1
|
Ovchinnikov A, Potekhina A, Filatova A, Svirida O, Zherebchikova K, Ageev F, Belyavskiy E. Effects of empagliflozin on functional capacity, LV filling pressure, and cardiac reserves in patients with type 2 diabetes mellitus and heart failure with preserved ejection fraction: a randomized controlled open-label trial. Cardiovasc Diabetol 2025; 24:196. [PMID: 40346546 PMCID: PMC12065317 DOI: 10.1186/s12933-025-02756-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/25/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Clinical trials have established the prognostic benefits of sodium‒glucose cotransporter 2 (SGLT2) inhibitors in patients with type 2 diabetes mellitus (T2DM) and heart failure (HF) with preserved ejection fraction (HFpEF), although the underlying mechanisms are not clearly understood. The purpose of this study was to determine the effects of the SGLT2 inhibitor empagliflozin on functional capacity, left ventricular (LV) diastolic function/filling pressure, and cardiac reserves in patients with HFpEF and T2DM. METHODS In the present prospective single-center trial, we enrolled 70 diabetic patients with stable HF according to the New York Heart Association functional class II-III criteria, an LV ejection fraction ≥ 50%, and increased LV filling pressure at rest and/or during exercise (determined by echocardiography). The patients were randomly assigned in an open-label fashion to the empagliflozin group (10 mg a day, n = 35) or the control group (n = 35) for 6 months. Echocardiography (at rest and during exercise), the 6-min walk test distance (6MWD), blood levels of N-terminal pro-brain natriuretic peptide (NT-proBNP), and the profibrotic biomarker sST2 were analysed at baseline and 6 months after randomization. The primary endpoint was the change in the 6MWD, and the secondary endpoints included the change in the left atrial (LA) volume index, early mitral inflow to mitral annulus relaxation velocity (E/e') ratio both at rest and during exercise, key cardiac reserves and biomarkers in the blood from baseline to 6 months. RESULTS After 6 months of empagliflozin therapy, the 6MWTD significantly increased, whereas the LA volume index and the E/e' ratio both at rest and during exercise decreased compared with those of the control group (P < 0.05 for all). LV diastolic, LA reservoir and contractile, and chronotropic reserves also improved in the empagliflozin group compared with those in the control group (P < 0.05 for all). Furthermore, treatment with empagliflozin led to improvements in NT-proBNP and ST2 blood levels compared with those in the control group (P < 0.05 for both). CONCLUSIONS In diabetic patients with HFpEF, empagliflozin treatment improved exercise capacity, which appeared to be the result of favourable effects on LV diastolic dysfunction and key cardiac reserves: LV diastolic, LA reservoir and contractile, and chronotropic. These haemodynamic mechanisms may underline the benefits of SGLT2 inhibitors in large-scale HFpEF trials. TRIAL REGISTRATION URL: https://www. CLINICALTRIALS gov . Unique Identifier NCT03753087.
Collapse
Affiliation(s)
- Artem Ovchinnikov
- Laboratory of Myocardial Fibrosis and Heart Failure With Preserved Ejection Fraction, National Medical Research Center of Cardiology Named After Academician E.I. Chazov, Academician Chazov St., 15a, Moscow, 121552, Russia.
- Department of Clinical Functional Diagnostics, Russian University of Medicine of the Ministry of Health of the Russian Federation, Dolgorukovskaya St., 4, Moscow, 127006, Russia.
| | - Alexandra Potekhina
- Laboratory of Myocardial Fibrosis and Heart Failure With Preserved Ejection Fraction, National Medical Research Center of Cardiology Named After Academician E.I. Chazov, Academician Chazov St., 15a, Moscow, 121552, Russia
- Department of Pulmonary Hypertension and Heart Disease, National Medical Research Center of Cardiology Named After Academician E.I. Chazov, Academician Chazov St., 15a, Moscow, 121552, Russia
| | - Anastasiia Filatova
- Laboratory of Myocardial Fibrosis and Heart Failure With Preserved Ejection Fraction, National Medical Research Center of Cardiology Named After Academician E.I. Chazov, Academician Chazov St., 15a, Moscow, 121552, Russia
- Laboratory of Cell Immunology, National Medical Research Center of Cardiology Named After Academician E.I. Chazov, Academician Chazov St., 15a, Moscow, 121552, Russia
| | - Olga Svirida
- Laboratory of Myocardial Fibrosis and Heart Failure With Preserved Ejection Fraction, National Medical Research Center of Cardiology Named After Academician E.I. Chazov, Academician Chazov St., 15a, Moscow, 121552, Russia
- Outpatient Department, National Medical Research Center of Cardiology Named After Academician E.I. Chazov, Academician Chazov St., 15a, Moscow, 121552, Russia
| | - Kristina Zherebchikova
- Outpatient Department, National Medical Research Center of Cardiology Named After Academician E.I. Chazov, Academician Chazov St., 15a, Moscow, 121552, Russia
- Department of Endocrinology No.1, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Trubetskaya St., 8-2, Moscow, 119991, Russia
| | - Fail Ageev
- Outpatient Department, National Medical Research Center of Cardiology Named After Academician E.I. Chazov, Academician Chazov St., 15a, Moscow, 121552, Russia
| | | |
Collapse
|
2
|
Wu E, Macklin S, Zhang Y, Thai K, Nghiem L, Di Ciano-Oliveira C, Coelho N, Wang H, Advani SL, Desjardins JF, Yuen DA, Misra P, Connelly KA, Nyengaard JR, Gilbert RE. Induction of proximal tubular proliferation and lengthening in response to sodium glucose linked cotransporter-2 inhibition in experimental rats. J Diabetes Investig 2025. [PMID: 40260754 DOI: 10.1111/jdi.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/24/2025] Open
Abstract
AIMS/INTRODUCTION While SGLT2 accounts for >90% of kidney glucose reabsorption, its pharmacological inhibition or genetic knockdown reduces glucose reabsorption by only 50%. MATERIALS AND METHODS We postulated that the less than expected glucosuric response to SGLT2 inhibition might result from a compensatory increase in the length of the proximal tubule as seen in experimental diabetes where early tubular proliferation is followed by tubular lengthening. Taking advantage of their differing anatomical locations, stereological techniques were used to differentiate the SGLT1 expressing straight proximal tubule that lies within the outer stripe of the outer medulla (S3 segment) and that of the predominantly SGLT2 expressing early proximal convoluted tubule located within the kidney cortex (S1, S2 segments). RESULTS The SGLT2 inhibitor, dapagliflozin, induced an early, transient hyperplastic response (3-fold increase of Ki67 labelling, P < 0.0001) in S3 proximal tubular cells followed by a 32% increase in its length (P < 0.0001). In contrast, the length of the SGLT2 expressing S1, S2 segments of the proximal tubule was unaffected. CONCLUSIONS The finding that SGLT2 inhibition leads to expansion of the S3 segment of the proximal tubule, the site of SGLT1, is suggestive of a physiological response to diminish urinary glucose loss akin to that occurring in experimental diabetes. These findings provide a cogent explanation for the less-thanthan-expected effect of this drug class on glucose reabsorption.
Collapse
Affiliation(s)
- Ellen Wu
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sarah Macklin
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yanling Zhang
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kerri Thai
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Linda Nghiem
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Caterina Di Ciano-Oliveira
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Nuno Coelho
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hai Wang
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Suzanne L Advani
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jean-François Desjardins
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Darren A Yuen
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Paraish Misra
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kim A Connelly
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jens R Nyengaard
- Section for Stereology and Microscopy, Department of Clinical Medicine, Core Centre for Molecular Morphology, Aarhus University, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Richard E Gilbert
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Gaddy A, Elrggal M, Madariaga H, Kelly A, Lerma E, Colbert GB. Diabetic Kidney Disease. Dis Mon 2025; 71:101848. [PMID: 39753456 DOI: 10.1016/j.disamonth.2024.101848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Diabetic kidney disease is a leading cause of kidney failure worldwide and is easily detectable with screening examination. Diabetes causes hyperfiltration and activation of the renin-angiotensin aldosterone system by hemodynamic changes within the nephron, which perpetuates damaging physiology. Diagnosis is often clinical after detection of heavy proteinuria in a patient with diabetes,but can be confirmed by observation of histologic stages on kidney biopsy. Mainstays of treatment include angiotensin conversion or receptor blockade, mineralocorticoid receptor blockade, and tight glucose control. Newer agents favored in diabetic kidney disease are sodium glucose-cotransporters and glucagon-like peptide 1 receptor agonists, both for glycemic control and for various methods of reversing damaging physiology.
Collapse
Affiliation(s)
- Anna Gaddy
- Division of Nephrology, Medical College of Wisconsin, 8700 Watertown Plank Road Milwaukee, WI 53226, USA.
| | - Mohamed Elrggal
- Nephrology Department, Kidney and Urology Center, Alexandria, Egypt
| | | | - Adam Kelly
- Division of Nephrology, Medical College of Wisconsin, 8700 Watertown Plank Road Milwaukee, WI 53226, USA
| | - Edgar Lerma
- Section of Nephrology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Gates B Colbert
- Division of Nephrology, Texas A&M University College of Medicine in Dallas, Dallas, TX 75246, USA
| |
Collapse
|
4
|
Li T, Luo CJ, Yi ZQ, Li L. Dapagliflozin Attenuates Myocardial Inflammation and Apoptosis after Coronary Microembolization in Rats by Regulating the SIRT1/NF-κB Signaling Pathway. FRONT BIOSCI-LANDMRK 2025; 30:27082. [PMID: 40152380 DOI: 10.31083/fbl27082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/30/2024] [Accepted: 12/09/2024] [Indexed: 03/29/2025]
Abstract
BACKGROUND Coronary microembolization (CME) often occurs as a serious complication during or after percutaneous coronary intervention (PCI), leading to an impairment in heart function, inflammation, and cell death. Dapagliflozin (DAPA) has been shown to have cardioprotective effects. However, its role and exact mechanism in CME remains unclear. METHODS A preclinical CME model was developed via the administration of microspheres into the left ventricle. In an in vitro model, the CME-created microenvironment was observed by using lipopolysaccharide (LPS) with hypoxic induction on H9C2 cardiomyocytes. Before developing both experimental models, DAPA or the sirtuin 1 (SIRT1) inhibitor "EX-527" was administered. Echocardiography, histological examination, and molecular and immunological assays were carried out to assess the levels of cardiac tissue or cardiomyocyte damage, inflammation, and apoptosis. RESULTS Heart dysfunction and tissue damage caused by CME can be alleviated by pre-treatment with DAPA, which also reduces myocardial inflammation and apoptosis. Moreover, both experimental studies have depicted that DAPA can upregulate the SIRT1 level and downregulate the acetylation and phosphorylation levels of nuclear factor kappa-B (NF-κB) p65. This effect inhibits the induction of NF-κB signaling and mitigates cardiomyocyte damage. However, DAPA's cardioprotective effect was reversed when co-treated with EX-527. CONCLUSIONS DAPA reduces myocardial damage caused by CME by suppressing myocarditis and apoptosis via the SIRT1/NF-κB axis.
Collapse
Affiliation(s)
- Tao Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, Guangxi, China
| | - Chang-Jun Luo
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, Guangxi, China
- Department of Cardiology, Affiliated Liutie Central Hospital of Guangxi Medical University, 545007 Liuzhou, Guangxi, China
| | - Ze-Qiang Yi
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, Guangxi, China
| | - Lang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, Guangxi, China
| |
Collapse
|
5
|
Takemiya K, Seo W, Voll RJ, Zhao S, Joseph G, Wang S, Zeng F, Nye JA, Murthy N, Taylor WR, Goodman MM. Synthesis, radiolabeling, and biological evaluation of methyl 6-deoxy-6-[ 18F]fluoro-4-thio-α-d-maltotrioside as a positron emission tomography bacterial imaging agent. RSC Adv 2025; 15:8809-8829. [PMID: 40124918 PMCID: PMC11927393 DOI: 10.1039/d5ra00693g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025] Open
Abstract
We developed fluorine-18 ([18F]) labeled methyl 6-deoxy-6-fluoro-4-thio-α-d-maltotrioside ([18F]MFTMT) for bacterial imaging and evaluated its stability and efficacy in vitro and in vivo. We found that Staphylococcus aureus (S. aureus) internalized [18F]MFTMT whereas Escherichia coli (E. coli) and CHO-K1 cells did not, in in vitro. Positron emission tomography imaging with [18F]MFTMT revealed that radioactivity accumulated not only in the S. aureus-infected group but also in the E. coli-infected and non-infectious inflammation groups. Further studies revealed that rat serum digested [18F]MFTMT into [18F]-methyl 6-deoxy-6-fluoro-4-thio-α-d-maltoside ([18F]MFTM), while [18F]MFTMT was stable in human serum for 210 min. [18F]MFTM was identified as the only radioactive metabolite in vivo. Similar to [18F]MFTMT, [18F]MFTM was internalized only by S. aureus. [18F]MFTM was identified as the only radioactive metabolite in vivo. We found that the sodium-glucose co-transporter 1 (SGLT1) is expressed in inflammatory tissue, and SGLT1 overexpressing cells showed increased retention of [18F]MFTMT and [18F]MFTM in vitro. Our study showed that the thio-glycosyl bond is stable against enzymatic digestion, and maltotetraose or a longer maltodextrin backbone is desirable for bacteria-specific imaging to avoid nonspecific uptake by SGLT1.
Collapse
Affiliation(s)
- Kiyoko Takemiya
- Division of Cardiology, Department of Medicine, Emory University School of Medicine 1750 Haygood Dr NE Atlanta Georgia 30322 USA
| | - Wonewoo Seo
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University 1841 Clifton Road NE Atlanta Georgia 30322 USA
- Center for Systems Imaging, Emory University 1364 Clifton Rd NE Atlanta Georgia 30022 USA
| | - Ronald J Voll
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University 1841 Clifton Road NE Atlanta Georgia 30322 USA
- Center for Systems Imaging, Emory University 1364 Clifton Rd NE Atlanta Georgia 30022 USA
| | - Sheng Zhao
- Department of Bioengineering, University of California at Berkeley Stanley Hall 306 Berkeley California 94720 USA
| | - Giji Joseph
- Division of Cardiology, Department of Medicine, Emory University School of Medicine 1750 Haygood Dr NE Atlanta Georgia 30322 USA
| | - Shelly Wang
- Division of Cardiology, Department of Medicine, Emory University School of Medicine 1750 Haygood Dr NE Atlanta Georgia 30322 USA
| | - Fanxing Zeng
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University 1841 Clifton Road NE Atlanta Georgia 30322 USA
- Center for Systems Imaging, Emory University 1364 Clifton Rd NE Atlanta Georgia 30022 USA
| | - Jonathon A Nye
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University 1841 Clifton Road NE Atlanta Georgia 30322 USA
- Center for Systems Imaging, Emory University 1364 Clifton Rd NE Atlanta Georgia 30022 USA
- Department of Radiology and Radiological Science, Medical University of South Carolina 261 Calhoun Street Charleston South Carolina 29425 USA
| | - Niren Murthy
- Department of Bioengineering, University of California at Berkeley Stanley Hall 306 Berkeley California 94720 USA
| | - W Robert Taylor
- Division of Cardiology, Department of Medicine, Emory University School of Medicine 1750 Haygood Dr NE Atlanta Georgia 30322 USA
- Joseph Maxwell Cleland Atlanta VA Medical Center 1670 Clairmont Road Decatur Georgia 30033 USA
- Wallace H. Coulter Department of Biomedical Engineering, School of Medicine, Emory University 1750 Haygood Dr NE Atlanta Georgia 30322 USA
| | - Mark M Goodman
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University 1841 Clifton Road NE Atlanta Georgia 30322 USA
- Center for Systems Imaging, Emory University 1364 Clifton Rd NE Atlanta Georgia 30022 USA
| |
Collapse
|
6
|
Pandey A, Alcaraz M, Saggese P, Soto A, Gomez E, Jaldu S, Yanagawa J, Scafoglio C. Exploring the Role of SGLT2 Inhibitors in Cancer: Mechanisms of Action and Therapeutic Opportunities. Cancers (Basel) 2025; 17:466. [PMID: 39941833 PMCID: PMC11815934 DOI: 10.3390/cancers17030466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Cancer cells utilize larger amounts of glucose than their normal counterparts, and the expression of GLUT transporters is a known diagnostic target and a prognostic factor for many cancers. Recent evidence has shown that sodium-glucose transporters are also expressed in different types of cancer, and SGLT2 has raised particular interest because of the current availability of anti-diabetic drugs that block SGLT2 in the kidney, which could be readily re-purposed for the treatment of cancer. The aim of this article is to perform a narrative review of the existing literature and a critical appraisal of the evidence for a role of SGLT2 inhibitors for the treatment and prevention of cancer. SGLT2 inhibitors block Na-dependent glucose uptake in the proximal kidney tubules, leading to glycosuria and the improvement of blood glucose levels and insulin sensitivity in diabetic patients. They also have a series of systemic effects, including reduced blood pressure, weight loss, and reduced inflammation, which also make them effective for heart failure and kidney disease. Epidemiological evidence in diabetic patients suggests that individuals treated with SGLT2 inhibitors may have a lower incidence and better outcomes of cancer. These studies are confirmed by pre-clinical evidence of an effect of SGLT2 inhibitors against cancer in xenograft and genetically engineered models, as well as by in vitro mechanistic studies. The action of SGLT2 inhibitors in cancer can be mediated by the direct inhibition of glucose uptake in cancer cells, as well as by systemic effects. In conclusion, there is evidence suggesting a potential role of SGLT2 inhibitors against different types of cancer. The most convincing evidence exists for lung and breast adenocarcinomas, hepatocellular carcinoma, and pancreatic cancer. Several ongoing clinical trials will provide more information on the efficacy of SGLT2 inhibitors against cancer.
Collapse
Affiliation(s)
- Aparamita Pandey
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, 700 Tiverton Drive, Los Angeles, CA 90095, USA; (A.P.); (A.S.); (E.G.); (S.J.)
| | - Martín Alcaraz
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, 700 Tiverton Drive, Los Angeles, CA 90095, USA; (A.P.); (A.S.); (E.G.); (S.J.)
| | - Pasquale Saggese
- Department of Biology and Biotechnologies Charles Darwin, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Adriana Soto
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, 700 Tiverton Drive, Los Angeles, CA 90095, USA; (A.P.); (A.S.); (E.G.); (S.J.)
| | - Estefany Gomez
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, 700 Tiverton Drive, Los Angeles, CA 90095, USA; (A.P.); (A.S.); (E.G.); (S.J.)
| | - Shreya Jaldu
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, 700 Tiverton Drive, Los Angeles, CA 90095, USA; (A.P.); (A.S.); (E.G.); (S.J.)
| | - Jane Yanagawa
- Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, 700 Tiverton Drive, Los Angeles, CA 90095, USA;
| | - Claudio Scafoglio
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, 700 Tiverton Drive, Los Angeles, CA 90095, USA; (A.P.); (A.S.); (E.G.); (S.J.)
| |
Collapse
|
7
|
Spellman MJ, Assaf T, Nangia S, Fernandez J, Nicholson KC, Shepard BD. Handling the sugar rush: the role of the renal proximal tubule. Am J Physiol Renal Physiol 2024; 327:F1013-F1025. [PMID: 39447117 PMCID: PMC11687834 DOI: 10.1152/ajprenal.00265.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 10/26/2024] Open
Abstract
Blood glucose homeostasis is critical to ensure the proper functioning of the human body. Through the processes of filtration, reabsorption, secretion, and metabolism, much of this task falls to the kidneys. With a rise in glucose and other added sugars, there is an increased burden on this organ, mainly the proximal tubule, which is responsible for all glucose reabsorption. In this review, we focus on the current physiological and cell biological functions of the renal proximal tubule as it works to reabsorb and metabolize glucose and fructose. We also highlight the physiological adaptations that occur within the proximal tubule as sugar levels rise under pathophysiological conditions including diabetes. This includes the detrimental impacts of an excess glucose load that leads to glucotoxicity. Finally, we explore some of the emerging therapeutics that modulate renal glucose handling and the systemic protection that can be realized by targeting the reabsorptive properties of the kidney.
Collapse
Affiliation(s)
- Michael J Spellman
- Department of Human Science, Georgetown University, Washington, District of Columbia, United States
| | - Tala Assaf
- Department of Human Science, Georgetown University, Washington, District of Columbia, United States
| | - Shivani Nangia
- Department of Human Science, Georgetown University, Washington, District of Columbia, United States
| | - Joel Fernandez
- Department of Human Science, Georgetown University, Washington, District of Columbia, United States
| | - Kyle C Nicholson
- Department of Human Science, Georgetown University, Washington, District of Columbia, United States
| | - Blythe D Shepard
- Department of Human Science, Georgetown University, Washington, District of Columbia, United States
| |
Collapse
|
8
|
Siddiqui R, Obi Y, Dossabhoy NR, Shafi T. Is There a Role for SGLT2 Inhibitors in Patients with End-Stage Kidney Disease? Curr Hypertens Rep 2024; 26:463-474. [PMID: 38913113 PMCID: PMC11455675 DOI: 10.1007/s11906-024-01314-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2024] [Indexed: 06/25/2024]
Abstract
PURPOSE OF REVIEW Chronic kidney disease and end-stage kidney disease (ESKD) are well-established risk factors for cardiovascular disease (CVD), the leading cause of mortality in the dialysis population. Conventional therapies, such as statins, blood pressure control, and renin-angiotensin-aldosterone system blockade, have inadequately addressed this cardiovascular risk, highlighting the unmet need for effective treatment strategies. Sodium-glucose transporter 2 (SGLT2) inhibitors have demonstrated significant renal and cardiovascular benefits among patients with type 2 diabetes, heart failure, or CKD at risk of progression. Unfortunately, efficacy data in dialysis patients is lacking as ESKD was an exclusion criterion for all major clinical trials of SGLT2 inhibitors. This review explores the potential of SGLT2 inhibitors in improving cardiovascular outcomes among patients with ESKD, focusing on their direct cardiac effects. RECENT FINDINGS Recent clinical and preclinical studies have shown promising data for the application of SGLT2 inhibitors to the dialysis population. SGLT2 inhibitors may provide cardiovascular benefits to dialysis patients, not only indirectly by preserving the remaining kidney function and improving anemia but also directly by lowering intracellular sodium and calcium levels, reducing inflammation, regulating autophagy, and alleviating oxidative stress and endoplasmic reticulum stress within cardiomyocytes and endothelial cells. This review examines the current clinical evidence and experimental data supporting the use of SGLT2 inhibitors, discusses its potential safety concerns, and outlines ongoing clinical trials in the dialysis population. Further research is needed to evaluate the safety and effectiveness of SGLT2 inhibitor use among patients with ESKD.
Collapse
Affiliation(s)
- Rehma Siddiqui
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, USA
| | - Yoshitsugu Obi
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, USA.
| | - Neville R Dossabhoy
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, USA
| | - Tariq Shafi
- Division of Kidney Diseases, Hypertension, & Transplantation, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
9
|
Wang N, Wu Z, Ren J, Zheng X, Han X. SGLT2 Inhibitors in Patients with Heart Failure: A Model-Based Meta-Analysis. Clin Pharmacokinet 2024; 63:1667-1678. [PMID: 39576469 DOI: 10.1007/s40262-024-01443-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 12/17/2024]
Abstract
AIMS This study aimed to quantify the effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on N-terminal pro-B-type natriuretic peptide (NT-proBNP) as a therapeutic approach for heart failure. METHODS A systematic literature review was conducted to collect pharmacokinetics (PK) and pharmacodynamics (PD) data on empagliflozin, dapagliflozin, and canagliflozin. Population pharmacokinetic models were developed separately for each drug, along with PK/PD turnover models for SGLT2 inhibitors, to describe the time course of NT-proBNP and simulate its changes over 52 weeks. RESULTS A total of 42 publications were included in this study. The results showed that baseline NT-proBNP levels, estimated glomerular filtration rate levels, and body weight significantly influenced the therapeutic effects of SGLT2 inhibitors. Among the studied drugs, canagliflozin demonstrated a greater reduction in NT-proBNP at comparable baseline levels. CONCLUSIONS Baseline NT-proBNP concentration, renal function, and body weight were covariates affecting the efficacy of SGLT2 inhibitors in reducing NT-proBNP. Canagliflozin showed the most favorable treatment outcomes at similar baseline levels. This model-based meta-analysis approach may support further drug development for SGLT2 inhibitors.
Collapse
Affiliation(s)
- Na Wang
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Zhen Wu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Jianwei Ren
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Xin Zheng
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
10
|
Dugal JK, Malhi AS, Ramazani N, Yee B, DiCaro MV, Lei K. Non-Pharmacological Therapy in Heart Failure and Management of Heart Failure in Special Populations-A Review. J Clin Med 2024; 13:6993. [PMID: 39598137 PMCID: PMC11594731 DOI: 10.3390/jcm13226993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Non-pharmacological therapies play an essential role in the management of heart failure, complementing pharmacological treatments to mitigate disease progression and improve patient outcomes. This review provides an updated perspective on non-pharmacological interventions with a focus on lifestyle modifications, device therapies, and the management of heart failure in special populations, such as the elderly, women, and patients with comorbid conditions like renal dysfunction and diabetes. Key lifestyle interventions, including sodium and fluid restriction, dietary changes, and physical activity, are explored for their impact on symptom reduction, hospital readmissions, and quality of life. Device therapies like cardiac resynchronization therapy (CRT) and implantable cardioverter defibrillators (ICD) are also evaluated for their effectiveness in reducing mortality in patients with advanced HF. Special attention is given to vulnerable populations, emphasizing the need for individualized approaches tailored to specific pathophysiological mechanisms and socioeconomic factors. By integrating these strategies, healthcare providers can optimize care and enhance patient adherence, reducing the overall burden of heart failure.
Collapse
Affiliation(s)
- Jasmine K. Dugal
- Department of Internal Medicine, University of Nevada Las Vegas, 1701 W. Charleston Blvd., Las Vegas, NV 89102, USA; (J.K.D.); (A.S.M.); (N.R.); (M.V.D.); (K.L.)
| | - Arpinder S. Malhi
- Department of Internal Medicine, University of Nevada Las Vegas, 1701 W. Charleston Blvd., Las Vegas, NV 89102, USA; (J.K.D.); (A.S.M.); (N.R.); (M.V.D.); (K.L.)
| | - Noyan Ramazani
- Department of Internal Medicine, University of Nevada Las Vegas, 1701 W. Charleston Blvd., Las Vegas, NV 89102, USA; (J.K.D.); (A.S.M.); (N.R.); (M.V.D.); (K.L.)
| | - Brianna Yee
- Department of Internal Medicine, University of Nevada Las Vegas, 1701 W. Charleston Blvd., Las Vegas, NV 89102, USA; (J.K.D.); (A.S.M.); (N.R.); (M.V.D.); (K.L.)
| | - Michael V. DiCaro
- Department of Internal Medicine, University of Nevada Las Vegas, 1701 W. Charleston Blvd., Las Vegas, NV 89102, USA; (J.K.D.); (A.S.M.); (N.R.); (M.V.D.); (K.L.)
| | - KaChon Lei
- Department of Internal Medicine, University of Nevada Las Vegas, 1701 W. Charleston Blvd., Las Vegas, NV 89102, USA; (J.K.D.); (A.S.M.); (N.R.); (M.V.D.); (K.L.)
- Division of Cardiovascular Medicine, University of Nevada Las Vegas, 1701 W. Charleston Blvd., Las Vegas, NV 89102, USA
| |
Collapse
|
11
|
Pham LT, Mangmool S, Parichatikanond W. Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors: Guardians against Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in Heart Diseases. ACS Pharmacol Transl Sci 2024; 7:3279-3298. [PMID: 39539254 PMCID: PMC11555527 DOI: 10.1021/acsptsci.4c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors are an innovative class of antidiabetic drugs that provide cardiovascular benefits to both diabetic and nondiabetic patients, surpassing those of other antidiabetic drugs. Although the roles of mitochondria and endoplasmic reticulum (ER) in cardiovascular research are increasingly recognized as promising therapeutic targets, the exact molecular mechanisms by which SGLT2 inhibitors influence mitochondrial and ER homeostasis in the heart remain incompletely elucidated. This review comprehensively summarizes and discusses the impacts of SGLT2 inhibitors on mitochondrial dysfunction and ER stress in heart diseases including heart failure, ischemic heart disease/myocardial infarction, and arrhythmia from preclinical and clinical studies. Based on the existing evidence, the effects of SGLT2 inhibitors may potentially involve the restoration of mitochondrial biogenesis and alleviation of ER stress. Such consequences are achieved by enhancing adenosine triphosphate (ATP) production, preserving mitochondrial membrane potential, improving the activity of electron transport chain complexes, maintaining mitochondrial dynamics, mitigating oxidative stress and apoptosis, influencing cellular calcium and sodium handling, and targeting the unfolded protein response (UPR) through three signaling pathways including inositol requiring enzyme 1α (IRE1α), protein kinase R like endoplasmic reticulum kinase (PERK), and activating transcription factor 6 (ATF6). Therefore, SGLT2 inhibitors have emerged as a promising target for treating heart diseases due to their potential to improve mitochondrial functions and ER stress.
Collapse
Affiliation(s)
- Linh Thi
Truc Pham
- Biopharmaceutical
Sciences Program, Faculty of Pharmacy, Mahidol
University, Bangkok, 10400 Thailand
- Department
of Pharmacology, Faculty of Pharmacy, Mahidol
University, Bangkok, 10400 Thailand
| | - Supachoke Mangmool
- Department
of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang
Mai, 50200 Thailand
| | | |
Collapse
|
12
|
Asil H, Demiryürek AT, Düzen IV, Büyükcelebi O, Saracaloglu A, Demirkiran C, Demiryürek Ş. Effects of empagliflozin and dapagliflozin on serum humanin, MOTS-c levels, nitrosative stress, and ferroptosis parameters in diabetic patients with heart failure. Eur J Pharmacol 2024; 982:176934. [PMID: 39182552 DOI: 10.1016/j.ejphar.2024.176934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/05/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors produce cardioprotective effects on heart failure (HF), even in the absence of diabetes. However, the underlying mechanisms of this cardioprotective effect remain unexplored. The purpose of this study was to examine the effects of SGLT2 inhibitors on serum MOTS-c, humanin levels, nitrosative stress, and ferroptosis parameters in diabetic patients with HF with reduced ejection fraction (HFrEF). A total of 74 adult diabetic patients with HFrEF and 37 healthy controls were included in this prospective study. Half of the patients were using SGLT2 inhibitors (empagliflozin or dapagliflozin) for at least two months. Serum nitric oxide and 3-nitrotyrosine levels were markedly higher in diabetic patients with HFrEF than the control (P < 0.001), but these elevations were inhibited with SGLT2 inhibitors. Although SGLT2 inhibitors had no marked effect on humanin levels, they significantly augmented MOTS-c levels when compared to the control. SGLT2 inhibitors augmented GPX4 but inhibited ACSL4 levels when compared to diabetic patients with HF. However, TFRC levels were increased in the patient group (P < 0.001 for all) but not modified with SGLT2 inhibitors. Our results suggest that increased nitrosative stress is significantly depressed by SGLT2 inhibitors. This study was the first to show that SGLT2 inhibitors can stimulate MOTS-c, but not humanin, in diabetic patients with HFrEF. SGLT2 inhibitors reduced ferroptosis through elevation of GPX4 and suppression of ACSL4 levels. Our data suggest that SGLT2 inhibitors could produce cardioprotective effects through relieving ferroptosis, inhibiting nitosative stress, and stimulating mitochondrial MOTS-c release.
Collapse
Affiliation(s)
- Hatice Asil
- Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | | | - Irfan Veysel Düzen
- Department of Cardiology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Osman Büyükcelebi
- Department of Cardiology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ahmet Saracaloglu
- Department of Medical Pharmacology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Cahit Demirkiran
- Department of Medical Pharmacology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Şeniz Demiryürek
- Department of Physiology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
13
|
D’Orazio G, La Ferla B. Synthesis of a Small Library of Glycoderivative Putative Ligands of SGLT1 and Preliminary Biological Evaluation. Molecules 2024; 29:5067. [PMID: 39519708 PMCID: PMC11547630 DOI: 10.3390/molecules29215067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Sodium-glucose co-transporter 1 (SGLT1) is primarily expressed on the membrane of enterocytes, a type of epithelial cell found in the intestines, where it mediates the unidirectional absorption of glucose and galactose. Beyond its well-established role in nutrient absorption, SGLT1 also plays a protective role in maintaining the integrity of the intestinal barrier. Specifically, the natural ligand of SGLT1 (d-glucose) and a synthetic C-glucoside developed by our group can induce a protective anti-inflammatory effect on the intestinal epithelium. In this paper, we report the creation of a small library of C-glycoside, putative ligands for SGLT1, to gain further insights into its unclear mechanism of action. Preliminary biological experiments performed on an in vitro model of doxorubicin-induced mucositis, a severe intestinal inflammatory condition, indicate that the aromatic moiety present in all the compounds of the library is crucial for biological activity, while the sugar component appears to have less influence. These findings will be exploited to develop new, more potent anti-inflammatory compounds and to better understand and rationalize the protective mechanism of action.
Collapse
Affiliation(s)
- Giuseppe D’Orazio
- Department of Chemistry, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milan, Italy
| | - Barbara La Ferla
- Department of Earth and Environmental Sciences DISAT, Università degli Studi di Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| |
Collapse
|
14
|
dos Santos Borges R, Conegundes AF, Haikal de Paula L, Lara Santos R, Alves SN, Machado RA, Bussolaro Viana I, Simões e Silva AC. Efficacy and Safety of SGLT2 Inhibitors in Pediatric Patients and Young Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Pediatr Diabetes 2024; 2024:6295345. [PMID: 40302966 PMCID: PMC12017006 DOI: 10.1155/2024/6295345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 05/02/2025] Open
Abstract
Introduction: In recent decades, an increase in the incidence of type 2 diabetes mellitus (T2DM) in children and adolescents has been observed. Pediatric-onset T2DM differs from the adult-onset form, particularly regarding the durability of glycemic control and earlier appearance of complications. However, the scarcity of approved treatments and comprehensive studies on T2DM management in youth persists. Ongoing clinical trials seek to ascertain the efficacy and safety of sodium-glucose cotransporter 2 inhibitors (SGLT2i) in patients aged between 10 and 24 years with T2DM. Therefore, we aimed to perform a meta-analysis exploring the efficacy and safety of SGLT2i in pediatric patients and young adults with T2DM. Methods: We searched PubMed, Embase, Cochrane, and Web of Science for randomized controlled clinical trials on the efficacy and safety of SGLT2i in children, adolescents, and young adults with T2DM compared with placebo. Statistical analysis was performed using RevMan 5.4 and R statistical software 4.2.1. Heterogeneity was assessed with I2 statistics. Results: We included three studies totaling 334 patients followed for 37.79 weeks. Reduction in HbA1C (MD = -0.93; 95% CI = -1.36 to -0.49; p < 0.0001; I2 = 0%) was significantly higher in SGLT2i group compared with placebo. The proportion of patients requiring rescue or discontinuation of study medication due to lack of efficacy was statistically lower in SGLT2i group compared with placebo (RR = 0.64; 95% CI = 0.43-0.94; p= 0.02; I2 = 0%). SGLT2i and placebo were similar in terms of any adverse event (RR = 1.10; 95% CI = 0.96-1.27; p= 0.17; I2 = 0%), serious side effects (RR = 1.06; 95% CI = 0.44-2.57; p=0.90; I2 = 0%), and individual adverse effects. Conclusion: In children, adolescents, and young adults with T2DM, SGLT2i appears to be effective and safe for glycemic control.
Collapse
Affiliation(s)
- Rafael dos Santos Borges
- Faculty of Medicine, Universidade Federal de Minas Gerais, Avenue Prof. Alfredo Balena, 190-Santa Efigênia, Belo Horizonte-MG, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Ana Flávia Conegundes
- Faculty of Medicine, Universidade Federal de Minas Gerais, Avenue Prof. Alfredo Balena, 190-Santa Efigênia, Belo Horizonte-MG, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Luiza Haikal de Paula
- Faculty of Medicine, Universidade Federal de Minas Gerais, Avenue Prof. Alfredo Balena, 190-Santa Efigênia, Belo Horizonte-MG, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Rodrigo Lara Santos
- Faculty of Medicine, Universidade Federal de Minas Gerais, Avenue Prof. Alfredo Balena, 190-Santa Efigênia, Belo Horizonte-MG, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Samuel Norberto Alves
- Faculty of Medicine, Universidade Federal de Minas Gerais, Avenue Prof. Alfredo Balena, 190-Santa Efigênia, Belo Horizonte-MG, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Raquel Amaral Machado
- Faculty of Medicine, Universidade Federal de Minas Gerais, Avenue Prof. Alfredo Balena, 190-Santa Efigênia, Belo Horizonte-MG, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Isadora Bussolaro Viana
- Faculty of Medicine, Universidade Federal de Minas Gerais, Avenue Prof. Alfredo Balena, 190-Santa Efigênia, Belo Horizonte-MG, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Ana Cristina Simões e Silva
- Faculty of Medicine, Universidade Federal de Minas Gerais, Avenue Prof. Alfredo Balena, 190-Santa Efigênia, Belo Horizonte-MG, Belo Horizonte 30130-100, Minas Gerais, Brazil
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Universiade Federal de Minas Gerais, Avenue Prof. Alfredo Balena, 190-Santa Efigênia, Belo Horizonte-MG, Belo Horizonte 30130-100, Minas Gerais, Brazil
| |
Collapse
|
15
|
Ismail Z, Aboughdir M, Duric B, Kakar S, Chan JSK, Bayatpoor Y, Harky A. Advances in pharmacotherapy for heart failure and reduced ejection fraction: what's new in 2024? Expert Opin Pharmacother 2024; 25:1887-1902. [PMID: 39313997 DOI: 10.1080/14656566.2024.2408376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
INTRODUCTION Updated guidelines for heart failure with reduced ejection fraction (HFrEF) and acute decompensation have improved outcomes, but ongoing efforts are focused on uncovering new evidence and developing novel therapies. This review examines the limitations of current treatments and the potential impact of emerging therapies. AREAS COVERED A literature search focused on studies investigating drugs for HFrEF. We review recent clinical trials and emerging therapies to assess evidence strength, explore guideline updates, and identify strategies to optimize patient outcomes. EXPERT OPINION The HFrEF treatment landscape is rapidly evolving, with advances in therapies like sodium/glucose cotransporter inhibitors and sacubitril-valsartan. Though managing acute decompensated heart failure remains challenging, recent trials suggest improvements in diuretic strategies and anti-inflammatory treatments. Ongoing research is essential for validating these therapies and incorporating them into standard practice.
Collapse
Affiliation(s)
- Zahra Ismail
- St. George's, University of London, Cranmer Terrace, London, UK
| | | | - Bea Duric
- GKT School of Medical Education, King's College London, London, UK
| | - Sahil Kakar
- University Hospitals Birmingham; Queen Elizabeth Hospital, Birmingham, UK
| | - Jeffrey Shi Kai Chan
- Heart Failure and Structural Heart Disease Unit, Cardiovascular Analytics Group, United Kingdom-China Collaboration, Hong Kong, China
| | | | - Amer Harky
- Liverpool Heart and Chest Hospital, Liverpool, UK
| |
Collapse
|
16
|
Haynes J, Palaniappan B, Crutchley JM, Sundaram U. Regulation of Enterocyte Brush Border Membrane Primary Na-Absorptive Transporters in Human Intestinal Organoid-Derived Monolayers. Cells 2024; 13:1623. [PMID: 39404387 PMCID: PMC11482628 DOI: 10.3390/cells13191623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
In the small intestine, sodium (Na) absorption occurs primarily via two apical transporters, Na-hydrogen exchanger 3 (NHE3) and Na-glucose cotransporter 1 (SGLT1). The two primary Na-absorptive pathways were previously shown to compensatorily regulate each other in rabbit and rat intestinal epithelial cells. However, whether NHE3 and SGLT1 regulate one another in normal human enterocytes is unknown, mainly due to a lack of appropriate experimental models. To investigate this, we generated 2D enterocyte monolayers from human jejunal 3D organoids and used small interfering RNAs (siRNAs) to knock down NHE3 or SGLT1. Molecular and uptake studies were performed to determine the effects on NHE3 and SGLT1 expression and activity. Knockdown of NHE3 by siRNA in enterocyte monolayers was verified by qPCR and Western blot analysis and resulted in reduced NHE3 activity. However, in NHE3 siRNA-transfected cells, SGLT1 activity was significantly increased. siRNA knockdown of SGLT1 was confirmed by qPCR and Western blot analysis and resulted in reduced SGLT1 activity. However, in SGLT1 siRNA-transfected cells, NHE3 activity was significantly increased. These results demonstrate for the first time the functionality of siRNA in patient-derived organoid monolayers. Furthermore, they show that the two primary Na absorptive pathways in human enterocytes reciprocally regulate one another.
Collapse
Affiliation(s)
| | | | | | - Uma Sundaram
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, 1600 Medical Center Drive, Huntington, WV 25701, USA
| |
Collapse
|
17
|
Duan HY, Barajas-Martinez H, Antzelevitch C, Hu D. The potential anti-arrhythmic effect of SGLT2 inhibitors. Cardiovasc Diabetol 2024; 23:252. [PMID: 39010053 PMCID: PMC11251349 DOI: 10.1186/s12933-024-02312-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/16/2024] [Indexed: 07/17/2024] Open
Abstract
Sodium-glucose cotransporter type 2 inhibitors (SGLT2i) were initially recommended as oral anti-diabetic drugs to treat type 2 diabetes (T2D), by inhibiting SGLT2 in proximal tubule and reduce renal reabsorption of sodium and glucose. While many clinical trials demonstrated the tremendous potential of SGLT2i for cardiovascular diseases. 2022 AHA/ACC/HFSA guideline first emphasized that SGLT2i were the only drug class that can cover the entire management of heart failure (HF) from prevention to treatment. Subsequently, the antiarrhythmic properties of SGLT2i have also attracted attention. Although there are currently no prospective studies specifically on the anti-arrhythmic effects of SGLT2i. We provide clues from clinical and fundamental researches to identify its antiarrhythmic effects, reviewing the evidences and mechanism for the SGLT2i antiarrhythmic effects and establishing a novel paradigm involving intracellular sodium, metabolism and autophagy to investigate the potential mechanisms of SGLT2i in mitigating arrhythmias.
Collapse
Affiliation(s)
- Hong-Yi Duan
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, Hubei, China
| | - Hector Barajas-Martinez
- Lankenau Institute for Medical Research, Lankenau Heart Institute, Wynnewood, PA, 19096, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, 19107, USA
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, Lankenau Heart Institute, Wynnewood, PA, 19096, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, 19107, USA
| | - Dan Hu
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China.
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, Hubei, China.
| |
Collapse
|
18
|
Lee YE, Im DS. SGLT2 Inhibitors Empagliflozin and Canagliflozin Ameliorate Allergic Asthma Responses in Mice. Int J Mol Sci 2024; 25:7567. [PMID: 39062810 PMCID: PMC11277224 DOI: 10.3390/ijms25147567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Inhibitors of sodium/glucose cotransporter 2 (SGLT2), such as empagliflozin and canagliflozin, have been widely used to block glucose reabsorption in the proximal tubules of kidneys in patients with diabetes. A meta-analysis suggested that SGLT2 inhibitors are associated with a decreased risk of asthma development. Therefore, we investigated whether SGLT2 inhibitors could suppress allergic asthma. Empagliflozin and canagliflozin suppressed the in vitro degranulation reaction induced by antigens in a concentration-dependent manner in RBL-2H3 mast cells. Empagliflozin and canagliflozin were administered to BALB/c mice sensitized to ovalbumin (OVA). The administration of empagliflozin or canagliflozin significantly suppressed OVA-induced airway hyper-responsiveness and increased the number of immune cells and pro-inflammatory cytokine mRNA expression levels in bronchoalveolar lavage fluid. The administration of empagliflozin and canagliflozin also suppressed OVA-induced histopathological changes in the lungs. Empagliflozin and canagliflozin also suppressed serum IgE levels. These results suggested that empagliflozin and canagliflozin may be applicable for the treatment of allergic asthma by suppressing immune responses.
Collapse
Affiliation(s)
| | - Dong-Soon Im
- Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02446, Republic of Korea;
| |
Collapse
|
19
|
Forester BR, Zhang R, Schuhler B, Brostek A, Gonzalez-Vicente A, Garvin JL. Knocking Out Sodium Glucose-Linked Transporter 5 Prevents Fructose-Induced Renal Oxidative Stress and Salt-Sensitive Hypertension. Hypertension 2024; 81:1296-1307. [PMID: 38545789 PMCID: PMC11096007 DOI: 10.1161/hypertensionaha.123.22535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/05/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND A fructose high-salt (FHS) diet increases systolic blood pressure and Ang II (angiotensin II)-stimulated proximal tubule (PT) superoxide (O2-) production. These increases are prevented by scavenging O2- or an Ang II type 1 receptor antagonist. SGLT4 (sodium glucose-linked cotransporters 4) and SGLT5 are implicated in PT fructose reabsorption, but their roles in fructose-induced hypertension are unclear. We hypothesized that PT fructose reabsorption by SGLT5 initiates a genetic program enhancing Ang II-stimulated oxidative stress in males and females, thereby causing fructose-induced salt-sensitive hypertension. METHODS We measured systolic blood pressure in male and female Sprague-Dawley (wild type [WT]), SGLT4 knockout (-/-), and SGLT5-/- rats. Then, we measured basal and Ang II-stimulated (37 nmol/L) O2- production by PTs and conducted gene coexpression network analysis. RESULTS In male WT and female WT rats, FHS increased systolic blood pressure by 15±3 (n=7; P<0.0027) and 17±4 mm Hg (n=9; P<0.0037), respectively. Male and female SGLT4-/- had similar increases. Systolic blood pressure was unchanged by FHS in male and female SGLT5-/-. In male WT and female WT fed FHS, Ang II stimulated O2- production by 14±5 (n=6; P<0.0493) and 8±3 relative light units/µg protein/s (n=7; P<0.0218), respectively. The responses of SGTL4-/- were similar. Ang II did not stimulate O2- production in tubules from SGLT5-/-. Five gene coexpression modules were correlated with FHS. These correlations were completely blunted in SGLT5-/- and partially blunted by chronically scavenging O2- with tempol. CONCLUSIONS SGLT5-mediated PT fructose reabsorption is required for FHS to augment Ang II-stimulated proximal nephron O2- production, and increases in PT oxidative stress likely contribute to FHS-induced hypertension.
Collapse
Affiliation(s)
- Beau R. Forester
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Ronghao Zhang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta. Georgia
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Brett Schuhler
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Autumn Brostek
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Agustin Gonzalez-Vicente
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Kidney Medicine, Glickman Urological & Kidney Institute, Cleveland Clinic Cleveland, Ohio
| | - Jeffrey L. Garvin
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
20
|
Liu Z, Wang J, Tian P, Liu Y, Xing L, Fu C, Huang X, Liu P. Sodium-glucose cotransporter 1 promotes the biofunctions of perivascular preadipocytes mediated by Akt/mTOR/p70S6K signaling pathway. Am J Physiol Cell Physiol 2024; 326:C1611-C1624. [PMID: 38646789 PMCID: PMC11371362 DOI: 10.1152/ajpcell.00606.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/23/2024]
Abstract
The influence of SGLT-1 on perivascular preadipocytes (PVPACs) and vascular remodeling is not well understood. This study aimed to elucidate the role and mechanism of SGLT-1-mediated PVPACs bioactivity. PVPACs were cultured in vitro and applied ex vivo to the carotid arteries of mice using a lentivirus-based thermosensitive in situ gel (TISG). The groups were treated with Lv-SGLT1 (lentiviral vector, overexpression), Lv-siSGLT1 (RNA interference, knockdown), or specific signaling pathway inhibitors. Assays were conducted to assess changes in cell proliferation, apoptosis, glucose uptake, adipogenic differentiation, and vascular remodeling in the PVPACs. Protein expression was analyzed by Western blotting, immunocytochemistry, and/or immunohistochemistry. The methyl thiazolyl tetrazolium (MTT) assay and Hoechst 33342 staining indicated that SGLT-1 overexpression significantly promoted PVPACs proliferation and inhibited apoptosis in vitro. Conversely, SGLT-1 knockdown exerted the opposite effect. Oil Red O staining revealed that SGLT-1 overexpression facilitated adipogenic differentiation, while its inhibition mitigated these effects. 3H-labeled glucose uptake experiments demonstrated that SGLT-1 overexpression enhanced glucose uptake by PVPACs, whereas RNA interference-mediated SGLT-1 inhibition had no significant effect on glucose uptake. Moreover, RT-qPCR, Western blotting, and immunofluorescence analyses revealed that SGLT-1 overexpression upregulated FABP4 and VEGF-A levels and activated the Akt/mTOR/p70S6K signaling pathway, whereas SGLT-1 knockdown produced the opposite effects. In vivo studies corroborated these findings and indicated that SGLT-1 overexpression facilitated carotid artery remodeling. Our study demonstrates that SGLT-1 activation of the Akt/mTOR/p70S6K signaling pathway promotes PVPACs proliferation, adipogenesis, glucose uptake, glucolipid metabolism, and vascular remodeling.NEW & NOTEWORTHY SGLT-1 is expressed in PVPACs and can affect preadipocyte glucolipid metabolism and vascular remodeling. SGLT-1 promotes the biofunctions of PVPACs mediated by Akt/mTOR/p70S6K signaling pathway. Compared with caudal vein or intraperitoneal injection, the external application of lentivirus-based thermal gel around the carotid artery is an innovative attempt at vascular remodeling model, it may effectively avoid the transfection of lentiviral vector into the whole body of mice and the adverse effect on experimental results.
Collapse
Affiliation(s)
- Zhiquan Liu
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
- Division of Life Sciences and Medicine, Department of Cardiology, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Jiayu Wang
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - Peiqing Tian
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - Yixuan Liu
- Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Liyun Xing
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - Caihua Fu
- Department of Cardiology, Jinan Central Hospital Affiliated Shandong University, Jinan, China
| | - Xianwei Huang
- Department of Emergency, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Ping Liu
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
21
|
Campolo A, Maria Z, Lacombe VA. Diabetes Causes Significant Alterations in Pulmonary Glucose Transporter Expression. Metabolites 2024; 14:267. [PMID: 38786744 PMCID: PMC11123172 DOI: 10.3390/metabo14050267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Diabetes has been identified as a significant and independent risk factor for the development or increased severity of respiratory infections. However, the role of glucose transport in the healthy and diseased lung has received little attention. Specifically, the protein expression of the predominant glucose transporter (GLUT) isoforms in the adult lung remains largely to be characterized in both healthy and diabetic states. Type 1 diabetes was induced via streptozotocin and rescued via subcutaneous semi-osmotic insulin pump for 8 weeks. The gene and/or protein expression of the most predominant GLUT isoforms from Classes I and III, including the major insulin-sensitive isoform (i.e., GLUT4) and novel isoforms (i.e., GLUT-8 and GLUT-12), was quantified in the lung of healthy and diabetic mice via qRT-PCR and/or Western blotting. Pulmonary cell surface GLUT protein was measured using a biotinylated photolabeling assay, as a means to evaluate GLUT trafficking. Diabetic mice demonstrated significant alterations of total pulmonary GLUT protein expression, which were isoform- and location-dependent. Long-term insulin treatment rescued the majority of GLUT protein expression alterations in the lung during diabetes, as well as GLUT-4 and -8 trafficking to the pulmonary cell surface. These alterations in glucose homeostasis during diabetes may contribute to an increased severity of pulmonary infection during diabetes and may point to novel metabolic therapeutic strategies for diabetic patients with concurrent respiratory infections.
Collapse
Affiliation(s)
| | | | - Véronique A. Lacombe
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (A.C.); (Z.M.)
| |
Collapse
|
22
|
Wagner BR, Rao PS. Sodium-glucose cotransporter 2 inhibitors: are they ready for prime time in the management of lupus nephritis? Curr Opin Rheumatol 2024; 36:163-168. [PMID: 38517337 DOI: 10.1097/bor.0000000000001002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
PURPOSE OF REVIEW Lupus nephritis is a common complication of systemic lupus erythematosus and is associated with significant morbidity and mortality. The utility of sodium-glucose cotransporter 2 (SGLT2) inhibitors in the management of lupus nephritis is currently uncertain. Here, we summarize the rationale for their use among patient with lupus nephritis. RECENT FINDINGS SGLT2 inhibitors were initially developed as antihyperglycemic agents. They have since been shown to have additional, profound effects to slow the progression of chronic kidney disease and lessen the long-term risks of cardiovascular disease in large clinic trials of patients with chronic kidney disease, with and without diabetes, as well as in patients with and without proteinuria. Patients with recent exposure to immunosuppression were excluded from these trials due to concern for risk of infection. In the few, small trials of patients with lupus nephritis, SGLT2 inhibitors were found to be well tolerated. They have been shown to reduce proteinuria and to have modest beneficial effects on blood pressure and BMI among patients with lupus nephritis. They have not been shown to influence disease activity. SUMMARY SGLT2 inhibitors may have a role in mitigating the chronic renal and cardiovascular effects of lupus nephritis. They should be introduced after kidney function has been stabilized with appropriate immunosuppression, in conjunction with angiotensin-converting enzyme inhibitors or angiotensin receptor blockers. They currently have no role in active disease.
Collapse
Affiliation(s)
- Benjamin R Wagner
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
23
|
Dos Santos Borges R, de Oliveira Almeida G, Alves VFC, Nienkotter TF, Bertoli ED, Simões E Silva AC. Safety and efficacy of sotagliflozin in patients with type II diabetes mellitus and chronic kidney disease: a meta-analysis of randomized controlled trials. J Nephrol 2024; 37:881-896. [PMID: 38141092 DOI: 10.1007/s40620-023-01818-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/20/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Sotagliflozin is a dual sodium-glucose co-transporter 1 and 2 inhibitor that increases glucosuria and natriuresis in patients with type 2 diabetes mellitus (T2DM). However, the safety and efficacy in patients with concomitant chronic kidney disease (CKD) remains unclear. Therefore, we aimed to conduct a meta-analysis to evaluate the current evidence in this regard. METHODS We searched PubMed, Embase, Cochrane, and Web of Science for randomized controlled clinical trials on the safety and efficacy of Sotagliflozin in patients with T2DM and CKD compared with placebo. Statistical analysis was performed using RevMan 5.4. Heterogeneity was assessed with I2 statistics. The study was recorded in PROSPERO registry (CRD42023449631). RESULTS : We included three studies totaling 11,648 patients followed for 15.7 ± 5.9 months. Reduction in HbA1C (mean difference - 0.33%; 95% CI [- 0.54, - 0.11]; p = 0.003; I2 = 100%) and weight (mean difference - 1.01 kg; 95% CI [- 1.17, - 0.86]; p < 0.00001; I2 = 96%) were significantly higher in the Sotagliflozin group compared with placebo. All-cause mortality (RR 0.98; 95% CI [0.81, 1.20]; p = 0.87; I2 = 0%) and major adverse cardiovascular events (RR 0.70; 95% CI [0.40, 1.21]; p = 0.20; I2 = 39%) were not significantly different between groups. However, estimated glomerular filtration rate reduction (mean difference - 0.95; 95% CI [- 1.32, - 0.58]; p < 0.00001; I2 = 98%), genital mycotic infections (RR 2.73; 95% CI [1.96, 3.79]; p < 0.00001; I2 = 0%), diarrhea (RR 1.42; 95% CI [1.24. 1.63]; p < 0.00001; I2 = 0%) and volume depletion (RR 1.31; 95% CI [1.11, 1.56]; p = 0.002; I2 = 0%) were more common with Sotagliflozin. CONCLUSIONS In patients with T2DM and CKD, Sotagliflozin appears to be effective for glycemic control and weight loss. Although the medication seemed safe concerning mortality and cardiovascular events, it induced estimated glomerular filtration rate reduction, and was associated with a higher risk of genital mycotic infections, diarrhea, and volume depletion.
Collapse
Affiliation(s)
| | | | | | | | | | - Ana Cristina Simões E Silva
- Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
24
|
Hu J, Teng J, Hui S, Liang L. SGLT-2 inhibitors as novel treatments of multiple organ fibrosis. Heliyon 2024; 10:e29486. [PMID: 38644817 PMCID: PMC11031788 DOI: 10.1016/j.heliyon.2024.e29486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024] Open
Abstract
Fibrosis, a significant health issue linked to chronic inflammatory diseases, affects various organs and can lead to serious damage and loss of function. Despite the availability of some treatments, their limitations necessitate the development of new therapeutic options. Sodium-glucose cotransporter 2 inhibitors (SGLT2i), known for their glucose-lowering ability, have shown promise in offering protective effects against fibrosis in multiple organs through glucose-independent mechanisms. This review explores the anti-fibrotic potential of SGLT2i across different tissues, providing insights into their underlying mechanisms and highlighting recent research advancements. The evidence positions SGLT2i as a potential future treatments for fibrotic diseases.
Collapse
Affiliation(s)
- Junpei Hu
- Department of Geriatrics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, China
| | - Jianhui Teng
- Department of Geriatrics, Hunan Provincial People's Hospital, China
| | - Shan Hui
- Department of Geriatrics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, China
| | - Lihui Liang
- Department of Geriatrics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, China
| |
Collapse
|
25
|
Li XX, Chen ZD, Sun XJ, Yang YQ, Jin H, Liu NF. Empagliflozin ameliorates vascular calcification in diabetic mice through inhibiting Bhlhe40-dependent NLRP3 inflammasome activation. Acta Pharmacol Sin 2024; 45:751-764. [PMID: 38172306 PMCID: PMC10943241 DOI: 10.1038/s41401-023-01217-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
Type 2 diabetes mellitus (T2DM) patients exhibit greater susceptibility to vascular calcification (VC), which has a higher risk of death and disability. However, there is no specific drug for VC therapy. NLRP3 inflammasome activation as a hallmark event of medial calcification leads to arterial stiffness, causing vasoconstrictive dysfunction in T2DM. Empagliflozin (EMPA), a sodium-glucose co-transporter 2 inhibitor (SGLT2i), restrains hyperglycemia with definite cardiovascular benefits. Given the anti-inflammatory activity of EMPA, herein we investigated whether EMPA protected against VC in the aorta of T2DM mice by inhibiting NLRP3 inflammasome activation. Since db/db mice receiving a normal diet developed VC at the age of about 20 weeks, we administered EMPA (5, 10, 20 mg·kg-1·d-1, i.g) to 8 week-old db/db mice for 12 weeks. We showed that EMPA intervention dose-dependently ameliorated the calcium deposition, accompanied by reduced expression of RUNX2 and BMP2 proteins in the aortas. We found that EMPA (10 mg·kg-1·d-1 for 6 weeks) also protected against VC in vitamin D3-overloaded mice, suggesting the protective effects independent of metabolism. We showed that EMPA (10 mg·kg-1·d-1) inhibited the abnormal activation of NLRP3 inflammasome in aortic smooth muscle layer of db/db mice. Knockout (KO) of NLRP3 significantly alleviated VC in STZ-induced diabetic mice. The protective effects of EMPA were verified in high glucose (HG)-treated mouse aortic smooth muscle cells (MOVASs). In HG-treated NLRP3 KO MOVASs, EMPA (1 μM) did not cause further improvement. Bioinformatics and Western blot analysis revealed that EMPA significantly increased the expression levels of basic helix-loop-helix family transcription factor e40 (Bhlhe40) in HG-treated MOVASs, which served as a negative transcription factor directly binding to the promotor of Nlrp3. We conclude that EMPA ameliorates VC by inhibiting Bhlhe40-dpendent NLRP3 inflammasome activation. These results might provide potential significance for EMPA in VC therapy of T2DM patients.
Collapse
Affiliation(s)
- Xiao-Xue Li
- Department of Cardiology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, China
| | - Zheng-Dong Chen
- Department of Cardiology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, China
| | - Xue-Jiao Sun
- Department of Cardiology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, China
| | - Yi-Qing Yang
- Department of Cardiology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, China
| | - Hong Jin
- Department of Cardiology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, China
| | - Nai-Feng Liu
- Department of Cardiology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, China.
| |
Collapse
|
26
|
Sun M, Sun J, Sun W, Li X, Wang Z, Sun L, Wang Y. Unveiling the anticancer effects of SGLT-2i: mechanisms and therapeutic potential. Front Pharmacol 2024; 15:1369352. [PMID: 38595915 PMCID: PMC11002155 DOI: 10.3389/fphar.2024.1369352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
Cancer and diabetes are significant diseases that pose a threat to human health. Their interconnection is complex, particularly when they coexist, often necessitating multiple therapeutic approaches to attain remission. Sodium-glucose cotransporter protein two inhibitors (SGLT-2i) emerged as a treatment for hyperglycemia, but subsequently exhibited noteworthy extra-glycemic properties, such as being registered for the treatment of heart failure and chronic kidney disease, especially with co-existing albuminuria, prompting its assessment as a potential treatment for various non-metabolic diseases. Considering its overall tolerability and established use in diabetes management, SGLT-2i may be a promising candidate for cancer therapy and as a supplementary component to conventional treatments. This narrative review aimed to examine the potential roles and mechanisms of SGLT-2i in the management of diverse types of cancer. Future investigations should focus on elucidating the antitumor efficacy of individual SGLT-2i in different cancer types and exploring the underlying mechanisms. Additionally, clinical trials to evaluate the safety and feasibility of incorporating SGLT-2i into the treatment regimen of specific cancer patients and determining appropriate dosage combinations with established antitumor agents would be of significant interest.
Collapse
Affiliation(s)
- Min Sun
- Department of Geriatrics, First Hospital, Jilin University, Changchun, China
| | - Jilei Sun
- Changchun Traditional Chinese Medicine Hospital, Changchun, China
| | - Wei Sun
- First Affiliated Hospital of Jilin University, Changchun, China
| | - Xiaonan Li
- Department of Geriatrics, First Hospital, Jilin University, Changchun, China
| | - Zhe Wang
- Department of Geriatrics, First Hospital, Jilin University, Changchun, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yuehui Wang
- Department of Geriatrics, First Hospital, Jilin University, Changchun, China
| |
Collapse
|
27
|
Żołnierkiewicz O, Rogacka D. Hyperglycemia - A culprit of podocyte pathology in the context of glycogen metabolism. Arch Biochem Biophys 2024; 753:109927. [PMID: 38350532 DOI: 10.1016/j.abb.2024.109927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/31/2024] [Accepted: 02/10/2024] [Indexed: 02/15/2024]
Abstract
Prolonged disruption in the balance of glucose can result in metabolic disorders. The kidneys play a significant role in regulating blood glucose levels. However, when exposed to chronic hyperglycemia, the kidneys' ability to handle glucose metabolism may be impaired, leading to an accumulation of glycogen. Earlier studies have shown that there can be a significant increase in glucose storage in the form of glycogen in the kidneys in diabetes. Podocytes play a crucial role in maintaining the integrity of filtration barrier. In diabetes, exposure to elevated glucose levels can lead to significant metabolic and structural changes in podocytes, contributing to kidney damage and the development of diabetic kidney disease. The accumulation of glycogen in podocytes is not a well-established phenomenon. However, a recent study has demonstrated the presence of glycogen granules in podocytes. This review delves into the intricate connections between hyperglycemia and glycogen metabolism within the context of the kidney, with special emphasis on podocytes. The aberrant storage of glycogen has the potential to detrimentally impact podocyte functionality and perturb their structural integrity. This review provides a comprehensive analysis of the alterations in cellular signaling pathways that may potentially lead to glycogen overproduction in podocytes.
Collapse
Affiliation(s)
- Olga Żołnierkiewicz
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Dorota Rogacka
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Wita Stwosza 63, 80-308, Gdansk, Poland; University of Gdansk, Faculty of Chemistry, Department of Molecular Biotechnology, Wita Stwosza 63, 80-308, Gdansk, Poland.
| |
Collapse
|
28
|
Guo H, Zhou C, Zheng M, Zhang J, Wu H, He Q, Ding L, Yang B. Insights into the role of derailed endocytic trafficking pathway in cancer: From the perspective of cancer hallmarks. Pharmacol Res 2024; 201:107084. [PMID: 38295915 DOI: 10.1016/j.phrs.2024.107084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/06/2024]
Abstract
The endocytic trafficking pathway is a highly organized cellular program responsible for the regulation of membrane components and uptake of extracellular substances. Molecules internalized into the cell through endocytosis will be sorted for degradation or recycled back to membrane, which is determined by a series of sorting events. Many receptors, enzymes, and transporters on the membrane are strictly regulated by endocytic trafficking process, and thus the endocytic pathway has a profound effect on cellular homeostasis. However, the endocytic trafficking process is typically dysregulated in cancers, which leads to the aberrant retention of receptor tyrosine kinases and immunosuppressive molecules on cell membrane, the loss of adhesion protein, as well as excessive uptake of nutrients. Therefore, hijacking endocytic trafficking pathway is an important approach for tumor cells to obtain advantages of proliferation and invasion, and to evade immune attack. Here, we summarize how dysregulated endocytic trafficking process triggers tumorigenesis and progression from the perspective of several typical cancer hallmarks. The impact of endocytic trafficking pathway to cancer therapy efficacy is also discussed.
Collapse
Affiliation(s)
- Hongjie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chen Zhou
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingming Zheng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Honghai Wu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China; Cancer Center of Zhejiang University, Hangzhou 310058, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; School of Medicine, Hangzhou City University, Hangzhou 310015, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China.
| |
Collapse
|
29
|
Curaj A, Vanholder R, Loscalzo J, Quach K, Wu Z, Jankowski V, Jankowski J. Cardiovascular Consequences of Uremic Metabolites: an Overview of the Involved Signaling Pathways. Circ Res 2024; 134:592-613. [PMID: 38422175 DOI: 10.1161/circresaha.123.324001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The crosstalk of the heart with distant organs such as the lung, liver, gut, and kidney has been intensively approached lately. The kidney is involved in (1) the production of systemic relevant products, such as renin, as part of the most essential vasoregulatory system of the human body, and (2) in the clearance of metabolites with systemic and organ effects. Metabolic residue accumulation during kidney dysfunction is known to determine cardiovascular pathologies such as endothelial activation/dysfunction, atherosclerosis, cardiomyocyte apoptosis, cardiac fibrosis, and vascular and valvular calcification, leading to hypertension, arrhythmias, myocardial infarction, and cardiomyopathies. However, this review offers an overview of the uremic metabolites and details their signaling pathways involved in cardiorenal syndrome and the development of heart failure. A holistic view of the metabolites, but more importantly, an exhaustive crosstalk of their known signaling pathways, is important for depicting new therapeutic strategies in the cardiovascular field.
Collapse
Affiliation(s)
- Adelina Curaj
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Raymond Vanholder
- Department of Internal Medicine and Pediatrics, Nephrology Section, University Hospital, Ghent, Belgium (R.V.)
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.L.)
| | - Kaiseng Quach
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Zhuojun Wu
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Vera Jankowski
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Joachim Jankowski
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
- Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, the Netherlands (J.J.)
- Aachen-Maastricht Institute for Cardiorenal Disease, RWTH Aachen University, Aachen, Germany (J.J.)
| |
Collapse
|
30
|
Xiong T, Jia Y, Tan F, Long X, Yuan X, She Q, Du J. Integrated analysis reveals ceRNA network of cardiac remodeling by SGLT2 inhibitor in middle-aged hypertensive rats. Biochem Biophys Res Commun 2024; 696:149434. [PMID: 38198921 DOI: 10.1016/j.bbrc.2023.149434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) represent an innovative class of antidiabetic agents that have demonstrated promise in mitigating cardiac remodeling. However, the transcriptional regulatory mechanisms underpinning their impact on blood pressure and the reversal of hypertension-induced cardiac remodeling remain largely unexplored. Given this context, our study concentrated on comparing the cardiac expression profiles of lncRNAs and mRNAs between Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR). To validate our results, we performed blood pressure measurements, tissue staining, and qRT-PCR. The treatment led to a significant reduction in systolic blood pressure and improved cardiac remodeling by reducing myocardial fibrosis and regulating the inflammatory response. Our examination disclosed that ventricular tissue mRNA, regulated by hypertension, was primarily concentrated in the complement and coagulation cascades and cytokine-cytokine receptor interactions. Compared with SHR, the SGLT2i treatment group was associated with myocardial contraction. Investigation into the lncRNA-mRNA regulatory network and competing endogenous RNA (ceRNA) network suggested that the potential roles of these differentially expressed (DE) lncRNAs and mRNAs were tied to processes such as collagen fibril organization, inflammatory response, and extracellular matrix (ECM) modifications. We found that the expression of Col3a1, C1qa, and lncRNA NONRATT007139.2 were altered in the SHR group and that SGLT2i treatment reversed these changes. Our results suggest that dapagliflozin effectively reverses hypertension-induced myocardial remodeling through a lncRNA-mRNA transcriptional regulatory network, with immune cell-mediated ECM deposition as a potential regulatory target. This underlines the potentiality of SGLT2i and genes related to immunity as promising targets for the treatment of hypertension.
Collapse
Affiliation(s)
- Tianhua Xiong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuewang Jia
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fangyan Tan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xianglin Long
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
31
|
Elian V, Popovici V, Karampelas O, Pircalabioru GG, Radulian G, Musat M. Risks and Benefits of SGLT-2 Inhibitors for Type 1 Diabetes Patients Using Automated Insulin Delivery Systems-A Literature Review. Int J Mol Sci 2024; 25:1972. [PMID: 38396657 PMCID: PMC10888162 DOI: 10.3390/ijms25041972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/27/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
The primary treatment for autoimmune Diabetes Mellitus (Type 1 Diabetes Mellitus-T1DM) is insulin therapy. Unfortunately, a multitude of clinical cases has demonstrated that the use of insulin as a sole therapeutic intervention fails to address all issues comprehensively. Therefore, non-insulin adjunct treatment has been investigated and shown successful results in clinical trials. Various hypoglycemia-inducing drugs such as Metformin, glucagon-like peptide 1 (GLP-1) receptor agonists, dipeptidyl peptidase-4 (DPP-4) inhibitors, amylin analogs, and Sodium-Glucose Cotransporters 2 (SGLT-2) inhibitors, developed good outcomes in patients with T1DM. Currently, SGLT-2 inhibitors have remarkably improved the treatment of patients with diabetes by preventing cardiovascular events, heart failure hospitalization, and progression of renal disease. However, their pharmacological potential has not been explored enough. Thus, the substantial interest in SGLT-2 inhibitors (SGLT-2is) underlines the present review. It begins with an overview of carrier-mediated cellular glucose uptake, evidencing the insulin-independent transport system contribution to glucose homeostasis and the essential roles of Sodium-Glucose Cotransporters 1 and 2. Then, the pharmacological properties of SGLT-2is are detailed, leading to potential applications in treating T1DM patients with automated insulin delivery (AID) systems. Results from several studies demonstrated improvements in glycemic control, an increase in Time in Range (TIR), a decrease in glycemic variability, reduced daily insulin requirements without increasing hyperglycemic events, and benefits in weight management. However, these advantages are counterbalanced by increased risks, particularly concerning Diabetic Ketoacidosis (DKA). Several clinical trials reported a higher incidence of DKA when patients with T1DM received SGLT-2 inhibitors such as Sotagliflozin and Empagliflozin. On the other hand, patients with T1DM and a body mass index (BMI) of ≥27 kg/m2 treated with Dapagliflozin showed similar reduction in hyperglycemia and body weight and insignificantly increased DKA incidence compared to the overall trial population. Additional multicenter and randomized studies are required to establish safer and more effective long-term strategies based on patient selection, education, and continuous ketone body monitoring for optimal integration of SGLT-2 inhibitors into T1DM therapeutic protocol.
Collapse
Affiliation(s)
- Viviana Elian
- Department of Diabetes, Nutrition and Metabolic Diseases, “Carol Davila” University of Medicine and Pharmacy, 5-7 Ion Movila Street, 020475 Bucharest, Romania; (V.E.); (G.R.)
- Department of Diabetes, Nutrition and Metabolic Diseases, “N. C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 020475 Bucharest, Romania
| | - Violeta Popovici
- “Costin C. Kiriţescu” National Institute of Economic Research—Center for Mountain Economics (INCE-CEMONT) of Romanian Academy, 725700 Vatra-Dornei, Romania
| | - Oana Karampelas
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania;
| | - Gratiela Gradisteanu Pircalabioru
- eBio-Hub Research Centre, National University of Science and Technology Politehnica Bucharest, 061344 Bucharest, Romania;
- Research Institute, University of Bucharest, 061344 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Gabriela Radulian
- Department of Diabetes, Nutrition and Metabolic Diseases, “Carol Davila” University of Medicine and Pharmacy, 5-7 Ion Movila Street, 020475 Bucharest, Romania; (V.E.); (G.R.)
- Department of Diabetes, Nutrition and Metabolic Diseases, “N. C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 020475 Bucharest, Romania
| | - Madalina Musat
- eBio-Hub Research Centre, National University of Science and Technology Politehnica Bucharest, 061344 Bucharest, Romania;
- Department of Endocrinology, “Carol Davila” University of Medicine and Pharmacy, 030167 Bucharest, Romania
- Department of Endocrinology IV, “C. I. Parhon” National Institute of Endocrinology, 011863 Bucharest, Romania
| |
Collapse
|
32
|
Kravtsova O, Levchenko V, Klemens CA, Rieg T, Liu R, Staruschenko A. Effect of SGLT2 inhibition on salt-induced hypertension in female Dahl SS rats. Sci Rep 2023; 13:19231. [PMID: 37932290 PMCID: PMC10628283 DOI: 10.1038/s41598-023-46016-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023] Open
Abstract
Sodium-glucose co-transporters (SGLTs) in the kidneys play a pivotal role in glucose reabsorption. Several clinical and population-based studies revealed the beneficial effects of SGLT2 inhibition on hypertension. Recent work from our lab provided significant new insight into the role of SGLT2 inhibition in a non-diabetic model of salt-sensitive hypertension, Dahl salt-sensitive (SS) rats. Dapagliflozin (Dapa) blunted the development of salt-induced hypertension by causing glucosuria and natriuresis without changes in the Renin-Angiotensin-Aldosterone System. However, our initial study used male SS rats only, and the effect of SGLT2 inhibitors on hypertension in females has not been studied. Therefore, the goal of this study was to determine whether SGLT2 inhibition alters blood pressure and kidney function in female Dahl SS rats. The result showed that administration of Dapa for 3 weeks prevented the progression of salt-induced hypertension in female rats, similar to its effects in male SS rats. Diuresis and glucose excretion were significantly increased in Dapa-treated rats. SGLT2 inhibition also significantly attenuated kidney but not heart fibrosis. Despite significant effects on blood pressure, Dapa treatment caused minor changes to electrolyte balance and no effects on kidney and heart weights were observed. Our data suggest that SGLT2 inhibition in a non-diabetic model of salt-sensitive hypertension blunts the development of salt-induced hypertension independent of sex.
Collapse
Affiliation(s)
- Olha Kravtsova
- Department of Molecular Pharmacology and Physiology, University of South Florida, 560 Channelside Dr., Tampa, FL, 33602, USA
| | - Vladislav Levchenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, 560 Channelside Dr., Tampa, FL, 33602, USA
| | - Christine A Klemens
- Department of Molecular Pharmacology and Physiology, University of South Florida, 560 Channelside Dr., Tampa, FL, 33602, USA
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL, 33602, USA
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, 560 Channelside Dr., Tampa, FL, 33602, USA
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL, 33602, USA
- James A. Haley Veterans' Hospital, Tampa, FL, 33612, USA
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida, 560 Channelside Dr., Tampa, FL, 33602, USA
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL, 33602, USA
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, 560 Channelside Dr., Tampa, FL, 33602, USA.
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL, 33602, USA.
- James A. Haley Veterans' Hospital, Tampa, FL, 33612, USA.
| |
Collapse
|
33
|
Subramaniam M, Loewen ME. Review: A species comparison of the kinetic homogeneous and heterogeneous organization of sodium-dependent glucose transport systems along the intestine. Comp Biochem Physiol A Mol Integr Physiol 2023; 285:111492. [PMID: 37536429 DOI: 10.1016/j.cbpa.2023.111492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
The targeted use of carbohydrates by feed and food industries to create balanced and cost-effective diets has generated a tremendous amount of research in carbohydrate digestion and absorption in different species. Specifically, this research has led us to a larger observation that identified different organizations of intestinal sodium-dependent glucose absorption across species, which has not been previously collated and reviewed. Thus, this review will compare the kinetic segregation of sodium-dependent glucose transport across the intestine of different species, which we have termed either homogeneous or heterogeneous systems. For instance, the pig follows a heterogeneous system of sodium-dependent glucose transport with a high-affinity, super-low-capacity (Ha/sLc) in the jejunum, and a high-affinity, super-high-capacity (Ha/sHc) in the ileum. This is achieved by multiple sodium-dependent glucose transporters contributing to each segment. In contrast, tilapia have a homogenous system characterized by high-affinity, high-capacity (Ha/Hc) throughout the intestine. Additionally, we are the first to report glucose transporter patterns across species presented from vertebrates to invertebrates. Finally, other kinetic transport systems are briefly covered to illustrate possible contributions/modulations to sodium-dependent glucose transporter organization. Overall, we present a new perspective on the organization of glucose absorption along the intestinal tract.
Collapse
Affiliation(s)
- Marina Subramaniam
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Matthew E Loewen
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada.
| |
Collapse
|
34
|
Chen JY, Pan HC, Shiao CC, Chuang MH, See CY, Yeh TH, Yang Y, Chu WK, Wu VC. Impact of SGLT2 inhibitors on patient outcomes: a network meta-analysis. Cardiovasc Diabetol 2023; 22:290. [PMID: 37891550 PMCID: PMC10612254 DOI: 10.1186/s12933-023-02035-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND A comprehensive network meta-analysis comparing the effects of individual sodium-glucose cotransporter 2 (SGLT2) inhibitors on patients with and without comorbidities including diabetes mellitus (DM), heart failure (HF), and chronic kidney disease (CKD) has not been previously conducted. METHODS We searched PubMed, Embase, Cochrane, and ClinicalTrials.gov for randomized controlled trials up to March 28, 2023. Network meta-analysis using a random-effects model was conducted to calculate risk ratios (RRs). Risk of Bias tool 2.0 was used to assess bias, and CINeMA to assess the certainty of evidence. In the subgroup analysis, the SGLT2 inhibitors were classified into highly (dapagliflozin, empagliflozin, and ertugliflozin) and less selective SGLT2 inhibitors (canagliflozin and sotagliflozin). RESULTS A total of fourteen trials with 75,334 patients were analyzed. Among these, 40,956 had taken SGLT2 inhibitors and 34,378 had not. One of the main results with particular findings was empagliflozin users had a significantly lower risk of all-cause death compared to dapagliflozin users in DM population (RR: 0.81, 95% CI 0.69-0.96). In HF population, sotagliflozin users had a borderline significantly lower risk of CV death or hospitalization for HF (HHF) than dapagliflozin users (RR: 0.90, 95% CI 0.80-1.01). In non-HF population, those who used canagliflozin had a significantly lower risk of CV death or HHF compared with those who used dapagliflozin (RR: 0.75, 95% CI 0.58-0.98). At last, for HF patients, those who used less selective SGLT2 inhibitors had a significantly lower risk of MACEs compared to those who used highly selective SGLT2 inhibitors (RR: 0.75, 95% CI 0.62-0.90). CONCLUSIONS Our network meta-analysis revealed that empagliflozin users with diabetes experienced a lower risk of dying from any cause than those using dapagliflozin. Additionally, canagliflozin users demonstrated a reduced risk of cardiovascular death or HHF compared to dapagliflozin users in those without HF. In HF patients, less selective SGLT2 inhibitors showed superior CV composite outcomes, even surpassing the performance of highly selective SGLT2 inhibitors. TRIAL REGISTRATION PROSPERO [CRD42022361906].
Collapse
Affiliation(s)
- Jui-Yi Chen
- Division of Nephrology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Heng-Chih Pan
- Division of Nephrology, Department of Internal Medicine, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
- Chang Gung University College of Medicine, Taoyuan, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Community Medicine Research Center, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chih-Chung Shiao
- Division of Nephrology, Department of Internal Medicine, Camillian Saint Mary's Hospital Luodong; and Saint Mary's Junior College of Medicine, Nursing and Management, Yilan, Taiwan
| | - Min-Hsiang Chuang
- Division of Nephrology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chun Yin See
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Hsuan Yeh
- Division of Nephrology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Yafei Yang
- Division of Nephrology, Department of Internal Medicine, Everan Hospital, Taichung, Taiwan
| | - Wen-Kai Chu
- Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Zhong-Zheng District, Taipei, 100, Taiwan
| | - Vin-Cent Wu
- Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Zhong-Zheng District, Taipei, 100, Taiwan.
- National Taiwan University Hospital Study Group of ARF, NSARF, Taipei, Taiwan.
- Taiwan Primary Aldosteronism Investigators, TAIPAI, PAC, Taipei, Taiwan.
| |
Collapse
|
35
|
Kazory A. Combination Diuretic Therapy to Counter Renal Sodium Avidity in Acute Heart Failure: Trials and Tribulations. Clin J Am Soc Nephrol 2023; 18:1372-1381. [PMID: 37102974 PMCID: PMC10578637 DOI: 10.2215/cjn.0000000000000188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023]
Abstract
In contrast to significant advances in the management of patients with chronic heart failure over the past few years, there has been little change in how patients with acute heart failure are treated. Symptoms and signs of fluid overload are the primary reason for hospitalization of patients who experience acute decompensation of heart failure. Intravenous loop diuretics remain the mainstay of therapy in this patient population, with a significant subset of them showing suboptimal response to these agents leading to incomplete decongestion at the time of discharge. Combination diuretic therapy, that is, using loop diuretics along with an add-on agent, is a widely applied strategy to counter renal sodium avidity through sequential blockade of sodium absorption within renal tubules. The choice of the second diuretic is affected by several factors, including the site of action, the anticipated secondary effects, and the available evidence on their efficacy and safety. While the current guidelines recommend combination diuretic therapy as a viable option to overcome suboptimal response to loop diuretics, it is also acknowledged that this strategy is not supported by strong evidence and remains an area of uncertainty. The recent publication of landmark studies has regenerated the interest in sequential nephron blockade. In this article, we provide an overview of the results of the key studies on combination diuretic therapy in the setting of acute heart failure and discuss their findings primarily with regard to the effect on renal sodium avidity and cardiorenal outcomes.
Collapse
Affiliation(s)
- Amir Kazory
- Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida
| |
Collapse
|
36
|
Tsunokake S, Iwabuchi E, Miki Y, Kanai A, Onodera Y, Sasano H, Ishida T, Suzuki T. SGLT1 as an adverse prognostic factor in invasive ductal carcinoma of the breast. Breast Cancer Res Treat 2023; 201:499-513. [PMID: 37439959 DOI: 10.1007/s10549-023-07024-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023]
Abstract
PURPOSE Sodium/glucose cotransporter (SGLT) 1 and 2 expression in carcinoma cells was recently examined, but their association with the clinicopathological factors of the patients and their biological effects on breast carcinoma cells have remained remain virtually unknown. Therefore, in this study, we explored the expression status of SGLT1 and SGLT2 in breast cancer patients and examined the effects of SGLT1 inhibitors on breast carcinoma cells in vitro. METHODS SGLT1 and SGLT2 were immunolocalized and we first correlated the findings with clinicopathological factors of the patients. We then administered mizagliflozin and KGA-2727, SGLT1 specific inhibitors to MCF-7 and MDA-MB-468 breast carcinoma cell lines, and their growth-inhibitory effects were examined. Protein arrays were then used to further explore their effects on the growth factors. RESULTS The SGLT1 high group had significantly worse clinical outcome including both overall survival and disease-free survival than low group. SGLT2 status was not significantly correlated with clinical outcome of the patients. Both mizagliflozin and KGA-2727 inhibited the growth of breast cancer cell lines. Of particular interest, mizagliflozin inhibited the proliferation of MCF-7 cells, even under very low glucose conditions. Mizagliflozin downregulated vascular endothelial growth factor receptor 2 phosphorylation. CONCLUSION High SGLT1 expression turned out as an adverse clinical prognostic factor in breast cancer patient. This is the first study demonstrating that SGLT1 inhibitors suppressed breast carcinoma cell proliferation. These results indicated that SGLT1 inhibitors could be used as therapeutic agents for breast cancer patients with aggressive biological behaviors.
Collapse
Affiliation(s)
- Satoko Tsunokake
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Erina Iwabuchi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | - Yasuhiro Miki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ayako Kanai
- Department of Breast Surgery, Hachinohe City Hospital, Hachinohe, Aomori, Japan
| | - Yoshiaki Onodera
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hironobu Sasano
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takanori Ishida
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
37
|
Matthews J, Herat L, Schlaich MP, Matthews V. The Impact of SGLT2 Inhibitors in the Heart and Kidneys Regardless of Diabetes Status. Int J Mol Sci 2023; 24:14243. [PMID: 37762542 PMCID: PMC10532235 DOI: 10.3390/ijms241814243] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic Kidney Disease (CKD) and Cardiovascular Disease (CVD) are two devastating diseases that may occur in nondiabetics or individuals with diabetes and, when combined, it is referred to as cardiorenal disease. The impact of cardiorenal disease on society, the economy and the healthcare system is enormous. Although there are numerous therapies for cardiorenal disease, one therapy showing a great deal of promise is sodium-dependent glucose cotransporter 2 (SGLT2) inhibitors. The SGLT family member, SGLT2, is often implicated in the pathogenesis of a range of diseases, and the dysregulation of the activity of SGLT2 markedly effects the transport of glucose and sodium across the luminal membrane of renal cells. Inhibitors of SGLT2 were developed based on the antidiabetic action initiated by inhibiting renal glucose reabsorption, thereby increasing glucosuria. Of great medical significance, large-scale clinical trials utilizing a range of SGLT2 inhibitors have demonstrated both metabolic and biochemical benefits via numerous novel mechanisms, such as sympathoinhibition, which will be discussed in this review. In summary, SGLT2 inhibitors clearly exert cardio-renal protection in people with and without diabetes in both preclinical and clinical settings. This exciting class of inhibitors improve hyperglycemia, high blood pressure, hyperlipidemia and diabetic retinopathy via multiple mechanisms, of which many are yet to be elucidated.
Collapse
Affiliation(s)
- Jennifer Matthews
- Royal Perth Hospital Unit, Dobney Hypertension Centre, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (J.M.); (L.H.)
| | - Lakshini Herat
- Royal Perth Hospital Unit, Dobney Hypertension Centre, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (J.M.); (L.H.)
| | - Markus P. Schlaich
- Royal Perth Hospital Unit, Dobney Hypertension Centre, School of Medicine, University of Western Australia, Crawley, WA 6009, Australia;
- Department of Cardiology and Department of Nephrology, Royal Perth Hospital, Perth, WA 6000, Australia
| | - Vance Matthews
- Royal Perth Hospital Unit, Dobney Hypertension Centre, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (J.M.); (L.H.)
| |
Collapse
|
38
|
Kawada T, Li M, Nishiura A, Yoshida Y, Yokota S, Matsushita H, Fukumitsu M, Uemura K, Alexander J, Saku K. Acute effects of empagliflozin on open-loop baroreflex function and urinary glucose excretion in rats with chronic myocardial infarction. J Physiol Sci 2023; 73:20. [PMID: 37704939 PMCID: PMC10717373 DOI: 10.1186/s12576-023-00877-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors have exerted cardioprotective effects in clinical trials, but underlying mechanisms are not fully understood. As mitigating sympathetic overactivity is of major clinical concern in the mechanisms of heart failure treatments, we examined the effects of modulation of glucose handling on baroreflex-mediated sympathetic nerve activity and arterial pressure regulations in rats with chronic myocardial infarction (n = 9). Repeated 11-min step input sequences were used for an open-loop analysis of the carotid sinus baroreflex. An SGLT2 inhibitor, empagliflozin, was intravenously administered (10 mg/kg) after the second sequence. Neither the baroreflex neural nor peripheral arc significantly changed during the last observation period (seventh and eighth sequences) compared with the baseline period although urinary glucose excretion increased from near 0 (0.0089 ± 0.0011 mg min-1 kg-1) to 1.91 ± 0.25 mg min-1 kg-1. Hence, empagliflozin does not acutely modulate the baroreflex regulations of sympathetic nerve activity and arterial pressure in this rat model of chronic myocardial infarction.
Collapse
Affiliation(s)
- Toru Kawada
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan.
| | - Meihua Li
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Akitsugu Nishiura
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Yuki Yoshida
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Shohei Yokota
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Hiroki Matsushita
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Masafumi Fukumitsu
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Kazunori Uemura
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Joe Alexander
- Medical and Health Informatics, NTT Research, Inc, Sunnyvale, CA, 94085, USA
| | - Keita Saku
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| |
Collapse
|
39
|
Chen X, Hocher CF, Shen L, Krämer BK, Hocher B. Reno- and cardioprotective molecular mechanisms of SGLT2 inhibitors beyond glycemic control: from bedside to bench. Am J Physiol Cell Physiol 2023; 325:C661-C681. [PMID: 37519230 DOI: 10.1152/ajpcell.00177.2023] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Large placebo-controlled clinical trials have shown that sodium-glucose cotransporter-2 inhibitors (SGLT2i) delay the deterioration of renal function and reduce cardiovascular events in a glucose-independent manner, thereby ultimately reducing mortality in patients with chronic kidney disease (CKD) and/or heart failure. These existing clinical data stimulated preclinical studies aiming to understand the observed clinical effects. In animal models, it was shown that the beneficial effect of SGLT2i on the tubuloglomerular feedback (TGF) improves glomerular pressure and reduces tubular workload by improving renal hemodynamics, which appears to be dependent on salt intake. High salt intake might blunt the SGLT2i effects on the TGF. Beyond the salt-dependent effects of SGLT2i on renal hemodynamics, SGLT2i inhibited several key aspects of macrophage-mediated renal inflammation and fibrosis, including inhibiting the differentiation of monocytes to macrophages, promoting the polarization of macrophages from a proinflammatory M1 phenotype to an anti-inflammatory M2 phenotype, and suppressing the activation of inflammasomes and major proinflammatory factors. As macrophages are also important cells mediating atherosclerosis and myocardial remodeling after injury, the inhibitory effects of SGLT2i on macrophage differentiation and inflammatory responses may also play a role in stabilizing atherosclerotic plaques and ameliorating myocardial inflammation and fibrosis. Recent studies suggest that SGLT2i may also act directly on the Na+/H+ exchanger and Late-INa in cardiomyocytes thus reducing Na+ and Ca2+ overload-mediated myocardial damage. In addition, the renal-cardioprotective mechanisms of SGLT2i include systemic effects on the sympathetic nervous system, blood volume, salt excretion, and energy metabolism.
Collapse
Affiliation(s)
- Xin Chen
- Department of Nephrology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Carl-Friedrich Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Klinik für Innere Medizin, Bundeswehrkrankenhaus Berlin, Berlin, Germany
| | - Linghong Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bernhard K Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- IMD Institut für Medizinische Diagnostik Berlin-Potsdam GbR, Berlin, Germany
| |
Collapse
|
40
|
Santulli G, Varzideh F, Forzano I, Wilson S, Salemme L, de Donato A, Lombardi A, Rainone A, Nunziata L, Jankauskas SS, Tesorio T, Guerra G, Kansakar U, Mone P. Functional and Clinical Importance of SGLT2-inhibitors in Frailty: From the Kidney to the Heart. Hypertension 2023; 80:1800-1809. [PMID: 37403685 PMCID: PMC10529735 DOI: 10.1161/hypertensionaha.123.20598] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
SGLT2 (sodium-glucose cotransporter 2) enables glucose and sodium reabsorption in the kidney. SGLT2-inhibitors (also known as gliflozins, which include canagliflozin, dapagliflozin, empagliflozin, and ertugliflozin) act by increasing glycosuria, thereby reducing glycemia. These drugs are critical to reach and keep glycemic control, a crucial feature, especially in patients with comorbidities, like frail individuals. Several studies evaluated the effects of SGLT2-inhibitors in different settings beyond diabetes, revealing that they are actually pleiotropic drugs. We recently evidenced the favorable effects of SGLT2-inhibition on physical and cognitive impairment in frail older adults with diabetes and hypertension. In the present overview, we summarize the latest clinical and preclinical studies exploring the main effects of SGLT2-inhibitors on kidney and heart, emphasizing their potential beneficial actions in frailty.
Collapse
Affiliation(s)
- Gaetano Santulli
- Department of Medicine, Einstein College, New York, USA
- Naples University “Federico II”
| | | | | | - Scott Wilson
- Department of Medicine, Einstein College, New York, USA
| | | | | | | | | | | | | | | | | | - Urna Kansakar
- Department of Medicine, Einstein College, New York, USA
| | - Pasquale Mone
- Department of Medicine, Einstein College, New York, USA
- Department of Medicine, Molise University
| |
Collapse
|
41
|
Yeoh SE, Osmanska J, Petrie MC, Brooksbank KJM, Clark AL, Docherty KF, Foley PWX, Guha K, Halliday CA, Jhund PS, Kalra PR, McKinley G, Lang NN, Lee MMY, McConnachie A, McDermott JJ, Platz E, Sartipy P, Seed A, Stanley B, Weir RAP, Welsh P, McMurray JJV, Campbell RT. Dapagliflozin vs. metolazone in heart failure resistant to loop diuretics. Eur Heart J 2023; 44:2966-2977. [PMID: 37210742 PMCID: PMC10424881 DOI: 10.1093/eurheartj/ehad341] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND AND AIMS To examine the decongestive effect of the sodium-glucose cotransporter 2 inhibitor dapagliflozin compared to the thiazide-like diuretic metolazone in patients hospitalized for heart failure and resistant to treatment with intravenous furosemide. METHODS AND RESULTS A multi-centre, open-label, randomized, and active-comparator trial. Patients were randomized to dapagliflozin 10 mg once daily or metolazone 5-10 mg once daily for a 3-day treatment period, with follow-up for primary and secondary endpoints until day 5 (96 h). The primary endpoint was a diuretic effect, assessed by change in weight (kg). Secondary endpoints included a change in pulmonary congestion (lung ultrasound), loop diuretic efficiency (weight change per 40 mg of furosemide), and a volume assessment score. 61 patients were randomized. The mean (±standard deviation) cumulative dose of furosemide at 96 h was 977 (±492) mg in the dapagliflozin group and 704 (±428) mg in patients assigned to metolazone. The mean (±standard deviation) decrease in weight at 96 h was 3.0 (2.5) kg with dapagliflozin compared to 3.6 (2.0) kg with metolazone [mean difference 0.65, 95% confidence interval (CI) -0.12,1.41 kg; P = 0.11]. Loop diuretic efficiency was less with dapagliflozin than with metolazone [mean 0.15 (0.12) vs. 0.25 (0.19); difference -0.08, 95% CI -0.17,0.01 kg; P = 0.10]. Changes in pulmonary congestion and volume assessment score were similar between treatments. Decreases in plasma sodium and potassium and increases in urea and creatinine were smaller with dapagliflozin than with metolazone. Serious adverse events were similar between treatments. CONCLUSION In patients with heart failure and loop diuretic resistance, dapagliflozin was not more effective at relieving congestion than metolazone. Patients assigned to dapagliflozin received a larger cumulative dose of furosemide but experienced less biochemical upset than those assigned to metolazone. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04860011.
Collapse
Affiliation(s)
- Su Ern Yeoh
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Joanna Osmanska
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Mark C Petrie
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Katriona J M Brooksbank
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Andrew L Clark
- Department of Cardiology, Hull University Teaching Hospitals NHS Trust, Castle Hill Hospital, Cottingham HU3 2JZ, UK
| | - Kieran F Docherty
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Paul W X Foley
- Department of Cardiology, The Great Western Hospital, Swindon SN3 6BB, UK
| | - Kaushik Guha
- Department of Cardiology, Portsmouth Hospitals University NHS Trust, Portsmouth PO6 3LY, UK
| | - Crawford A Halliday
- Department of Cardiology, Royal Alexandria Hospital, NHS Greater Glasgow and Clyde, Paisley, UK
| | - Pardeep S Jhund
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Paul R Kalra
- Department of Cardiology, Portsmouth Hospitals University NHS Trust, Portsmouth PO6 3LY, UK
- Faculty of Science and Health, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Gemma McKinley
- Robertson Centre for Biostatistics, School of Health and Wellbeing, University of Glasgow, Glasgow G12 8TB, UK
| | - Ninian N Lang
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Matthew M Y Lee
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Alex McConnachie
- Robertson Centre for Biostatistics, School of Health and Wellbeing, University of Glasgow, Glasgow G12 8TB, UK
| | - James J McDermott
- Biopharmaceuticals, Medical Affairs, AstraZeneca, Wilmington, DE 19803, USA
| | - Elke Platz
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Peter Sartipy
- Cardiovascular, Renal and Metabolism, AstraZeneca, BioPharmaceuticals R&D, Gothenburg 431 83, Sweden
| | - Alison Seed
- Lancashire Cardiac Centre, Blackpool Teaching Hospitals NHS Trust, Blackpool FY3 8NP, UK
| | - Bethany Stanley
- Robertson Centre for Biostatistics, School of Health and Wellbeing, University of Glasgow, Glasgow G12 8TB, UK
| | - Robin A P Weir
- Cardiology Department, University Hospital Hairmyres, Lanarkshire G75 8RG, UK
| | - Paul Welsh
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - John J V McMurray
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Ross T Campbell
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
42
|
Zhao M, Li N, Zhou H. SGLT1: A Potential Drug Target for Cardiovascular Disease. Drug Des Devel Ther 2023; 17:2011-2023. [PMID: 37435096 PMCID: PMC10332373 DOI: 10.2147/dddt.s418321] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/29/2023] [Indexed: 07/13/2023] Open
Abstract
SGLT1 and SGLT2 are the two main members of the sodium-glucose cotransporters (SGLTs), which are mainly responsible for glucose reabsorption in the body. In recent years, many large clinical trials have shown that SGLT2 inhibitors have cardiovascular protection for diabetic and non-diabetic patients independent of lowering blood glucose. However, SGLT2 was barely detected in the hearts of humans and animals, while SGLT1 was highly expressed in myocardium. As SGLT2 inhibitors also have a moderate inhibitory effect on SGLT1, the cardiovascular protection of SGLT2 inhibitors may be due to SGLT1 inhibition. SGLT1 expression is associated with pathological processes such as cardiac oxidative stress, inflammation, fibrosis, and cell apoptosis, as well as mitochondrial dysfunction. The purpose of this review is to summarize the protective effects of SGLT1 inhibition on hearts in various cell types, including cardiomyocytes, endothelial cells, and fibroblasts in preclinical studies, and to highlight the underlying molecular mechanisms of protection against cardiovascular diseases. Selective SGLT1 inhibitors could be considered a class of drugs for cardiac-specific therapy in the future.
Collapse
Affiliation(s)
- Mengnan Zhao
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Na Li
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Hong Zhou
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
43
|
Yildirim G, Bergamo ETP, Poudel SB, Ruff RR, Dixit M, Hu B, Mijares DQ, Witek L, Chlebek C, Harrison DE, Strong R, Miller RA, Ladiges W, Bromage TG, Rosen CJ, Yakar S. Long-term effects of canagliflozin treatment on the skeleton of aged UM-HET3 mice. GeroScience 2023; 45:1933-1951. [PMID: 37166526 PMCID: PMC10400751 DOI: 10.1007/s11357-023-00803-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/18/2023] [Indexed: 05/12/2023] Open
Abstract
Sodium glucose cotransporter-2 inhibitors (SGLT2is) promote urinary glucose excretion and decrease plasma glucose levels independent of insulin. Canagliflozin (CANA) is an SGLT2i, which is widely prescribed, to reduce cardiovascular complications, and as a second-line therapy after metformin in the treatment of type 2 diabetes mellitus. Despite the robust metabolic benefits, reductions in bone mineral density (BMD) and cortical fractures were reported for CANA-treated subjects. In collaboration with the National Institute on Aging (NIA)-sponsored Interventions Testing Program (ITP), we tested skeletal integrity of UM-HET3 mice fed control (137 mice) or CANA-containing diet (180 ppm, 156 mice) from 7 to 22 months of age. Micro-computed tomography (micro-CT) revealed that CANA treatment caused significant thinning of the femur mid-diaphyseal cortex in both male and female mice, did not affect trabecular bone architecture in the distal femur or the lumbar vertebra-5 in male mice, but was associated with thinning of the trabeculae at the distal femur in CANA-treated female mice. In male mice, CANA treatment is associated with significant reductions in cortical bone volumetric BMD by micro-CT, and by quantitative backscattered scanning electron microscopy. Raman microspectroscopy, taken at the femur mid-diaphyseal posterior cortex, showed significant reductions in the mineral/matrix ratio and an increased carbonate/phosphate ratio in CANA-treated male mice. These data were supported by thermogravimetric assay (TGA) showing significantly decreased mineral and increased carbonate content in CANA-treated male mice. Finally, the sintered remains of TGA were subjected to X-ray diffraction and showed significantly higher fraction of whitlockite, a calcium orthophosphate mineral, which has higher resorbability than hydroxyapatite. Overall, long-term CANA treatment compromised bone morphology and mineral composition of bones, which likely contribute to increased fracture risk seen with this drug.
Collapse
Affiliation(s)
- Gozde Yildirim
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, 345 East 24Th Street, New York, NY 10010-4086 USA
| | - Edmara T. P. Bergamo
- David B. Kriser Dental Center, Biomaterials Division, Department of Molecular Pathobiology, NYU College of Dentistry, New York, NY 10010-4086 USA
| | - Sher Bahadur Poudel
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, 345 East 24Th Street, New York, NY 10010-4086 USA
| | - Ryan R. Ruff
- David B. Kriser Dental Center, Department of Epidemiology and Health Promotion, New York University College of Dentistry, New York, NY 10010-4086 USA
| | - Manisha Dixit
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, 345 East 24Th Street, New York, NY 10010-4086 USA
| | - Bin Hu
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, 345 East 24Th Street, New York, NY 10010-4086 USA
| | - Dindo Q. Mijares
- David B. Kriser Dental Center, Biomaterials Division, Department of Molecular Pathobiology, NYU College of Dentistry, New York, NY 10010-4086 USA
| | - Lukasz Witek
- David B. Kriser Dental Center, Biomaterials Division, Department of Molecular Pathobiology, NYU College of Dentistry, New York, NY 10010-4086 USA
- Department of Biomedical Engineering, Tandon School of Engineering New York University, Brooklyn, NY 11201 USA
| | - Carolyn Chlebek
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, USA
| | | | - Randy Strong
- Geriatric Research, Education and Clinical Center and Research Service, South Texas Veterans Health Care System, San Antonio, TX USA
- Barshop Institute for Longevity and Aging Studies and Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX USA
| | - Richard A. Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI USA
| | - Warren Ladiges
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA USA
| | - Timothy G. Bromage
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, 345 East 24Th Street, New York, NY 10010-4086 USA
| | - Clifford J. Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, USA
| | - Shoshana Yakar
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, 345 East 24Th Street, New York, NY 10010-4086 USA
| |
Collapse
|
44
|
Hadd MJ, Bienhoff SE, Little SE, Geller S, Ogne‐Stevenson J, Dupree TJ, Scott‐Moncrieff JC. Safety and effectiveness of the sodium-glucose cotransporter inhibitor bexagliflozin in cats newly diagnosed with diabetes mellitus. J Vet Intern Med 2023; 37:915-924. [PMID: 37148170 PMCID: PMC10229323 DOI: 10.1111/jvim.16730] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/15/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND Bexagliflozin is a sodium-glucose cotransporter 2 (SGLT2) inhibitor. A pilot study has shown that bexagliflozin can decrease dependence on exogenous insulin in cats with diabetes mellitus (DM). OBJECTIVE To evaluate the safety and effectiveness of bexagliflozin as a monotherapy for DM in previously untreated cats. ANIMALS Eighty-four client-owned cats. METHODS Historically controlled prospective open-label clinical trial. Cats were dosed PO with 15 mg bexagliflozin once daily for 56 days, with a 124-day extension to evaluate safety and treatment effect durability. The primary endpoint was the proportion of cats experiencing a decrease in hyperglycemia and improvement in clinical signs of hyperglycemia from baseline on day 56. RESULTS Of 84 enrolled cats, 81 were evaluable on day 56, and 68 (84.0%) were treatment successes. Decreases in mean serum glucose, fructosamine, and β-hydroxybutyrate (β-OHB) concentrations were observed, and investigator assessments of cat neurological status, musculature, and hair coat quality improved. Owner evaluations of both cat and owner quality of life were favorable. The fructosamine half-life in diabetic cats was found to be 6.8 days. Commonly observed adverse events included emesis, diarrhea, anorexia, lethargy, and dehydration. Eight cats experienced serious adverse events, 3 of which led to death or euthanasia. The most important adverse event was euglycemic diabetic ketoacidosis, diagnosed in 3 cats and presumed present in a fourth. CONCLUSION AND CLINICAL IMPORTANCE Bexagliflozin decreased hyperglycemia and observed clinical signs in cats newly diagnosed with DM. As a once-daily PO medication, bexagliflozin may simplify management of DM in cats.
Collapse
Affiliation(s)
| | | | | | - Samuel Geller
- Quakertown Veterinary ClinicQuakertownPennsylvaniaUSA
| | | | | | - J. Catharine Scott‐Moncrieff
- Department of Veterinary Clinical SciencesPurdue University College of Veterinary MedicineWest LafayetteIndianaUSA
| |
Collapse
|
45
|
Keller T, Trinks N, Brand J, Trippmacher S, Stahlhut P, Albrecht K, Papastavrou G, Koepsell H, Sauer M, Groll J. Design of Nanohydrogels for Targeted Intracellular Drug Transport to the Trans-Golgi Network. Adv Healthc Mater 2023; 12:e2201794. [PMID: 36739269 PMCID: PMC11469190 DOI: 10.1002/adhm.202201794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/27/2023] [Indexed: 02/06/2023]
Abstract
Nanohydrogels combine advantages of hydrogels and nanoparticles. In particular, they represent promising drug delivery systems. Nanogel synthesis by oxidative condensation of polyglycidol prepolymers, that are modified with thiol groups, results in crosslinking by disulfide bonds. Hereby, biomolecules like the antidiabetic peptide RS1-reg, derived from the regulatory protein RS1 of the Na+ -D-glucose cotransporter SGLT1, can be covalently bound by cysteine residues to the nanogel in a hydrophilic, stabilizing environment. After oral uptake, the acid-stable nanogels protect their loading during gastric passage from proteolytic degradation. Under alkaline conditions in small intestine the nanohydrogels become mucoadhesive, pass the intestinal mucosa and are taken up into small intestinal enterocytes by endocytosis. Using Caco-2 cells as a model for small intestinal enterocytes, by confocal laser scanning microscopy and structured illumination microscopy, the colocalization of fluorescent-labeled RS1-reg with markers of endosomes, lysosomes, and trans-Golgi-network after uptake with polyglycidol-based nanogels formed by precipitation polymerization is demonstrated. This indicates that RS1-reg follows the endosomal pathway. In the following, the design of bespoken nanohydrogels for specific targeting of RS1-reg to its site of action at the trans-Golgi network is described that might also represent a way of targeted transport for other drugs to their targets at the Golgi apparatus.
Collapse
Affiliation(s)
- Thorsten Keller
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and BiofabricationUniversity of WürzburgPleicherwall 297070WürzburgGermany
| | - Nora Trinks
- Department of Biotechnology and BiophysicsUniversity of WürzburgAm Hubland97074WürzburgGermany
| | - Jessica Brand
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and BiofabricationUniversity of WürzburgPleicherwall 297070WürzburgGermany
| | - Steffen Trippmacher
- Physical Chemistry IIUniversity of BayreuthUniversitätsstr. 3095440BayreuthGermany
| | - Philipp Stahlhut
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and BiofabricationUniversity of WürzburgPleicherwall 297070WürzburgGermany
| | - Krystyna Albrecht
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and BiofabricationUniversity of WürzburgPleicherwall 297070WürzburgGermany
| | - Georg Papastavrou
- Physical Chemistry IIUniversity of BayreuthUniversitätsstr. 3095440BayreuthGermany
| | - Hermann Koepsell
- Institute of Anatomy and Cell BiologyUniversity of WürzburgKoellikerstraße 697070WürzburgGermany
| | - Markus Sauer
- Department of Biotechnology and BiophysicsUniversity of WürzburgAm Hubland97074WürzburgGermany
| | - Jürgen Groll
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and BiofabricationUniversity of WürzburgPleicherwall 297070WürzburgGermany
| |
Collapse
|
46
|
Erdem S, Titus A, Patel D, Patel NN, Sattar Y, Glazier J, Alraies MC. Sodium-Glucose Cotransporter 2 Inhibitors: A Scoping Review of the Positive Implications on Cardiovascular and Renal Health and Dynamics for Clinical Practice. Cureus 2023; 15:e37310. [PMID: 37182087 PMCID: PMC10166724 DOI: 10.7759/cureus.37310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2023] [Indexed: 05/16/2023] Open
Abstract
Cardiorenal benefits of sodium-glucose cotransporter 2 inhibitors (SGLT2is) have been demonstrated in patients with type 2 diabetes in multiple trials. We aim to provide a comprehensive review of the role of SGLT2i in cardiovascular disease. Reducing blood glucose to provide more effective vascular function, lowering the circulating volume, reducing cardiac stress, and preventing pathological cardiac re-modeling and function are the mechanisms implicated in the beneficial cardiovascular effects of SGLT2 inhibitors. Treatment with SGLT2i was associated with a decrease in cardiovascular and all-cause mortality, acute heart failure exacerbation hospitalization, and composite adverse renal outcomes. Improved symptoms, better functional status, and quality of life were also seen in heart failure with reduced ejection fraction (HFrEF), heart failure and mildly reduced ejection fraction (HFmrEF), and heart failure with preserved ejection fraction (HFpEF) patients. Recent trials have shown a notable therapeutic benefit of SGLT2is in acute heart failure and also suggest that SGLT2is have the potential to strengthen recovery after acute myocardial infarction (AMI) in percutaneous coronary Intervention (PCI) patients. The mechanism behind the cardio-metabolic and renal-protective effects of SGLT2i is multifactorial. Adverse events may occur with their usage including increased risk of genital infections, diabetic ketoacidosis, and perhaps limited amputations; however, all of them are preventable. Overall, SGLT2i clearly has many beneficial effects, and the benefits of using SGLT2i by far outweigh the risks.
Collapse
Affiliation(s)
- Saliha Erdem
- Internal Medicine, Wayne State University School of Medicine, Detroit, USA
| | - Anoop Titus
- Internal Medicine, Saint Vincent Hospital, Worcester, USA
- Medicine, Government Medical College Thrissur, Thrissur, IND
| | - Dhruvil Patel
- Internal Medicine, Wayne State University School of Medicine, Detroit, USA
| | - Neel N Patel
- Internal Medicine, New York Medical College/Landmark Medical Center, Woonsocket, USA
- Medicine, B. J. (Byramjee Jeejeebhoy) Medical College, Ahmedabad, IND
| | - Yasar Sattar
- Cardiology, West Virginia University, Morgantown, USA
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York City, USA
| | - James Glazier
- Cardiology, Wayne State University/Detroit Medical Center, Detroit, USA
| | - M Chadi Alraies
- Cardiology, Wayne State University/Detroit Medical Center, Detroit, USA
| |
Collapse
|
47
|
Choi J, Matoba N, Setoyama D, Watanabe D, Ohnishi Y, Yasui R, Kitai Y, Oomachi A, Kotobuki Y, Nishiya Y, Pieper MP, Imamura H, Yanagita M, Yamamoto M. The SGLT2 inhibitor empagliflozin improves cardiac energy status via mitochondrial ATP production in diabetic mice. Commun Biol 2023; 6:278. [PMID: 36932133 PMCID: PMC10023657 DOI: 10.1038/s42003-023-04663-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Empagliflozin, a sodium-glucose co-transporter 2 inhibitor developed, has been shown to reduce cardiovascular events in patients with type 2 diabetes and established cardiovascular disease. Several studies have suggested that empagliflozin improves the cardiac energy state which is a partial cause of its potency. However, the detailed mechanism remains unclear. To address this issue, we used a mouse model that enabled direct measurement of cytosolic and mitochondrial ATP levels. Empagliflozin treatment significantly increased cytosolic and mitochondrial ATP levels in the hearts of db/db mice. Empagliflozin also enhanced cardiac robustness by maintaining intracellular ATP levels and the recovery capacity in the infarcted area during ischemic-reperfusion. Our findings suggest that empagliflozin enters cardiac mitochondria and directly causes these effects by increasing mitochondrial ATP via inhibition of NHE1 and Nav1.5 or their common downstream sites. These cardioprotective effects may be involved in the beneficial effects on heart failure seen in clinical trials.
Collapse
Affiliation(s)
- Jungmi Choi
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Naoki Matoba
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Daiki Watanabe
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Yuichiro Ohnishi
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Ryuto Yasui
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Yuichirou Kitai
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Aki Oomachi
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Yutaro Kotobuki
- Medicine Division, Nippon Boehringer Ingelheim Co., Ltd., 2-1-1 Osaki, Shinagawa-ku, Tokyo, 141-6017, Japan
| | - Yoichi Nishiya
- Medicine Division, Nippon Boehringer Ingelheim Co., Ltd., 2-1-1 Osaki, Shinagawa-ku, Tokyo, 141-6017, Japan
| | - Michael Paul Pieper
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, Biberach an der Riss, 88397, Germany
| | - Hiromi Imamura
- Department of Functional Biology, Graduate School of Biostudies, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Motoko Yanagita
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masamichi Yamamoto
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan.
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
48
|
Matthews J, Hibbs M, Herat L, Schlaich M, Matthews V. The Sympathetic Nervous System Regulates Sodium Glucose Co-Transporter 1 Expression in the Kidney. Biomedicines 2023; 11:biomedicines11030819. [PMID: 36979798 PMCID: PMC10045340 DOI: 10.3390/biomedicines11030819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023] Open
Abstract
Hyperactivation of the sympathetic nervous system (SNS) has been demonstrated in various conditions including obesity, hypertension and type 2 diabetes. Elevated levels of the major neurotransmitter of the SNS, norepinephrine (NE), is a cardinal feature of these conditions. Increased levels of the sodium glucose cotransporter 1 (SGLT1) protein have been shown to occur in the parotid and submandibular glands of hypertensive rodents compared to normotensive controls. However, there was a need to examine SGLT1 expression in other tissues, such as the kidneys. Whether NE may directly affect SGLT1 protein expression has not yet been investigated, although such a link has been shown for sodium glucose cotransporter 2 (SGLT2). Hence, we aimed to determine (i) whether our murine model of neurogenic hypertension displays elevated renal SGLT1 expression and (ii) whether NE may directly promote elevations of SGLT1 in human proximal tubule (HK2) cells. We did indeed demonstrate that in vivo, in our mouse model of neurogenic hypertension, hyperactivation of the SNS promotes SGLT1 expression in the kidneys. In subsequent in vitro experiments in HK2 cells, we found that NE increased SGLT1 protein expression and translocation as assessed by both specific immunohistochemistry and/or a specific SGLT1 ELISA. Additionally, NE promoted a significant elevation in interleukin-6 (IL-6) levels which resulted in the promotion of SGLT1 expression and proliferation in HK2 cells. Our findings suggest that the SNS upregulates SGLT1 protein expression levels with potential adverse consequences for cardiometabolic control. SGLT1 inhibition may therefore provide a useful therapeutic target in conditions characterized by increased SNS activity, such as chronic kidney disease.
Collapse
Affiliation(s)
- Jennifer Matthews
- Dobney Hypertension Centre, School of Biomedical Science—Royal Perth Hospital Unit, Royal Perth Hospital Research Foundation, University of Western Australia, Crawley, WA 6009, Australia
| | - Moira Hibbs
- Research Centre, Royal Perth Hospital, Perth, WA 6000, Australia
| | - Lakshini Herat
- Dobney Hypertension Centre, School of Biomedical Science—Royal Perth Hospital Unit, Royal Perth Hospital Research Foundation, University of Western Australia, Crawley, WA 6009, Australia
| | - Markus Schlaich
- Dobney Hypertension Centre, Medical School—Royal Perth Hospital Unit, Royal Perth Hospital Research Foundation, University of Western Australia, Crawley, WA 6009, Australia
- Department of Cardiology and Department of Nephrology, Royal Perth Hospital, Perth, WA 6000, Australia
| | - Vance Matthews
- Dobney Hypertension Centre, School of Biomedical Science—Royal Perth Hospital Unit, Royal Perth Hospital Research Foundation, University of Western Australia, Crawley, WA 6009, Australia
- Correspondence: ; Tel.: +61-8-9224-0239
| |
Collapse
|
49
|
Cleveland KH, Schnellmann RG. Pharmacological Targeting of Mitochondria in Diabetic Kidney Disease. Pharmacol Rev 2023; 75:250-262. [PMID: 36781216 DOI: 10.1124/pharmrev.122.000560] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 10/03/2022] [Indexed: 12/14/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD) in the United States and many other countries. DKD occurs through a variety of pathogenic processes that are in part driven by hyperglycemia and glomerular hypertension, leading to gradual loss of kidney function and eventually progressing to ESRD. In type 2 diabetes, chronic hyperglycemia and glomerular hyperfiltration leads to glomerular and proximal tubular dysfunction. Simultaneously, mitochondrial dysfunction occurs in the early stages of hyperglycemia and has been identified as a key event in the development of DKD. Clinical management for DKD relies primarily on blood pressure and glycemic control through the use of numerous therapeutics that slow disease progression. Because mitochondrial function is key for renal health over time, therapeutics that improve mitochondrial function could be of value in different renal diseases. Increasing evidence supports the idea that targeting aspects of mitochondrial dysfunction, such as mitochondrial biogenesis and dynamics, restores mitochondrial function and improves renal function in DKD. We will review mitochondrial function in DKD and the effects of current and experimental therapeutics on mitochondrial biogenesis and homeostasis in DKD over time. SIGNIFICANCE STATEMENT: Diabetic kidney disease (DKD) affects 20% to 40% of patients with diabetes and has limited treatment options. Mitochondrial dysfunction has been identified as a key event in the progression of DKD, and pharmacologically restoring mitochondrial function in the early stages of DKD may be a potential therapeutic strategy in preventing disease progression.
Collapse
Affiliation(s)
- Kristan H Cleveland
- Pharmacology and Toxicology, University of Arizona, Tucson, Arizona (K.H.C., R.G.S.) and Southern VA Healthcare System, Tucson, Arizona (R.G.S.)
| | - Rick G Schnellmann
- Pharmacology and Toxicology, University of Arizona, Tucson, Arizona (K.H.C., R.G.S.) and Southern VA Healthcare System, Tucson, Arizona (R.G.S.)
| |
Collapse
|
50
|
Isidto R, Danguilan R, Naidas O, Vilanueva R, Arakama MH, Paraiso LM. Emerging Role of Sodium-Glucose Co-Transporter 2 Inhibitors for the Treatment of Chronic Kidney Disease. Int J Nephrol Renovasc Dis 2023; 16:43-57. [PMID: 36852177 PMCID: PMC9960786 DOI: 10.2147/ijnrd.s387262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/24/2022] [Indexed: 02/25/2023] Open
Abstract
Chronic kidney disease is one of the leading causes of morbidity and mortality in the Philippines. It is associated with a growing health burden as many patients progress to end-stage renal disease. Until recently, therapeutic options for the management of chronic kidney disease were limited. Sodium-glucose co-transporter 2 inhibitors offer an alternative therapeutic approach for patients with chronic kidney disease. Several trials have shown renal benefits with sodium-glucose co-transporter 2 inhibitors in patients with cardiovascular disease with and without type 2 diabetes and across a range of estimated glomerular filtration rate levels. In the Philippines, the sodium-glucose co-transporter 2 inhibitors dapagliflozin and canagliflozin are approved for the prevention of new and worsening nephropathy in type 2 diabetes. With emerging treatment options, an urgent need exists for guidance on the management of chronic kidney disease within the Philippines. In this review, we focus on the putative renal-protective mechanisms of sodium-glucose co-transporter 2 inhibitors, including effects on tubuloglomerular feedback, albuminuria, endothelial function, erythropoiesis, uric acid levels, renal oxygen demand, and hypoxia. Furthermore, we discuss the findings of recent large clinical trials using sodium-glucose co-transporter 2 inhibitors in patients with chronic kidney disease and diabetic kidney disease, summarize safety aspects, and outline the practical management of patients with chronic kidney disease in the Philippines.
Collapse
Affiliation(s)
- Rey Isidto
- HealthLink Medical, Surgical, Dental Clinics and Diagnostic Center, Iloilo City, Iloilo, Philippines
| | - Romina Danguilan
- Department of Adult Nephrology, National Kidney and Transplant Institute, Quezon City, Manila, Philippines
| | - Oscar Naidas
- Department of Adult Nephrology, St. Luke’s Medical Center, Quezon City, Manila, Philippines
| | - Russell Vilanueva
- Department of Adult Nephrology, National Kidney and Transplant Institute, Quezon City, Manila, Philippines
| | - Mel-Hatra Arakama
- Department of Adult Nephrology, National Kidney and Transplant Institute, Quezon City, Manila, Philippines
| | - Layla Marie Paraiso
- Department of Adult Nephrology, National Kidney and Transplant Institute, Quezon City, Manila, Philippines
| |
Collapse
|