapy and regenerative medicine applications. During investigations about their origin, researchers hypothesized that perivascular regions are the common anatomical regions where MSCs come from and perivascular cells like pericytes (PCs) (Rouget cells, mural cells) are in vivo counterparts of MSCs. Beside capillaries and microvessels as their most common locations, PCs are also found in large vessels (arteries and veins). They can be isolated from several tissues and organs particularly from retina and brain. There are different approaches about their isolation, characterization and culture but there has been no common protocol yet because of the lack of defined PC-specific marker. They make special contact with endothelial cells in the basement membrane and have very important functions in several tissues and organs. They participate in vascular development, stabilization, maturation, and remodeling, blood pressure control, endothelial cell proliferation and differentiation, contractility of vascular smooth muscle cells, wound healing, vasculogenesis and angiogenesis, long-term maintenance of hematopoietic stem cells in bone marrow niche. Their multipotential differentiation capacity and participation in many events in the body make PCs preferred cells in tissue engineering applications including 3D blood-brain barrier models, skeletal muscle constructs, bone tissue engineering and tissue-engineered vascular grafts.
Collapse
Affiliation(s)
- Beyza Gökçinar-Yagci
- Health Science Institute, Department of Stem Cell Sciences, Hacettepe University, 06100, Ankara, Turkey
| | | | | |
Collapse
|
29
|
Rutkowski P, May CA. Nutrition and Vascular Supply of Retinal Ganglion Cells during Human Development. Front Neurol 2016; 7:49. [PMID: 27092102 PMCID: PMC4823307 DOI: 10.3389/fneur.2016.00049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/16/2016] [Indexed: 01/03/2023] Open
Abstract
PURPOSE To review the roles of the different vascular beds nourishing the inner retina [retinal ganglion cells (RGCs)] during normal development of the human eye, using our own tissue specimens to support our conclusions. METHODS An extensive search of the appropriate literature included PubMed, Google scholar, and numerous available textbooks. In addition, choroidal and retinal NADPH-diaphorase stained whole mount preparations were investigated. RESULTS The first critical interaction between vascular bed and RGC formation occurs in the sixth to eighth month of gestation leading to a massive reduction of RGCs mainly in the peripheral retina. The first 3 years of age are characterized by an intense growth of the eyeball to near adult size. In the adult eye, the influence of the choroid on inner retinal nutrition was determined by examining the peripheral retinal watershed zones in more detail. CONCLUSION This delicately balanced situation of RGC nutrition is described in the different regions of the eye, and a new graphic presentation is introduced to combine morphological measurements and clinical visual field data.
Collapse
Affiliation(s)
| | - Christian Albrecht May
- Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden , Dresden , Germany
| |
Collapse
|
30
|
Hypertensive retinopathy in a transgenic angiotensin-based model. Clin Sci (Lond) 2016; 130:1075-88. [PMID: 27026533 DOI: 10.1042/cs20160092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/29/2016] [Indexed: 12/18/2022]
Abstract
Severe hypertension destroys eyesight. The RAS (renin-angiotensin system) may contribute to this. This study relied on an established angiotensin, AngII (angiotensin II)-elevated dTGR (double-transgenic rat) model and same-background SD (Sprague-Dawley) rat controls. In dTGRs, plasma levels of AngII were increased. We determined the general retinal phenotype and observed degeneration of ganglion cells that we defined as vascular degeneration. We also inspected relevant gene expression and lastly observed alterations in the outer blood-retinal barrier. We found that both scotopic a-wave and b-wave as well as oscillatory potential amplitude were significantly decreased in dTGRs, compared with SD rat controls. However, the b/a-wave ratio remained unchanged. Fluorescence angiography of the peripheral retina indicated that exudates, or fluorescein leakage, from peripheral vessels were increased in dTGRs compared with controls. Immunohistological analysis of blood vessels in retina whole-mount preparations showed structural alterations in the retina of dTGRs. We then determined the general retinal phenotype. We observed the degeneration of ganglion cells, defined vascular degenerations and finally found differential expression of RAS-related genes and angiogenic genes. We found the expression of both human angiotensinogen and human renin in the hypertensive retina. Although the renin gene expression was not altered, the AngII levels in the retina were increased 4-fold in the dTGR retina compared with that in SD rats, a finding with mechanistic implications. We suggest that alterations in the outer blood-retinal barrier could foster an area of visual-related research based on our findings. Finally, we introduce the dTGR model of retinal disease.
Collapse
|
31
|
Trost A, Lange S, Schroedl F, Bruckner D, Motloch KA, Bogner B, Kaser-Eichberger A, Strohmaier C, Runge C, Aigner L, Rivera FJ, Reitsamer HA. Brain and Retinal Pericytes: Origin, Function and Role. Front Cell Neurosci 2016; 10:20. [PMID: 26869887 PMCID: PMC4740376 DOI: 10.3389/fncel.2016.00020] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/18/2016] [Indexed: 12/13/2022] Open
Abstract
Pericytes are specialized mural cells located at the abluminal surface of capillary blood vessels, embedded within the basement membrane. In the vascular network these multifunctional cells fulfil diverse functions, which are indispensable for proper homoeostasis. They serve as microvascular stabilizers, are potential regulators of microvascular blood flow and have a central role in angiogenesis, as they for example regulate endothelial cell proliferation. Furthermore, pericytes, as part of the neurovascular unit, are a major component of the blood-retina/brain barrier. CNS pericytes are a heterogenic cell population derived from mesodermal and neuro-ectodermal germ layers acting as modulators of stromal and niche environmental properties. In addition, they display multipotent differentiation potential making them an intriguing target for regenerative therapies. Pericyte-deficiencies can be cause or consequence of many kinds of diseases. In diabetes, for instance, pericyte-loss is a severe pathological process in diabetic retinopathy (DR) with detrimental consequences for eye sight in millions of patients. In this review, we provide an overview of our current understanding of CNS pericyte origin and function, with a special focus on the retina in the healthy and diseased. Finally, we highlight the role of pericytes in de- and regenerative processes.
Collapse
Affiliation(s)
- Andrea Trost
- Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, University Clinic of Ophthalmology and OptometrySalzburg, Austria; Molecular Regenerative Medicine, Paracelsus Medical UniversitySalzburg, Austria
| | - Simona Lange
- Molecular Regenerative Medicine, Paracelsus Medical UniversitySalzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University SalzburgSalzburg, Austria
| | - Falk Schroedl
- Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, University Clinic of Ophthalmology and OptometrySalzburg, Austria; Anatomy, Paracelsus Medical UniversitySalzburg, Austria
| | - Daniela Bruckner
- Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, University Clinic of Ophthalmology and Optometry Salzburg, Austria
| | - Karolina A Motloch
- Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, University Clinic of Ophthalmology and Optometry Salzburg, Austria
| | - Barbara Bogner
- Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, University Clinic of Ophthalmology and Optometry Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, University Clinic of Ophthalmology and Optometry Salzburg, Austria
| | - Clemens Strohmaier
- Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, University Clinic of Ophthalmology and Optometry Salzburg, Austria
| | - Christian Runge
- Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, University Clinic of Ophthalmology and Optometry Salzburg, Austria
| | - Ludwig Aigner
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University SalzburgSalzburg, Austria; Anatomy, Paracelsus Medical UniversitySalzburg, Austria
| | - Francisco J Rivera
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University SalzburgSalzburg, Austria; Anatomy, Paracelsus Medical UniversitySalzburg, Austria
| | - Herbert A Reitsamer
- Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, University Clinic of Ophthalmology and OptometrySalzburg, Austria; Anatomy, Paracelsus Medical UniversitySalzburg, Austria
| |
Collapse
|
32
|
The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res 2015; 51:156-86. [PMID: 26297071 DOI: 10.1016/j.preteyeres.2015.08.001] [Citation(s) in RCA: 704] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/12/2015] [Accepted: 08/13/2015] [Indexed: 12/15/2022]
Abstract
Diabetic retinopathy is the most frequently occurring complication of diabetes mellitus and remains a leading cause of vision loss globally. Its aetiology and pathology have been extensively studied for half a century, yet there are disappointingly few therapeutic options. Although some new treatments have been introduced for diabetic macular oedema (DMO) (e.g. intravitreal vascular endothelial growth factor inhibitors ('anti-VEGFs') and new steroids), up to 50% of patients fail to respond. Furthermore, for people with proliferative diabetic retinopathy (PDR), laser photocoagulation remains a mainstay therapy, even though it is an inherently destructive procedure. This review summarises the clinical features of diabetic retinopathy and its risk factors. It describes details of retinal pathology and how advances in our understanding of pathogenesis have led to identification of new therapeutic targets. We emphasise that although there have been significant advances, there is still a pressing need for a better understanding basic mechanisms enable development of reliable and robust means to identify patients at highest risk, and to intervene effectively before vision loss occurs.
Collapse
|
33
|
Hammes HP, Welp R, Kempe HP, Wagner C, Siegel E, Holl RW, DPV Initiative—German BMBF Competence Network Diabetes Mellitus. Risk Factors for Retinopathy and DME in Type 2 Diabetes-Results from the German/Austrian DPV Database. PLoS One 2015; 10:e0132492. [PMID: 26177037 PMCID: PMC4503301 DOI: 10.1371/journal.pone.0132492] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 06/15/2015] [Indexed: 11/25/2022] Open
Abstract
To assess the prevalence and risk factors for early and severe diabetic retinopathy and macular edema in a large cohort of patients with type 2 diabetes Retinopathy grading (any retinopathy, severe retinopathy, diabetic macular edema) and risk factors of 64784 were prospectively recorded between January 2000 and March 2013 and analyzed by Kaplan–Meier analysis and logistic regression. Retinopathy was present in 20.12% of subjects, maculopathy was found in 0.77%. HbA1c > 8%, microalbuminuria, hypertension, BMI > 35 kg/m2 and male sex were significantly associated with any retinopathy, while HbA1c and micro- and macroalbuminuria were the strongest risk predictors for severe retinopathy. Presence of macroalbuminuria increased the risk for DME by 177%. Retinopathy remains a significant clinical problem in patients with type 2 diabetes. Metabolic control and blood pressure are relevant factors amenable to treatment. Concomitant kidney disease identifies high risk patients and should be emphasized in interdisciplinary communication.
Collapse
Affiliation(s)
- Hans-Peter Hammes
- 5th Medical Department, University Medical Center, University of Heidelberg, Mannheim, Germany
- * E-mail:
| | - Reinhard Welp
- Department of Internal Medicine, Knappschafts-Krankenhaus, Bottrop, Germany
| | - Hans-Peter Kempe
- Centre for Diabetes and Nutrition Ludwigshafen, Ludwigshafen, Germany
| | | | - Erhard Siegel
- Department of Internal Medicine, St. Josefs Hospital, Heidelberg, Germany
| | - Reinhard W. Holl
- Institute of Epidemiology and Medical Biometry, University Medical Centre, Ulm, Germany
| | | |
Collapse
|
34
|
Klaassen I, van Geest RJ, Kuiper EJ, van Noorden CJF, Schlingemann RO. The role of CTGF in diabetic retinopathy. Exp Eye Res 2015; 133:37-48. [PMID: 25819453 DOI: 10.1016/j.exer.2014.10.016] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 10/23/2022]
Abstract
Connective tissue growth factor (CTGF, CCN2) contributes to fibrotic responses in diabetic retinopathy, both before clinical manifestations occur in the pre-clinical stage of diabetic retinopathy (PCDR) and in proliferative diabetic retinopathy (PDR), the late clinical stage of the disease. CTGF is a secreted protein that modulates the actions of many growth factors and extracellular matrix (ECM) proteins, leading to tissue reorganization, such as ECM formation and remodeling, basal lamina (BL) thickening, pericyte apoptosis, angiogenesis, wound healing and fibrosis. In PCDR, CTGF contributes to thickening of the retinal capillary BL and is involved in loss of pericytes. In this stage, CTGF expression is induced by advanced glycation end products, and by growth factors such as vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-β. In PDR, the switch from neovascularization to a fibrotic phase - the angio-fibrotic switch - in PDR is driven by CTGF, in a critical balance with vascular endothelial growth factor (VEGF). We discuss here the roles of CTGF in the pathogenesis of DR in relation to ECM remodeling and wound healing mechanisms, and explore whether CTGF may be a potential novel therapeutic target in the clinical management of early as well as late stages of DR.
Collapse
Affiliation(s)
- Ingeborg Klaassen
- Ocular Angiogenesis Group, Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Rob J van Geest
- Ocular Angiogenesis Group, Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Esther J Kuiper
- Ocular Angiogenesis Group, Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Cornelis J F van Noorden
- Ocular Angiogenesis Group, Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Reinier O Schlingemann
- Ocular Angiogenesis Group, Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Netherlands Institute for Neuroscience, Royal Academy of Sciences, Amsterdam, The Netherlands
| |
Collapse
|
35
|
Lilly B. We have contact: endothelial cell-smooth muscle cell interactions. Physiology (Bethesda) 2015; 29:234-41. [PMID: 24985327 DOI: 10.1152/physiol.00047.2013] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Blood vessels are composed of two primary cell types, endothelial cells and smooth muscle cells, each providing a unique contribution to vessel function. Signaling between these two cell types is essential for maintaining tone in mature vessels, and their communication is critical during development, and for repair and remodeling associated with blood vessel growth. This review will highlight the pathways that endothelial cells and smooth muscle cells utilize to communicate during vessel formation and discuss how disruptions in these pathways contribute to disease.
Collapse
Affiliation(s)
- Brenda Lilly
- Department of Pediatrics, Nationwide Children's Hospital, The Heart Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
36
|
|
37
|
Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O. Pericytes at the intersection between tissue regeneration and pathology. Clin Sci (Lond) 2015; 128:81-93. [PMID: 25236972 PMCID: PMC4200531 DOI: 10.1042/cs20140278] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Perivascular multipotent cells, pericytes, contribute to the generation and repair of various tissues in response to injury. They are heterogeneous in their morphology, distribution, origin and markers, and elucidating their molecular and cellular differences may inform novel treatments for disorders in which tissue regeneration is either impaired or excessive. Moreover, these discoveries offer novel cellular targets for therapeutic approaches to many diseases. This review discusses recent studies that support the concept that pericyte subtypes play a distinctive role in myogenesis, neurogenesis, adipogenesis, fibrogenesis and angiogenesis.
Collapse
Affiliation(s)
- Alexander Birbrair
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
- Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
| | - Tan Zhang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
| | - Zhong-Min Wang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
| | - Maria Laura Messi
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
| | - Akiva Mintz
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
| | - Osvaldo Delbono
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
- Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
| |
Collapse
|
38
|
Lupo G, Motta C, Salmeri M, Spina-Purrello V, Alberghina M, Anfuso CD. An in vitro retinoblastoma human triple culture model of angiogenesis: a modulatory effect of TGF-β. Cancer Lett 2014; 354:181-8. [PMID: 25128651 DOI: 10.1016/j.canlet.2014.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/05/2014] [Accepted: 08/05/2014] [Indexed: 01/15/2023]
Abstract
Retinoblastoma is the most common intraocular tumour in children. In view of understanding the molecular mechanisms through which angiogenic switch on happens in the early phases of reciprocal interaction between tumour and cells constituting retinal microvessel, Transwell co-cultures constituted by human retinal endothelial cells (HREC), pericytes (HRPC), and human retinoblastoma cell line Y-79 were performed. Y-79 enhanced HREC proliferation, reduced by the introduction of HRPC in triple culture. In HREC/HRPC cultures, TGF-β in media increased, decreasing in triple cultures. High VEGF levels in triple cultures witnessed the establishment of a strongly in vitro angiogenic environment. Y-79 induced in HREC an increase in c- and iPLA2, phospho-cPLA2, inducible COX-2 protein expressions, PLA2 activities and prostaglandin E2 (PGE2) release. These effects were attenuated when HRPC were introduced in triple culture. Moreover, antibody silencing of TGF-β demonstrated a strong correlation between the signalling pathway triggered by TGF-β of pericytal origin and the phospholipase activation and the modulation of PGE2 release. Inhibiting VEGFA effect, the HRPC loss in triple culture decreased, showing its modulatory effect on their survival. Relying on the data here presented, sustaining the pericytal survival in a tumour retinal environment could ensure the integrity of microvessels and the TGF-β supply, essential for controlling aberrant endothelial pruning and angiogenesis.
Collapse
Affiliation(s)
- Gabriella Lupo
- Dipartimento di Biomedicina Clinica e Molecolare, Università di Catania, Italy
| | - Carla Motta
- Dipartimento di Biomedicina Clinica e Molecolare, Università di Catania, Italy
| | - Mario Salmeri
- Dipartimento di Scienze Bio-Mediche, Università di Catania, Italy
| | | | - Mario Alberghina
- Dipartimento di Biomedicina Clinica e Molecolare, Università di Catania, Italy
| | | |
Collapse
|